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Abstract

Due to experimental developments over the past decades on quantum optical, and
atomic systems, a wealth of composite quantum systems of variable sizes has be-
come accessible under rather well-controlled conditions. Typical systems of tens of
trapped ions or thousands of cold neutral atoms are usually too large to fully mea-
sure all of their constituents’ microscopic quantum properties, but not large enough
to be described completely in terms of thermodynamic quantities. This challenging,
intermediate regime of controllable quantum few- to many-body systems, is particu-
larly interesting since it combines a variety of different phenomena and applications,
ranging from quantum information theory to solid state physics.

The effective characterization of these systems requires flexible and experimentally
feasible observables, complemented by efficient theoretical methods and models. In this
dissertation we employ concepts from the fields of open quantum systems, quantum
information theory, quantum many-body theory and physical chemistry, to construct
dynamical approaches for the study of various aspects of correlations, and to describe
spectral and dynamical features of complex, interacting quantum systems. Some of
the developed theoretical ideas are complemented by experimental realizations with
trapped ions or photons.

To facilitate the scalable analysis of bipartite correlation properties in the context
of quantum information theory, we introduce a method which allows to detect and
estimate discord-type correlations when only one of the two correlated subsystems can
be measured. The method makes use of the influence of the correlations on the local
subsystem dynamics, which illustrates the fundamental role of initial correlations for
the theory of open quantum systems. We present an experimental realization with a
single trapped ion, as well as the description of a photonic experiment. Further the-
oretical studies are presented, including the application to a spin-chain model, which
relates the dynamical single-spin signature of the ground-state quantum correlations
to a quantum phase transition.

Having established this local detection technique for quantum discord, whose infor-
mation about the state’s correlations is limited, we introduce the correlation rank to
assess the degree of total correlations of bipartite quantum states. This allows us to
identify strongly correlated states which cannot be generated with local operations.
Classically correlated noise processes, however, are able to generate strongly corre-
lated, but separable quantum states. This is confirmed in a trapped-ion experiment,
where such noise processes occur naturally, and represent one of the dominant sources
of error. We further develop a fully analytical description of the generated ensemble-
average dynamics, allowing us to de derive conditions that ensure the robustness of
entanglement in bipartite and multi-particle systems.

Information-theoretic quantifiers of the correlation properties between the constitu-
ents no longer represent suitable observables for increasingly complex composite quan-
tum systems. Hence, we develop a multi-configurational mean-field approach in order
to understand the dynamical features and, with it, the role of the energy spectrum in
the vicinity of the quantum phase transition in a quantum magnet. Specifically, we
study a spin-chain model with variable-range interactions in a transverse field, which
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can be realized in trapped-ion quantum simulators. The obtained semiclassical model
allows for an analytical analysis of the excitation spectrum, whose predictions are
exact in the limit of very strong or vanishing external magnetic fields. Bifurcations
of a series of excited-state energy landscapes below a threshold value of the external
magnetic field reflect the quantum phase transition from the paramagnetic phase to
the (anti-)ferromagnetic phase in the entire excitation spectrum—and not just in the
ground state.

To develop a set of experimentally accessible, suitable observables, able to cope
with complex dynamics in quantum optical systems, we develop a general framework
based on ideas from nonlinear spectroscopy. Sequences of phase-coherent laser pulses
allow us to extract multi-time correlation functions, which may be combined with
single-site addressability to achieve spatial resolution. We propose specific schemes
to realize the elementary steps with existing trapped-ion technology, and discuss a
variety of applications based on second-order and fourth-order signals. The obtained
multi-dimensional spectra are particularly suited to extract information about the
system’s environmental influences, the relevant transport mechanisms, and particle-
particle interactions.

The theoretical description of interacting many-body systems becomes particularly
hard when the quantum statistics is explicitly taken into account. Generalizing con-
cepts from open-system theory to the case of identical particles, we study the dynamics
of a subsystem of interacting bosons. We obtain a hierarchical expansion of the co-
herent subsystem evolution, which can be truncated by a mean-field ansatz. When
applied to a dilute Bose-Einstein condensate, we recover the Gross-Pitaevskii equa-
tion. Based on a perturbative second-order expansion in the interaction strength, we
establish first steps towards a microscopic derivation of a master-equation description
that is able to account for interaction-induced decoherence.
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Zusammenfassung

Der experimentelle Fortschritt der letzten Jahrzehnte an quantenoptischen und ato-
maren Systemen ermöglicht heute Experimente unter kontrollierten Bedingungen an
einer Vielzahl zusammengesetzter Quantensysteme verschiedener Größen. Typische
Systeme, bestehend aus dutzenden gefangenen Ionen oder tausenden kalten, neutralen
Atomen, sind typischerweise zu groß, um alle mikroskopischen Eigenschaften ihrer Be-
standteile zu messen, während sie noch nicht groß genug sind, um sie vollständig durch
thermodynamische Größen zu beschreiben. Dieses herausfordernde Gebiet kontrollier-
barer, quantenmechanischer Wenig- bis Vielteilchensysteme ist besonders interessant,
da es eine Vielfalt von Phänomenen und Anwendungen kombiniert, die verschiedene
Gebiete der Physik, von der Quanteninformationstheorie bis hin zur Festkörperphysik,
überspannen.

Die effektive Charakterisierung dieser Systeme bedarf flexibler und experimentell
zugänglicher Observablen, ergänzt durch effiziente theoretische Methoden und Mo-
delle. In dieser Dissertation kombinieren wir Konzepte aus den Gebieten der offenen
Quantensysteme, der Quanteninformationstheorie, der Quantenvielteilchentheorie und
der physikalischen Chemie, um dynamische Zugänge zur Analyse verschiedener Kor-
relationsaspekte zu konstruieren und, um spektrale und dynamische Eigenschaften
komplexer, wechselwirkender Quantensysteme zu beschreiben. Einige der entwickelten
theoretischen Ideen werden durch experimentelle Umsetzungen mit gefangenen Ionen
und Photonen ergänzt.

Um die skalierbare Analyse bipartiter Korrelationseigenschaften im Kontext der
Quanteninformationstheorie zu ermöglichen, führen wir eine Methode ein, die es er-
laubt Discord-ähnliche Korrelationen zu detektieren und abzuschätzen, wenn nur eines
der beiden korrelierten Untersysteme gemessen werden kann. Die Methode nutzt den
Einfluss der Korrelationen auf die Dynamik des Untersystems aus, was wiederum die
fundamentale Rolle von Anfangskorrelationen in der Theorie offener Quantensysteme
hervorhebt. Wir präsentieren sowohl eine experimentelle Umsetzung dieser theoreti-
schen Idee mit einem einzelnen gefangenen Ion, als auch die Beschreibung eines Experi-
ments mit Photonen. Wir stellen weitere theoretische Studien dazu vor; darunter auch
die Anwendung dieser Methode in einer Spinkette, welche die dynamische Signatur ei-
nes einzelnen Spins mit einem Quantenphasenübergang und den Quantenkorrelationen
des Grundzustands in Verbindung setzt.

Da der Quantendiscord nur wenig Information über die Korrelationen des zugrunde-
liegenden Zustandes enthält, stellen wir den Korrelationsrang vor, der in der Lage ist,
die Gesamtkorrelationen bipartiter Quantenzustände zu erfassen. Dadurch sind wir in
der Lage, stark korrelierte Zustände zu identifizieren, die nicht durch lokale Operatio-
nen erzeugt werden können. Andererseits ist klassisches Rauschen in der Lage, stark
korrelierte, aber separable Quantenzustände zu erzeugen. Dies wird durch ein weiteres
Experiment mit gefangenen Ionen bestätigt, wo ein solches Rauschen auf natürliche
Weise auftritt und eine der dominanten Fehlerquellen darstellt. Des Weiteren entwi-
ckeln wir eine vollständig analytische Beschreibung der zugrundeliegenden Dynamik
des Ensemblemittels, welche uns erlaubt, Bedingungen zur Erhaltung von Zwei- und
Vielteilchenverschränkung zu bestimmen.
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Informationstheoretische Maße der Korrelationseigenschaften zwischen den Einzel-
bestandteilen stellen keine geeigneten Observablen mehr dar, sobald die behandelten
zusammengesetzten Quantensysteme zunehmend komplex werden. Um die dynami-
schen Eigenschaften und die damit verbundene Rolle des Energiespektrums in der
Umgebung des Quantenphasenübergangs eines Quantenmagneten zu verstehen, ent-
wickeln wir daher eine Molekularfeldnäherung. Das resultierende semiklassische Modell
liefert eine Näherung des Anregungsspektrums, welche in den Grenzfällen sehr starker
und verschwindender externer Magnetfelder exakte Ergebnisse liefert. Unterhalb ei-
nes Grenzwertes des Magnetfeldes entstehen Bifurkationen einer Reihe semiklassischer
Energielandschaften, die angeregten Quantenzuständen zugeordnet werden, und daher
den Quantenphasenübergang von der paramagnetischen zur (anti-)ferromagnetischen
Phase im gesamten Anregungsspektrum, und nicht nur in den Grundzustandseigen-
schaften, wiederspiegeln.

Um einen Satz geeigneter, experimentell zugänglicher Observablen zu konstruie-
ren, die in der Lage sind, komplexe Dynamik in quantenoptischen Systemen zu er-
fassen, entwickeln wir einen allgemeinen Ansatz, basierend auf Ideen aus dem Gebiet
der nichtlinearen Spektroskopie. Sequenzen phasenkohärenter Laserpulse erlauben es
uns Zeit-Mehrpunktskorrelationsfunktionen des Systems zu extrahieren, die wiederum,
durch Laser-fokussierte Adressierung einzelner Bestandteile, mit räumlicher Auflösung
kombiniert werden können. Wir schlagen spezielle Methoden zur experimentellen Um-
setzung der grundlegenden Schritte, basierend auf existierender Technologie gefangener
Ionen, vor und diskutieren eine Vielzahl von Anwendungen spezieller Signale zweiter
und vierter Ordnung. Die erhaltenen mehrdimensionalen Spektren sind besonders ge-
eignet um Umgebungseinflüsse, relevante Transportprozesse, sowie Wechselwirkungen
zu untersuchen.

Die theoretische Beschreibung wechselwirkender Vielteilchensysteme ist besonders
schwierig, wenn die Quantenstatistik der Teilchen explizit mitbehandelt wird. Indem
wir Konzepte der Theorie offener Quantensysteme auf Systeme ununterscheidbarer
Teilchen verallgemeinern, untersuchen wir die Dynamik einer Untergruppe von wech-
selwirkenden Bosonen. Wir erhalten eine hierarchische Serie von dynamischen Glei-
chungen zur Beschreibung der kohärenten Zeitentwicklung des Untersystems, welche
durch einen Molekularfeldansatz abgebrochen werden kann. Wird dieses Ergebnis auf
ein Bose-Einstein Kondensat niedriger Teilchendichte angewandt, bringt es die Gross-
Pitaevskii Gleichung hervor. Durch eine störungstheoretische Entwicklung der Wech-
selwirkungsstärke zur zweiten Ordnung, können wir erste Schritte zur mikroskopischen
Herleitung einer Master-Gleichung unternehmen, die Dekohärenz durch Wechselwir-
kung beschreiben kann.
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1 Introduction

While the fundamental laws of quantum mechanics were developed in the last century
(Cohen-Tannoudji et al., 1977a; Cohen-Tannoudji et al., 1977b; Sakurai and Napoli-
tano, 1994), recent experimental developments have allowed to probe, and confirm,
their validity on the single particle level under well-controlled conditions (Phillips,
1998; Cohen-Tannoudji, 1998; Chu, 1998; Wineland, 2013; Haroche, 2013). The the-
oretical and experimental characterization of composite quantum systems based on
the knowledge of the basic laws is, however, rather challenging due to the rapidly
increasing number of degrees of freedom. In the extreme limit of large-scale ensem-
bles of ∼ 1023 particles, suitable approximations and tools from the well-established
fields of solid-state physics or statistical mechanics allow for the efficient description
of macroscopic observables (Landau and Lifshitz, 1969; Mahan, 2000). A remaining
challenge to both theory and experiment is the intermediate regime of few- to many-
body composite quantum systems in the presence of interactions, which shall be the
subject of the present dissertation. In recent years, this regime has become available,
for example, in experiments on trapped atomic particles (Bloch et al., 2008; Häffner
et al., 2008; Schneider et al., 2012; Blatt and Roos, 2012).

Quantum optical experiments, involving, for instance, trapped ions, cold atoms, or
photons, represent a flexible testbed for studying quantum systems of variable sizes,
ranging from elementary, small-scale systems of few degrees of freedom (Leibfried et al.,
2003a; Kok et al., 2007; Häffner et al., 2008), to the many-body dynamics of a Bose-
Einstein condensate (Pitaevskii and Stringari, 2003; Bloch et al., 2008). As the system
size changes, the experimentally accessible observables that characterize the system’s
properties, as well as the theoretical methods which predict their behavior, need to be
adjusted accordingly. Let us first provide a very brief overview of different manifesta-
tions of controllable, composite quantum systems, their predominant characteristics,
their relevant observables, and the emerging challenges.

As long as one limits to effectively very low-dimensional quantum systems, the full
collection of microscopic quantum properties can be measured by quantum state to-
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mography (Paris and Řeháček, 2004) in the experiment, as well as numerically or even
analytically handled in theory. Prominent examples are the, by now experimentally
well-controlled, elementary building blocks of quantum information theory: Systems
of few two-level systems can be encoded, for instance, into the electronic states of
trapped ions (Häffner et al., 2008), or the polarization degrees of freedom of individual
photons (Kok et al., 2007). In this context, correlation properties are frequently at
the center of the theoretical analysis, since they often can identify a boarder between
“quantum” and “classical” features, and, in some cases, also play an important role
for applications of quantum information theory (Horodecki et al., 2009; Modi et al.,
2012).

As the number or the dimension of the constituents of composite quantum systems
increases, it is no longer reasonable to measure the entirety of microscopic properties
experimentally—feasible full state tomography is limited to systems of roughly no
more than ten two-level systems (Häffner et al., 2005a). Thus, the electronic levels of
a collection of ten to twenty trapped ions already represent a system that is beyond the
reach of standard tools of quantum information theory. Similarly, the system rapidly
escapes the easily manageable parameter range if other degrees of freedom, such as
the ions’ motion in the trap potential, are taken into account. Characterization of
the correlation properties in this intermediate, few-particle regime, is significantly
complicated by the emerging multipartite nature (Mintert et al., 2005; Gühne and
Tóth, 2009), and, experimentally, the preparation of specific quantum states and their
efficient isolation from external noise sources becomes more and more challenging
(Schindler et al., 2013). When the isolation of the system from its environment is
no longer possible, an open-system description that takes decoherence into account is
required (Breuer and Petruccione, 2002). In fact, we may also consider the bipartite
setting of system and environment as another instance of a composite quantum system.

The larger number of particles also leads to the emergence of new phenomena, such as
the onset of collective effects with macroscopically observable signatures; for instance,
a measurable magnetization generated by the long-range order of the atom’s spins,
determined by their mutual interaction. These macroscopic properties may further
depend on externally controllable parameters, for example, the strength of an external
magnetic field. Tuning these parameters, thus, allows to employ controllable quantum
systems for the observation of quantum phase transitions, that is, the macroscopic
change of a system’s properties induced by the variation of an external parameter
(Sondhi et al., 1997; Sachdev, 1999; Vojta, 2003). When a system transitions from
one phase into another at zero temperature, its ground state undergoes a non-analytic
change. Despite indications that this transition also affects the excitation spectrum
(Emary and Brandes, 2003a), the relation between the quantum phase transition and
the excited states is not yet well understood in general. Collective effects may further
arise due to the interaction of an ensemble of particles with a common environment
(Dicke, 1954), which, on the one hand, can lead to enhanced decoherence, but, on the
other hand, given a detailed understanding of the resulting dynamics, allows for the
efficient control of available parameters, such that coherent evolution can be protected
(Palma et al., 1996).

The signature of phase transitions typically becomes more and more pronounced as
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the number of particles increases. Cold, trapped ensembles of neutral atoms repre-
sent a platform for composite, controllable quantum systems (Bloch et al., 2008), with
yet another parameter regime, characterized by a significantly higher particle number
(∼ 103 − 106) and density than that of trapped-ion systems. Moreover, appropriate
design of the potential landscape via optical lattices can render cold-atom systems
formally equivalent to solid-state systems (Jaksch et al., 1998). Cold atoms, there-
fore, allow for the studies of a variety of physical phenomena, including many-particle
dynamics from experimentally controlled conditions (Greiner et al., 2002) to truly
complex settings (Moore et al., 1995; Raizen, 1999; Oberthaler et al., 1999; Hensinger
et al., 2001; Madroñero et al., 2006; Modugno, 2010), and the emergence of a semi-
classical limit (Smerzi et al., 1997; Wimberger et al., 2003; Hiller et al., 2009). The
high particle density implies that the quantum statistics, induced by the particles’
indistinguishability, needs to be taken explicitly into account. Typical experimentally
accessible observables that characterize the properties of quantum many-body systems
of identical particles are single-particle observables, such as the average momentum.
In the presence of interactions their theoretical description is severely complicated by
the particles’ indistinguishability, and a microscopic theory of the effective dynamics
and decoherence (Buchleitner and Kolovsky, 2003; Meinert et al., 2014) of a subset of
identical particles is presently not available.

Hence, composite quantum systems, as represented by state-of-the-art quantum op-
tical experiments, span a large range of system sizes and physical phenomena. Their
characterization requires the identification of appropriate observables, as well as the
development of theoretical models and tools for their efficient description. The sys-
tems mentioned above often allow for a surprisingly flexible experimental framework:
Despite the large number of degrees of freedom, systems of trapped atomic particles
allow for a remarkable level of quantum control, for instance, by providing laser access
to individual constituents (Häffner et al., 2008; Weitenberg et al., 2011). Moreover, the
interactions between the particles – to some extent – can be controlled externally, and
the typical microsecond time scales of the associated evolution allow for the convenient
time-resolved measurements of observables, employing nanosecond laser pulses. This
rather convenient experimental access to the quantum dynamics stands in contrast
to its theoretical description. Interacting composite quantum systems between tens
and thousands of particles represent the most challenging parameter regimes: Full di-
agonalization is no longer plausible, efficient numerical tools are often limited to the
treatment of weakly correlated states, and have troubles to predict the dynamical fea-
tures of systems with more and more complex interactions (Schollwöck, 2005), and, yet,
the system is not large enough to be described purely on the level of thermodynamic
observables. Therefore, this combination of high-dimensional Hilbert spaces, complex
interactions, and high level of experimental access, provides an unprecedented, highly
versatile, yet challenging setting.

In the present dissertation we employ methods from fields of rather distinct back-
grounds to develop experimentally accessible observables and suitable theoretical ap-
proaches that are able to treat a broad range of composite quantum systems of very
different sizes and phenomena, as outlined above. The theoretical ideas are further-
more combined with experimental realizations based on trapped ions and photons. In
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particular, chapters 3 and 4 are founded on the fields of quantum information the-
ory and open quantum systems. Specifically, we introduce a dynamical observable
for correlation properties of quantum states, when tomographic access to a part of
the full system is feasible in chapter 3, and analyze the generation and protection of
correlations under a collective dephasing process in chapter 4. We move towards more
complex systems in chapter 5, where we develop a semiclassical mean-field approach
to describe the excitation spectrum in the context of a quantum phase transition.
Chapter 6 deals with the development of a rather general toolbox to experimentally
probe multi-time correlation functions of controllable quantum many-body systems
based on ideas from nonlinear spectroscopy, a formalism originally developed for phys-
ical chemistry. Finally, in chapter 7, combining the open-system perspective with the
indistinguishability of quantum particles in many-body systems, we microscopically
describe the dynamics of a subsystem of interacting, identical particles, from coherent,
mean-field dynamics towards the description of incoherent effects. The following chap-
ter 2 introduces the different basic concepts in further detail, and will also conclude
with a more detailed view on the scope and structure of the thesis in section 2.7.



2 Background

In this chapter, we provide the background of different conceptual approaches to quan-
tum many-body systems, as they will become relevant in the course of this dissertation.
We first introduce basic ideas of quantum information theory, with an emphasis on the
role of correlated quantum states. This is followed by an overview over a selection of
existing technologies, allowing for high-precision experiments on quantum mechanical
systems. Experiments on trapped ions are described in particular detail, as they repre-
sent a recurring theme throughout this dissertation. Interesting applications, such as
quantum simulations, lead us to the discussion of reliable tools to diagnose increasingly
larger quantum systems. In this context, we discuss a very powerful probing technique
from a different background: Nonlinear spectroscopy. We further review some com-
monly employed theoretical methods to describe complex quantum systems, including
concepts of random matrix theory, the theory of open quantum systems, and the de-
scription of interacting, identical particles. Finally, the phenomenology and description
of quantum phase transitions is discussed.

2.1 Elements of quantum information theory

The experimental control of objects behaving according to the laws of quantum me-
chanics has become common practice in many laboratories around the world. Today,
there exists a large list of controllable quantum systems, ranging from individual atoms,
ions and photons via molecules to nano- or mesoscopic solid-state devices (see also
chapter 2.2). Besides the possibility to explore a wide range of interesting physical
phenomena, this motivates physicists to study the opportunities provided by quantum
mechanics in order to achieve tasks beyond the reach of systems following the laws of
classical mechanics.

In classical information theory, an elementary unit of abstract information is en-
coded into a bit, which can take binary values such as 0 and 1. Quantum mechanics
allows quantum objects, such as atoms, to realize arbitrary superpositions of ground
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and excited state, |Ψ〉 = α|0〉 + β|1〉, with complex parameters α, β which only have
to satisfy the normalization condition |α|2 + |β|2 = 1. Hence, two-level systems which
are used as elementary quantum bits (qubits) in quantum information science can
carry significantly more information1 than their classical counterparts (Nielsen and
Chuang, 2000; Hayashi, 2006). The enormous information content of quantum sys-
tems is further manifested when many-particle systems are considered, and a Hilbert
space whose dimension grows exponentially with the number of particles is required to
describe the many-body quantum state. Quantum theory permits arbitrary coherent
superpositions of many-particle states, which includes so-called entangled states. Such
states contain correlations which are beyond the reach of classical physics (Bell, 1964),
and underline the futility of attempts to grasp certain quantum phenomena with an
intuition based on classical physics (Einstein et al., 1935; Bell, 1964; Englert, 2013).
Notwithstanding, experimental tests confirmed these predictions of quantum theory
(Aspect et al., 1982a; Aspect et al., 1982b), which indicates the novel opportunities
that are expected to open up when concepts from classical information theory are
extended to the quantum realm.

For instance, the non-classical correlations of quantum states can be harnessed to
develop secure key distribution protocols (Ekert, 1991; Aćın et al., 2006), in which
information is encoded into the quantum states of particle pairs. Each of the parties
then receives one of the two strongly correlated particles and performs measurements
on it. By sharing the settings of their detectors and part of their measurement data
publicly, the two parties can establish a secret key (based on the data kept private)
and at the same time confirm that their data is correlated in a way only achievable
with undisturbed quantum states, which excludes the influence of a third-party eaves-
dropper. This protocol, quantum key distribution, is an important example of a field
called quantum communication, which strives to make efficient use of the possibilities
quantum mechanics offers. Another example is given by quantum teleportation (Ben-
nett et al., 1993): By exchanging a combination of quantum information and classical
information, it is possible to transfer the quantum state of one particle to another,
possibly in a remote laboratory. Entangled quantum states enable to perform this
task deterministically in a single run, without even knowing the teleported quantum
state (Bennett et al., 1993). Quantum teleportation has been realized experimentally
first using photons (Bouwmeester et al., 1997; Boschi et al., 1998) and later with atoms
(Barrett et al., 2004; Riebe et al., 2004).

Besides quantum communication, quantum information theory promises to improve
the power of computational algorithms. If it was possible to build computers which
work according to the laws of quantum mechanics, the additional resources provided
by coherent superpositions of quantum states could be used to achieve tasks which
otherwise are believed to be unfeasible (Nielsen and Chuang, 2000; Hayashi, 2006).
An important problem, potentially suitable to be treated efficiently with a quantum
computer, is given by the factorization of large integer number into its prime factors,

1The quantum state of a qubit is described by a unit vector in a two-dimensional complex vector
space, while a classical bit only contains binary information (Nielsen and Chuang, 2000). Even
though a quantum measurement of a qubit only yields a classical bit of information, the full
information of the complex coefficients is relevant to describe the quantum evolution of the qubit.



2. Background 7

which may be achieved based on Shor’s algorithm (Shor, 1994). This algorithms’
runtime scales polynomially as a function of the number of classical bits required
to represent the integer at question. For classical computers, prime factorization is
a very hard task—the runtime of the fastest existing algorithm scales exponentially
with the number of bits, which implies that quantum computers have the potential to
provide an exponential speed-up over classical computers (Nielsen and Chuang, 2000).
The potential implications are immense since the security of standard cryptography
methods is based on the assumption that factoring large numbers is computationally
intractable.

One prerequisite for the realization of a quantum computer is the ability to control
and engineer quantum mechanical systems. Assuming that such level of experimental
control was available, one could engineer a quantum system which mimics the dynam-
ics of another interacting many-body system. By measuring the controllable quantum
system at hand, one could then infer the properties of the quantum system in ques-
tion. Without using considerable approximations, predicting the dynamics of large
quantum many-body systems is also intractable for classical computers as the dimen-
sion of the system, and with it the required computational (classical) memory, grows
exponentially with the number of particles in the system. This approach, referred to
as quantum simulation (Feynman, 1982), is currently being pursued by experimental
groups working on a variety of different platforms (see section 2.2)—the reliability and
efficient certification of potential quantum simulations is, however, still debated (see
section 2.3).

Entangled states form the basis of many applications of quantum information theory.
In the next section, we review the formal definition of quantum entanglement and also
introduce the concept of quantum discord, a weaker form of correlations in quantum
states which emerges in the context of local measurements of composite quantum
systems. Often it turns out difficult to clearly identify the resource which empowers
the quantum speedup in the particular protocol. Later, in section 2.1.2, we discuss a
selection of examples which rely on entanglement, and others which do not necessarily
require entangled states, but instead are enabled by mixed states with nonzero discord.

2.1.1 Correlations in composite quantum systems: Entanglement and discord

We now briefly review the definition of separable and entangled states. For further
details and pedagogical introductions we refer to the extensive literature on the topic
(Nielsen and Chuang, 2000; Mintert et al., 2005; Amico et al., 2008; Horodecki et al.,
2009; Tichy, 2011). Formally, quantum states are represented by normalized, positive
semi-definite operators (density operators) ρ on a Hilbert space H: ρ ≥ 1, Trρ = 1
(Cohen-Tannoudji et al., 1977a; Cohen-Tannoudji et al., 1977b), where Tr denotes
the trace operation. A composite bipartite system, describing for instance two distin-
guishable particles or two degrees of freedom, is represented by quantum states on the
Hilbert space H = HA ⊗HB formed by the tensor product of the Hilbert spaces HA
and HB of the individual subsystems. We introduce the notion of correlated quantum
states by first defining what is considered a completely uncorrelated state: A product
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state

ρP = ρA ⊗ ρB (2.1)

describes a situation where the two subsystems A and B are statistically completely
independent, since probabilities for the measurement outcomes of independent experi-
ments will factorize (Werner, 1989). Quantum states may also exhibit purely classical
correlations, which can be seen from the following example: Imagine a device, able to
prepare the respective subsystems arbitrarily within the two sets of quantum states
{ρiA} and {ρiB} (Werner, 1989). If the device is connected to a classical random num-
ber generator in a way that with probability pi it prepares system A in state ρiA and
system B in state ρiB , we describe the resulting composite quantum system with the
state

ρS =
∑

i

piρ
i
A ⊗ ρiB . (2.2)

This state clearly contains some correlations, since the subsystem probabilities do
not factorize. However, the example shows that the correlations can be attributed
to a classical probability distribution. A state of this form is called separable, and
conversely, if a state cannot be represented in this form, it is called entangled. This
can be generalized to characterize multiparticle entanglement in a hierarchical order
ranging from bipartite to genuine multipartite entangled states (Mintert et al., 2005;
Levi and Mintert, 2013); which we will discuss in section 4.4.5.

The definition (2.2) characterizes the most general set of bipartite states whose
correlations are of classical nature. A different approach to defining the boarder be-
tween classical and quantum states is based on quantum measurements. The measure-
ment uncertainty of two incompatible observables is most prominently determined by
nonzero commutators (Heisenberg, 1927). However, quantum mechanics may already
predict a finite variance for the measurement of a single observable. For example, if
a system is prepared in a pure quantum state |Ψ〉, an observable M can be measured
with zero variance if and only if |Ψ〉 is an eigenstate of M . If the system is described by
a mixed state ρ, the resulting variance must be attributed to two different origins: One
is the lack of knowledge expressed by the statistical mixture in the construction of ρ,
the other is the remaining intrinsic quantum uncertainty. One may use the commuta-
tor of ρ and M to quantify the quantum contribution to the uncertainty (Wigner and
Yanase, 1963; Luo, 2003; Girolami et al., 2013) which is consistent with the well-known
special case for pure states (Luo, 2003).

This implies certain consequences for correlated quantum states in a bipartite sce-
nario, as considered before. To see this we apply the above reasoning to local mea-
surements on subsystem A. It is possible to show that there exists a local observable2

2We assume that the spectrum of MA is non-degenerate, since otherwise a given measurement
outcome cannot be uniquely identified with a quantum state, thus, the observable carries limited
information.



2. Background 9

MA ⊗ IB which commutes with ρ if and only if ρ has the form (Girolami et al., 2013)

ρ =
∑

i

pi|i〉〈i| ⊗ ρiB , (2.3)

where {|i〉} represents an orthonormal basis of HA. States of this form are called states
of zero discord (Henderson and Vedral, 2001; Ollivier and Zurek, 2001) and the lack
of quantum uncertainty motivates to call them classical states3 (Modi et al., 2012).

One may also consider a non-selective measurement of MA ⊗ IB—a measurement
where the outcome was forgotten:4 In this case the final state is described by an
incoherent mixture of the eigenstates of MA,

ρf =
∑

i

(|i〉〈i| ⊗ IB)ρ(|i〉〈i| ⊗ IB). (2.4)

An equivalent definition of zero-discord states may be given as follows: There exists
a basis {|i〉} (which can be interpreted as the eigenbasis of an observable), such that
ρf = ρ if and only if ρ is of the form (2.3). This is another indicator for classicality
since invariance under measurements is typically not granted in quantum mechanics.

Notice from comparing equations (2.2) and (2.3) that states of zero discord form a
subset of separable states: A separable state has zero discord only if the decomposition
of the form (2.2) can be expressed in terms of a local orthonormal basis {|i〉}, instead
of arbitrary density matrices ρiA.

What does the definition (2.3) tell us about the correlations of nonzero discord
states? First of all we note that nonzero discord states are certainly correlated since
product states have always zero discord (Li and Luo, 2008). Of course the set of
nonzero discord states includes the entire set of entangled states, which are quan-
tum correlated—in fact, when restricting to pure states, discord and entanglement are
equivalent. Yet, the correlations of separable, nonzero discord states are still of clas-
sical origin as they can be characterized by a probability distribution [see discussion
preceding equation (2.2)].

In the light of the above discussion, we conclude that states of nonzero discord are
correlated quantum states which show quantum properties (quantum noise, measure-
ment disturbance, nonzero commutators) under the influence of local measurements.
The nature of their correlations is, however, only quantum when they are also entan-
gled. A more detailed discussion will be given in section 4.1.

2.1.2 Role of correlated quantum states in quantum information theory

Much effort is spent to define, characterize, and quantify different notions of correla-
tions in quantum states including quantum entanglement and discord (Horodecki et al.,

3Note that, due to the asymmetry of this definition, one should always specify which of the two
subsystems is being measured.

4The post-measurement state after a non-selective measurement is described by a mixture ρ′ =∑
i piΠi of all measurement projectors Πi, where the overlap of the initial state ρ with these

projectors determines the probability distribution, pi = Tr{Πiρ}.
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2009; Modi et al., 2012), usually motivated by referring to their role as a resource for
certain quantum information tasks. But which quantity is actually relevant? This
question cannot be answered in general. Instead, a clear answer can be given only
in few special cases. Even then, it depends very much on the task one aspires to
accomplish.

For simplicity, let us first restrict to pure states. In this case, all of the differ-
ent concepts of correlations collapse into the same notion and the set of zero-discord
states coincides with the set of separable states; they even coincide with completely
uncorrelated product states. Furthermore, any entangled pure state can violate a
Bell inequality (Bell, 1964), which is useful, for instance, to establish certified, se-
cure quantum key distribution5 (Ekert, 1991). Pure state entanglement is rather well
characterized by now (Mintert et al., 2005; Horodecki et al., 2009), even though this
already represents a very intricate task once multipartite states are considered.

The picture becomes considerably more complex when we consider mixed states.
Not every mixed entangled state is able to violate a Bell inequality (Popescu, 1994),
hence, not all mixed entangled states serve to distribute a certified, secure quantum
key. Yet, other tasks, such as quantum teleportation, can be accomplished if only
some nonzero entanglement is available (Vidal and Werner, 2002). So clearly, it is
not always necessary to ask for the strongest incarnations of correlations in quantum
states. This suggests a hierarchical structure of correlated quantum states, with states
that violate a Bell inequality on the top. Entangled states form a subset thereof, and
an even weaker class of correlated quantum states are those with nonzero discord.
The remaining set, the classical (zero discord) states, also includes the completely
uncorrelated product states. The set of zero-discord states are actually very sparse—
they form a set of Lebesgue measure zero in the full set of quantum states (Ferraro
et al., 2010), which demonstrates that quantum features are quite generic to correlated
states of composite systems.

Most algorithms for quantum computations employ entangled states at some point
(Shor, 1994; Grover, 1997). Some particular implementation schemes even make ex-
plicit use of large entangled states (Briegel and Raussendorf, 2001) as their initial re-
source (Raussendorf and Briegel, 2001). Are there interesting applications of quantum
information theory which do not necessarily require entanglement, and if so, is discord
useful for certain tasks? This question has been intensively investigated throughout
the last decade, since, due to their ubiquity, nonzero discord states are easier to pro-
duce than entangled states. The debate was initiated by a quantum algorithm which
efficiently determines the trace of large unitary matrices (Knill and Laflamme, 1998),
with fixed efficiency independent of the size of the unitary, whereas on classical comput-
ers the required resources increase exponentially (Datta et al., 2005). The algorithm
only requires one pure qubit, while the rest of the quantum state can be highly mixed,
leading to vanishing entanglement in the system (Knill and Laflamme, 1998; Lanyon
et al., 2008). However, despite efforts (Datta et al., 2008), it has not been possible

5Note that the first proposal for a quantum key distribution protocol did not make use of quantum
correlations (Bennett and Brassard, 1984). Instead, it uses the destructive nature of the quantum
measurement and the no-cloning theorem (Wootters and Zurek, 1982; Dieks, 1982) to rule out the
presence of a third party.
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to clearly identify the resource for the quantum speed-up in this system, and doubts
prevail about the necessity of discord in this context (Dakić et al., 2010).

There exist other examples where the identification of discord as a necessary element
is clearer. Consider, for example, a three-partite setup consisting of the two parties
A and B, as well as a carrier particle C. Starting from an initially separable state, A
and B can establish quantum entanglement only by exchanging the particle C, which,
remarkably, is never entangled with either one of the two parties (Cubitt et al., 2003).
Nevertheless, there is a quantum cost for this entanglement distribution quantified by
a measure of quantum discord (Streltsov et al., 2012; Chuan et al., 2012), which was
confirmed in a recent series of experiments (Fedrizzi et al., 2013; Vollmer et al., 2013;
Peuntinger et al., 2013).

In a similar scenario, two parties A and B share an initially separable state. A
local measurement on B induces a minimal amount of entanglement between the mea-
surement apparatus and the bipartite state of A and B, which can be identified by
the quantum discord of the state before the measurement (Streltsov et al., 2011b; Pi-
ani et al., 2011). Also this entanglement activation protocol has been realized in a
photonic experiment (Adesso et al., 2014).

An example from quantum metrology is given when we consider the measurement
of an unknown phase-shift induced in one arm of an interferometer. The maximum
obtainable information per measurement about the phase, again, is bounded by a
measure of the initial state’s quantum discord between both arms of the interferometer
(Girolami et al., 2014). Essentially, all of these applications make use of the property
of nonzero discord states to contain a mixture of states which are non-orthogonal
in at least one of the subsystems. Under the influence of local measurements, these
non-orthogonal states lead to non-trivial disturbance of the total state which may be
harnessed in different ways.

These examples show, that quantum discord can be the figure of merit whenever
local measurements and operations play a decisive role. This is often the case in mul-
tipartite scenarios, where a large quantum state is shared by many parties while each
of them can only manipulate their part of the state—for instance in quantum com-
munication protocols, which explains its relevance for quantum information theory.
Another particularly natural setting for such a situation is an open quantum system;
that is, a quantum system which is in contact with an inaccessible environment. Thus,
the experimentalist can only control the open system with local operations. In this
dissertation, we often try to control and measure composite quantum systems by local
operations, thus, quantum discord will naturally emerge in various situations. Chap-
ter 3, for instance, is dedicated to a method which detects and estimates the quantum
discord in a bipartite setting, when only local access to one of the two parties is
available.

As we have seen discussing the previous examples, there exists a remarkable selec-
tion of quantum systems which can be controlled with high efficiency. These allow us
to develop theoretical ideas in rather abstract terms, considering mostly ideal quan-
tum mechanical systems. In the next section we will review a selection of important
experimental platforms for controllable quantum systems.
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2.2 Controllable quantum systems

The past century has seen tremendous progress with regard to the understanding and
manipulation of particles on the smallest scales. Years after the basic foundations of
quantum mechanics had been developed, it was still believed that experiments with
individual particles belong to the realm of thought experiments, and can never become
an experimental reality (Schrödinger, 1952). When electromagnetic traps for charged
particles (Penning, 1936; Paul et al., 1958; Paul, 1990) were first constructed, such
experiments became indeed possible, and soon led to the observation of individual
electrons (Wineland et al., 1973) and ionized atoms (Neuhauser et al., 1980). This
eventually evolved into the nowadays highly successful research field devoted to con-
trolling and manipulating the quantum states of trapped ions, which will be discussed
in further detail in section 2.2.1.

Another important development towards the control of quantum mechanical systems
in a laboratory was laser cooling (Phillips, 1998; Chu, 1998; Cohen-Tannoudji, 1998),
which is not only important for ion trapping, but also renders trapping of neutral
atomic ensembles possible. This enabled, for instance, the experimental generation of
a Bose-Einstein condensate from ultra-cold atoms (Davis et al., 1995; Anderson et al.,
1995). Today, a large number of experimental groups work with cold trapped atoms,
often in combination with optical lattices to observe the atom’s dynamics in specific
potential landscapes. This research field will be discussed in section 2.2.2.

Apart from the quantum states of atomic particles, it is also important to be able
to control the quantum state of light. The previous two research fields use light fields
to manipulate the quantum states of atoms. The converse approach is followed by
cavity quantum electrodynamics experiments, where atoms are sent through high-
finesse cavities to probe and manipulate the quantum state of the light mode inside
the cavity (Meschede et al., 1985; Benson et al., 1994; Haroche, 2013). Alternatively,
the quantum state of individual photons or photon-pairs can be controlled by sending
the photons through specifically designed arrays of optical instruments, and analyzed
via single-photon detectors. We will briefly discuss such experiments in section 2.2.3.

These examples represent a selection of quantum systems which can be controlled
with high precision in today’s experiments, and which are most relevant for the present
dissertation. A brief overview of further systems can be found in section 2.2.4.

2.2.1 Trapped ions

Trapped ions represent one of the most advanced platforms of quantum control at
the single particle level (Wineland, 2013). In this section, we summarize some of the
essential experimental aspects and introduce some of the key tools which will be needed
also for applications later in this dissertation. We will further briefly introduce the
experimental setup where part of the research for this dissertation was carried out.
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Figure 2.1. – Illustration of a rotating saddle potential (a), a flapping potential (b) and the pseu-
dopotential corresponding to the flapping potential depicted in a (c). In ion trapping experiments,
oscillating potentials like (b) are used for confining particles. After [33, 34]

where α, β and γ are constants that play the role of c in three spatial directions. In

foresight on the discussion of trapping charged particles in electrostatic potentials, we

can choose

α = −β = 1, γ = 0. (2.4)

With this choice, Eq. (2.5) forms a potential that has the shape of a saddle surface, see

Fig. 2.1a, i.e.

U(x, y) =
c

2

�
x2 − y2

�
. (2.5)

Although potentials of this shape will allow to trap the particle along the x-direction,

there exists no stable minimum and the particle could always escape along the y-

direction. Hence, stable trapping is not possible with these static potentials. However,

as we will show now using the example of a gravitational saddle potential, trapping

becomes feasible when we introduce a time variation.

In a gravitational potential, we can set [34]

c =
mgh0

r2
0

, (2.6)

and obtain the expression of a gravitational saddle potential,

U(x, y) =
mgh0

2r2
0

�
x2 − y2

�
, (2.7)

with m the mass of the bead, g the gravity of Earth and h0 and r0 parameters that shape

the curvature of the potential. Imagine one could turn on a little motor that rotates

the saddle with a angular frequency Ω around the z-axis, see Fig. 2.1a. This transforms

the static potential into a time-varying potential that can be described mathematically
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Figure 2.1.: a) The radio-frequency electrodes of a linear Paul trap generate a time-dependent
quadrupole potential with a saddle point (b), which, upon averaging over the
periodic radio-frequency oscillations, can be approximated by a static harmonic
potential (c). Subfigures b) and c) are adapted from (Littich, 2011).

2.2.1.1. Paul traps

Due to their positive charge, ions can be trapped using electromagnetic fields. A static
field, however, is unable to provide a potential minimum in three dimensions, since,
according to Maxwell’s equations, the potential has to satisfy the Laplace equation
∆Φ = 0 in the charge-free center of the trap (Jackson, 1999). Thus, a Paul trap uses a
combination of static and radio-frequency modulated electric fields to confine charged
particles in three dimensions (Paul, 1990). Figure 2.1 a) displays the typical design of
a three-dimensional linear Paul trap, where a two-dimensional quadrupole potential
generated by the radio-frequency electrodes in the x and y directions (in trapped-ion
literature, these directions are referred to as radial directions). The time-dependent
potential can be pictured as a saddle point whose edges flop up and down with the
radio frequency Ωrf (Leibfried et al., 2003a). The time-averaged effective potential
can be approximated by a static harmonic potential when the driving frequency is
sufficiently strong compared to the frequency of the ion’s secular motion (Leibfried
et al., 2003a). This approximation is particularly well justified when the ion is close
to the center of the trap potential. This is the case when the ion’s kinetic energy is
low (Leibfried et al., 2003a). Small displacements from the trap center, however, can
lead to an additional driving force at the radio frequency called micromotion. This
can cause unwanted heating of the ions. Static electric fields are used to shift the
ion’s equilibrium position striving to compensate this effect. Micromotion becomes
more relevant when many ions are placed into the same trap potential since it gets
increasingly difficult to maintain all ions close to the trap center.

Along the z-axis or the axial direction, two positively charged direct current (dc)
endcaps (not shown in the figure) generate a static potential to prevent the ions from
escaping into the third dimension. Typical orders of magnitude for the radial trap
frequencies are νx,y ≈ 2π × (1 − 10 MHz), while the axial frequencies are usually one
order of magnitude smaller, νz ≈ 2π× (0.1−1) MHz (Leibfried et al., 2003a; Schindler
et al., 2013).
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Figure 2.2.: Paul trap used in the experiments carried out at Berkeley, and a fluorescence
image of a one-dimensional linear ion chain.

2.2.1.2. The Berkeley setup

Figure 2.2 shows a Paul trap used in the group of Hartmut Häffner at the University
of California, Berkeley, where part of the work on this dissertation was done during
a ten month stay from September 2012 to June 2013. The trap consists of three-
way segmented electrodes of which the center segment is driven with an out-of-phase
radio-frequency voltage while the two outer segments are used as dc-endcaps. The
out-of-phase drive supplies opposing electrodes with the radio-frequency voltage with
an 180◦ phase shift. This doubles the radial trap frequency at the same drive am-
plitude and reduces micromotion along the axial direction, since the potential cancels
along the trap axis (Pruttivarasin, 2014; Ramm, 2014). The setup which was used
for the experiment discussed in section 3.2, was designed and assembled by Thaned
Pruttivarasin and Michael Ramm under the supervision of Hartmut Häffner. In the
following we briefly summarize the key elements of the setup. Details can be found in
the dissertations (Pruttivarasin, 2014; Ramm, 2014).

To load ions into the trap, an ionization laser pointing at the center of the trap
ionizes a beam of thermal atoms emitted from an oven on demand. Interactions
with red-detuned lasers Doppler-cool the ions which allows them to fall into the trap
potential generated by the electrodes of the Paul trap. The fluorescence light which is
scattered in the course of the Doppler cooling process is used to monitor the ions in
the trap. Turning off the oven and the photon-ionization laser after the fluorescence
light of a certain number of ions is observed allows to steer the number of trapped ions
reliably. The Paul trap is placed in an ultra-high-vacuum chamber with a pressure
below 5 × 10−9 Pa to minimize collisions of the ions with background atoms (Ramm,
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2014). The potential generated by such Paul traps can be deep enough to trap atoms
at room temperature and, once trapped, the ions can be kept for many hours in the
trap; under good conditions the lifetime is only limited by the time the experimental
equipment can be continuously supported.

The cooling and quantum state manipulation of ions requires elaborate laser tech-
nology which was developed for trapped-ion systems to perform high-precision spec-
troscopy in the context of atomic frequency standards (Berkeland et al., 1998; Young
et al., 1999; Wineland, 2013). Before being sent into the trap, the laser light is guided
through acousto-optic modulators (AOM), which generate acoustic standing waves to
modulate the incoming laser light and, thus, can be used to fine-tune the laser detun-
ing and may induce a controllable phase shift. The Berkeley group has developed their
own python-software to conveniently control the AOM settings to change beam inten-
sities, detunings and phases, and to run frequently used standard pulse sequences and
algorithms automatically and on demand (Ramm, 2014). The computer connects to a
field-programmable gate array (FPGA), which controls custom-designed direct digital
synthesis (DDS) boards to provide the control voltages to the AOMs (Pruttivarasin,
2014). Apart from AOMs the computer also controls the voltages of the trap electrodes
and is provided with the photon counts from the photomultiplier tube, which is used
to detect the ion’s fluorescence. The fluorescence light is guided through the imaging
system which at the same time provides laser access to the trap, and eventually is
also collected by a CCD (charge coupled device) camera (Pruttivarasin, 2014). The
fluorescence of individual ions can be resolved spatially, allowing one to read out the
ions’ populations independently (Ramm, 2014).

2.2.1.3. Motion of trapped ions in linear chains

When several ions are trapped in the same harmonic potential, the ions are well-
separated due to strong Coulomb repulsions. The full potential consists in the global
harmonic trap potential and the Coulomb repulsion between them:6

V =

N∑

i=1

1

2
m
(
ν2
xx

2
i + ν2

yy
2
i + ν2

zz
2
i

)

+
N∑

i,j=1
(i>j)

e2

4πε0

1√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

, (2.5)

where N is the total number of ions, m is the ion mass, and ~ri = (xi, yi, zi) the
i-th ion’s position, respectively, e the electron charge and ε0 the dielectric constant
of the vacuum. Given the ratio of trap frequencies assumed above (νx,y � νz), their
equilibrium positions form a linear chain along the axial (z) direction (James, 1998).
The separation of neighboring ions is typically on the order of 10µm (Schindler et al.,
2013).

6Here and in the following, we assume single-ionized ions.
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Assuming that the ions remain close to their equilibrium positions, that is, the ions’
displacement is much smaller than the inter-ion distance, the Coulomb potential is
determined by the ions’ equilibrium positions along the axial direction (James, 1998).
By expanding the potential around the ions’ equilibrium positions to second order, for
example in xi, we obtain a Hamiltonian for the description in terms of quantized local
phonon modes in x-direction (and analogously for the y-direction) given by

H =

N∑

i=1

~ω0
i a
†
iai +

N∑

i,j=1
(i<j)

~tij(a†iaj + a†jai), (2.6)

where a†i creates a local phonon at site i (Porras and Cirac, 2004a). The average
inter-ion distance is given by the length scale l30 = e2/(mν2

z ), with the axial trap
frequency νz (James, 1998). The Hamiltonian (2.6) is a valid approximation if the
parameter β0 := e2/(l30mν

2
x) = ν2

z/ν
2
x � 1, assuming that the radial trap frequencies

are comparable, νx ≈ νy (Porras and Cirac, 2004a), which is the case for a linear trap
architecture as described above. The second-order expansion yields for the local trap
frequencies and the coupling matrix (Porras and Cirac, 2004a)

ω0
i /νx = 1− β0

2

∑

j 6=i

1

|u0
i − u0

j |3
,

tij/νx =
β0

2

1

|u0
i − u0

j |3
, (2.7)

where u0
i = z0

i /l0 and z0
i denote the ions’ equilibrium positions (James, 1998). This

leads to a normalized Hamiltonian which is fully determined by the parameters νx and
β0 = ν2

z/ν
2
x.

The large spatial separation between neighboring ions has two important conse-
quences:

(i) The wave functions of individual ions do not overlap. Hence, the ions become dis-
tinguishable in space and their quantum statistics does not have to be considered
explicitly.

(ii) Focussed lasers are able to address individual ions with very little cross-talk to
neighboring ions (Schindler et al., 2013). The Rabi frequency for a next-neighbor
ion is typically on the order of 1% of the Rabi frequency of the addressed ion
(Häffner et al., 2008).

The manipulation of ions by means of lasers is extremely important for trapped-ion ex-
periments. Laser-ion interactions are used for laser cooling, as well as for initialization,
manipulation and readout of the ions’ quantum mechanical states.

2.2.1.4. Electronic levels

There exist two classes of ions which are used for implementations of quantum informa-
tion tasks. They differ in the physical realization of a long-lived and well-controllable
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Figure 2.3.: a) Relevant electronic states of 40Ca+ ions and transition frequencies. Character-
istic features are a long-lived dipole-forbidden excited D state, and a short-lived
excited P state. b) Under the influence of a magnetic field, the degeneracies
are lifted by the Zeeman effect and individual Zeeman levels can be distinguished
spectrally. A pair of Zeeman levels is selected from the S and D states as two-level
system (qubit).

two-level system (the qubit): One class, represented by 40Ca+, uses an optical qubit
which can be addressed directly with laser light on a quadrupole transition, whereas
the other class, represented by 171Yb+, uses a qubit formed by two hyperfine levels
separated by a microwave transition, often driven by Raman transitions (Häffner et al.,
2008). In this dissertation, we mostly consider systems of 40Ca+ ions and therefore
discuss many of the following experimental considerations in the context of calcium,
which was also used in the Berkeley setup.

The relevant electronic transitions of 40Ca+ ions are displayed in figure 2.3 a). There
are two excited state manifolds (the P and D states) which decay into the same ground
state (the S state). The S-P transitions are dipole-allowed and therefore the P1/2 state
has a rather short lifetime of about 7 ns (Jin and Church, 1993). In contrast, the S-D
transitions are dipole-forbidden and therefore only couple via its quadrupole moment
to leading order, resulting in a very long lifetime of about 1.2 s for the D5/2 state
(Barton et al., 2000; Kreuter et al., 2005). Under the influence of a magnetic field,
the degeneracies of the energy levels are lifted, as shown for the S and D states in
figure 2.3 b). One applies an external magnetic field generated by large Helmholtz-
coils placed outside the vacuum chamber to lift these degeneracies in a controlled way,
and to compensate the earth’s field, as well as other stray fields. The applied field
is typically of the order of 10−4 T. This leads to spectrally well-separated transitions
between the Zeeman sublevels, one of which is chosen as the qubit. The dependence of
the transition frequencies on the magnetic field remains one of the dominant sources
of error in state of the art ion trap experiments since the external magnetic field is
subject to fluctuations (Schindler et al., 2013). This induces a dephasing effect which
will be discussed in further detail in chapter 4.

Alternatively, one may encode a qubit into the two Zeeman-splitted ground state
levels. These levels can be driven by Raman transitions via the P state or by microwave
fields. This is analogous to the hyperfine-qubit of Yb-type ion species, where the energy
splitting is induced by a nonzero nuclear spin. A Raman process involves two laser
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fields, whose relative detuning is resonant with the driven transition. The atom then
absorbs one photon from one of the lasers and emits another photon into the light
field of the other laser. Effectively, the atom can undergo a transition that is resonant
to the energy difference of the two laser fields. Such schemes are especially useful to
drive microwave transitions, including motional excitations, with well-focussed optical
light fields, as we will make use of in section 6.4.4.

2.2.1.5. Quantum state readout and initialization

The populations of electronic qubit states can be read out with high precision using
the electron shelving or quantum jump technique (Leibfried et al., 2003a). This is
done by collecting the fluorescence light induced by illumination of the ion with the
397 nm laser. If the ion is in the S1/2 ground state photons will be scattered on
the 397 nm transition with a rate of approximately Γ ≈ 2π × 20 MHz, while if the
ion is in the excited long-lived D5/2 state, no photons will be scattered. The two
cases can be distinguished clearly as they produce well-separated histograms of the
photon counting distributions. To read out the quantum mechanical population, one
has to determine the probabilities by collecting statistics over a significant number of
iterations (typically about 100-1000).

The electronic ground state is prepared by optical pumping. This is an incoher-
ent procedure which transfers populations of undesired levels into short-lived excited
states of the P-state manifold. These undesired levels consist in the remaining Zee-
man sublevels other than the qubit ground state (pumped via the 729 nm laser to the
D-states) and long-lived excited states within the D-state manifold (pumped out us-
ing the 866 nm and 854 nm lasers). With certain probability, the electron decays into
the desired ground state, which is not affected by the optical pumping lasers. After
a certain number of cycles, the ion’s electronic state can be prepared with fidelities
exceeding 99.9% (Schindler et al., 2013).

Beyond the initialization of the electronic ground state, the motional degree of free-
dom of the ions is typically cooled down as close as possible to the quantum mechan-
ical ground state. The S1/2-P1/2 transition is used for Doppler-cooling (Hänsch and
Schawlow, 1975): A red detuned laser at 397 nm is more likely to be absorbed by atoms
moving towards the laser, since in this case the Doppler-shifted laser frequency is close
to resonance in those atoms’ reference frame. When absorbing the photon, the recoil
causes the atoms to slow down. This cooling technique is limited by the gain of mo-
mentum when the photon is reemitted. However, since spontaneous emission happens
in a random direction while absorptions occurs preferably when the loss of momentum
is maximal, the atoms lose kinetic energy on average over many scattering events. To
overcome the Doppler limit (Stenholm, 1986), sideband cooling is used (Wineland and
Dehmelt, 1975). To describe sideband cooling and to see how the motional state of
trapped ions can be controlled coherently, we have to take the quantum mechanical
description of laser-ion interactions into account.
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2.2.1.6. Laser-ion interactions

In this section we discuss the laser-induced coupling between the electronic two-level
system and the motional degree of freedom of a single trapped ion. For clarity, we
restrict to discussing the essential results while a detailed derivation can be found later
in this dissertation in section 3.2.1. In the remainder of this dissertation, we neglect
the effect of micromotion and approximate the trap potential by a static harmonic
potential (see discussion in section 2.2.1.1). We consider a continuous-wave laser illu-
mination of the selected two-level transition, possibly with some detuning ∆ = ω−ωL,
where ω denotes the atomic resonance frequency and the laser is tuned to ωL. The
Hamiltonian describing the system is given by

H(t) = ~ωσ+σ− + ~νa†a+
~Ω

2
(σ+ + σ−)(ei(

~k~x−ωLt+ϕ) + e−i(
~k~x−ωLt+ϕ)), (2.8)

where σ± = (σx ± iσy)/2 are the ladder operators of the two-level system, described
in terms of the Pauli matrices, a is the annihilation operator for a vibrational mode of
frequency ν, and Ω denotes the Rabi frequency, which depends on the amplitude of the
laser light, as well as the effective coupling strength, and ϕ denotes the phase of the
laser. Since the ion is moving in a harmonic potential, its position ~x can be expressed
in terms of a and a† leading to ~k~x = η(a+ a†), with the Lamb-Dicke parameter

η = k

√
~

2mν
cos θ, (2.9)

θ describing the angle between the direction of laser propagation and the motional
axis of the trap, k denotes the modulus of the wave vector of the laser light, and m
the ion’s mass. To avoid lengthy expressions in this introductory chapter, we assume
the Lamb-Dicke limit, η

√
〈(a+ a†)2〉 � 1, which requires the spread of the ion’s

motional wavefunction to be always smaller than 1/k. This implies that the Lamb-
Dicke parameter must be small, which means that the energy separation between two
consecutive levels of the harmonic oscillator is much larger than the recoil energy
provided by the laser light, and therefore the motional state of the ion is unlikely to
be changed by photon recoil. A more general treatment beyond the Lamb-Dicke limit
will be provided in section 3.2.1.

The Hamiltonian (2.8) is often derived in textbooks for dipole transitions (Cohen-
Tannoudji et al., 1992; Scully and Zubairy, 1997). In trapped ions, however, one often
encounters quadrupole and stimulated Raman transitions. It can be shown that the
same Hamiltonian effectively also applies to the situation of a quadrupole transition
or a bichromatic stimulated Raman scheme (Leibfried et al., 2003a).

We first consider the case where the laser is resonant with the atomic transition,
∆ = 0, which is referred to as the carrier transition. In this case, no coupling between
electronic and motional degrees of freedom is induced and the dynamics is described
by the Hamiltonian (Häffner et al., 2008)

Hc =
~Ω

2
(σ+e

iϕ + σ−e
−iϕ). (2.10)



20 2. Background

Thus, the excited state population for an ion, prepared initially in |g〉, is given by
| sin(Ωt/2)|2. These driven coherent oscillations can be seen experimentally and are
called Rabi oscillations. This can be used to coherently transfer populations from the
ground state to the excited state. The entire ground state population is deterministi-
cally transferred to the excited state after a time t = π/Ω. A pulse of this length is
called a π-pulse, and represents an elementary building block for the quantum state
manipulation of trapped ions. Similarly, with a π/2-pulse (a pulse half as long as a
π-pulse) one prepares the initial ground-state ion into a coherent superposition of the
form (|g〉+ |e〉)

√
2.

Furthermore, controlling the laser phase ϕ allows to map coherences (complex-valued
off-diagonal elements of the density matrix) onto the ion’s populations, which in turn
may be read out efficiently to provide full knowledge of the qubit quantum state
(quantum state tomography). Via the two control parameters θ = Ωt and ϕ, arbitrary
unitary rotations of the type

R(θ, ϕ) =

(
cos
(
θ
2

)
−ie−iϕ sin

(
θ
2

)

−ieiϕ sin
(
θ
2

)
cos
(
θ
2

)
)

(2.11)

can be applied to the electronic state, employing pulses R(θ, ϕ) = e−iH
ct/~ on the

carrier transition. Such coherent single-qubit operations are carried out with fidelities
of approximately 99.5% (Schindler et al., 2013).

To analyze the dynamics of coherent superpositions and their decay due to envi-
ronmental influences, one often employs Ramsey spectroscopy (Ramsey, 1990). In a
Ramsey experiment, a coherent superposition of ground and excited state is created
with a π/2-pulse. This superposition evolves freely, leading the two states to pick up
a relative phase difference according to the resonance frequency of their transition. In
another π/2-pulse, the coherence is mapped back onto the population which is subse-
quently read out destructively. This measurement scheme reveals the evolution of a
coherence and the time scale of its decay. Fourier analysis of the time-resolved data
reveals the transition frequency and lifetime via its center frequency and linewidth,
respectively.

By scanning the laser around the carrier transition, we expect two additional reso-
nances at ∆ = ±ν, which in fact can be observed in the spectrum, see figure 2.4 b)
and are referred to as sidebands. Such laser detunings induce couplings between the
electronic and vibrational degrees of freedom. For instance, for ∆ = −ν we address
the first red sideband, and induce a dynamics goverened by the Jaynes-Cummings
Hamiltonian (Jaynes and Cummings, 1963; Häffner et al., 2008),

H(−1) =
i~ηΩ

2
(σ+ae

iϕ − σ−a†e−iϕ). (2.12)

This effective qubit-mode coupling between pairs of states |e, n〉 and |g, n+ 1〉 is anal-
ogous to cavity quantum electrodynamics experiments, where the harmonic oscillator
represents the light mode inside a cavity (Haroche and Raimond, 2006). Similarly,
when choosing the corresponding blue detuning, ∆ = ν, we drive the first blue side-
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Figure 2.4.: a) Electronic and motional degrees of freedom of trapped ions can be coupled
via laser light, depending on the laser detuning. The black (red / blue) arrows
indicate couplings induced by laser light tuned to the carrier (red sideband / blue
sideband) frequency. b) The sidebands can be resolved in the spectrum of the
S1/2-D5/2 (qubit) transition. In a linear trap geometry, the frequencies of axial
modes are typically one order of magnitude lower than those of the radial modes.
c) Measuring the qubit populations via fluorescence of the 397 nm transition after
driving the qubit transition for different durations, one observes Rabi oscillations.
If the laser frequency is resonant with the qubit (carrier Rabi oscillation), motional
modes are not coupled. d) By detuning the laser towards one of the sidebands,
excitations are coherently exchanged between electronic and motional degree of
freedom. Experimental data: Courtesy of H. Häffner (2007).

band, generating dynamics described by (Häffner et al., 2008)

H(+1) =
i~ηΩ

2
(σ+a

†eiϕ − σ−ae−iϕ). (2.13)

This Hamiltonian coherently exchanges excitations between pairs of states |g, n〉 and
|e, n+1〉 and is not observed in cavity quantum electrodynamics experiments since such
transitions would not conserve the number of total excitations. The transitions induced
by the first red (blue) sideband are represented by red (blue) arrows in figure 2.4 a).
The effective Rabi frequencies for first-order sideband Rabi oscillations are proportional
to the Lamb-Dicke parameter η. Since η is usually small (depending on the ion species
of the order of 0.01-0.1) these transitions are subject to weaker coupling than the
carrier transition, leading to slower Rabi oscillations at constant laser intensity, as
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can be seen in figures 2.4 c) and d). If sufficient laser power is available, sideband
transitions can also be driven on a local phonon, which describes a localized vibrational
excitation of a single ion. To this end, the pulse must be short enough to encompass the
entire spectral range of the contributing eigenmodes, which are driven simultaneously
(Harlander et al., 2011; Brown et al., 2011). We will discuss the excitation of local
phonons in further detail in section 6.4.4.

From equations (2.12) and (2.13) we see that sideband transitions can be used to
transfer excitations between vibrational and electronic degrees of freedom. This is
particularly important to cool the ion’s motion to the quantum mechanical ground
state (Wineland and Dehmelt, 1975; Diedrich et al., 1989). To this end, 729 nm
laser pulses on the (first) red sideband reduce vibrational excitations by transferring
excitations from |g, n〉 to |e, n−1〉. The electronic population is optically pumped back
to the ground state with another laser at 854 nm, such that the ion is able to absorb
the next photon on the red sideband.

The combination of ground state cooling with careful elimination of heating and
decoherence mechanisms permits remarkably long lifetimes for the quantum states of
trapped ions. The lifetime of coherent superpositions of optical electronic excitations is
limited mostly by spontaneous decay of the excited state (which occurs on time scales
of the order of one second). Encoding the qubit into two sublevels of the ground state
can lead to coherence times (time scale of the exponential decay) of 20-30 s (Häffner
et al., 2005b; Schindler et al., 2013). On the motional degree of freedom, coherence
times of about 100 ms can be achieved (Schindler et al., 2013).

2.2.1.7. Experimental quantum computations and quantum simulations

Given the possibilities for state preparation, readout and coherent manipulation dis-
cussed in section 2.2.1, trapped ions are considered a promising candidate for the
experimental implementation of theoretical concepts from quantum information sci-
ence. So far, we have discussed the control of individual ions. Another prerequisite
towards a universal quantum computer are entangling gates: operations that generate
entangled states of two (or more) qubits (DiVincenzo, 2001). The realization of such
gates require the design of effective qubit-qubit interactions. Remember that due to
the large separation between the ions, the natural dipole-dipole interaction between
neighboring ions is too weak to be considered—in fact it can be completely neglected
for the theoretical description of the ions. However, the strong Coulomb repulsion
leads to coupled motion of all the ions in the string. This can be used to engineer
effective qubit-qubit interactions, where the chain’s motional degree of freedom acts
as a “quantum bus” (Cirac and Zoller, 1995; Sørensen and Mølmer, 1999). This way,
a controlled-NOT gate can be realized experimentally (Monroe et al., 1995; Schmidt-
Kaler et al., 2003; Leibfried et al., 2003b). Together with single-qubit operations
(which we have discussed above), this already establishes a simple example of a uni-
versal set of gates which, in principle, allows for the realization of arbitrary quantum
algorithms (DiVincenzo, 1995; Nielsen and Chuang, 2000).

Even though proof-of-principle experiments with up to 14 entangled qubits have been
demonstrated with trapped ions (Monz et al., 2011), a general-purpose large-scale
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universal quantum computer is yet to be achieved. As a more tangible alternative,
many groups focus on the controlled engineering of quantum many-body systems,
where, currently, the number of constituents ranges between tens of ions in Paul traps
(Jurcevic et al., 2014; Richerme et al., 2014) and hundreds of ions in Penning traps
(Britton et al., 2012). Since the Hilbert space dimension increases exponentially with
the number of particles, the dynamics of large quantum systems cannot be determined
efficiently by classical computers. The idea behind quantum simulations is to employ a
controllable quantum system, such as a chain of trapped ions, to emulate the dynamics
of a computationally intractable quantum system. By measuring the controllable
quantum system, one then tries to infer the dynamics of the simulated quantum system
(Feynman, 1982; Lloyd, 1996).

Similarly to the realization of quantum gates, by using the motional modes of a chain
of trapped ions it is possible to engineer effective, tunable spin-spin interactions across
the entire chain. Here, with spin we refer to the electronic qubit, which formally is
equivalent to a spin-1/2 system. A combination of off-resonant laser beams on motional
sidebands addressing all ions exerts a state-dependent optical dipole force, inducing
dynamics described by (Porras and Cirac, 2004b)

H = −
N∑

i,j=1
(i<j)

Jijσ
(i)
x σ(j)

x −B
N∑

i=1

σ(i)
y , (2.14)

where σ
(i)
x and σ

(i)
y are Pauli spin operators of the ith spin, and the spin-spin interac-

tions are algebraically decaying,

Jij ≈ J0/|i− j|α. (2.15)

The range of the tunable exponent 0 < α < 3 is limited by the spread of the sideband
frequencies and the laser detuning (Jurcevic et al., 2014). The homogeneous, effective
magnetic field can be tuned via the Rabi frequency of laser-induced Rabi oscillations
on the carrier transition of the spin states. Following this proposal, spin chain models
of magnetic systems have been realized experimentally for chains of lengths up to 18
ions (Friedenauer et al., 2008; Kim et al., 2010; Islam et al., 2011; Britton et al., 2012;
Schneider et al., 2012; Blatt and Roos, 2012; Jurcevic et al., 2014; Richerme et al.,
2014). The Hamiltonian describes a quantum magnet with long-range interactions
and shows rich features, such as a quantum phase transition from (anti-)ferromagnetic
to paramagnetic phases, as one scans the relative strength of global magnetic field
B relative to the spin coupling strength J0. In this dissertation, this model will be
discussed

(i) in the context of ground-state quantum correlations and their dynamical single-
spin signature for the quantum phase transition in section 3.4.3, and

(i) in chapter 5, where we develop a semiclassical approach to further analyze the
full spectrum and its role for the quantum phase transition.
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We now turn again to the motional degrees of freedom and summarize some ideas to
use these to engineer other quantum systems. In section 2.2.1.3 we have seen that the
motion of trapped ions in a linear chain is described in terms of local phonon modes by
coupled harmonic oscillators. A standing laser wave (Porras and Cirac, 2004a) modifies

the potential landscape by adding a term V
∑N
i=1 cos2(kxi) to the Hamiltonian (2.6).

An expansion in terms of the Lamb-Dicke parameter to fourth order yields a leading
additional potential contribution of the form

Hsw = U

N∑

i=1

a†2i a
2
i , (2.16)

which completes the system to a Bose-Hubbard Hamiltonian with long-range inter-
actions. This Hamiltonian describes the dynamics of cold trapped atoms on optical
lattices; see section 2.2.2 (Jaksch et al., 1998). So far, there have been no experimental
realizations of Bose-Einstein condensation with phonons in a trapped-ion system.

In a similar proposal, the axial phonons are studied under the influence of an ad-
ditional potential induced by a cavity (Garćıa-Mata et al., 2007; Pruttivarasin et al.,
2011; Benassi et al., 2011). The resulting Hamiltonian was shown to be equivalent to
a Frenkel-Kontorova model, which, for instance, describes friction of nanomaterials.
The group in Berkeley is currently trying to assemble a linear Paul trap with a cavity
along the axial direction with the goal of simulating this model (Pruttivarasin, 2014;
Ramm, 2014).

Other proposals for trapped-ion analog quantum simulations involve combinations
of electronic and vibrational excitations. By coupling the electronic states via red side-
band laser interactions to their local phonon modes, the Jaynes-Cummings-Hubbard
model can be simulated (Ivanov et al., 2009; Toyoda et al., 2013). This model conserves
quasiparticles composed as superpositions of electronic and vibrational excitations,
which formally are analogous to polaritons.

The above examples all represent analog quantum simulations, in which the system
follows the engineered dynamics continuously in time (Schneider et al., 2012). A dif-
ferent approach is given by digital quantum simulations, where a specifically designed
sequence of quantum gates leads to the desired output. Trapped ions have been used
to demonstrate that all basic building blocks to realize a programmable universal digi-
tal quantum simulator are available (Lanyon et al., 2011). Moreover, optical pumping
can be used to implement different environmental effects to simulate the dynamics of
arbitrary open quantum systems described by a Lindblad equation (Barreiro et al.,
2011). We will discuss the theoretical description of the dynamics of open quantum
systems in section 2.5.3.

2.2.1.8. Recent experimental developments and challenges

The remaining predominant experimental challenge in the field of quantum computa-
tion and quantum simulations, particularly relevant for, but not limited to the field of
trapped ions, is scalablility : Producing results beyond the reach of classical simulators
requires experiments with a significant number of qubits where coherence must be
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upheld for a large number of quantum gates.7 Experimentally, this step turns out to
be extremely challenging. In a three-dimensional linear trap architecture, as described
in the previous sections, it becomes increasingly difficult to avoid decoherence mecha-
nisms which aggravate the fidelity of quantum gates when many ions are sharing the
same trap potential (Hughes et al., 1996; Wineland et al., 1998).

One attempt to overcome this issue consists in the fabrication of arrays of segmented
micro-traps (Wineland et al., 1998; Cirac and Zoller, 2000; Kielpinski et al., 2002).
The quantum gates are then performed in a fixed area, into which only a small number
of ions is moved physically from an array of registers (Rowe et al., 2002; Walther et al.,
2012). These micro-traps are fabricated in two-dimensional surface architectures on
chips, using micro-electromechanical tools and nanotechnology. Surface traps, how-
ever, bring new problems as the ions have to be close to the surface for fast gate times
and thereby become subject to electric-field noise due to surface impurities caused
by atomic adhesion. This generates an additional, strong heating mechanism, which
limits coherent operations (Deslauriers et al., 2006). An efficient way to avoid this
heating mechanism is to clean the ion trap with energetic ion bombardments (Hite
et al., 2012), which effectively take away few atomic layers from the trap surface. This
method is now being implemented in several ion-trap laboratories, including by the
group at Berkeley (Daniilidis et al., 2014).

Other relevant limitations of current ion traps are

(i) fluctuations of the laser field intensity and beam pointing instabilities. These
effects lead to variations of the Rabi frequencies and thereby change the times
required to perform a certain gate. When averaged over many repetitions, which
is necessary for measuring quantum mechanical expectation values, this leads to
an effective dephasing effect (Schindler et al., 2013).

(ii) fluctuations of the laser-qubit detuning caused by (a) laser frequency fluctuation
and (b) magnetic field intensity fluctuations due to unstable currents supplying
the Helmholtz coils and stray fields. Since the qubit resonance transition depends
on the magnetic field strength via the Zeeman effect, this leads to off-resonant
excitations and also causes a dephasing effect. This effect has been exploited
to generate correlated quantum states in an experiment (Lanyon et al., 2013)
described in section 4.3, and a general discussion of the theoretical description
and its implications will be provided in section 4.4.

2.2.2 Cold gases of neutral atoms in optical lattices

Another versatile controllable atomic quantum system is offered by cold gases of neu-
tral atoms (Bloch et al., 2008). Such gases can be laser-cooled and confined in magneto-
optical traps (Raab et al., 1987) followed by a transfer to optical dipole traps (Dalibard
and Cohen-Tannoudji, 1985; Chu et al., 1986; Grimm et al., 2000) to achieve temper-
atures below 1 mK. To achieve Bose-Einstein condensation, even lower temperatures

7Aside from scaling up these experiments, also efficient diagnostic tools need to be developed which
are able to cope with large-scale systems. This will be discussed in section 2.3.
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must be reached by evaporative cooling (Davis et al., 1995; Anderson et al., 1995).
In an optical dipole trap counter-propagating laser beams generate an optical stand-
ing wave which provides a periodic trapping potential—an optical lattice. Around its
minima, the trap potential can be approximated as harmonic with achievable trap
frequencies up to 100 kHz (Bloch et al., 2008). By combining three pairs of orthogonal
lasers, cold atoms can be trapped in three-dimensional optical lattice structures.

Under certain conditions, cold atoms on optical lattices are well described by the
Bose-Hubbard Hamiltonian (Jaksch et al., 1998),

H = −J
∑

〈i,j〉
a†iaj +

∑

i

εia
†
iai +

U

2

∑

i

a†2i a
2
i , (2.17)

where a†i and ai describe creation and annihilation operators for a bosonic particle at
site i, and the parameters determining the on-site repulsion U , the nearest-neighbor
tunneling strength J , and the local energy offset εi can be manipulated via parameters
of the laser light. The sums extend over all lattice sites and 〈i, j〉 denote pairs of
nearest neighbors. This model predicts the existence of Mott-insulating and superfluid
quantum phases, which have been observed experimentally (Greiner et al., 2002), albeit
in the presence of an external harmonic confinement.

Originally, the Hubbard model was proposed for fermionic particles to describe elec-
tron dynamics in condensed matter, where the potential is generated by a lattice of
atomic nuclei (Hubbard, 1963; Kanamori, 1963; Gutzwiller, 1963). Several groups
also pursue the goal of simulating the Fermi-Hubbard model to directly mimic the dy-
namics of solid-state devices, by loading fermionic gases (Greiner et al., 2003) into an
optical lattice (Jördens et al., 2008; Wenz et al., 2013). Generating Hubbard models
under controlled conditions with tunable parameters opens up a wide range of possibil-
ities for experimental studies of quantum many-body physics (Morsch and Oberthaler,
2006; Bloch et al., 2008). Realizing this with cold atoms is particularly appealing since
the spacings of optical lattice sites are three orders of magnitudes larger than those
of a real crystal and renders experimental control of the quantum dynamics possi-
ble. Moreover, the potential landscape can be adjusted by changing parameters of the
lasers to observe, for instance, coherent tunneling dynamics in double-well potentials
(Smerzi et al., 1997; Mahmud et al., 2005; Kierig et al., 2008; Hunn et al., 2013).

More complicated potentials can be generated when laser light is reflected from a
rough surface. The resulting speckle field can be used to create random disordered
potentials (Bouyer, 2010). The interference of multiple scattering events with ran-
dom potential barriers can lead to surprising effects (Jendrzejewski et al., 2012). For
instance, if the disorder is strong enough, the matter-wave describing the quantum
state of a Bose-Einstein condensate is expected to localize exponentially in space.
This phenomenon is a quite general interference effect known as Anderson localization
(Anderson, 1958) which bears important implications for the conductivity of metals
in the presence of impurities, and was observed in a wide variety of physical settings
(Dalichaouch et al., 1991; Wiersma et al., 1997; Hu et al., 2008) including cold atoms
(Roati et al., 2008; Billy et al., 2008; Modugno, 2010).

Alternatively, when the local energy levels εi are modified via an external potential
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a) b)
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Figure 2.5.: a) A high-resolution microscope provides single-site resolved fluorescence images
of cold atoms in an optical lattice (Sherson et al., 2010). b) The same imag-
ing system can also be used to send a focussed laser to individual lattice sites
(Weitenberg et al., 2011). c) This laser shifts the atom at the selected site into
resonance with a global microwave field via an ac Stark effect (Weitenberg et al.,
2011). Specifically, in the laser focus, the transition between the atomic hyper-
fine levels |0〉 and |1〉 is shifted by ∆LS, which renders the an external microwave
driving field of frequency ωMW and linewidth σMW resonant with the focussed
atom (Weitenberg et al., 2011).

such that they increase linearly with the lattice index, the generated tilted lattice
generates the effect of a static driving field on the atoms (Morsch et al., 2001). In this
case, rather than uniform motion of the atoms towards the potential minimum, one
expects Bloch oscillations (Bloch, 1928; Zener, 1934). Particle-particle interactions can
lead to modification (Kolovsky, 2003) and even decoherence of the Bloch oscillations
caused by a transition into a quantum chaotic parameter regime (Buchleitner and
Kolovsky, 2003). This has also been observed in a recent experiment (Meinert et al.,
2014). We avoid discussing the challenges one faces when dealing with the theory of
interacting many-body systems at this point (this will be done later in section 2.5.4)—
however, we already remark here that a microscopic open-system theory for interaction-
induced decoherence in systems of indistinguishable particles has not been developed
yet.

Cold atoms on tilted optical lattices can also be mapped onto a quantum Ising
model (Sachdev et al., 2002), allowing one to study effects of quantum magnetism
(Simon et al., 2011; Meinert et al., 2013) with similar models which were discussed
in section 2.2.1.7 in the context of trapped-ion quantum simulations. Actual spin-
spin interactions of the electronic states of cold atoms can be engineered based on the
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exchange interaction which is induced by the quantum statistics of indistinguishable,
bosonic particles (Duan et al., 2003; Anderlini et al., 2007).

While neutral atoms generally facilitate the studies of quantum statistics on large
ensembles, recently, experiments on Bose-Einstein condensates have been combined
with scanning electron microscopes (Würtz et al., 2009) and also optical microscopes
using a high-aperture lens (Bakr et al., 2009; Bakr et al., 2010; Sherson et al., 2010),
to spatially resolve individual lattice sites (see figure 2.5). The optical microscope has
the advantage that it can be used to send a tightly focussed laser beam to induce ac-
Stark shifts on individual lattice sites (Weitenberg et al., 2011). In combination with
a global microwave field whose frequency is resonant only with the atom in the laser
focus, this allows for the manipulation of the electronic quantum state of individual
atoms in an optical lattice (Meschede and Rauschenbeutel, 2006; Weitenberg et al.,
2011).

2.2.3 Photons and (non-)linear optics

In the last two sections we have seen how atomic particles can be trapped and mani-
pulated with electric fields and laser light. Experiments on trapped atomic particles
all encompass involved optical setups to control the light fields, which in turn are used
as a means to manipulate the quantum state of the atoms. The control of the quantum
state of light by means of linear optics provides itself a broad range of possibilities to
carry out experiments on individual, well-controlled quantum systems. Single photons
can be created from solid-state devices, such as nitrogen-vacancy centers in diamond
(Kurtsiefer et al., 2000) or quantum dots (Michler et al., 2000), and detected with
single-photon detectors (Eisaman et al., 2011). Many experiments focus on the po-
larization degree of freedom of photons, since it represents an ideal qubit (Kok et al.,
2007), similar to the two-level systems formed by long-lived electronic excitations of
trapped ions as discussed above. Furthermore, photons carry a frequency degree of
freedom and may also exhibit orbital angular momentum (Allen et al., 1992).

In these experiments, photons are sent through arrays of linear optics devices to
manipulate the quantum state of light (Kok et al., 2007). An elementary building
block are semi-reflective mirrors, beam splitters, in which part of the incoming light is
transmitted while the remaining part is reflected in a fully coherent process (Zeilinger,
1981). The reflectivity of beam-splitters can also depend on the polarization state of
light and can therefore be used to prepare photons with specific polarization states.
Wave plates rotate the polarization state in the complex plane allowing to switch be-
tween linear and circular polarization. Finally a light mode can experience a phase
factor when it passes through a material of different diffractive index, called a phase
shifter. A combination of these elements allows to generate arbitrary unitary trans-
formations between the incoming and outgoing light modes (Reck et al., 1994).

Such experiments allow for the studies of many-particle dynamics, which are heavily
influenced, on the one hand, by the bosonic quantum statistics induced by the indis-
tinguishability of photons (Hong et al., 1987), and, on the other hand, by additional
many-body interference phenomena (Tichy, 2011; Ra et al., 2013; Tichy, 2014).

Pairs of entangled photons are created by nonlinear processes which occur in bire-
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fringent crystals8 (Kwiat et al., 1995). An incoming pump photon creates a pair of
photons with strong frequency correlations. Additionally, under specific conditions,
also the polarization of the two photons is described by an entangled quantum state.
Nonlinear processes can further be used to induce interactions between polarization
and frequency degrees of freedom of the same photon. This effect is used to simu-
late a controlled environment for the polarization qubit in an experiment described in
section 3.3.

Linear optics and photonic qubits are particularly important for quantum communi-
cation, since photons – in contrast to atoms – can be sent efficiently from one location
to another over long distances (Ursin et al., 2007). Their flexibility renders photonic
systems also attractive for the realization of a quantum computer (Knill et al., 2001;
Kok et al., 2007). In this context, the main disadvantage over atomic systems is
that the desired processes only happen probabilistically, which means that a desired
quantum state can only be produced in combination with post-selection. Therefore,
observing a certain effect may require a large number of experimental iterations. This
is further hampered by imperfect photon sources and detectors, as well as photon
losses (Broome et al., 2013).

Experimental efforts to improve the performance of large-scale photonic setups are
focussing on integrated photonics, where waveguides and the key building blocks of
linear optics are microfabricated onto chips (O’Brien et al., 2009; Peruzzo et al., 2010;
Spring et al., 2013; Tillmann et al., 2013; Crespi et al., 2013). So far, however, experi-
ments are carried out on few-particle systems which can be easily treated theoretically
on a classical computer. Increasing the numbers of modes and particles such that
these experiments become interesting from a complexity point of view (Aaronson and
Arkhipov, 2013) remains a major challenge. This resembles the scalability issue which
was already pointed out for trapped ions, albeit for different reasons.

2.2.4 Other systems

In the previous sections we have discussed the three platforms of trapped ions, cold
gases of neutral atoms, and linear optics. There exists a large number of other ex-
perimental settings which allow for a similar quality of coherent control of quantum
mechanical particles. In this section, we briefly comment on some of them.

Experiments on nuclear magnetic resonance have a long-standing tradition in manip-
ulating large ensembles of spin states with strong coherent pulses (Ernst et al., 1987).
Spectrally separated nuclear spins of molecules can be used to identify interacting
qubit systems, and have been employed for a proof-of-principle experiment factoring
the number 15 with Shor’s algorithm (Vandersypen et al., 2001). These molecules are,
however, in solution at room temperature, which renders the conservation of quantum
properties such as coherence and entanglement unfeasible (Warren, 1997).

In contrast, in a solid-state environment, nitrogen-vacancy centers can provide a
platform for coherent quantum experiments in diamond (Jelezko et al., 2004). The
challenge here is the difficulty to create nitrogen-vacancy centers with a specific reso-

8In birefringent crystals, the refractive index depends on the polarization state of light.
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nance frequency. Hence, high-precision laser manipulations as with trapped-ions are
not possible. The resonance frequency is further influenced by the ambient tempera-
ture (Acosta et al., 2010) and can also be sensitive to magnetic fields via the Zeeman
effect (Maze et al., 2008). These effects can be used to map out or even change the
properties of the complex environments of the nitrogen-vacancy centers with high spa-
tial resolution (Taylor et al., 2008; Kucsko et al., 2013). These systems therefore
represent an interesting platform at the interfaces between atomic physics, solid-state
physics and soft matter.

Another example is once again defined by atomic systems. When bound electrons
are excited to high electronic quantum numbers, the atoms become spatially extended
and gain large dipole moments. From a theoretical point of view, such Rydberg atoms
(Gallagher, 1994) are an appealing testbed for studies of semiclassics and quantum
chaos (Buchleitner et al., 2002; Madroñero et al., 2006), as the electronic quantum
motion can be interpreted in terms of classical periodic orbits. Coherent control via
external driving fields is able to generate non-dispersive wavepackets, which follow
classical trajectories (Buchleitner et al., 2002). Moreover, Rydberg atoms interact
strongly with each other via enhanced dipole-dipole interactions, which depend on the
inter-atomic distance as r−3 (Cohen-Tannoudji et al., 1977b). This enables studies of
energy transfer processes (Günter et al., 2013), and the energy shift excerted by an
excited atom onto neighboring atoms over large distances (Urban et al., 2009; Gaetan
et al., 2009) has potential use for applications in quantum information theory (Lukin
et al., 2001; Saffman et al., 2010). Using spatially confined optical dipole traps, optical
tweezers, it is possible to trap individual Rydberg atoms in carefully designed optical
trap architectures, which allow for the design of arbitrary lattice configurations (No-
grette et al., 2014). A prevailing challenge is the very limited trapping time of Rydberg
atoms in such optical tweezers, which do not yet permit deterministic, simultaneous
filling of all of the trapping sites.

Rydberg atoms are also used to manipulate and probe the quantum state of a single
light mode inside a cavity (Haroche and Raimond, 2006). Strong coupling to a reso-
nant cavity enhances the stimulated emission rate of passing atoms, which is the basic
principle of the micromaser (Walther, 1992; Walther et al., 2006). The approach of
cavity quantum electrodynamics as incarnated by the micromaser represents a com-
plementary aspect of atom-light interactions, with respect to the field of trapped ions.
Here, atoms are used as a means to add or remove individual photonic excitations in
the cavity. In an extremely lossless cavity the quantum state of the light mode can be
engineered with remarkable precision (Haroche, 2013). Mathematically, this system
very much resembles the trapped-ion system, when a sideband transition is addressed.
The strong coupling inside the cavity leads to the exchange of excitations between the
resonant atomic two-level system and the single light mode, which is described by a
quantum harmonic oscillator. The dynamics of such systems was conceived such as
to realize the Jaynes-Cummings Hamiltonian (Jaynes and Cummings, 1963), as was
already discussed in the context of the first red sideband transition of a trapped ion.

Another mathematically similar realization is given by superconducting qubits built
from Josephson junctions (Clarke and Wilhelm, 2008). A prerequisite for quantum
information applications is, again, the experimental control of the quantum state
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(Hofheinz et al., 2009). In complete analogy to cavity quantum electrodynamics, one
couples artificial atoms of superconducting Josephson junctions to solid-state cavities,
in experiments referred to as circuit quantum electrodynamics (Wallraff et al., 2004).
Similarly, the field of optomechanics considers the coupling of the quantized motion
of matter to light fields, which allows for cooling and control of the quantum state of
mesoscopic systems (Meystre, 2013).

We note that a variety of physically very different systems is described by mathe-
matically very similar models. Suitable technologies for quantum information purposes
often contain two-level systems (qubits) as the simplest possibility to encode quantum
information. The indispensable interaction between such qubits is then mediated via
some type of quantum bus, which often is described by a quantum harmonic oscillator.

Finally, closely related to the field of cold atoms in optical lattices, we mention
recent experimental steps towards the control of diatomic molecules in optical lattices.
These molecules are created from cold atomic gases via a combination of Feshbach
resonances and carefully timed Raman pulses (Bergmann et al., 1998) that achieve
cooling with optical laser light (Danzl et al., 2008; Ni et al., 2008). Diatomic molecules
of two different atomic species can carry a large dipole moment, leading to long-
range interactions among the rotational states of the molecules at pinned positions in
the optical lattice (Yan et al., 2013). Such polar molecules have the potential to be
employed for the studies of interacting many-body systems (Hazzard et al., 2014).

The present overview only presents a subjective selection, and there exist even more
interesting experimental platforms for well-controlled quantum experiments, each one
with its own characteristic advantages and disadvantages.

2.3 The certification of large-scale quantum devices

An obvious reason that comes to mind to motivate the challenge to build large-scale
quantum devices is the theoretically proven possibility to computationally outperform
computing systems based on classical objects (Feynman, 1982; Nielsen and Chuang,
2000; Aaronson and Arkhipov, 2013). Another motivation may be the possibility of
pushing quantum mechanics to larger scales, from which interesting phenomena may
emerge. While some even postulate a breakdown of quantum theory at some macro-
scopic scale (Ghirardi et al., 1986), with interesting phenomena we here mainly refer to
novel manifestations of large-scale interacting many-body systems in agreement with
quantum theory. One way or the other, the second motivation is certainly sufficient for
most physicists to find interest in such endeavors. As we will discuss in the following,
the aspect of novel perspectives in the context of computational complexity entails
additional challenges.

The small size of current proof-of-principle experiments allows to verify measure-
ment results by comparison with classically computed predictions. When experiments
reach the classically intractable realm of parameters, how can the result provided, for
instance, by a quantum computer be certified? Conceptually, this certification poses a
significant challenge for the field of quantum computations and quantum simulations.
Some specific tasks, such as the factorization of prime numbers, solve this issue through
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the simplicity of verifying a result. Given a set of prime numbers, it is a simple task
to verify that their product yields the initial number. For quantum simulators, this is
more complicated, since their purpose is precisely to solve equations of motion which
are not tractable by other means. Similarly, a Boson Sampling device efficiently sam-
ples from distributions, generated by the permanents of large, generic complex-valued
unitary matrices that map the input on the output state of indistinguishable bosonic
particles (Aaronson and Arkhipov, 2013), for instance when transmitted through linear
optics setups (Spring et al., 2013; Tillmann et al., 2013; Crespi et al., 2013), or when
inscribed into the phonon modes of trapped ions (Shen et al., 2014). The realization
of such a device would have far-reaching implications for theoretical computer science
(Aaronson and Arkhipov, 2013), but if it exists, how can the functionality of such a
device be verified? An important prerequisite to reliably analyze large-scale quantum
devices is the development of tools that are able to diagnose systems of increasing size
and complexity.

Let us briefly discuss some of the available methods to characterize the prepared
quantum states, their dynamics, and the decoherence processes they are exposed to.
For medium-sized entangled states of trapped ions it is possible to map out the entire
density matrix using quantum state tomography9 (Paris and Řeháček, 2004; Häffner
et al., 2005a). Already for eight qubits, state tomography requires more than 6× 105

measurements which corresponds to about ten hours of measurement time (Häffner
et al., 2005a). Similarly, by preparing a set of initial states and observing their evo-
lution it is possible to perform quantum process tomography to extract the underlying
dynamical map experimentally—at the cost of even higher experimental overhead.
In recent years, methods from data compression have been employed to provide to-
mographic methods with polynomial scaling with the number of qubits, for density
matrices with few nonzero elements (Gross et al., 2010; Schwemmer et al., 2014). In
general, the number of elements of multi-particle density matrices increases exponen-
tially with the number of particles. Thus, it will neither be possible nor desirable to
obtain complete knowledge about the full quantum state in the limit of large-scale
quantum systems. Instead, the challenge will consist in identifying the relevant quan-
tities in a given scenario and developing methods to extract these efficiently from
complex interacting quantum systems, and to conceive robust statistical descriptions.

A promising direction are spectroscopic techniques, which can map out the excita-
tion spectrum of a quantum simulator (Senko et al., 2014), but still have difficulties
to explicitly demonstrate coherent superpositions of many-body quantum states. The
spin squeezing parameter as a macroscopic entanglement witnesses (Sørensen et al.,
2001) is in this context the only hint at a certain amount of coherent superpositions
in the system. To obtain dynamical information on the decay of coherent superpo-
sitions, one typically adapts methods of Ramsey spectroscopy to many-body states.
Combined with single-site addressability, this technique can be refined to extract spa-
tially resolved correlation functions in thermal equilibrium (Knap et al., 2013; Serbyn
et al., 2014). Such interferometric probes of many-body physics entail sequences of

9See (Řeháček et al., 2008) for the discussion of error bars and (Schwemmer et al., 2015) for an
analysis of systematic errors of commonly employed methods for quantum state tomography.



2. Background 33

pulses and thereby probe time-correlation functions which contain more information
than mere static spectral data (Ernst et al., 1987).

A very general and powerful framework is provided by nonlinear spectroscopy. It
is able to describe not only the signal obtained by the above described sequences of
strong pulses, but can also account for non-equilibrium initial conditions, provides a
perturbative theory of arbitrary order response functions, and allows to include pulse
shapes (Mukamel, 1995). We will briefly review the basic ideas and applications of
nonlinear spectroscopy in the next section. In chapter 6, we introduce the application
of methods from nonlinear multi-dimensional spectroscopy as a scalable alternative to
study specific features of complex quantum optical and atomic systems.

The development of novel experimental tools is just one of two aspects in the con-
text of the reliable and scalable analysis of large many-body quantum systems. These
efforts must be complemented by applicable theoretical methods, which eventually can
lead to the characterization of the relevant properties, as well as the assessment of the
performance of many-body quantum devices. Established methods such as random
matrix theory have proven to successfully describe statistical features of sufficiently
generic quantum systems. If, however, specific microscopic details are of interest,
one must develop an effective description by identifying the relevant degrees of free-
dom, and treating the less relevant part of the system perturbatively with appropriate
approximations. One such approach is represented by the theory of open quantum sys-
tems, which describes incoherent influences of an environment on a quantum system
of interest efficiently. An overview of different approaches to the theoretical treatment
of composite quantum systems will be provided in section 2.5.

2.4 Nonlinear spectroscopy

Absorption spectroscopy provides static information about a physical system’s spec-
trum, imparting valuable information about the distribution of energy levels. For a
complete dynamical description we additionally need to know the associated eigenvec-
tors. When the initial state can be controlled, the strength of the recorded spectral
features can be used to extract information about the shape of the eigenvectors. In
truly complex quantum systems, however, the structure of eigenvectors and their over-
lap with any generic initial state becomes too complicated to be treated explicitly. The
size and complex structure of such systems also leads to effectively irreversible dynam-
ics, which is no longer well described by a coherent evolution based on a microscopic
Hamiltonian model. In such situations, the information provided by linear absorption
spectroscopy is not sufficient to describe the dynamical features of the system. Again,
we rather have to sort out the essential, relevant quantities, and identify methods to
extract those, depending on the specific question to be answered. In chemical physics,
for example, a complete description of the microscopic quantum mechanical properties
of molecular aggregates is not considered a realistic and feasible option. Instead, one
identifies key features such as the electronic and vibrational resonances, the couplings
between them and the nature of resulting transport processes, as well as environ-
mental influences, which lead to decoherence and dissipation. Such information can
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be extracted efficiently with techniques from nonlinear spectroscopy (Mukamel, 1995;
Hamm and Zanni, 2011).

The basic idea of nonlinear spectroscopy is to apply a sequence of phase-coherent
pulses, with well-defined time delays between them, and scan the signal over many
repetitions as a function of these time delays. The resulting multi-dimensional spectra
contain all the information of linear absorption spectra, but also are able to identify
dynamical information which is inaccessible to linear methods. The basic methods
were already developed in the context of nuclear magnetic resonance experiments,
which require the excitation and readout of radio-frequency transitions (Ernst et al.,
1987). This is done with pulses of well-defined length with specific phase properties,
analogous to the manipulation of the ionic qubit, as discussed in section 2.2.1.6. The
relative phases between individual pulses in a sequence are an essential tool to control
the induced excitations and to monitor the evolution of specific coherent superposition
states. In this context, a commonly employed technical term is the excitation path-
way, which refers to one of many coherent superpositions that are induced by all of
the laser-sample interactions in the course of the full time evolution. Post-processing
of the resulting data sets as a function of the accumulated phases allows to extract
such excitation pathways, which otherwise remain hidden in the full data comprised
of the interference of all contributing transition amplitudes. The extraction of indi-
vidual pathways is done by a discrete inverse Fourier transform technique called phase
cycling (Ernst et al., 1987), which we will explain in further detail in section 6.2.5.
The realization of these ideas with optical frequencies is more challenging (Tanimura
and Mukamel, 1993), but is common practice in many laboratories today (Cundiff
and Mukamel, 2013). In this case, instead of the phases of incoming pulses, one con-
trols their k-vectors, hence, the orientation of the photons’ momenta (Mukamel, 1995;
Hamm and Zanni, 2011). This allows to extract individual excitation pathways via
phase matching.

A typical nonlinear spectroscopic experiment is depicted in figure 2.6. A sequence
of weak, perturbative pulses is injected onto the sample from different spatial direc-
tions. After the final pulse, the system emits a photon with a well-defined direction,
depending on the orientations of the train of incoming pulses and the excitation path-
way. By adjusting the orientation of the detector, only the signal which satisfies a
certain phase-matching condition, imposed by momentum conservation, is recorded.
The pathway depicted in figure 2.6 b) is selected by the phase-matching condition
kS = −kA + kB + kC . Here, the first pulse creates a coherent superposition of the
ground state |0〉 and an excited state |1〉. The second pulse transfers the excitation
fully to the excited state population. The third pulse brings the system back to a
coherent superposition. Finally, after another time delay of duration t, the system in-
teracts with a probe pulse, inducing stimulated emission of radiation along kS , which
is measured via heterodyne detection.10

Typically, the generated, time-dependent signals are Fourier transformed with re-
spect to the time delays τ and t to obtain a two-dimensional spectrum in the frequency

10Interference of the sample’s signal with the laser field that causes the stimulated emission (Hamm
and Zanni, 2011).
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produces no off-diagonal signal. In the limit of strong
inhomogeneous broadening, a peak’s inhomoge-
neous width is given by the width measured along
the diagonal, and the homogeneous width may be
measured perpendicular to the diagonal.

In principle, 2D optical spectroscopy is much
like the established technique of 2D NMR. But im-
plementing it poses many additional challenges, be-
cause the frequencies are much higher and the time
scales much shorter. The first challenge is measuring
the electric field of the signal. That is easily done at
the radio frequencies used in NMR, but optical de-
tectors measure only the intensity. To measure an op-
tical signal’s electric field, the signal must be inter-
fered with a well- characterized reference pulse. The
second challenge is precisely timing the pulses, with
delays accurate to a fraction of an optical cycle. The
delays must be stable while a measurement is being
made, and the delay steps must be highly uniform.

The idea of implementing 2D coherent spec-
troscopy in the optical regime was first proposed 
in 1993 by Yoshitaka Tanimura and one of us
(Mukamel).3 That proposal described using five-pulse
sequences to excite molecular vibrations through the
Raman effect. Attempts to implement it experimen-
tally were initially complicated by cascading effects
(a sequence of lower-order signals that has the same
power dependence and direction as the desired sig-
nal, making it hard to distinguish between the two).
In 2002, after almost a decade, the complications were
independently overcome by the groups of Dwayne
Miller and Graham Fleming. In the meantime, 2D
spectroscopy in the IR, which accesses molecular vi-
brations directly, was demonstrated independently
by the groups of Robin Hochstrasser in 2000 and An-
drei Tokmakoff in 2001. Working in the IR poses chal-
lenges in terms of sources and detectors, but it has
the advantage that a well- designed apparatus usu-
ally has sufficient passive stability because of the
longer wavelength. Using light in the near-IR or vis-
ible parts of the optical spectrum makes it possible to
access electronic transitions in atoms, molecules, or
semiconductors. At those wavelengths, more elabo-
rate approaches are needed to fulfill the require-
ments of 2D spectroscopy.4,5

Atomic vapors
The spectroscopy of isolated atoms is well under-
stood, so an atomic vapor provides an ideal illustra-
tive example of the capabilities of 2D spectroscopy.
Figure 1 shows the 1D and 2D spectra of the D1 and
D2 transitions of potassium vapor.6 The lines corre-
spond to transitions of the single outer electron of
the potassium atom from the ground state to two dif-
ferent excited states; the resonances are therefore
coupled. As a result, the 2D spectrum shows four
peaks. Two peaks, labeled A and B, lie on the diago-
nal and correspond to the D1 and D2 transitions being
driven independently. Peaks C and D are off-diago-
nal cross peaks, with the absorption frequency of one
transition and the emission frequency of the other,
as expected for coupled resonances. Two physical
processes contribute to the cross peaks. First, driving
one transition reduces the absorption in the other be-
cause it reduces the number of atoms available to be
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Spectroscopy

Optical two-dimensional spectroscopy uses a sequence of laser pulses
that are incident on the sample from different directions. A typical
geometry is shown in the top panel of the figure. The incident pulses, A,
B, and C, generate a signal S that emerges in a different direction, deter-
mined by conservation of momentum, and thus is easily isolated.

As shown in the bottom panel, the pulses are separated by time delays
τ and T, and the signal is emitted over time t. The first pulse, with wavevec-
tor kA, puts the system in the coherent superposition between the

ground state ∣0〉 and the excited state ∣1〉. The superposition oscillates as
a function of time, as indicated by the decaying sinusoid. The second
pulse, kB, converts the superposition to a population in the excited state.
The excited-state population does not oscillate, but it does store the
phase of the superposition state. The third pulse, kC, converts the popula-
tion back to a coherent superposition state that radiates the signal field
with wavevector kS = −kA + kB + kC. Pulse A contributes a minus sign be-
cause its contribution to the phase of the signal is conjugated, or shifted
by 180° with respect to the contributions of the other two pulses. A 2D
spectrum is then generated by scanning τ, recording the signal as a func-
tion of t, and taking Fourier transforms with respect to τ and t. 

That pulse sequence, with the phase-conjugated pulse arriving first,
produces a so-called rephasing spectrum, which is only one of several
possible 2D spectra. If the conjugated pulse arrives second, the resulting
spectrum is known as a “nonrephasing” spectrum because the dephas-
ing due to inhomogeneous broadening is not canceled, or “rephased.” As
shown by Andrei Tokmakoff, if rephasing and nonrephasing spectra are
added together, the resulting “correlation” spectrum has narrower peaks.
Correlation spectra can disentangle congested spectra because they
have narrower features.

If the conjugated pulse arrives last, the resulting spectrum can show
 double- quantum coherences, or coherent superpositions of the ground
state and a doubly excited state. Such coherences cannot be directly cre-
ated by a single light pulse because the transition between these states
is not dipole allowed. However, two non-conjugated pulses together can
create a  double- quantum coherence, which oscillates at the frequency
corresponding to the energy difference between the ground state and
the doubly excited state, typically around twice that of the single quan-
tum transition. 

Pulse and excitation sequence
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j0i and j1i, i.e., in a single-quantum coherence. The second
pulse converts the single-quantum coherence to a double-
quantum coherence between j0i and j2i. The third pulse
converts the double-quantum coherence back to a single-
quantum coherence that radiates. The final single-quantum
coherence can be between states j0i and j1i or between
states j1i and j2i; both possibilities are shown in Fig. 1(d).
These pathways can be described using the double-sided
Feynman diagrams for the atomic density matrix shown in
Fig. 1(e).

Experimental two-dimensional single- and double-
quantum spectra are acquired using the apparatus
described in Ref. [17]. A mode-locked Ti:sapphire laser
generates !200 fs pulses that are input to an ultrastable
platform of nested and phase stabilized interferometers to
generate 4 identical pulses arranged in a box geometry.
Three of the beams are the excitation beams, kA, kB, and
kC, while the fourth is designated the tracer and propagates
in the same direction as the signal beam, kS. The tracer is
used to generate a reference pulse that is routed around the
sample and interfered with the emitted signal beam to

produce interferograms. The full phase and amplitude
information about the signal can be extracted from the
interferograms. The tracer is blocked during data acquis-
ition. It is used to determine the overall phase of the signal
for decomposition into real and imaginary parts [18].
The potassium vapor is held in a 350 !m thick trans-

mission cell. The cell body is made of titanium with two
sapphire windows [19]. For the measurement reported
here, the cell temperature was 130 "C. The transmitted
spectrum of the attenuated laser was used to estimate the
absorbance. The transmitted intensity is It ¼ Iie

$"l, where
Ii is the incident intensity, " is the absorption coefficient,
and l is the cell thickness. At this temperature and density,
the resonance broadened linewidths are smaller than the
Doppler width and spectrometer resolution; thus, a
1550 torr Argon buffer gas was introduced into the cell
to induce collision broadening. Since the oscillator
strength is fixed, increasing the broadening reduces the
absorbance, "l, at the peak of the D2 line, 391.02 THz,
to 0.053, which is stronger than the D1 line. This low
absorbance rules out optical density effects as explaining
the observations. We have repeated our measurements for
several different buffer gas pressures and find no qualita-
tive differences.
Figures 2(a) and 2(b) show the real part of both single-

and double-quantum spectra for a potassium number den-
sity of 3:5% 1012 cm$3. As observed previously [20], the
single-quantum spectrum shows peaks corresponding to
the D1 and D2 lines, as well as off-diagonal peaks due to
coupling between them via the ground-state bleach and
Raman-like coherences within a single atom [20].
Surprisingly, the double-quantum spectrum also shows
clear resonances, even though there are no atomic states
at these energies. The resonances have a dispersive profile,
i.e., similar to the first derivative of a peak. The observed
linewidths of 160 GHz correspond to a dephasing time of
6.25 ps for the double-quantum coherences. TheD1 andD2

lines correspond to transitions from the 4 2S1=2 ground state

to the 4 2P1=2 and 4
2P3=2 states, with transition frequencies

of 389.29 and 391.02 THz, respectively. The higher-lying
states that are closest to twice the D1;2 energies are the 5P
and 4D states, which are at frequencies 740.81 and
821.36 THz, both of which are well outside the spectral
range shown in Fig. 2(a) and well outside the laser band-
width of 3 THz. The fact that the observed resonances are
at exactly twice the frequencies of the D1 and D2 lines (or
their sum frequency) indicates that the double-quantum
resonances are due to the combined response of two atoms,
rather than the level structure of a single atom, and that the
coupling is weak (otherwise, the resonance would be
shifted). Transfer of energy between atoms during a colli-
sion is an incoherent process and thus should not result in a
double-quantum coherence.
The observations can be explained using a simple

picture obtained by combining the Hamiltonians of two

FIG. 1 (color online). (a) Levels of an isolated potassium atom.
(b) Geometry of the incident beams and signal beam. (c) Pulses
and oscillating coherences during different time periods.
(d) Transitions of a ladder-level system as a function of time
showing transitions driven by laser pulses and resulting coher-
ences. (e) Double-sided Feynman diagrams for the two-quantum
pathways that contribute to SIII for a ladder-level scheme.
(f) Hilbert space transformation between two independent two-
level atoms and a four-level system, including a doubly excited
state.
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Figure 2.6.: Typical experimental setup using nonlinear spectroscopy. Adjustment of the
phase-matching conditions (a), allows to select the contribution of individual
excitation pathways (b). During the time intervals τ and t, the signal evolves
in a coherent superposition, generating an oscillating signal with the transition
frequency between the two states. In between, during T , the pathway involves
an excited state population. The first pulse is applied 180◦ out of phase, indi-
cated by the asterisk on the wave vector kA. Part c) shows an experimentally
obtained signal resulting from such a pulse sequence applied to an atomic vapor
of potassium atoms. The two diagonal peaks (on the dashed line) correspond
to the transitions from the ground state to two different excited states, which in
linear absorption spectra produce the D1 and D2 lines. The off-diagonal peaks
indicate the correlated nature of these two resonances. The absorption frequency
along the y-axis is plotted negative by convention to account for the out-of-phase
nature of the first pulse. Adapted from (Dai et al., 2012; Cundiff and Mukamel,
2013).

domain. The example in figure 2.6 displays data obtained from atomic potassium va-
por. The diagonal peaks correspond to the linear absorption peaks of the D1 and D2

lines, respectively. The presence of an off-diagonal signal in the two-dimensional spec-
trum reveals correlations between the two transitions. These are caused, for instance,
by the common ground state, and their presence rules out the possibility to attribute
the two diagonal resonances to two independent transitions of two different atomic
species (Dai et al., 2010). By varying the phase matching condition, other signals
can be selected, involving, for instance, coherent superpositions of states beyond the
first excited state manifold (Kim et al., 2009), which are able to reveal weak collec-
tive resonances induced by particle-particle interactions (Dai et al., 2012). Nonlinear
spectroscopy, thus, provides us with a versatile toolbox, which can be adjusted to tay-
lor the adequate experimental observable to quantify a specific target property of the
physical system under study.

The strengths of nonlinear spectroscopy become particularly apparent when deal-
ing with systems subject to interaction with challenging environments, fast relaxation
time scales, and many-body interactions (Mukamel et al., 2009). In molecular systems,
the vibrational excitations can couple to the electronic levels which leads to a broad
collection of overlapping resonances (Hamm et al., 1998; Milota et al., 2009). Even
in such scenarios, two-dimensional spectra allow to identify structural changes of bi-
ologically relevant proteins (Chung et al., 2007), as well as transport processes across
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molecular aggregates (Brixner et al., 2005; Engel et al., 2007). Furthermore, the line-
shapes of two-dimensional resonances can be used to distinguish different incoherent
processes induced by the interaction of the system with its environment (Tokmakoff,
2000; Siemens et al., 2010). Other scenarios where nonlinear spectroscopy has facil-
itated the identification of the dynamics and couplings of elementary excitations are
encountered in solid state physics, including semiconductors (Zhang et al., 2007) and
nitrogen-vacancy centers (Huxter et al., 2013). In semiconductors, two-dimensional
spectra have revealed many-body interactions (Li et al., 2006) which cannot be de-
scribed by mean-field theories (Zhang et al., 2007).

Given the information one is able to extract from two-dimensional spectra, these
methods are also interesting for artificially engineered, controllable atomic and quan-
tum optical systems, as were discussed in section 2.2. This becomes especially relevant
when considering current efforts to increase size and complexity of such experiments,
and the entailed necessity to develop powerful, scalable probing tools. Yet, there are
considerable differences between synthetic quantum matter such as trapped ions or
cold atoms and actual condensed-phase bulk materials or macroscopic ensembles of
molecules in solution. Thus, to be able to transfer existing ideas from nonlinear spec-
troscopy to artificial quantum systems, the available toolbox needs to be extended and
adjusted.

Conversely, quantum optical systems can offer significant advantages over bulk ma-
terials, regarding, for instance, the possibilities to control a given system. Quantum
optical systems often allow for the coherent manipulation of individual quantum par-
ticles. The given spatial resolution is able to open up new possibilities to extend stan-
dard methods of nonlinear spectroscopy. Adding spatial resolution to phase-coherent
nonlinear spectroscopy is a long-standing goal also for bulk materials (Richter et al.,
2012). In systems of molecular aggregates, the optical diffraction limit forbids localized
excitations that are confined enough to resolve individual interacting chromophores.
Current effort is therefore focussed on nano-fields (Vasa et al., 2009) and space-resolved
electron emission microscopy (Aeschlimann et al., 2011).

Another advantage, available for, but not limited to, engineered quantum systems,
is the possibility to performing experiments on single samples instead of obtaining
ensemble-averaged results of a bulk material (see (Hildner et al., 2011) for spectroscopic
experiments on single-molecules). The interpretation of multi-dimensional spectra is
strongly dependent on the underlying model, which for complex molecular systems is
obtained from a combination of physically motivated structures, sometimes based on
X-ray data, and parameter adjustment to fit the spectral data that is known from
experiments (Schlawin et al., 2013). This is simplified significantly by the austerity
of quantum optical systems and facilitates a clean and unambiguous interpretation of
multi-dimensional spectra.

Finally, let us also mention the increased interest in concepts from quantum infor-
mation theory in the context of nonlinear spectroscopy (Schlawin, 2015). For example,
entangled photons are being used to enhance time- and frequency resolution, and the
signal yield at low intensities (Richter and Mukamel, 2010; Upton et al., 2013). En-
tangled photons can further be employed in nonlinear spectroscopy to control the
population of specific states via many-photon excitation pathways (Schlawin et al.,
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2012; Schlawin et al., 2013; Schlawin, 2015).
In section 6, after an introduction to the theoretical treatment of nonlinear response

signals, we show how artificial quantum systems can be probed using methods from
nonlinear spectroscopy, and how single-site resolution enables us to extend standard
methods of nonlinear spectroscopy in this context.

2.5 Theoretical description of composite quantum systems

In this section, we briefly review theoretical approaches for the description of composite
quantum systems. Specifically, we introduce basic concepts of semiclassical approx-
imations and random matrix theory, review the central ideas behind the theory of
open quantum systems, and discuss the theoretical description of interacting systems
of identical, indistinguishable particles.

2.5.1 Semiclassical approximations and mean-field theories

Semiclassical descriptions of quantum mechanics are, on the one hand, motivated by
the question, what is the correspondence between quantum and classical mechanics,
and in which limit does classical dynamics emerge (Gutzwiller, 1990)? On the other
hand, they have led to the development of efficient methods to describe spectral prop-
erties and dynamics of mesoscopic, complex quantum systems (Ozorio de Almeida,
1988; Gutzwiller, 1990; Gutzwiller, 1991; Delande and Buchleitner, 1994; Brack and
Bhaduri, 1997; Richter, 2000; Buchleitner et al., 2002).

The starting point of many semiclassical treatments are path integral formulations
of the quantum propagator (Feynman, 1948), which expresses the interference of all
possible trajectories that connect two configurations (x′, t′) and (x′′, t′′), characterized
by time and position. The phase factors are of the form exp(iR/~) with Hamilton’s
principal function R, the time-integral over the Lagrangian. Unless R is stationary, the
contributions of different paths to the propagator cancel due to rapidly varying phase
factors (Gutzwiller, 1990). According to Hamilton’s variational principle, the classical
trajectories can be identified as those that lead to a stationary value of R, which in
turn can be found as the solutions of the Euler-Lagrange equations. Performing a sta-
tionary phase approximation of the path integral leads to a semiclassical propagator
in form of a sum over the classical trajectories, which interfere with different ampli-
tudes and phases, whereas the corresponding amplitudes increase with the density of
trajectories at x′′ (Van Vleck, 1928; Gutzwiller, 1967). Reinserting this semiclassical
propagator into the Schrödinger equation shows that this generally11 leads to a good
approximation to order ~2, which is why the semiclassical limit is often understood
as the limit ~ → 0 (Gutzwiller, 1991). In the path integral this translates into the
condition that the numerical value of the function R must be much larger than ~.

For many-body systems, one intuitively expects R to increase with the number N
of particles. Indeed, the semiclassical result is often recovered in the limit of N →∞
11For quadratic potentials, the semiclassical propagator leads to the exact quantum propagator

(Kleinert, 2009).
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(Leyvraz and Heiss, 2005; Polkovnikov, 2010; Engl et al., 2014a), which establishes
a connection to mean-field theories (Sinatra et al., 2001). The aim of a mean-field
ansatz is to reduce the many-body problem, posed by the interaction of a quantum
particle with its neighbors, through an effective modification of the single-particle
potential (Curie, 1895; Weiss, 1907; Georges et al., 1996; Wen, 2004). In systems of
bosons, for instance, this is often realized by treating the quantum fluctuations around
an operator’s expectation value perturbatively (Bogoliubov, 1947). To lowest order,
this corresponds to the expectation value of a suitably chosen product-state ansatz,
or equivalently, to the replacement of the field operator by a classical field—further
details will be discussed in section 2.5.4 and chapter 7. This, again, motivates the
interpretation of a mean-field result as a classical limit to the quantum problem; see,
for example (Emary and Brandes, 2003a). In general, however, the correspondence
of the thermodynamic limit N → ∞ and the semiclassical limit ~ → 0 is unclear,
especially in the case of interacting many-body systems (Engl et al., 2014a; Engl
et al., 2014b).

2.5.2 Complex systems, spectral analysis, and random matrix theory

In classical systems, complexity is often associated with chaotic dynamics. This can be
quantitatively assessed, for instance, in terms of Lyapunov exponents, which express
how two trajectories from slightly different initial conditions deviate exponentially as
a function of time (Ozorio de Almeida, 1988). The delocalized and dispersive na-
ture of quantum mechanical wave-packets does not allow for a clear definition of such
notions in quantum systems. Semiclassical methods can again help to identify appro-
priate classical limits. In fact, a semiclassical approximation of the Green’s function
(the Laplace transform of the propagator, which was discussed above), directly links
the quantum mechanical energy spectrum and eigenstates to the classical trajectories
(Gutzwiller, 1991). For classically chaotic systems, the periodic orbits determine the
trace of the Green’s function (Gutzwiller, 1970; Gutzwiller, 1971). Spectral analysis
takes on a central role in the treatment of complex quantum systems. In the present
section 2.5.2 we will provide a brief overview of the central ideas of quantum chaos
and random matrix theory.

In a quantum approach to chaotic systems, the distribution of spacings between
neighboring energy levels are used as indicators of chaos (Haake, 2001). The symme-
tries of systems with integrable dynamics in the classical limit tend to generate level
clusterings and an abundance of direct level crossings (Berry and Tabor, 1977). On
the other hand, quantum systems with chaotic classical counterparts (chaotic quan-
tum systems), display strong interactions between quantum levels which lead to level
repulsion and predominantly avoided crossings (Wigner, 1951). These statistics are
believed to be universal for generic complex quantum systems, which motivates the
description of chaotic quantum systems with ensembles of random matrices12 (Bohigas
et al., 1984). Random matrix theory follows an approach close in spirit to statisti-
cal mechanics and thermodynamics, by describing average properties of ensembles of

12Conversely, level statistics is also used to characterize quantum systems as chaotic, even if they do
not allow for a clean identification of a classical counterpart (Haake, 2001).
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Figure 2.7.: Distribution of nearest-neighbor level spacings according to the Poissonian distri-
bution which describes regular systems, and to Wigner-Dyson distributions for the
three standard ensembles of random matrix theory, displaying different degrees of
level repulsion. Figure taken from (Gessner, 2011).

systems, whereas statistical quantities of individual, generic realizations are typically
very well represented by the average value. This allows to describe relevant features
of complex quantum systems, often based on analytical results (Mehta, 1991). The
predictions made by random matrix theory have been confirmed in a wide range of
experiments and numerical studies (Delande and Gay, 1986; Guhr et al., 1998; Gnutz-
mann et al., 2000; Mirlin, 2000; Haake, 2001; Emary and Brandes, 2003a; Kolovsky
and Buchleitner, 2003).

The distribution of the level spacings between the uncorrelated energy eigenvalues
of integrable quantum systems is described by a Poisson distribution

P (S) ' e−S , (2.18)

which favors small spacings S between neighboring energy levels. Standard random
matrix theory employs three Gaussian ensembles of matrices to model complex quan-
tum systems. Depending on the system’s symmetries, different degrees of level re-
pulsion are found in the resulting nearest-neighbor spacings, which are described by
Wigner-Dyson distributions (Wigner, 1959),

P (S) ' Ske−S2

. (2.19)

The degree of level repulsion, described by k, depends on the invariance under canonical
transformations of the underlying random matrix ensemble. For quantum systems with
no symmetries, the most general class of transformations which preserve Hermiticity
and leave the eigenvalues invariant is given by the unitary group. The corresponding
Gaussian unitary ensemble has k = 2. When time-reversal symmetry applies, that
is, when the Hamiltonian has only real entries, the canonical transformations are
constrained to the orthogonal group, leading to k = 1 (Gaussian orthogonal ensemble).
A third class of time-reversal symmetric systems can emerge for half-integer spins. As
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the name suggests, the corresponding Gaussian symplectic ensemble is invariant under
transformations of the symplectic group, and has quartic level repulsion, k = 4, see
figure 2.7.

These Gaussian ensembles can be generalized to circular ensembles of unitary ma-
trices, allowing for applications in the context of scattering theory (Dyson, 1962).
Average expressions in terms of integrals over the unitary, orthogonal or symplectic
groups based on Haar measure integrals can often be evaluated analytically (Mello,
1990; Collins, 2003; Collins and Sniady, 2006; Matsumoto, 2012). With such powerful
tools, dynamic expectation values and their variances can be analyzed analytically,
which confirms the success of the ensemble-approach to complex systems (Mello and
Seligman, 1980; Mehta, 1991; Brouwer and Beenakker, 1996; Beenakker, 1997; Guhr
et al., 1998; Haake, 2001; Jalabert and Pastawski, 2001; Gorin and Seligman, 2002;
Gorin et al., 2006; Hastings, 2009; Gessner, 2011; Gessner and Breuer, 2013a).

For further details on the well-established field of quantum chaos and random matrix
theory, we refer to the extensive literature and textbooks on the topic (Mehta, 1991;
Guhr et al., 1998; Haake, 2001). In the context of this dissertation, we employ spectral
analysis as a top-down approach to the description of statistical quantities entailing
macroscopic observables, which require knowledge of the full quantum system, such as
the entire energy spectrum. These global properties of the system directly influence
the microscopic dynamics of its local constituents. Conversely, certain situations may
require the precise knowledge of the microscopic properties of a small part of the
system (local properties). Yet, microscopic knowledge about the full system can in
many cases not be achieved, which requires a complementary bottom-up approach,
aiming to approximatively describe the effective dynamics of a small, controllable
subsystem, and develop methods to probe global quantities of the total system on a
local level. The dynamics of small systems in contact with a large number of degrees of
freedom is in many cases efficiently described by the theory of open quantum systems
(Davies, 1976; Grabert, 1982; Weiss, 1993; Breuer and Petruccione, 2002; Gardiner
and Zoller, 2004).

Before turning to the discussion of open quantum systems, we briefly remark on the
connection of spectral properties to numerical methods for the simulation of quantum
many-body systems. Efficient methods based on matrix product states (Fannes et al.,
1992) and density-matrix renormalization group algorithms (White, 1992; Schollwöck,
2005) and its variants are extremely successful in the description of ground-state prop-
erties and of the low-energy sector of the excitation spectrum (Verstraete et al., 2008).
The capacities of these methods, however, are limited when dealing with a large num-
ber of excited states, especially when these are highly entangled (Schuch et al., 2008).
Such situations are commonly encountered when the spectrum shows signatures of
quantum chaos, which suggests the conjecture that efficient numerical methods based
on matrix product states or density-matrix renormalization group are limited to inte-
grable quantum systems (Prosen and Žnidarič, 2007; Venzl et al., 2009).
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2.5.3 Open quantum systems

The theory of open quantum systems describes the dynamics of small quantum sys-
tems that are coupled to a typically inaccessible and large environment. This situation
describes the unavoidable influence of noise in all quantum experiments, but can also
be interpreted as the restriction to few, controllable degrees of freedom of a large, in-
teracting many-body quantum system, effectively yielding a small, lower-dimensional
subsystem which can be treated and controlled efficiently, both experimentally and
theoretically. The goal of the open-system approach is to derive an efficient, approx-
imative description of the dynamics which contains the incoherent and dissipative ef-
fects induced by the influence of the environment (Davies, 1976; Grabert, 1982; Weiss,
1993; Breuer and Petruccione, 2002; Gardiner and Zoller, 2004).

Formally, an open quantum system is described by a bipartite tensor structure
H = HS⊗HE , comprised of the Hilbert spaces of system and environment,HS andHE ,
respectively. We have encountered such structures already when discussing quantum
correlations, and the interpretation in terms of system and environment is solely one
of the many physical manifestations for this mathematical structure. Due to the
inability to control or access the environment, we are constrained to the measurement
of local operators on the system which have the form A ⊗ I, where I denotes the
identity operator on the environment. The expectation values of operators of this kind
are completely determined by the reduced density operator of the system ρS , which
is obtained by tracing over the degrees of freedom of the environment. In abstract
terms, if the total density operator ρ =

∑
k Ak ⊗ Bk is given by a completely general

decomposition in terms of arbitrary operators Ak and Bk of system and environment,
respectively, the reduced density operator of the system is written as

ρS = TrEρ =
∑

k

AkTrBk, (2.20)

where TrE denotes the partial trace over the environment and Tr is the trace of an
operator. The reduced density operator is the object of central interest to the theory
of open quantum systems, since it contains all the information available over the
accessible part of the full system. The principal task is, thus, to describe the time
evolution of this operator, given certain initial conditions.

There exist different approaches to deriving a master equation for the dynamics of
the reduced density operator. In a more formally oriented ansatz, one introduces a
set of conditions that any physically meaningful map should satisfy to define a set of
quantum operations. Any quantum operation Φ must be (Nielsen and Chuang, 2000)

• convex linear: For any probablity distribution pi, the following must hold

Φ

(∑

i

piρi

)
=
∑

i

piΦ(ρi). (2.21)

• completely positive: This requires not only that Φ(ρ) represents a positive oper-
ator, but that this remains true when we attach arbitrary environments to the



42 2. Background

ρS(0)

ρS(0)⊗ ρE Ut(ρS(0)⊗ ρE)U†
t

TrE{Ut(ρS(0)⊗ ρE)U†
t }

TrE

Ut

TrE

Φt

Figure 2.8.: Diagram defining the dynamical map Φt for initial states without correlations
between system and environment. Adapted from (Breuer and Petruccione, 2002).

system, which are not affected by the operation. Thus, (Φ ⊗ I)ρ must yield a
positive operator, whereas I denotes the identity operator on an arbitrary an-
cilla system, of arbitrary dimension d, and described by the Hilbert space Cd.
The reason for this requirement is that for some states with system-environment
entanglement, a local positive operation may produce a global non-positive op-
erator (Peres, 1996).

• trace non-increasing: The density operator at the outcome of the quantum op-
eration must be normalizable to a positive semi-definite operator of trace one,
TrΦ(ρ) ≤ Trρ.

Quantum operations include actual manipulations of the quantum state, as discussed
in the context of trapped ions, but also the measurement process and time evolu-
tion. They are often referred to as completely positive maps and allow for a Kraus
representation (Kraus, 1983; Nielsen and Chuang, 2000; Bengtsson and Życzkowski,
2006)

Φ(ρ) =
∑

i

KiρK
†
i , (2.22)

where the Kraus operators satisfy
∑

i

K†iKi ≤ I. (2.23)

The time evolution of the open system is also described in terms of a completely
positive map. It contains the combination of the unitary time evolution operator
Ut, describing a solution of the Schrödinger or of the von Neumann equation for the
combined system including the environment, and the partial trace operation. To be
able to map within states of the open system only, one must assume an uncorrelated
initial state of the form ρS(0)⊗ ρE (Lindblad, 1996). In this case

ρS(t) = ΦtρS(0) = TrE{Ut (ρS(0)⊗ ρE)U†t } (2.24)
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describes a completely positive map for arbitrary fixed states of the environment ρE ,
see figure 2.8. A formal statement about the dynamical map Φt is made by the Lindblad
theorem, if the one-parameter family of maps Φt form a semigroup, that is, if Φt+s =
Φt ◦Φs and Φ0 = I. In this case the bounded superoperator L is the generator of this
group, Φt = eLt, if and only if it has the form (Lindblad, 1976; Gorini et al., 1976)

LρS(t) = − i
~

[HS , ρS(t)] +
∑

i

γi

(
LiρS(t)L†i −

1

2
{ρS(t), L†iLi}

)
. (2.25)

The system Hamiltonian HS may not coincide with the bare Hamiltonian of the sys-
tem, as it usually contains environment-induced energy shifts (Cohen-Tannoudji et al.,
1992). This generalizes the von Neumann equation by including incoherent effects on
the dynamics induced by the environment, quantified by the decay rates γi. The semi-
group assumption is a rather strong requirement since it demands that the evolution
during each arbitrary time slice is described by the same dynamical map. Neverthe-
less, the Lindblad master equation has wide applications and has been very successful
in describing the dynamics of open systems, for instance in quantum optics (Cohen-
Tannoudji et al., 1992; Gardiner and Zoller, 2004), despite the fact that actual physi-
cal operators are often unbounded and the Lindblad theorem formally does not apply
(Breuer and Petruccione, 2002). The formal statement of the Lindblad theorem does
not specify the specific form of the Lindblad operators Li, which are often assumed
phenomenologically. For a proof of the theorem, further discussions, applications and
rigorous mathematical background we refer to the original literature (Lindblad, 1976;
Gorini et al., 1976), review articles (Spohn, 1980; Breuer, 2012) and standard text-
books (Davies, 1976; Alicki and Lendi, 1987; Breuer and Petruccione, 2002; Gardiner
and Zoller, 2004).

Alternatively, a master equation can be derived microscopically, starting from a
complete description of system and environment. In the weak-coupling limit, the
starting point of such a derivation is a second-order expansion of the von Neumann
equation in the interaction picture, leading to an integro-differential equation for ρS .
Central element of a microscopic derivation of a quantum master equation is the Born-
Markov approximation. This contains the approximation to coarse-grained time-scales:
Excitations in the environment are assumed to happen on unresolved, faster time
scales than the system dynamics (Born approximation). Formally this is done by
truncating the second-order expansion with a factorized total state containing a time-
independent environmental reduced state. Additionally, the time-dependence of ρS
on previous times is removed in the integrand, which corresponds to a truncation in
second order of the system-environment interaction strength (Markov approximation).
At this point one obtains a Redfield equation (Redfield, 1957), which does not lead
to semigroup dynamics. Finally, the upper integration limit is shifted to infinity and
a secular approximation or rotating wave approximation removes rapidly oscillating
terms to produce a master equation with Lindblad structure (Breuer and Petruccione,
2002).

A master equation in Lindblad form describes a completely memoryless (Markovian)
time evolution, where time-autocorrelation functions of the environment decay expo-
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nentially. In many practical situations, mostly when considering environments of finite
extent or with well-defined spectral structures, the semigroup property does not apply
(Lambropoulos et al., 2000; Breuer and Petruccione, 2002). A natural generalization
of the Lindblad form is found by allowing for time-dependent Lindblad operators and
decay rates,

K(t)ρS(t) = − i
~

[HS(t), ρS(t)] +
∑

i

γi(t)

(
Li(t)ρS(t)L†i (t)−

1

2
{ρS(t), L†i (t)Li(t)}

)
,

(2.26)

which describes the general form of a generator of time-local master equations (Breuer,
2012)

∂

∂t
ρS(t) = K(t)ρS(t). (2.27)

As a less stringent requirement than the semigroup property, the divisibility of the
dynamical map demands that for any t2 ≥ t1 ≥ 0, there exists a completely positive
and trace preserving map Φ(t2, t1) such that

Φ(t2, 0) = Φ(t2, t1) ◦ Φ(t1, 0). (2.28)

Divisibility can be directly linked to the decay functions γi(t) in the time-local master
equation (2.26). In fact, the dynamics induced by (2.26) is divisible if and only if
the γi(t) are positive functions (Breuer, 2012). Yet, many physical situations are
not even described by divisible time evolutions. This implies that the time evolution
depends on previous times which may be interpreted as a quantum memory effect
(non-Markovianity). Recently, a variety of approaches have been proposed to formally
define and quantify such memory effects in terms of quantum information theoretic
measures (Breuer et al., 2009; Rivas et al., 2010; Breuer, 2012).

An elementary tool in this context is the trace distance

‖ρ1 − ρ2‖ =
1

2
|ρ1 − ρ2|, (2.29)

where the trace norm is defined as |A| = Tr
√
A†A. The prefactor is a mathematical

convenience and restricts the range of the trace distance to real numbers between
0 and 1. The trace distance constitutes a formal mathematical distance, that is, it
satisfies the triangle inequality and ‖ρ1 − ρ2‖ ≥ 0, whereas equality is reached if and
only if ρ1 = ρ2. Furthermore, it has appealing properties for quantum information
applications. For instance, the trace distance allows for an intuitive interpretation in
terms of the distinguishability of quantum states (Helstrom, 1967; Nielsen and Chuang,
2000; Hayashi, 2006): The probability to successfully identify which of two quantum
states was randomly (with equal probability) prepared, based on a single measurement,
is given by p = (‖ρ1 − ρ2‖ + 1)/2. Under arbitrary positive operations, the trace
distance between two states can only decrease (Ruskai, 1994), which expresses the loss
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of distinguishability in the course of noisy quantum processes. Thus, in mathematical
terms, the trace distance is a contraction under positive operations.

One approach to quantum non-Markovianity is based on the ability of certain time
evolutions to increase the trace distance temporarily. This increase of distinguisha-
bility is interpreted as a flow of information from the environment to the system—a
quantum manifestation of memory effects induced by a non-Markovian time evolution
(Breuer et al., 2009). This definition is in general not equivalent to the divisibility con-
dition (2.28) (Breuer, 2012). Inspired by entanglement measures (Vidal and Werner,
2002), one may also employ the trace norm to quantify the amount to which complete
positivity is violated by Φ(t2, t1) to define a notion of quantum non-Markovianity which
is equivalent to divisibility (Rivas et al., 2010). A situation where divisibility and in-
creasing trace distance coincide is given when the sum in equation (2.26) contains only
a single decay term.

Non-Markovian time evolutions are characterized by a coupling of the system to a
structured reservoir with pronounced resonances (Caldeira and Leggett, 1983; Rise-
borough et al., 1985; Haake and Reibold, 1985). Spontaneous emission rates, for
example, are determined by the density of modes at the atomic transition frequency
(Cohen-Tannoudji et al., 1992). In structured environments, such as cavities (Walther
et al., 2006; Haroche and Raimond, 2006) or photonic crystals (Lambropoulos et al.,
2000), this factor can increase significantly in comparison to free space vacuum modes
(Purcell, 1946; Kleppner, 1981), leading to strongly enhanced spontaneous emission.
The nearly resonant exchange of excitations between the atom and some of the elec-
tromagnetic field modes can no longer be described in terms of the traditional open-
system ansatz, where the environment is considered a memoryless heat bath, and
non-Markovian extensions are required. Extrapolating this example even further, one
reaches a limit where the master-equation treatment of the atom-light interaction is no
longer appropriate: In the extreme case of an (almost) resonant lossless single-mode
cavity, which one may still formally consider as a simple environment, the cavity mode
can conveniently be treated as a part of the system (Jaynes and Cummings, 1963); see
also section 3.2.

As mentioned before, the standard approach to open systems furthermore implies
the absence of initial correlations between the system and the environment. This con-
dition can be realized to a good approximation in experiments where the initial state
of the system can be prepared with little uncertainty, that is, in a pure quantum state.
In many of the settings discussed in section 2.2, the initial states are well controlled for
systems of few particles.13 However, there exist physically relevant situations where
disregarding the initial correlations is not appropriate, in particular in realistic scenar-
ios where system and environment have been in contact long before the experiment
is conducted, and therefore have settled in a correlated thermal equilibrium state.
On the one hand, a measurement of a continuous system variable, for instance, of a
particle’s position, does not fully remove the system-environment correlations of the

13Even for such controllable quantum systems this is not always the case: For example, laser cooling
the vibrational state of a string of trapped ions still poses a considerable experimental challenge
(Eschner et al., 2003; Segal and Wunderlich, 2014), and instead of the pure ground state, it is
more realistic to assume an initial condition described by a low-temperature thermal state.
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thermal state, and, thus, the subsequent evolution cannot be described properly when
these correlations are ignored (Hakim and Ambegaokar, 1985; Smith and Caldeira,
1987; Grabert et al., 1988; Gorini et al., 1989; Hu et al., 1992). On the other hand,
the theoretical description of the system’s autocorrelation functions also requires a
treatment which includes correlated initial states (Sassetti and Weiss, 1990; Breuer
et al., 2001)—even for discrete variables such as spins, and the effect of these corre-
lations can still be visible in the system’s long-time behavior (Leggett et al., 1987;
Smith and Caldeira, 1990; Orth et al., 2013). We may encounter both these situations
also in the context of controllable quantum systems. In quantum optical experiments,
control over the initial state is often precise enough to avoid unwanted effects aris-
ing from initially correlated states. Yet, such systems may still serve to study the
formal consequences of initial system-environment correlations—both experimentally
and theoretically. When the initial state is not a product state, the time evolution can
no longer be given in terms of completely positive operators (Pechukas, 1994; Alicki,
1995; Pechukas, 1995) that are defined independently of the correlations in the ini-
tial state (Lindblad, 1996). For further details on this topic we refer to the extensive
original literature, as listed in the course of this paragraph; see also (Gessner, 2011).

In any time evolution with factorizing initial conditions, the trace distance is bound-
ed from above by its value at the initial time. Non-Markovianity may temporarily lead
to increased distinguishability, but any two quantum states can never become more
distinguishable than at the initial time. This is different when the initial state contains
system-environment correlations: Any temporary increase of the trace distance of an
arbitrary pair of states above its initial value constitutes a witness for initial system-
environment correlations (Laine et al., 2010), which has been observed in photonic
proof-of-principle experiments (Li et al., 2011; Smirne et al., 2011). This allows one to
extract information about a large, composite system by accessing only a small, open
subsystem. In the same spirit, in chapter 3, we review and extend a method to detect
quantum correlations in a bipartite setting with only local access to one of the two
subsystems, which is applicable in the context of an open quantum system.

2.5.4 Identical particles

Another aspect of complexity is added by the quantum statistics of identical parti-
cles (Cohen-Tannoudji et al., 1977b). In the context of linear optics experiments, we
have already pointed out that the symmetrization of quantum states for the descrip-
tion of bosonic particles can be a computationally hard task. For both, fermions and
bosons, one usually introduces creation and annihilation operators which satisfy canon-
ical commutation and anti-commutation relations, to ensure the appropriate quantum
statistics when many-body quantum states are constructed from them (Mahan, 2000).
We restrict the treatment of the following section to bosons, but the considerations
can be easily adapted to fermions.

Consider the creation operator a†i of a particle in the state a†i |0〉 = |ϕi〉, where |0〉
is the vacuum state, which contains no particles. The {|ϕi〉} form the eigenbasis of
a single-particle observable. The creation operator and its adjoint counterpart, the
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annihilation operator ai, satisfy the canonical commutation relations

[ai, a
†
j ] = δij , [a†i , a

†
j ] = 0, [ai, aj ] = 0, ∀i, j. (2.30)

Arbitrary many-particle states can be constructed from the vacuum using the creation
operator, and we can express operators in terms of ai and a†i , such as arbitrary many-
body Hamiltonians of the form

H =
∑

ij

H
(1)
ij a

†
iaj +

1

2

∑

ijkl

H
(2)
ij;kla

†
ia
†
jakal, (2.31)

which may contain a single-particle energy H(1) and a two-particle interaction term
H(2).

To theoretically describe experiments on many-body quantum systems, we can either
propagate an initial quantum state according to the Schrödinger equation, or deter-
mine the Heisenberg-picture evolution of an observable. Since any operator can be
constructed from the elementary creation and annihilation operators, it would suffice
to solve the Heisenberg equations of motion of

∂

∂t
ai(t) =

i

~
[H, ai(t)], (2.32)

with the formal solution ai(t) = eiHtai(0)e−iHt, ai(0) = ai, and H is given by (2.31).
Whenever the two-particle interaction term H(2) is nonzero, solving equation (2.32)
constitutes a full many-body problem, and it is usually not possible to provide an
explicit solution without additional approximations (Mahan, 2000).

Different perturbation theoretical methods have been developed to cope with this
problem, for instance, using Green’s functions in solid state systems, which express the
expectation value of such operators in the Heisenberg picture at different times (Ma-
han, 2000; Wen, 2004; Kamenev, 2005). This involves a separation of the Hamiltonian
into a soluble part, which can be treated exactly, and a perturbation. The expectation
values of many-body observables can be predicted using perturbation theory. Many
important physical quantities, however, are already fully determined on the basis of
single-particle expectation values, such as the particle density or momentum distribu-
tion of Bose-Einstein condensates (Bogoliubov, 1967a; Bogoliubov, 1967b; Pitaevskii
and Stringari, 2003). For the description of such quantities, the unwieldy task of
handling the full Hilbert space of a many-body quantum system may be avoided if
appropriate methods for the effective description of few-particle observables can be
developed.

A prominent example of such an effective description in the case of dilute Bose-
Einstein condensates is given by the Gross-Pitaevskii equation. In this introductory
chapter, we restrict to a brief overview without providing any derivations. Further
details will be presented in chapter 7. In a representation in terms of field-operators
Ψ̂(t,x), equation (2.32) takes on the form (Bogoliubov, 1967a)

i~
∂

∂t
Ψ̂(t,x) =

(
− ~2

2m
∇2

x + V0(x) +

∫
dx′V (x,x′)Ψ̂†(t,x′)Ψ̂(t,x′)

)
Ψ̂(t,x). (2.33)
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Based on the Bogoliubov approximation (Bogoliubov, 1947; Pitaevskii and Stringari,
2003), which consists in the description of the macroscopic occupation of a single-
particle quantum state by a classical field Ψ0(t,x), whereas quantum corrections are
considered to be weak, one obtains a closed expression for the time evolution of the
classical field (Gross, 1961; Pitaevskii, 1961; Pitaevskii and Stringari, 2003),

i~
∂

∂t
Ψ0(t,x) =

(
− ~2

2m
∇2

x + V0(x) + g|Ψ0(t,x)|2
)

Ψ0(t,x), (2.34)

when the interactions are assumed to be short-range, V (x,x′) = gδ(x − x′). From
equation (2.34), we see that the dynamics becomes nonlinear, since the mean-field,
induced by the ensemble of particles, which are all described by the same single-particle
state, creates an effective potential for each of these particles. The Gross-Pitaevskii
equation has shown to provide an excellent description of the dynamics of dilute Bose-
Einstein condensates (Pitaevskii and Stringari, 2003), but, by construction, it cannot
include dissipative effects akin to those described by the influence of an environment,
as in the theory of open quantum systems.

Trying to describe only single-particle observables, or, equivalently, the evolution
of single-particle quantum states, instead of the entire many-body system is close in
spirit to the open-system approach to quantum systems. Formally, this corresponds
to tracing over the entire Hilbert space apart from the single-particle subspace. Due
to quantum statistics, the definitions of the single-particle subspace and partial trace
operation must be adjusted, since in a many-body system all of the single particles
are identical and cannot be distinguished. The first-quantized description of a well-
separated tensor structure between system and environment is only applicable if either
the particles in system and environment become distinguishable by some degree of
freedom, for example via fixed lattice site positions in mean-field master equations as
the Hartree equation, or by phenomenological approaches which involve an artificial
symmetrization of the decoherence operators, as for example in the context of the
Boltzmann equation (Spohn, 1980; Breuer and Petruccione, 2002; Röpke, 2013).

A microscopic expression for the reduced dynamics of a subsystem of identical par-
ticles is given by the Bogoliubov-Born-Green-Kirkwood-Young (BBGKY) hierarchy,
which was originally derived for classical observables but can be generalized to quan-
tum systems (Bogoliubov, 1967a). In chapter 7, we will provide a derivation of this
hierarchy based on an appropriate description of a subsystem of identical particles in
terms of creation and annihilation operators. We obtain this hierarchy from the von
Neumann equation for the full many-body quantum state by tracing over the degrees
of freedom of all but few particles. A pure product state assumption then truncates
this hierarchy to first order, which reproduces the Gross-Pitaevskii equation for the
single-particle mean-field.

Experiments on Bose-Einstein condensates, where Bloch oscillations of the single-
particle momentum distribution in a periodic lattice potential are measured (Morsch
et al., 2001), show that these coherent oscillations decay due to interactions between
the particles (Buchleitner and Kolovsky, 2003; Meinert et al., 2014). This raises the
question whether an open quantum system description including incoherent effects
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can be derived microscopically for a subsystem of identical particles. In chapter 7
we take on first steps towards a microscopic derivation of a second-order perturbative
expansion of interacting bosonic particles.

2.6 Quantum phase transitions

The importance of developing an understanding of the microscopic description of com-
plex systems is underlined by its observable macroscopic signatures, for instance in
form of phase transitions. When an external control parameter is varied, the system’s
behavior at large scales can change qualitatively due to changes in its microscopic
structure. Classical, thermally induced phase transitions can be observed in every day
life. When a system’s temperature increases over a given critical value, thermal fluc-
tuations can destroy macroscopic long-range order and produce a disordered phase.
Such phase transitions can be described by methods of classical statistical mechanics
(Landau and Lifshitz, 1969; Ma, 1973; Wilson, 1975). Temperature, however, is not
the only external parameter that can induce a phase transition (Gilmore and Feng,
1978; Feng et al., 1981). Consider for example a material with strong internal spin-
spin couplings. The energy of such a ferromagnetic system is minimized by a highly
ordered spin configuration where each spin’s orientation depends on the alignment of
its neighbors, which in turn leads to a macroscopic magnetic moment. However, once a
sufficiently strong external field is applied, the spin configuration is determined by the
strength and direction of the external field, which dominates over the internal spin-spin
coupling. This behavior characterizes a paramagnetic system. Hence, one can observe
a macroscopic change of the material’s behavior, from ferromagnet to paramagnet,
caused by an external control parameter, the magnetic field. Such phase transitions
become especially interesting at very low temperatures, where all thermal fluctuations
are frozen out, and only quantum fluctuations prevail (Hertz, 1976; Suzuki, 1976).

Phase transitions which are generated by changes of an external control parameter at
zero temperature, such as the above example of a magnetic material, are called quan-
tum phase transitions (Sondhi et al., 1997; Sachdev, 1999; Vojta, 2003). The formal
analogy to classical phase transitions becomes apparent by realizing that d-dimensional
quantum systems can be mapped onto d+ 1-dimensional classical systems, where the
additional dimension is determined by the inverse temperature β of the quantum sys-
tem (Suzuki, 1976; Hertz, 1976; Sondhi et al., 1997; Sachdev, 1999; Vojta, 2003;
Batrouni and Scalettar, 2011). This can be seen by interpreting the temperature-
dependent exponent −βH, which occurs in the partition function, in the spirit of
Feynman’s path integral formulation (Feynman, 1948), as a propagator in the imagi-
nary time t = −iβ. A formal analogy can be established between this imaginary-time
propagator of the d-dimensional quantum system and a product of classical transfer
matrices of a d + 1-dimensional classical system (Sondhi et al., 1997). To this end,
one discretizes the imaginary time interval into N = ~β/δτ equidistant steps of (real)
length δτ . In a chain of spins, a sequence of transfer matrices is used to efficiently
determine the partition function by connecting each spin via a transfer matrix to its
nearest neighbor, thereby constructing an expression for the entire one-dimensional
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chain spin by spin. Here, the imaginary-time propagator connects the entire system
to another copy of itself, one discrete step later in imaginary time, effectively yielding
a step-by-step construction of a d + 1-dimensional system (Vojta, 2003). The extent
of the additional dimension is limited by β, and the dimension becomes only truly
infinite when the temperature approaches zero.

The above mapping can be worked out explicitly, and for the example of the
one-dimensional quantum Ising model at zero temperature, one obtains the two-
dimensional classical Ising model; see, for example (Batrouni and Scalettar, 2011).
By studying the classical partition function, one finds that some of the system pa-
rameters of the quantum system take the role of temperature in the classical system.
This enables one to apply the theory of classical phase transitions and to identify
the critical temperature of the classical system with critical parameter values of the
quantum system (Sondhi et al., 1997). Also the scaling behavior expressed by critical
exponents can be mapped to the quantum system (Vojta, 2003). This does not imply
that every aspect of a quantum phase transition can be described in terms of classical
statistical mechanics by employing this quantum-classical mapping. Issues may arise,
for instance, when trying to describe dynamical properties, or the correlation length
of the coherence of the quantum mechanical wave function (Sachdev, 1999).

Quantum phase transitions can be observed in experiments, even though the point
of absolute zero temperature cannot be reached experimentally. The reason is that
at low, finite temperatures, the dominant contribution to the thermal distribution
of energy eigenstates still stems from the ground state, and residual excited state
populations tend to wash out otherwise sharp transitions. Observations of quantum
phase transitions have been reported in various condensed-matter bulk materials (Vo-
jta, 2003). Recent progress in quantum optics, as summarized in section 2.2, allows
to study models exhibiting quantum phase transitions under well-controllable condi-
tions and on less demanding time-scales. One example is the transition from a ferro- or
anti-ferromagnet to a paramagnet, induced by an external field, which can be observed
in systems described by the spin-chain model (2.14), for instance a chain of trapped
ions with specifically designed interactions (Islam et al., 2011). The Bose-Hubbard
model (2.17), which we discussed in the context of cold atoms in an optical lattice,
predicts a quantum phase transition from a superfluid phase, where the atoms are
delocalized over all lattice sites, to a Mott-insulating phase, where a constant num-
ber of atoms is fixed on each lattice site (Jaksch et al., 1998). This quantum phase
transition has been observed in cold-atom experiments (Greiner et al., 2002). Note,
however, that the transition from a cold gas to a Bose-Einstein condensate is not a
quantum, but rather a classical phase transition, since it occurs at a finite temperature
and therefore is thermally induced. As a final example of a quantum phase transition,
we mention the 3D Anderson transition from metallic to insulating, localized phases,
with increasing strength of the disorder (Anderson, 1958; Evers and Mirlin, 2008).

The fact that a quantum phase transition occurs at zero temperature motivates stud-
ies to conveniently restrict the analysis to the ground state. Indeed, non-analyticities
of the ground state energy currently serve as the commonly accepted definition of
a quantum phase transition (Sachdev, 1999). Moreover, correlation properties of the
ground state often show clear signatures of the quantum phase transition, for instance,
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in terms of correlation functions (Sachdev, 1999), or of quantum entanglement (Oster-
loh et al., 2002; Osborne and Nielsen, 2002; Vidal et al., 2003; Wu et al., 2004). This
can be understood intuitively by studying the system’s spectrum: When the external
parameter is changed, the different states of the system react differently until at some
point an excited level turns into the new ground state. The new ground state then
may exhibit completely different properties than the previous one. In finite systems
the above described transition of the ground state is typically described by an avoided
crossing of the two lowest-lying energy levels, whereas the energy gap at the critical
point shrinks with increasing system size, and the phase transition becomes sharper
(Sachdev, 1999). Nonetheless, the emergence of (avoided) level crossings is certainly
not limited to the ground state. Often, a quantum phase transition implies a quali-
tative change of the entire level statistics at the critical point (Wu et al., 1990; Heiss,
1994; Mirlin, 2000; Emary and Brandes, 2003b); see also (Kolovsky and Buchleit-
ner, 2003). Recently, non-analytic behavior of properties of the excited states (Cejnar
et al., 2006; Caprio et al., 2008; Cejnar and Stránský, 2008), and of quasi-energy states
in driven systems (Bastidas et al., 2014), have also been identified in the context of
quantum phase transitions.

In chapter 5 we study the (anti-)ferromagnet to paramagnet quantum phase transi-
tion in variable-range quantum magnets, taking into account both ground-state quan-
tum correlations as well as the excitation spectrum. A brief introduction to the semi-
classical intuition associated with quantum phase transitions will further be provided
in section 5.4.1.

2.7 Scope and structure of this dissertation

In this chapter we discussed selected topics of state of the art theoretical and exper-
imental quantum physics, focussing, in particular, on the description of controllable
quantum optical systems, on their applications in quantum information theory, and on
their time evolution. For an efficient characterization of composite quantum systems
of variable sizes and levels of complexity, we develop a versatile set of tools in the
present dissertation. This consists in the definition of instructive, and, at the same
time, experimentally accessible observables, as well as suitable theoretical methods to
describe spectral features and dynamics.

Chapters 3 and 4 mostly focus on the characterization of correlation properties of
quantum systems of which – at least – a part is experimentally well under control.
Specifically, in chapter 3 we refine and extend a method that allows to detect bipartite
discord-type correlations between two quantum systems, when access is restricted to
only one of them. Exploiting the interaction between the two subsystems, this allows
to detect correlations between a system and an environment with only local operations
on the system. The “environment” can be either a truly inaccessible part of the full
system, or a part of the system that is too large to be fully characterized. We further
present experimental realizations of this method with trapped ions and photons, and
a series of theoretical studies to explore the limits of its applicability. We end the
chapter by studying the example of a spin-chain model, where we select out a single
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spin as the accessible subsystem, whereas the remaining spins act as environment. The
interplay of ground-state correlations and single-spin dynamics in the context of the
quantum phase transition shifts the focus from quantum information concepts to more
complex multipartite systems.

Before focussing on the in-depth analysis of the spin-chain model, we study the effect
of local operations and classical noise processes on correlation properties in bipartite
and multipartite systems in chapter 4. We discuss the creation and robustness of cor-
relations in another experiment with a chain of trapped ions, where stochastic noise
processes are naturally present due to fluctuating control fields—one of the dominant
error sources of current experiments. We provide an analytical description of the cor-
responding ensemble-averaged dynamics and discuss the implications of the generated
dynamics in the context of entanglement preservation.

Chapter 5, then, is dedicated to a detailed analysis of the quantum phase transition
in a family of quantum magnets with interactions of variable range. Developing a
multi-configurational mean-field ansatz, we analytically reproduce key features of the
excitation spectrum. This semiclassical mean-field ansatz provides us with the exact
quantum spectrum in certain limits of the external field strength. Moreover, an intu-
itive semiclassical interpretation provides an instructive picture of the quantum phase
transition, which relates to the entire excitation spectrum, whereas such phenomena
are usually analyzed solely based on ground-state properties.

A general framework for the construction of observables that characterize the spec-
tral and dynamical features of controllable quantum systems will be introduced in
chapter 6, based on ideas from nonlinear spectroscopy. Single-site addressability, avail-
able in controllable quantum systems, can add spatial resolution to the experimentally
recorded multi-time correlation functions. We discuss implementations with systems
of trapped ions in great detail, and elaborate on a variety of applications.

Finally, in chapter 7 we describe the dynamics of a subset of indistinguishable, in-
teracting quantum particles. We microscopically derive a general coherent mean-field
equation, which reproduces the Gross-Pitaevskii equation in the special case of a dilute
Bose-Einstein condensate. Furthermore, first steps towards a master-equation descrip-
tion of interaction-induced decoherence of single-particle observables are presented.



3 Local detection of
correlations in composite
quantum systems

We discuss a method for the detection of quantum discord between two subsystems,
when access is limited to only one of them. The method is based on local operations
on the accessible subsystem and makes use of the interaction to reveal the bipartite
correlations via the measurable, local subsystem dynamics. We further present exper-
imental realizations with a trapped ion and with single photons, as well as additional
theoretical examples.

3.1 The local detection protocol

In the present section we will review a method which was originally developed in the
author’s Diploma thesis (Gessner, 2011), and published in (Gessner and Breuer, 2011).
During the work on the present dissertation, this method was refined and extended
(Gessner and Breuer, 2013b; Gessner et al., 2014a; Gessner et al., 2014b). Here we
present it from an updated perspective and restrict to presenting only those details
and derivations which have not been presented elsewhere.

In the previous chapter, we discussed the central role of correlated quantum states in
many applications of quantum information theory, as well as for the dynamics of open
quantum systems. The detection of correlations can pose a difficult task, especially
when considering multi-particle systems, since standard methods usually require access
to all subsystems (Mintert et al., 2005; Horodecki et al., 2009; Gühne and Tóth, 2009;
Auccaise et al., 2011; Silva et al., 2013; Walter et al., 2013). It was discussed in
the previous chapter that a complete characterization of the correlation properties
of large ensembles does not represent a scalable approach. Also in most quantum
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Figure 3.1.: The local detection protocol, as outlined in section 3.1.1, is based on a local
dephasing operation Φ which removes the discord-type correlations from the initial
state ρ. If the subsystem dynamics is affected by this operation, the correlations
of the initial state are revealed to observables of the subsystem. Adapted from
(Gessner et al., 2014a).

communication setups, each party typically has only local access to his share of the
total quantum state.

Our strategy consists in detecting correlated quantum states in a possibly multi-
partite setting by accessing only a small subsystem. This has the advantage that
operations are always limited to the small, low-dimensional, controllable Hilbert space
of the accessible subsystem, regardless of the total size of the system. Since we will not
even assume knowledge over the remaining subsystems, this scenario is applicable in
an open quantum system context, where correlations may emerge between the a well-
controlled system and its inaccessible environment. As we discussed in the previous
chapter, such system-environment correlations can have significant influence on the
dynamics of the reduced subsystem. Factorizing initial conditions are indeed central
to standard attempts to describe the dynamics of open quantum systems, for both the
microscopic and the formal approach. Here, we harness the impact of correlations on
the reduced dynamics to reveal the bipartite correlations to the subsystem.

3.1.1 Local witness for bipartite quantum discord

To develop the local detection protocol, we assume a high degree of control over the
quantum system described by the Hilbert spaceHS , which is coupled to an inaccessible
second system, described by HE . Here the subscripts S and E are inspired from the
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separation of the total system in system and environment, which can be an artificial
decomposition of a many-body quantum system and does not have to describe an
actual open system coupled to a heat bath. We further assume no knowledge about
the second system, the interaction between the two systems and the properties of a
given initial quantum state ρ of the composite system HS ⊗HE . The goal is to detect
and possibly quantify the bipartite correlations contained in the quantum state ρ.
Since the total state ρ is only partially accessible, the complete obtainable information
at a single moment in time is contained in the corresponding reduced density matrix
for the accessible subsystem, given, after diagonalization, by its spectral decomposition

ρS = TrEρ =
∑

i

pi|i〉〈i|, (3.1)

with the local eigenbasis |i〉. Unless we encounter a pure state ρS = |ϕ〉〈ϕ|, in which
case we could conclude that the total state is a product state, this does not immediately
allow us to draw conclusions about the correlations of the total state ρ. This is due
to the fact that the statistical mixture of ρS can have two different causes. On the
one hand, the observer’s ignorance about the reduced state can be a result of the
quantum correlations of the total state: A pure maximally entangled total state leads
to maximally mixed reduced states in both subsystems. On the other hand, if the
total state is already mixed, then the reduced state will be mixed, even in the absence
of quantum correlations. To distinguish these two cases we need to take on further
steps.

The general strategy will be to reveal the correlations via their effect on the local
dynamics. Let U(t) be the unitary time evolution operator describing the coherent
evolution of the total system. Note that we assume unitary dynamics for convenience,
and the local detection protocol does not rely on this assumption (Gessner and Breuer,
2013b). The subsystem state after time t will be given by

ρS(t) = TrE{U(t)ρU†(t)}. (3.2)

This evolution contains the influence of the correlations which are possibly present in
the initial state ρ. To detect these correlations, we will compare this evolution with
the subsystem evolution after removing correlations from the total state with the help
of a carefully designed local operation.

To be specific, we define a local dephasing operation to produce a classically corre-
lated reference state where all discord-type correlations are removed. The action of
the local dephasing operation on an arbitrary operator X is defined in terms of the
eigenbasis {|i〉} of ρS as (Gessner and Breuer, 2011)

Φ(X) =
∑

i

|i〉〈i|X|i〉〈i|. (3.3)

It is important to notice that this constitutes a local operation only on the Hilbert
space HS , and does not affect the second subsystem at all. If we apply this operation
locally to the total bipartite initial state ρ, we obtain

ρ′ = (Φ⊗ I)ρ =
∑

i

(|i〉〈i| ⊗ I)ρ(|i〉〈i| ⊗ I). (3.4)
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This operation corresponds to a local, non-selective measurement of ρS and induces
complete dephasing in the local basis {|i〉}. Later in this chapter, we will demonstrate
possibilities to realize this method with trapped ions and photonic polarization qubits.
Recall from section 2.1.1 that the correlations assessed by the quantum discord can
indeed be defined on the basis of this dephasing operation. In fact, the state ρ is
classical (zero discord) if and only if

ρ = ρ′. (3.5)

Otherwise it contains quantum discord. This terminology is motivated by the fact that
{|i〉} can be interpreted as the eigenbasis of an observable. In the case of a classical
state, one may perform non-selective measurements on this local observable without
disturbing the total quantum state, and the quantum uncertainty for this observable
vanishes (Girolami et al., 2013). Furthermore, uncorrelated product states are always
classical, whereas all entangled states contain nonzero discord. For further details see
section 2.1.1.

Thus, we see that the local dephasing operation has no effect on the initial quantum
state if there are no discord-type correlations present in ρ. Next, we study the effect
of the local dephasing on the reduced density matrices of both subsystems. Since
the dephasing, by construction, is a local operation on HS , the reduced state of the
inaccessible subsystem will not be affected. Moreover, the dephasing is carried out
in the eigenbasis of ρS , which means that ρS will also be invariant under such an
operation. This implies that both reduced states of system and environment (or of the
accessible and inaccessible subsystems) are not at all affected by the local dephasing.
Finally, we note that the state ρ′ is always a state of zero discord, as it can be readily
cast into the form of equation (2.3). Formal proofs of these statements can be found
in references (Gessner, 2011; Gessner and Breuer, 2013b).

These properties allow for a straight-forward interpretation of the local dephasing
operation: This locally implementable operation removes all discord-type correlations,
while the local subsystem distributions are unaffected. We can therefore interpret the
state ρ′ as the incoherent counterpart to ρ (Gessner and Breuer, 2013b). For example
in the case of a pure state ρ = |Ψ〉〈Ψ|, the local eigenbasis {|i〉} corresponds to the
local Schmidt basis of |Ψ〉, and the state ρ′ is the incoherent mixture (with same
weights) of the states which are coherently superposed to produce the entangled state
|Ψ〉 (Gessner and Breuer, 2013b). Yet, in order to directly check whether or not the
total state changed under the influence of the local dephasing, we would still require
access to both subsystems.

To reveal the possible change of the total state to the subsystem, we make use of the
latter’s time evolution. After preparing the reference state ρ′ by locally dephasing the
initial state ρ, we again observe the local time evolution in the accessible subsystem,
given by

ρ′S(t) = TrE{U(t)ρ′U†(t)}. (3.6)

As discussed before, at t = 0 we will find that, in the local subsystem, we start out in
the exact same reduced state as without the dephasing, ρS(0) = ρ′S(0). Furthermore,
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the unitary time evolution operator is the same, since we did not change the environ-
ment or the couplings between the two subsystems. One detail, however, did change:
The discord-type correlations with the environment have been removed completely
by the dephasing. Thus, if we find that the local time evolution changes due to the
dephasing-induced removal of the quantum discord, we have found a witness for the
initial quantum discord in the state ρ (Gessner and Breuer, 2011; Gessner and Breuer,
2013b).

At the same time, this demonstrates the influence of initial system-environment
correlations on the open-system dynamics. It becomes obvious that the reduced dy-
namics can no longer be defined in terms of a dynamical map which is independent of
the environmental state, since the same initial state ρS(0) is mapped onto two different
final states. The fact that any difference between ρS(t) and ρ′S(t) demonstrates the
presence of quantum discord in the initial state ρ also implies that any approximate
description of the resulting dynamics in terms of factorized initial conditions would
be inappropriate (Laine et al., 2010; Gessner and Breuer, 2011; Gessner and Breuer,
2013b). The steps of the local detection protocol are summarized in the diagram in
figure 3.1.

3.1.2 Local bound for the minimum entanglement potential

The question now arises, can we go beyond mere detection and also quantify correla-
tions using this protocol? In fact, the difference between two quantum states can be
quantified in terms of distance measures, such as the trace distance. Let us start by
discussing the quantification of quantum discord in terms of trace-distance measures.

Considering the results of the previous section, an evident attempt to quantify the
quantum discord of the state ρ is based on the disturbance (Luo, 2008) which is induced
by the local dephasing operation (3.4), for instance, via the trace distance (Gessner
et al., 2014a)

D(ρ) = ‖ρ− ρ′‖. (3.7)

Due to the contractivity property of the trace distance under positive operations
(Ruskai, 1994), such as the partial trace and unitary time evolution, a lower bound
for this quantity is given by the local trace distance, which can be measured in the
accessible subsystem (Gessner and Breuer, 2013b),

d(t) = ‖ρS(t)− ρ′S(t)‖ = ‖TrE{U(t)(ρ− ρ′)U†(t)}‖
≤ ‖U(t)(ρ− ρ′)U†(t)‖
= ‖ρ− ρ′‖, ∀t ≥ 0. (3.8)

Since this holds for arbitrary t ≥ 0, the best strategy to provide a tight bound to
the global trace distance (3.7) consists in monitoring the local time evolution for long
times and taking the maximum value (Gessner et al., 2014a)

dmax = max
t
‖ρS(t)− ρ′S(t)‖ ≤ ‖ρ− ρ′‖. (3.9)
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From an information-theoretic perspective, geometric measures of discord-type cor-
relations should determine the minimal distance to the set of all dephased or classical
states (Horodecki et al., 2009; Modi et al., 2012). A priori, it is unclear whether
the dephasing-induced disturbance (3.7) minimizes this distance. Indeed, when com-
pared to measures involving a minimization, one finds that, for certain mixed states,
equation (3.7), overestimates the amount of correlations in ρ (Girolami et al., 2011;
Campbell et al., 2011). Instead of the fixed dephasing in the eigenbasis, one could
therefore consider to extend the dephasing process to arbitrary basis sets, defined by
a set of orthogonal projection operators Π = {Π1,Π2, . . . , } as

ΦΠ(ρ) =
∑

i

(Πi ⊗ I)ρ(Πi ⊗ I). (3.10)

Minimizing the distance over all projections,

Dmin(ρ) = min
Π
‖ρ− ΦΠ(ρ)‖, (3.11)

yields an information-theoretically sound measure for quantum discord, the minimal
dephasing disturbance. When the accessible subsystem is a qubit, HS = C2, this
measure coincides with the minimum entanglement potential (Nakano et al., 2013),
which measures the maximal amount of entanglement which can be activated from
discord in a measurement (Streltsov et al., 2011b; Piani et al., 2011; Adesso et al.,
2014); see also section 2.1.2. When ρ describes a pure state, this measure reduces to
the negativity (Vidal and Werner, 2002),

N (ρ) =
‖ρΓ‖ − 1

2
, (3.12)

where ρΓ denotes the partial transpose of ρ in an arbitrary basis of one of the two
subsystems (Piani and Adesso, 2012). This result is expected since in the case of pure
states, we know that the only type of correlation is entanglement. Furthermore, the
trace distance and the negativity are both linear in the Schmidt coefficients λi. These
are defined via a representation of the total state ρ = |Ψ〉〈Ψ| in terms of arbitrary bases
of HS and HE , followed by a singular value decomposition, which leads to (Schmidt,
1907)

|Ψ〉 =
∑

i

λi|ϕi〉 ⊗ |χi〉, (3.13)

with the Schmidt basis |ϕi〉 ⊗ |χi〉 of HS ⊗HE .
The question remains, which is the basis that minimizes the distance (3.11) in the

above situation? The local eigenbasis, considered for dephasing in equation (3.4),
here, is given by the local Schmidt basis |ϕi〉. In the case of HS = C2, the dephasing
disturbance (3.7) in this particular basis Π0 = {|ϕ0〉〈ϕ0|, |ϕ1〉〈ϕ1|} is given by

D(ρ) = ‖ρ− ΦΠ0(ρ)‖
= ‖λ1λ0|ϕ1〉〈ϕ0| ⊗ |χ1〉〈χ0|+ λ1λ0|ϕ0〉〈ϕ1| ⊗ |χ0〉〈χ1|‖

=
1

2
Tr
√
C†C, (3.14)
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where the 2 × 2 matrix of operators on HE can be represented in the local Schmidt
basis as

C = λ0λ1

(
0 |χ1〉〈χ0|

|χ0〉〈χ1| 0

)
. (3.15)

Since λ0,1 ≥ 0, the trace distance yields

D(ρ) = λ0λ1 = N (ρ). (3.16)

Employing the same decomposition, the negativity yields (for arbitrary dimensions of
HS)

N (|Ψ〉〈Ψ|) =
1

2

∑

i,j
i 6=j

λiλj . (3.17)

We find that the disturbance on a pure state induced by dephasing in its local qubit
eigenbasis is quantified by the negativity. Since the minimal disturbance must also
yield the negativity, we have shown that the local eigenbasis minimizes the expres-
sion (3.11) (Gessner et al., 2014b).

In general, however, we do not know whether the total state is pure or mixed.
The goal is therefore to find a local lower bound for the minimal disturbance. This
expression can indeed by estimated by dephasing in many different bases instead of
only the local eigenbasis (Gessner et al., 2014b). Based on a particular selection of
projection operators Π, we introduce the local distance

dΠ(t) = ‖ρS(t)− ρΠ
S (t)‖, (3.18)

where

ρΠ
S (t) = TrE{U(t)ΦΠ(ρ)U†(t)} (3.19)

describes the local time evolution after dephasing. Since the contractivity property
which leads to the inequality (3.8) is independent of the dephasing basis, we can extend
the statement to obtain a lower bound for the minimal dephasing disturbance (Gessner
et al., 2014b)

dmin(ρ) = max
t

min
Π
dΠ(t) ≤ Dmin(ρ). (3.20)

This quantity is accessible when control is restricted to the subsystem since both the
dephasing operations and the reduced time evolution are processes which affect the
local system. Note, however, that unlike to what we observed when dephasing was
implemented in the local eigenbasis, here, we may find a nonzero difference between
ρS(0) and ρΠ

S (0).
The general procedure then consists in dephasing the initial state systematically in

different bases. For each dephasing process, one observes the subsequent local time
evolution. At each time t, the minimum value of all local distances (there exists one for
each dephasing basis) is kept. Out of all the minimum values (one for each recorded
time-step), one keeps the largest to obtain the tightest possible bound.
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3.1.3 Efficacy of the method

The local detection method is – in principle – always applicable, regardless of the envi-
ronment to which the locally accessible system couples. Whether or not the presence
of initial correlations is revealed, depends on the dynamics of system and environment.
In the extreme case of no interaction between the two subsystems it is impossible to
map the global correlations to the local subsystem dynamics (Gessner and Breuer,
2013b).

The distance measures introduced in the previous section can be evaluated eas-
ily when, instead of the trace distance, the Hilbert-Schmidt distance, based on the
Hilbert-Schmidt norm ‖X‖22 = TrX†X, is used, even when the minimization proce-
dure is included (Dakić et al., 2010). It further allows for analytic determination of
the unitary expectation value and its variance (Gessner and Breuer, 2013b) using Haar
measure integration techniques (Gessner and Breuer, 2013a). The resulting average
local distance is given by (Gessner and Breuer, 2011)

∫
dµ(U)‖TrE{U(ρ− ρ′)U†}‖22 =

d2
SdE − dE
d2
Sd

2
E − 1

‖ρ− ρ′‖22, (3.21)

where dµ denotes the Haar measure on the unitary group, and dS and dE are the
dimensions of system and environment, respectively. Together with the corresponding
variance, which can be found in (Gessner and Breuer, 2013b), this result can be used
to assess the success probability of the local detection method. The unitary average
value (3.21) shows that generic dynamical systems will reveal the quantum discord
(right-hand side) to the open-system dynamics (left-hand side); see also (Gessner,
2011).

In many cases we can also establish a direct connection between the time average
over the local Hilbert-Schmidt distance and the dephasing disturbance as quantified
via the Hilbert-Schmidt distance (Gessner et al., 2014a). The Hilbert-Schmidt distance
is, however, not contractive under positive maps, which can cause unphysical increases
of these quantities under trivial operations (Ozawa, 2000; Piani, 2012). In this thesis,
we will mostly employ the trace distance, which does not suffer from these limitations
(Paula et al., 2013).

The result (3.21) further shows that the local signal of these correlations shrinks as
the dimension of the environment increases when the dynamical evolution is sufficiently
generic to be described by the random-matrix average. For such complex system-
environment interactions, this suggests the necessity of a finite-dimensional Hilbert
space in order to be able to successfully reveal initial correlations using the present
method. In the following sections, we present a series of theoretical and experimental
applications of the local detection method to study its efficacy in different scenarios.
These include examples of infinite-dimensional, memoryless environments where the
correlations are revealed, and others where they cannot be detected.
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3.2 Trapped-ion experiment

In this section we describe a trapped-ion experiment where the local detection protocol
was implemented to detect discord-type correlations between the electronic qubit and
the motional degree of freedom of the same trapped ion, while restricting to local
operations on the electronic qubit (Gessner et al., 2014a).

3.2.1 Resonant laser-ion interactions

Before describing the actual experiment regarding the detection of discord-type corre-
lations, we derive a general theoretical description of the quantum dynamics induced
by laser light on an electronic two-level transition as a function of the laser detuning,
restricting the treatment to a single oscillator mode (Leibfried et al., 2003a; Meekhof
et al., 1996; Gardiner et al., 1997). The derived expressions are then applied to the
local detection scenario in section 3.2.3. Our initial point in this section is the Hamil-
tonian (2.8), however, here we do not make use of the Lamb-Dicke limit (Roghani
et al., 2011).

We start by transforming to a moving reference frame with the unitary operator
U(t) = e−iωLσ+σ−t. Subsequently, we apply the rotating wave approximation, that
is, we ignore rapidly oscillating terms corresponding to sums of optical frequencies
over terms whose slow oscillation is determined by differences of optical frequencies;
see, for example (Cohen-Tannoudji et al., 1992). This yields the time-independent
Hamiltonian (Blockley et al., 1992; Vogel and Filho, 1995)

H = −~∆σ+σ− + ~νa†a+
~Ω

2
(σ+e

iη(a+a†)eiϕ + σ−e
−iη(a+a†)e−iϕ). (3.22)

In the following, we consider different choices for the detuning ∆ between the qubit
transition and the laser frequency. To find the most relevant terms we transform to the
interaction picture with respect to H0 = −~∆σ+σ− + ~νa†a. This transformation is
effectively implemented via the replacements a→ ae−iνt, a† → a†eiνt, σ± → σ±e∓i∆t,
which yield

HI(t) =
~Ω

2

(
σ+e

iη(ae−iνt+a†eiνt)e−i∆teiϕ + σ−e
−iη(ae−iνt+a†eiνt)ei∆te−iϕ

)
. (3.23)

Using the Campbell-Baker-Hausdorff relation (Mandel and Wolf, 1995), we obtain

e±iη(a†eiνt+ae−iνt) = e−η
2/2

∞∑

k,l=0

(±iηa†)k(±iηa)l

k!l!
ei(k−l)νt. (3.24)

For additional resonance conditions ∆ = mν, m ∈ Z, some of the terms do not
oscillate at all. These will make the most relevant contribution to the dynamics as
the oscillating terms can be ignored after a second application of the rotating wave
approximation. This works best for a large ratio ν/Ω. Then, the rapid oscillations of
frequencies ν and higher average to zero within the relevant time scale given by 1/Ω.
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3.2.1.1. Carrier transition

For ∆ = 0 we address the carrier transition since the laser is resonant with the atomic
transition. The relevant terms are found by the condition k = l. Neglecting the
counter-rotating terms we obtain

H
(0)
I =

~Ω

2
e−η

2/2
∞∑

k=0

(−η2)k(a†)kak

k!2
(σ+e

iϕ + σ−e
−iϕ). (3.25)

This decomposes into a family of effective 2×2-Hamiltonians H
(0)
n = ~Ω

(0)
n /2(σ+e

iϕ+
σ−e−iϕ) with

Ω(0)
n = Ωe−η

2/2
n∑

k=0

(−η2)kn!

(n− k)!k!2
. (3.26)

When η � 1, this frequency reduces to Ω, thereby reproducing the approximate
expression given in equation (2.10) in this special case. Multiple application of the
creation and annihilation operators on a Fock state |n〉 with n vibrational excitations
yields

(a†)k|n〉 =

√
(n+ k)!

n!
|n+ k〉,

ak|n〉 =

√
n!

(n− k)!
|n− k〉, (3.27)

which leads to

(a†)kak|n〉 =
n!

(n− k)!
|n〉. (3.28)

For an arbitrary state of the form |Ψ(t)〉 =
∑∞
n=0(gn(t)|g, n〉 + en(t)|e, n〉), where |g〉

and |e〉 denote ground and excited state of the two-level system, respectively, we solve
Schrödinger’s equation to obtain the following time evolution

gn(t) = gn(0) cos

(
Ω

(0)
n t

2

)
− ie−iϕen(0) sin

(
Ω

(0)
n t

2

)
,

en(t) = en(0) cos

(
Ω

(0)
n t

2

)
− ieiϕgn(0) sin

(
Ω

(0)
n t

2

)
. (3.29)

Beyond coherent operations as discussed in section 2.2.1.6, Rabi oscillations on the
carrier transition are also used to estimate the ion’s temperature. For a thermal
distribution, ρ(0) = |g〉〈g| ⊗∑n pn|n〉〈n|, we get

pe(t) = 〈e|ρS(t)|e〉 =
∑

n

pn

∣∣∣∣∣sin
(

Ω
(0)
n t

2

)∣∣∣∣∣

2

(3.30)
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where the Boltzmann-distributed populations of excited vibrational state can be ex-
pressed in terms of the average occupation number n̄ as pn = n̄n/(n̄+1)n+1 (Leibfried
et al., 2003a). This relation is often used to estimate the temperature of thermal exci-
tations by fitting the experimentally measured Rabi-flop to the predicition (3.30) with
the free parameter n̄. This method has to be taken with some precaution since other
dephasing effects (see section 2.2.1.8) may also lead to a decay of the Rabi oscillations
which is hard to distinguish from increased temperatures.

3.2.1.2. First red sideband transition

If we choose a red detuning corresponding to the trap frequency, ∆ = −ν, we drive
the first red sideband transition. The time-independent terms in equations (3.23) and
(3.24) are those that satisfy the condition l = k + 1 in the sum corresponding to eikx

and k = l + 1 for e−ikx. The interaction Hamiltonian assumes a form close to the
on-resonance Jaynes-Cummings Hamiltonian,

H
(−1)
I = iη

~Ω

2
e−η

2/2

( ∞∑

k=0

(−η2)k(a†)kak

k!(k + 1)!
σ+ae

iϕ − σ−a†e−iϕ
∞∑

k=0

(−η2)k(a†)kak

k!(k + 1)!

)
.

(3.31)

Here the state space splits up in families of pairs {|e, n〉, |g, n + 1〉} coupled via the
Hamiltonians

H(−1)
n =

i~Ω
(1)
n

2
√
n+ 1

(σ+ae
iϕ − σ−a†e−iϕ), (3.32)

and effective Rabi frequencies

Ω(1)
n = η

√
n+ 1Ωe−η

2/2
n∑

k=0

(−η2)kn!

k!(k + 1)!(n− k)!
. (3.33)

As already discussed in section 2.2, the induced Jaynes-Cummings dynamics describes
a variety of different physical systems, including cavity quantum electrodynamics,
where light modes inside a cavity take on the role of the phonons.

3.2.1.3. First blue sideband transition

The first blue sideband is addressed for ∆ = ν. Relevant terms for the eikx term are
identified by k = l + 1, and by l = k + 1 for the e−ikx term. We obtain the anti
Jaynes-Cummings interaction,

H
(+1)
I = iη

~Ω

2
e−η

2/2

(
σ+a

†eiϕ
∞∑

k=0

(−η2)k(a†)kak

k!(k + 1)!
−
∞∑

k=0

(−η2)k(a†)kak

k!(k + 1)!
σ−ae

−iϕ
)
.

(3.34)
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This Hamiltonian couples the pairs {|e, n+ 1〉, |g, n〉} with the 2× 2 Hamiltonians

H(+1)
n =

i~Ω
(1)
n

2
√
n+ 1

(σ+a
†eiϕ − σ−ae−iϕ). (3.35)

This interaction cannot be found in cavity quantum electrodynamics experiments,
since it would correspond to the creation of a photon, while at the same time the atom
gets excited. Since in an ion trap this interaction is induced via an external laser,
which can add or dissipate arbitrary amounts of energy into or out of the system, such
processes can now occur. In fact, they form the basis of sideband cooling techniques,
where vibrational excitations, phonons, are removed.

3.2.1.4. Arbitrary order sidebands

The previous considerations can be generalized to arbitrary order with ∆ = ±mν,
m ∈ N (Cahill and Glauber, 1969; Wineland and Itano, 1979; Leibfried et al., 2003a).
We speak of the mth red (blue) sideband whenever the sign is negative (positive).
Let us first consider the mth blue sideband. Equations. (3.23) and (3.24) yield the
conditions k = l+m, for eikx, and l = k+m, for e−ikx, respectively. The Hamiltonian
yields

H
(+m)
I =

~Ω

2
e−η

2/2

(
σ+(iηa†)meiϕ

∞∑

k=0

(−η2)k(a†)kak

k!(k +m)!

+

∞∑

k=0

(−η2)k(a†)kak

k!(k +m)!
σ−(−iηa)me−iϕ

)
, (3.36)

and splits up in 2× 2 blocks of

H(+m)
n =

√
n!

(n+m)!

~Ω
(m)
n

2
(imσ+(a†)meiϕ + (−i)mσ−ame−iϕ), (3.37)

coupling {|g, n〉, |e, n+m〉}, with

Ω(m)
n = ηm

√
(n+m)!

n!
Ωe−η

2/2
n∑

k=0

(−η2)kn!

k!(k +m)!(n− k)!
. (3.38)

It is possible to express this term as a function of the generalized Legendre polynomials
(Morse and Feshbach, 1953),

L(α)
n (x) =

n∑

k=0

(−1)k
(
n+ α

n− k

)
xk

k!
, (3.39)

as

Ω(m)
n = ηm

√
n!

(n+m)!
Ωe−η

2/2L(m)
n (η2). (3.40)
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The evolution of a general state,

|Ψ(t)〉 =

∞∑

n=0

[gn(t)|g, n〉+ en+m(t)|e, n+m〉], (3.41)

is given by

gn(t) = gn(0) cos

(
Ω

(m)
n t

2

)
+ (−i)m+1e−iϕen+m(0) sin

(
Ω

(m)
n t

2

)
,

en+m(t) = en+m(0) cos

(
Ω

(m)
n t

2

)
+ im−1eiϕgn(0) sin

(
Ω

(m)
n t

2

)
. (3.42)

By analogous methods the Hamiltonian for the mth red sideband yields

H
(−m)
I =

~Ω

2
e−η

2/2

( ∞∑

k=0

(−η2)k(a†)kak

k!(k +m)!
σ+(iηa)meiϕ

+σ−(−iηa†)me−iϕ
∞∑

k=0

(−η2)k(a†)kak

k!(k +m)!

)
, (3.43)

again splitting up in 2× 2 blocks,

H(−m)
n =

√
n!

(n+m)!

~Ω
(m)
n

2
(imσ+a

meiϕ + (−i)mσ−(a†)me−iϕ), (3.44)

coupling {|g, n+m〉, |e, n〉}. This evolves a general state,

|Ψ(t)〉 =

∞∑

n=0

[gn+m(t)|g, n+m〉+ en(t)|e, n〉], (3.45)

according to

gn+m(t) = gn+m(0) cos

(
Ω

(m)
n t

2

)
+ (−i)m+1e−iϕen(0) sin

(
Ω

(m)
n t

2

)
,

en(t) = en(0) cos

(
Ω

(m)
n t

2

)
+ im−1eiϕgn+m(0) sin

(
Ω

(m)
n t

2

)
. (3.46)

While, so far, we assumed perfect resonance between laser and sideband frequency,
one experimentally always has to account for detunings, with drifts of the trap fre-
quency as dominant source. In the following section, we generalize the analytical
description to include a small detuning from the sideband transition.
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3.2.2 The effect of small detunings

To be able to drop the idealized assumption that the sideband transition is addressed
resonantly, we include the influence of an additional detuning δ � ∆. The rotating
wave approximation is still valid in this situation. However, a nonzero δ introduces
additional time-dependent terms into the Hamiltonian, as can be seen by replacing
∆ with ∆ + δ in equation (3.23). For red and blue sidebands, we obtain the time-
dependent Hamiltonians

H(−m)
n (t) =

√
n!

(n+m)!

~Ω
(m)
n

2
(imσ+a

meiϕe−iδt + (−i)mσ−(a†)me−iϕeiδt), (3.47)

and

H(+m)
n (t) =

√
n!

(n+m)!

~Ω
(m)
n

2
(imσ+(a†)meiϕe−iδt + (−i)mσ−ame−iϕeiδt), (3.48)

respectively. The Schrödinger equation leads for the red sidebands to the set of coupled
differential equations

ġn+m(t) = (−i)m+1e−iϕeiδt
Ω

(m)
n

2
en(t),

ėn(t) = im−1eiϕe−iδt
Ω

(m)
n

2
gn+m(t). (3.49)

These can be solved by an ansatz of the form (Scully and Zubairy, 1997)

gn+m(t) =
(
a1e

iΩ̃(m)
n t/2 + a2e

−iΩ̃(m)
n t/2

)
eiδt/2,

en(t) =
(
b1e

iΩ̃(m)
n t/2 + b2e

−iΩ̃(m)
n t/2

)
e−iδt/2. (3.50)

The solution can be written in terms of the initial conditions as

gn+m(t) =

(
gn+m(0)

[
cos

(
Ω̃

(m)
n t

2

)
− iδ

Ω̃
(m)
n

sin

(
Ω̃

(m)
n t

2

)]

+(−i)m+1e−iϕ
Ω

(m)
n

Ω̃
(m)
n

en(0) sin

(
Ω̃

(m)
n t

2

))
eiδt/2,

en(t) =

(
en(0)

[
cos

(
Ω̃

(m)
n t

2

)
+

iδ

Ω̃
(m)
n

sin

(
Ω̃

(m)
n t

2

)]

−im+1eiϕ
Ω

(m)
n

Ω̃
(m)
n

gn+m(0) sin

(
Ω̃

(m)
n t

2

))
e−iδt/2, (3.51)

where

Ω̃(m)
n =

√(
Ω

(m)
n

)2

+ δ2. (3.52)
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For the blue sidebands we obtain

ġn(t) = (−i)m+1e−iϕeiδt
Ω

(m)
n

2
en+m(t),

ėn+m(t) = im−1eiϕe−iδt
Ω

(m)
n

2
gn(t), (3.53)

with the solution

gn(t) =

(
gn(0)

[
cos

(
Ω̃

(m)
n t

2

)
− iδ

Ω̃
(m)
n

sin

(
Ω̃

(m)
n t

2

)]

+(−i)m+1e−iϕ
Ω

(m)
n

Ω̃
(m)
n

en+m(0) sin

(
Ω̃

(m)
n t

2

))
eiδt/2,

en+m(t) =

(
en+m(0)

[
cos

(
Ω̃

(m)
n t

2

)
+

iδ

Ω̃
(m)
n

sin

(
Ω̃

(m)
n t

2

)]

−im+1eiϕ
Ω

(m)
n

Ω̃
(m)
n

gn(0) sin

(
Ω̃

(m)
n t

2

))
e−iδt/2. (3.54)

We can use this to explicitly write out the elements of the unitary time evolution
operator,

U (±m)(t1, t0) = T exp

(
− i
~

∫ t1

t0

H(±m)(τ)dτ

)
, (3.55)

where H(±m) =
∞⊕
n=0

H
(±m)
n , and T denotes the time-ordering operator. According to

equations (3.51) and (3.54), and using U(t1, t0) = U(t1, 0)U†(t0, 0), we obtain

umngg (t1, t0) := 〈g, n|U (+m)(t1, t0)|g, n〉 = 〈g, n+m|U (−m)(t1, t0)|g, n+m〉
= 〈e, n+m|U (+m)(t1, t0)|e, n+m〉∗ = 〈e, n|U (−m)(t1, t0)|e, n〉∗

=

[
cos

(
Ω̃

(m)
n (t1 − t0)

2

)
− iδ

Ω̃
(m)
n

sin

(
Ω̃

(m)
n (t1 − t0)

2

)]
eiδ(t1−t0)/2,

(3.56)

and

umneg (t1, t0) := 〈e, n+m|U (+m)(t1, t0)|g, n〉 = 〈e, n|U (−m)(t1, t0)|g, n+m〉
= 〈g, n|U (+m)(t1, t0)|e, n+m〉∗ = 〈g, n+m|U (−m)(t1, t0)|e, n〉∗

= −im+1eiϕ
Ω

(m)
n

Ω̃
(m)
n

sin

(
Ω̃

(m)
n (t1 − t0)

2

)
e−iδ(t1+t0)/2. (3.57)
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Figure 3.2.: The electronic qubit transition can be driven coherently via the quadrupole tran-
sition at 729 nm. Incoherent readout and dephasing operations are carried out via
the 397 nm laser. When the detuning of the qubit laser corresponds to multiples
of the trap frequency ωx, the qubit is coupled via the laser to the harmonic ion
motion. Compare also to figure 2.3. Adapted from (Gessner et al., 2014a).

3.2.3 The local detection protocol for the first blue sideband

Having established these exact theoretical tools for the complete description of the dy-
namics of an atomic two-level system interacting with a harmonic oscillator mode, we
can apply this to analyze the local detection protocol in the context of a trapped-ion
experiment. We consider the electronic qubit of a single trapped ion as the accessi-
ble quantum system, which is coupled via laser-induced interactions to the a single
mode of its own motion in the harmonic trap potential. This motional mode takes
on the role of an environment. In this case it is to some extent possible to control
the environment—nevertheless, coherent control over the ion’s motion is technically
much more demanding and by far not as well-established as for the electronic qubit.
For a complete measurement of the quantum state of qubit and motion, correlated
operations on both degrees of freedom would be necessary. The present experiment
makes use only of local operations on the qubit degree of freedom and is therefore –
in principle – applicable independently of the environment to which the qubit couples.
We shift the discussion about whether or not the scheme – in practice – would suc-
cessfully reveal the presence of correlations for arbitrary environments to the end of
this chapter.

The present experiment was performed in the quantum information group at Berke-
ley, and the experimental setup was already described in the introduction. Further
details can be found in references (Ramm et al., 2013; Ramm, 2014; Pruttivarasin,
2014). The most important electronic levels of 40Ca+ are displayed in figure 3.2.

After a combination of Doppler and sideband cooling, the ion is prepared in a low-
temperature thermal state of motion, while its electronic degree of freedom is initialized
in the ground state by optical pumping. The prepared state,

ρ0 =

∞∑

n=0

pn|g〉〈g| ⊗ |n〉〈n| (3.58)
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is an uncorrelated product state, characterized by the average thermal occupation
number n̄ via the probability distribution pn = n̄n/(n̄ + 1)n+1; see, for example,
(Leibfried et al., 2003a), section II.C.4. To create a correlated state of open system
(qubit) and environment (motion), we drive the first blue sideband for a time t0.
In section 3.2.4, we present a general theoretical treatment of arbitrary red or blue
sidebands. The sideband resonance is chosen to match the trap frequency along the
x direction, that is, we select the motional frequency ν = ωx. The experimental trap
frequencies of the linear Paul trap are (ωx, ωy, ωz) = 2π × (2.8, 2.6, 0.2) MHz.

3.2.3.1. Preparation

The initial state ρ0 evolves under the influence of the first blue sideband,

ρ(t0) = U (+1)(t0, 0)ρ0U
(+1)(t0, 0)†

=

∞∑

n=0

pn
[
|u1n
gg (t0, 0)|2|g, n〉〈g, n|+ u1n

eg (t0, 0)∗u1n
gg (t0, 0)|g, n〉〈e, n+ 1|

+u1n
eg (t0, 0)u1n

gg (t0, 0)∗|e, n+ 1〉〈g, n|+ |u1n
eg (t0, 0)|2|e, n+ 1〉〈e, n+ 1|

]
,

(3.59)

which describes a correlated quantum state. This first time evolution therefore rep-
resents the preparation of the correlated initial state. The next step is the detection
of these correlations by local means. Of the total correlated state, we can only access
the reduced density matrix of the qubit, which now is described by

ρS(t0) = TrEρ(t0) =

∞∑

n=0

pn
[
|u1n
gg (t0, 0)|2|g〉〈g|+ |u1n

eg (t0, 0)|2|e〉〈e|
]
. (3.60)

Figure 3.3 shows the key steps of the local detection protocol, tomography data, and
the time evolution of 〈e|ρS(t0)|e〉 for different initial temperatures of the motional
state. For the time evolution, an average with slightly fluctuating parameters was
performed to account for magnetic field noise and instabilities of the trap frequency.
Typically, the detuning was assumed to fluctuate according to a Gaussian distribution
with both center and variance of the order of 2π × 1 kHz (Gessner et al., 2014a).

To reveal the correlations to the local dynamics, we implement the local dephasing
operation (3.4) in the eigenbasis of the qubit. This local eigenbasis is always given by
|g〉 and |e〉, as can be seen from equation (3.60) and which is confirmed experimentally
by state tomography shown in figure 3.3 b).

3.2.3.2. Implementing the local dephasing operation

The key step of the local detection protocol consists in the removal all coherences
from the total quantum state by a local dephasing operation. In the present setting,
coherences in the local eigenbasis can be removed in a controlled way by applying a
far-detuned laser on the 397 nm transition, see figure 3.2. Such a laser will induce
an AC-Stark shift (Cohen-Tannoudji et al., 1992) on the ground state |g〉, while the
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Figure 3.3.: a) The experimental sequence consists in the comparison of the time evolution
with and without dephasing. b-c) Full state tomography of the qubit system con-
firms that dephasing in the local eigenbasis does not affect the local initial state.
d-e) The subsequent time evolution is dramatically influenced by the removal of
initial discord-type correlations by local dephasing, which is shown for different
environmental thermal distributions: Parameters are n̄ = 5.9 in d) and n̄ = 0.2 in
e). The error bars describe the statistical error σp =

√
p(1− p)/N for N = 1 000

measurements per timestep. Adapted from (Gessner et al., 2014a).
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excited state |e〉 is not affected. If the detuning is sufficiently large, the population of
the qubit ground state will not be affected, which is important, since we only need to
remove certain coherences. In this limit, one can describe the dynamics of the relevant
electronic states with the laser mode via an effective Hamiltonian (Schneider et al.,
1997; Gerry and Knight, 2005; Foot, 2007)

Heff = ~
Ω2
f

4∆f

(
|f〉〈f |+ (|f〉〈f | − |g〉〈g|)b†b

)
, (3.61)

where b is the annihilation operator of the laser light mode and |f〉 = |P1/2〉 describes
the short-lived excited P1/2 state, which is addressed by the 397 nm laser light. We
see that this Hamiltonian does not induce population transfer, but instead induces an
energy shift. Thus, during the application of this off-resonant laser, the ground state
will accumulate a phase shift with respect to the unperturbed excited state. This phase
shift oscillates with frequency Ω2

f/4∆f , and can be precisely manipulated via the pulse
duration. This oscillation of the relative phase was also experimentally confirmed via
Ramsey experiments (Ramm, 2014).

By averaging the subsequent time evolution over a series of phase shifts whose
average value is zero, we effectively remove all coherences and with it the quantum
discord of the total state, while only manipulating the local state of the qubit. To
ensure that indeed the ground-state population is not affected by accidental photon
scattering events from the 397 nm laser (Ozeri et al., 2005; Uys et al., 2010), we
estimate the number of scattered photons (Gessner et al., 2014a). The scattering rate
is given by Γpf , where the P1/2-state population is obtained from the steady-state
solution of the optical Bloch equations (Cohen-Tannoudji et al., 1992),

pf =
s/2

1 + s+ (2∆f/Γ)2
, (3.62)

with the saturation parameter s = 2Ω2
f/Γ

2 and the decay rate Γ = 1/τ of the P1/2

state, which has a lifetime of τ ≈ 7.1 ns. All achievable phase shifts are reached within
the oscillation period

T =
8π∆f

Ω2
f

, (3.63)

which therefore determines the longest duration of all required dephasing pulses. We
further write s = I/Isat with (Foot, 2007)

Isat =
π

3

hc

λ3τ
. (3.64)

Inserting λ = 397 nm leads to Isat = 46.8 mW/cm2, and we find s ≈ 255, which is
consistent with independent measurements of the laser beam size in the focus and the
intensities of the lasers entering the trap. For the experimental parameters T = 25µs,
∆ = 2π× 400 GHz, we obtain an estimation of 3.5× 10−4 scattering events during the
longest dephasing pulse.
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Hence, this dephasing method indeed does not affect the populations and describes
the local dephasing operation,

ρ′(t0) = (Φ⊗ I)ρ(t0)

=
∑

i∈{e,g}
(|i〉〈i| ⊗ I)ρ(t0)(|i〉〈i| ⊗ I)

=

∞∑

n=0

pn
[
|u1n
gg (t0, 0)|2|g, n〉〈g, n|+ |u1n

eg (t0, 0)|2|e, n+ 1〉〈e, n+ 1|
]
. (3.65)

This produces the reference state ρ′(t0) which differs from the original state ρ(t0) only
by lacking quantum discord. The trace-distance dephasing disturbance (3.7) is easily
evaluated and yields

D(ρ(t0)) =

∞∑

n=0

pn|u1n
eg (t0, 0)u1n

gg (t0, 0)|. (3.66)

3.2.3.3. Detection

Finally, the correlations (3.66) are detected by monitoring the subsequent time evo-
lution in the local subsystem after dephasing. At t0 there is no difference between
the local states with and without dephasing, as confirmed by the state tomography in
figure 3.3 c). The local time evolution of the excited state population

〈e|ρ′S(t1 + t0)|e〉
= 〈e|TrE{U (+1)(t1 + t0, t0)ρ′(t0)U (+1)(t1 + t0, t0)†}|e〉

=

∞∑

n=0

pn
[
|u1n
gg (t0, 0)|2|u1n

eg (t1 + t0, t0)|2 + |u1n
eg (t0, 0)|2|u1n

gg (t1 + t0, t0)|2
]
, (3.67)

can differ significantly from the evolution of the unperturbed initial state. This differ-
ence

de(t0, t1) = 〈e|ρS(t1 + t0)− ρ′S(t1 + t0)|e〉

=

∞∑

n=0

pn
[
u1n
eg (t0, 0)∗u1n

gg (t0, 0)u1n
eg (t1 + t0, t0)u1n

gg (t1 + t0, t0) + c.c.
]

(3.68)

directly determines the local trace distance

d(t0, t1) = ‖ρS(t1 + t0)− ρ′S(t1 + t0)‖ = |de(t0, t1)|, (3.69)

since the coherences in the qubit system are always zero. Any nonzero value of d(t0, t1)
establishes a witness of quantum discord in the initial state ρ(t0), and provides a lower
bound to equation (3.66). Figure 3.4 compares the measured local trace distance evo-
lution with the theoretical prediction obtained from the parameters of the measured,
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Figure 3.4.: The local trace distance is theoretically predicted [equation (3.69)] for the param-
eters obtained from independent measurements of the unperturbed Rabi oscilla-
tions. After different preparation times, we employ the local detection protocol
and monitor the local trace distance experimentally, for two different initial en-
vironmental temperature states. The error bars label statistical errors over 1 000
experimental repetitions per timestep. Adapted from (Gessner et al., 2014a).

unperturbed Rabi oscillation. The parameters are Ω ≈ 2π×100 kHz and η = 0.04. We
find strong signatures of the correlations in the local dynamics, even for the higher-
temperature environment, which was prepared only by Doppler cooling. When addi-
tionally sideband cooling is implemented, the deviations almost reach the maximum
value of 1/2.

To find the closest lower bound on the dephasing disturbance of the total states
for each initial state, characterized by t0, we maximize the local trace distance over
all measured times t1. The result can be seen in figure 3.5. The local witness almost
reaches the actual value of the global correlations for the low-temperature environment.
In the case of higher temperature, the contribution of many different frequencies to
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n̄ = 0.19

n̄ = 5.6

Quantum discord             between qubit and motionD(⇢(t0))

Figure 3.5.: The maximum local trace distance provides a lower bound for the dephasing dis-
turbance (3.7). While this bound is almost tight for the low-temperature initial
state, the contributions of many different Rabi frequencies limit the reachable
maximum value at finite temperatures; see also section 3.2.3.4 for further discus-
sions. Adapted from (Gessner et al., 2014a).

the time evolution does not lead to a full revival. The dashed line shows the theoreti-
cally computed upper limit for the maximum local distance within an experimentally
motivated, observable time window, which shows that our measurements provide the
experimentally closest possible lower bound.

3.2.3.4. Temperature dependence of the local signal

In the experiment, the local signature of the correlations was studied for two different
environmental temperatures. The case of a sideband-cooled environment is special in a
sense that we almost couple to a pure Fock state, which allows to adjust the detection
duration t1 such that the local bound is tight (Gessner et al., 2014a). In general, this
is not possible, since each environmental state couples the system with a different Rabi

frequency, which can be seen from the dependence of Ω
(m)
n on n in equations (3.33)

and (3.40). For the first blue sideband, this dependence is approximately given by

Ω
(1)
n ≈ η

√
n+ 1Ω, when η � 1. Does this mean that the local signature of the initial

correlations vanishes in the high-temperature limit? In fact, numerical analysis of the
local signal (3.69) suggests that the locally accessible lower bound converges to a finite
value in the present scenario when n̄→∞, as we will show in the following.

To estimate the temperature-dependence of the local signal we consider δ = 0, and,
for convenience we fix the preparation and detection times to t0 = t1 = ηΩπ/2. After
inserting these parameters, together with equations (3.56) and (3.57) with m = 1 into
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Figure 3.6.: The local signal strength, as quantified by the trace distance (3.70), is plotted for
the special case where preparation time and detection time are both chosen as
t0 = t1 = ηΩπ/2. While for n̄ = 0 this leads to the maximum value of 1/2, the
signal decays as n̄ increases, which was also experimentally observed in figures 3.3
and 3.5 for n̄ ≈ 5.6. For larger values of n̄, the signal does not decay to zero
and instead reaches an asymptotic value of 1/4. The sum in equation (3.70) was
evaluated numerically over 10 000 environmental states.

the expression (3.69) for the local signal, we obtain

d(t0, t1)|t0=t1=ηΩπ/2 =
1

2

∞∑

n=0

n̄n

(n̄+ 1)n+1
sin2

(
π
√
n+ 1

2

)
. (3.70)

One can indeed readily verify that the above choice of t0 and t1, which corresponds
to the π/2-time of the ground-state Rabi oscillation on the first sideband, leads to the
maximum local signal of d = 1/2 when n̄ = 0; see also the supplementary material of
(Gessner et al., 2014a) for further details. To observe the dependence on temperature,
we plot equation (3.70) as a function of n̄ in figure 3.6. We find that after an initial
reduction of the local signal, the recordable local signal approaches the finite value 1/4
in the limit n̄ → ∞, and does not decay to zero as one might have expected. Note
that it might even be possible to achieve a stronger signal by changing the parameters
t0 and t1. In the limit n̄→∞, an increasing number of environmental states become
relevant for the dynamics of the electronic two-level system. While this result confirms
the efficacy of the method also in the limit of large effective environmental dimensions,
extrapolation of these results to even higher values of n̄ would require a careful analysis
of the validity of previously made assumptions, such as the time-averaged, effectively
static potential, and the controlled resonant interaction of the ion with a laser.

Note that, in the light of the discussion of section 3.1.3, this result also implies
that the present Jaynes-Cummings-type interaction between system and environment
is not generic in the sense that it is not well described by the Haar-measure average
over all unitary evolutions, since in that case we expect the signal to approach zero in
the high-dimensional limit; see also (Gessner, 2011).
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3.2.3.5. Time-averaged local Hilbert-Schmidt distance

In the previous sections, we have discussed the local detection of trace-distance based
quantum discord based on the contraction property. When instead the Hilbert-Schmidt
distance is employed, an interesting relation between the total distance and the time-
averaged local distance can be derived. Nevertheless, we must recall the caveat men-
tioned already in section 3.1.3, which implies that the absolute information content
of the Hilbert-Schmidt distance is limited when employed as a formal information-
theoretic measure of discord-type correlations (Piani, 2012).

The dephasing disturbance, expressed by the Hilbert-Schmidt distance reads

DHS(ρ(t0)) = ‖ρ(t0)− ρ′(t0)‖22

= 2

∞∑

n=0

p2
n|u1n

eg (t0, 0)|2|u1n
gg (t0, 0)|2. (3.71)

As mentioned in section 3.1.3, employing methods from random matrix theory, one
can show that the unitary Haar-measure average of the local Hilbert-Schmidt distance
reproduces the total Hilbert-Schmidt distance except for a dimension-dependent pref-
actor (Gessner and Breuer, 2011; Gessner and Breuer, 2013a; Gessner and Breuer,
2013b), see equation (3.21). Assuming an ergodicity-type connection between the
average over all unitary time evolution operators and the time average for a given
Hamiltonian, one can expect to draw similar conclusions from the time average (Gess-
ner and Breuer, 2013b).

The local Hilbert-Schmidt distance is given by

‖ρS(t1 + t0)− ρ′S(t1 + t0)‖22 = 2|de(t0, t1)|2. (3.72)

For on-resonance sideband interactions (δ = 0), this yields

‖ρS(t0 + t1)− ρ′S(t0 + t1)‖22 (3.73)

=
1

2

∑

n,m

pnpm sin
(

Ω(1)
n t0

)
sin
(

Ω(1)
n t1

)
sin
(

Ω(1)
m t0

)
sin
(

Ω(1)
m t1

)
.

The time average over t1 can be evaluated analytically, using

〈
sin
(

Ω(1)
n t1

)
sin
(

Ω(1)
m t1

)〉
t1

=
1

2
lim
T→∞

1

T

T∫

0

dt1[cos((Ω(1)
n − Ω(1)

m )t1)− cos((Ω(1)
n + Ω(1)

m )t1)]

=
1

2
δ
Ω

(1)
n Ω

(1)
m
. (3.74)

For relevant frequencies of low-temperature thermal states, Ω
(1)
n and Ω

(1)
m coincide only
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Hilbert-Schmidt-based qubit-motion discord DHS(⇢(t0))

Figure 3.7.: The measurement data is evaluated in terms of the Hilbert-Schmidt distance
instead of the trace distance, which shows that the local time average (3.75) is
proportional to the Hilbert-Schmidt distance (3.71) of the total states. Adapted
from (Gessner et al., 2014a).

if n = m. We finally obtain

〈
‖ρS(t0 + t1)− ρ′S(t0 + t1)‖22

〉
t1

=
∑

n

p2
n cos2

(
Ω

(1)
n t0
2

)
sin2

(
Ω

(1)
n t0
2

)

=
1

2
‖ρ(t0)− ρ′(t0)‖22

=
1

2
DHS(ρ(t0)). (3.75)

As anticipated, the time-average of the local Hilbert-Schmidt distance over the detec-
tion time t1 is directly proportional to DHS(ρ(t0)). The corresponding experimental
data is shown in figure 3.7.

3.2.4 Generalization to arbitrary sidebands

The theoretical treatment from the previous sections can be extended to the dynam-
ics on arbitrary red and blue sidebands. Starting from the uncorrelated, thermal
state (3.58), a pulse on the mth red sideband produces the correlated state

ρ(t0) = U (−m)(t0, 0)ρ0U
(−m)(t0, 0)†

=

∞∑

n=0

pn+m

[
|umngg (t0, 0)|2|g, n+m〉〈g, n+m|

+ umneg (t0, 0)∗umngg (t0, 0)|g, n+m〉〈e, n|
+ umneg (t0, 0)umngg (t0, 0)∗|e, n〉〈g, n+m|
+|umneg (t0, 0)|2|e, n〉〈e, n|

]
. (3.76)



78 3. Local detection of correlations

Note that, if the initial state is prepared with low temperature, there will be almost
no signal from the red sideband pulse, since the first m populations are skipped in the
sum. This expresses the simple fact that there are no resonant red sideband states to
couple to, when the ion is already prepared in |g, 0〉. For blue sideband transitions,
we can easily generalize (3.59) to arbitrary m beyond 1. Both cases of red and blue
sidebands can be combined to a single expression as

ρ(t0) = U (s)(t0, 0)ρ(0)U (s)(t0, 0)†

=

∞∑

n=0

pn+x

[
|umngg (t0, 0)|2|g, n+ x〉〈g, n+ x|

+ umneg (t0, 0)∗umngg (t0, 0)|g, n+ x〉〈e, n+ x+ s|
+ umneg (t0, 0)umngg (t0, 0)∗|e, n+ x+ s〉〈g, n+ x|
+ |umneg (t0, 0)|2|e, n+ x+ s〉〈e, n+ x+ s|

]
, (3.77)

with m = |s| and x = max{0,−s}. The corresponding reduced state of the two-level
system is for s 6= 0 given by

ρS(t0) = TrEρ(t0) =
∞∑

n=0

pn+x

[
|umngg (t0, 0)|2|g〉〈g|+ |umneg (t0, 0)|2|e〉〈e|

]
. (3.78)

This state is always diagonal in the computational basis |g〉 and |e〉. The reference
state after dephasing yields

ρ′(t0) = (Φ⊗ I)ρ(t0)

=

∞∑

n=0

pn+x

[
|umngg (t0, 0)|2|g, n+ x〉〈g, n+ x|

+|umneg (t0, 0)|2|e, n+ x+ s〉〈e, n+ x+ s|
]
. (3.79)

This leads to a trace distance of

D(ρ(t0)) = ‖ρ(t0)− ρ′(t0)‖ =

∞∑

n=0

pn+x|umneg (t0, 0)umngg (t0, 0)|, (3.80)

and a squared Hilbert-Schmidt distance of

DHS(ρ(t0)) = ‖ρ(t0)− ρ′(t0)‖22 = 2

∞∑

n=0

p2
n+x|umneg (t0, 0)|2|umngg (t0, 0)|2. (3.81)

Analogous to the considerations in the previous section, we find for the generalized
expression for the excited state population after a subsequent time evolution

〈e|ρ′S(t1 + t0)|e〉 (3.82)

= 〈e|TrE{U (s)(t1 + t0, t0)ρ′(t0)U (s)(t1 + t0, t0)†}|e〉

=

∞∑

n=0

pn+x

[
|umngg (t0, 0)|2|umneg (t1 + t0, t0)|2 + |umneg (t0, 0)|2|umngg (t1 + t0, t0)|2

]
.
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The local trace- and Hilbert-Schmidt distances can then be evaluated using equa-
tions (3.69) and (3.72), based on the resulting difference in the excited state popula-
tion, which yields

de(t0, t1) = 〈e|ρS(t1 + t0)− ρ′S(t1 + t0)|e〉 (3.83)

=

∞∑

n=0

pn+x

[
umneg (t0, 0)∗umngg (t0, 0)umneg (t1 + t0, t0)umngg (t1 + t0, t0) + c.c.

]
.

3.2.5 Extension of the experimental technique

The experimental techniques, developed in the course of the described trapped-ion
experiment, enable to dephase in the computational basis of the qubit. In section 3.1.2,
we have seen that, in order to avoid overestimation of the discord-type correlations for
all classes of mixed states, one should consider dephasing over a large set of basis sets.
Dephasing in different bases is also important to increase the flexibility of the method
to ensure applicability in situations where the local eigenbasis is not the computational
basis. In this section we briefly discuss how the AC-Stark shift method can be easily
extended to achieve this.

To induce dephasing in a different basis, a combination of the AC-Stark shift de-
phasing procedure with single-qubit unitary rotations is sufficient. Let us assume that
dephasing ΦΠA can be implemented in the basis ΠA = {|1〉〈1|, |2〉〈2|, . . . } (recall equa-
tion (3.10) for the definition of the notation). To achieve dephasing in another basis
ΠB = {|ϕ1〉〈ϕ1|, |ϕ2〉〈ϕ2|, . . . }, we consider the unitary operation,

U =
∑

i

|ϕi〉〈i|, (3.84)

which rotates one basis into the other. As discussed in section 2.2.1, on trapped-ion
qubits such operations are typically implemented with fidelities of 0.995 (Schindler
et al., 2013). The desired dephasing operation ΦΠB is then achieved as a combination
of unitary rotations and the implementable dephasing ΦΠA as (Gessner et al., 2014a)

UΦΠA(U†XU)U† =
∑

ijklm

|ϕi〉〈i|k〉〈k|l〉〈ϕl|X|ϕm〉〈m|k〉〈k|j〉〈ϕj |

=
∑

i

|ϕi〉〈ϕi|X|ϕi〉〈ϕi| = ΦΠB (X). (3.85)

3.3 Photonic experiment

After having discussed the experimental realization of the local detection protocol with
a single trapped ion, we now turn to an implementation with photons, which are sent
through linear and nonlinear optical elements. This section describes an experiment
which was carried out in the Key Laboratory of Quantum Information in Hefei, China
(Tang et al., 2013). Since photons are often used as traveling carriers of quantum in-
formation (Duan et al., 2001), which can be sent over long distances, it is important to
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characterize the correlations encoded into their quantum states under experimentally
realistic constraints. When photons are sent through noisy environments, decoherence
effects can be detrimental to the capacity of the quantum channel. A turbulent atmo-
sphere can cause decay of orbital angular momentum entanglement (Paterson, 2005),
but also the typically more robust polarization qubits are subject to decoherence in
optical fibers.

Decoherence is a manifestation of interaction with another degree of freedom, which
produces correlated states that, on the level of the reduced system, appear as inco-
herent mixtures. As we have seen in the previous sections, these correlations can
influence the time evolution of the reduced system and thereby be revealed. In the
present experiment, we consider a photon in a birefringent fiber, which induces inter-
actions between the polarization qubit and the photon’s frequency degree of freedom.
Formally, this resembles the coupling of a two-level system to a harmonic oscillator
which we discussed in the previous section—however, here, the environment is com-
posed of a continuum of modes, instead of a single mode as the harmonic motion of
the trapped ion.

For the experiment we apply the local detection method in a typical two-party
quantum communication scenario. We suppose that Alice prepares a photon in a
possibly correlated state of qubit and motion and sends it to Bob. Being only able
to access the qubit degree of freedom, Bob then tries to identify and estimate these
correlations making use of interactions between both degrees of freedom, which, in the
spirit of open-system theory, we consider system (polarization qubit) and environment
(continuum of frequency modes).

3.3.1 The pre-initial state

On Alice’s side, the single photons are created by a quantum dot, where spectral
diffusion1 (Sallen et al., 2010) generates a mixed frequency state, given by a sum over
closely spaced frequencies (Tang et al., 2013),

ρE =
∑

ω

∆ωG(ω)|ω〉〈ω|, (3.86)

with a Lorentzian line shape

G(ω) =
1

π

δω

δω2 + (ω − ω0)2
, (3.87)

and measured parameters of ω0 = 2πc/(914 nm), and 1/δω = 9.703± 0.124 ps, with c
denoting the speed of light.

To ensure proper normalization of ρE , we have introduced a description by a discrete
sum of frequency states |ω〉, which form a complete orthonormal set, that is, 〈ω|ω′〉 =
δω,ω′ and

∑
ω |ω〉〈ω| = I. Positivity and normalization of ρE are warranted since

∆ωG(ω) ≥ 0 and
∑
ω ∆ωG(ω) = 1. After determining the relevant quantities, such as

the trace distance, we will perform the continuum limit ∆ω → 0.

1Random jumps of a narrow resonance caused by environmental fluctuations.
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Figure 3.8.: Alice prepares a polarization-frequency correlated single photon state using a com-
bination of polarizer and calcite crystal. A half-wave plate (HWP0) whose orien-
tation is driven by a random number generator hides Alice’s choice for the local
eigenbasis before the state is sent to Bob whose task it is to detect and estimate
the correlations with local operations on the qubit degree of freedom. Removable
mirrors (RM1, RM2 and RM3) are employed to realize the different steps of the
local detection protocol. First, qubit tomography (T2) is performed to obtain the
local eigenbasis. The dephasing is performed using a half-wave plate (HWP1)
followed by a long polarization-maintaining fiber. Original and dephased state are
submitted to a unitary time evolution generated by a Michelson interferometer,
which consists in another half-wave plate (HWP2), a polarizing beam splitter
(PBS1), and two interferometer arms comprised of mirrors (M1 and M2) and
quarter-wave plates (QWP1 and QWP2). The second mirror M2 is movable to
vary the phase shift. Finally, another qubit tomography reveals whether the re-
moval of discord-type correlations by local dephasing had an observable effect on
the subsequent qubit dynamics, which then serves as a witness and lower bound
for the correlations in the initial state. The tomography sections (T1 and T2)
consist of quarter-wave plate (QWP3) and half-wave plate (HWP3), a polariz-
ing beam splitter (PBS2) and two avalanche single photon detectors (APD1 and
APD2). Adapted from (Tang et al., 2013).

The total pre-initial state describes an uncorrelated product state, ρpi = ρ0 ⊗ ρE ,
where the state of the polarization qubit is represented in the basis {|H〉, |V 〉} as

ρ0 =

(
α βeiϕ

βe−iϕ 1− α

)
. (3.88)

The states |H〉 and |V 〉 represent horizontal and vertical polarization eigenstates, re-
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spectively. The parameters β and α describe the qubit quantum state. While the
following theoretical treatment is applicable for arbitrary values of α, β ∈ R (as long
as ρ0 describes a valid quantum state), for the ease of notation, we will restrict to the
case of α = 1/2, which describes the experiment as well. This equal superposition
between |H〉 and |V 〉 is realized by sending the qubit through a 45◦ polarization plate.

3.3.2 Preparation of the initial state

In order to generate polarization-frequency correlations, Alice sends the pre-initial
state,

ρpi =
∑

ω

∆ωG(ω)

(
1

2
|H,ω〉〈H,ω|+ βeiϕ|H,ω〉〈V, ω|

+ βe−iϕ|V, ω〉〈H,ω|+ 1

2
|V, ω〉〈V, ω|

)
, (3.89)

through a birefringent calcite crystal of length L. The induced interaction between
polarization and frequency degrees of freedom is described by

Ucal(t) :

{
|H,ω〉 → |H,ω〉
|V, ω〉 → e−iωt|V, ω〉 , (3.90)

where the time spent inside the crystal is given by t = ∆ncalL/c. The birefringence
∆ncal describes the difference between the refraction indices for the two polarization
states and can be measured from the shift of the single-photon spectra with and
without the calcite crystal in a Michelson interferometer (Tang et al., 2013). The
experimental parameters are ∆ncal = 0.179±0.001 and L = 35.92 mm. This evolution
results in the generation of the correlated initial state

ρSE = Ucal(t)ρpiU
†
cal(t)

=
∑

ω

∆ωG(ω)

(
1

2
|H,ω〉〈H,ω|+ βei(ωt+ϕ)|H,ω〉〈V, ω|

+ βe−i(ωt+ϕ)|V, ω〉〈H,ω|+ 1

2
|V, ω〉〈V, ω|

)
. (3.91)

The reduced state for the qubit is obtained by tracing over the frequency degrees of
freedom,

ρS =

(
1/2 βC(t)eiΨ(t)

βC(t)e−iΨ(t) 1/2

)
, (3.92)

with

C(t) =
∑

ω

∆ωG(ω)ei(ω−ω0)t. (3.93)
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and Ψ(t) = ω0t + ϕ. The initial phase ϕ can be adjusted, such that it cancels the
time-dependent phase for any fixed time t, that is, Ψ(t) ≡ 0, which implies the choice
ϕ = −ω0t. The function C(t) is real valued since G(ω) is symmetric about ω = ω0.

Before this state is sent to Bob, Alice hides the choice of her local eigenbasis by
performing an additional random local unitary basis rotation of the qubit (HWP0 in
figure 3.8). This rotation does not affect the correlation properties of the quantum
state. Formally, this rotation can be taken into account by replacing the polarization
eigenbasis |H〉 and |V 〉 with the rotated eigenvectors. We can therefore neglect this
additional local rotation in the theoretical treatment.

3.3.3 Local dephasing operation

The first step on Bob’s side consists in obtaining the local eigenbasis of ρS . To this end
the removable mirror RM1 is placed to guide the photon into the tomography section
T2, see figure 3.8). Diagonalization of (3.92) yields the eigenvalues,

λ0 = 1/2 + βC(t),

λ1 = 1/2− βC(t), (3.94)

and eigenvectors,

|0〉 =
1√
2

(
1
1

)
=

1√
2

(|H〉+ |V 〉),

|1〉 =
1√
2

(
1
−1

)
=

1√
2

(|H〉 − |V 〉). (3.95)

Dephasing in the local eigenbasis is described by

Φ(X) = |0〉〈0|X|0〉〈0|+ |1〉〈1|X|1〉〈1|. (3.96)

This produces the classically correlated reference state (with ϕ = −ω0t, see above, in
equation (3.91)),

ρ′SE = (Φ⊗ I)ρSE (3.97)

=
1

2

∑

ω

∆ωG(ω)
[
|H,ω〉〈H,ω|+ |V, ω〉〈V, ω|

+ β(ei(ω−ω0)t + e−i(ω−ω0)t)|H,ω〉〈V, ω|
+ β(e−i(ω−ω0)t + ei(ω−ω0)t)|V, ω〉〈H,ω|

]
.

To realize the local dephasing operation on the polarization qubit, the photon is sent
through a very long polarization-maintaining fiber. Considering the setup described
in figure 3.8, this is achieved by removing the mirror RM1, and placing the mirrors
RM2 and RM3. Before entering the fiber, the photon passes a computer-controlled
half-wave plate (HWP1) which rotates the eigenstates |0〉 and |1〉 onto the principal
axes of the fiber. The fiber also shows a small birefringence of ∆npmf = 3×10−4, which
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we exploit to generate a dephasing effect after long interaction times. The interaction
in the fiber is described by

Upmt :

{
|0, ω〉 −→ |0, ω〉
|1, ω〉 −→ e−iωs|1, ω〉 , (3.98)

where s = ∆npmf l/c � 1/δω describes the time the photon spends inside the fiber.
We first rewrite the effect of this dynamics in terms of |H〉 and |V 〉,

Upmt :

{
|H,ω〉 −→ a|H,ω〉+ b|V, ω〉
|V, ω〉 −→ b|H,ω〉+ a|V, ω〉 , (3.99)

where we introduced

a =
1

2

(
1 + e−iωs

)
, b =

1

2

(
1− e−iωs

)
. (3.100)

This dynamics evolves the initial state (3.91), again with the choice ϕ = −ω0t, into
the state

ρ′′SE = UpmtρSEU
†
pmt (3.101)

=
∑

ω

∆ωG(ω)

[
1

2
|H,ω〉〈H,ω|+ 1

2
|V, ω〉〈V, ω|

+ β
(
ei(ω−ω0)tab∗ + e−i(ω−ω0)ta∗b

)
|H,ω〉〈H,ω|

+ β
(
ei(ω−ω0)ta∗b+ e−i(ω−ω0)tab∗

)
|V, ω〉〈V, ω|

+ β
(
ei(ω−ω0)t|a|2 + e−i(ω−ω0)t|b|2

)
|H,ω〉〈V, ω|

+β
(
ei(ω−ω0)t|b|2 + e−i(ω−ω0)t|a|2

)
|V, ω〉〈H,ω|

]
.

To realize that this state indeed describes the desired dephased state ρ′SE , equa-
tion (3.97), to a good approximation, it is important to recall that the time spent
inside the fiber is much larger than the inverse spectral width of the frequency state,
δω · s� 1. Hence, the rapid oscillations of the function

|a|2 =
1

2
(1 + cosωs). (3.102)

cannot be resolved since the uncertainty for the time s in the fiber exceeds the period
of this oscillation. We must therefore replace |a|2 by its mean value, obtained by
averaging over one period

|a|2 → 〈|a|2〉 =
1

2
. (3.103)

Similarly,

|b|2 → 〈|b|2〉 =
1

2
, ab∗ → 〈ab∗〉 = 0. (3.104)

Inserting this into equation (3.101), we see that indeed ρ′′SE reduces to ρ′SE , as given
by equation (3.97).
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3.3.4 Reduced distributions

Before we proceed, we confirm that the reduced states of ρSE and ρ′SE coincide, which
should be the case by construction of the local dephasing operation. To this end, we
take the difference between the two total states

∆ρSE = ρSE − ρ′SE =
∑

ω

∆ωG(ω)f(ω) [|H,ω〉〈V, ω| − |V, ω〉〈H,ω|] , (3.105)

where we introduced the imaginary-valued function

f(ω) =
β

2

(
ei(ω−ω0)t − e−i(ω−ω0)t

)
= iβ sin [(ω − ω0)t] . (3.106)

The equivalence of the environmental states is readily confirmed due to the orthogo-
nality of |H〉 and |V 〉,

ρE − ρ′E = TrS{ρSE − ρ′SE} = 0. (3.107)

To confirm this also for the qubit states, we trace over the frequency degrees of freedom,
obtaining

ρS − ρ′S = TrE{ρSE − ρ′SE} =
∑

ω

∆ωG(ω)f(ω) [|H〉〈V | − |V 〉〈H|] . (3.108)

We now perform the continuum limit ∆ω → 0, leading to

∑

ω

∆ωG(ω)f(ω) −→
∫
dωG(ω)f(ω) = 0. (3.109)

The integral vanishes since G(ω) is a symmetric about ω = ω0, while f(ω) is anti-
symmetric. To summarize, we have confirmed that the reduced distributions of original
and dephased states coincide for both the environmental degree of freedom and the
qubit, ρS − ρ′S = 0.

3.3.5 Total trace distance

To obtain the trace distance between the states ρSE and ρ′SE , we diagonalize the
operator ∆ρSE , equation (3.105), which yields the eigenvalues

µ±(ω) = ±i∆ωG(ω)f(ω) (3.110)

and eigenstates

|µ±(ω)〉 =
1√
2

(|H〉 ± i|V 〉)⊗ |ω〉. (3.111)
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The trace distance of ρSE and ρ′SE corresponds to the trace norm of ∆ρSE

D(ρSE) = ‖ρSE − ρ′SE‖

=
1

2
Tr

√
∆ρ†SE∆ρSE

=
1

2

∑

ω

(|µ−(ω)|+ |µ+(ω)|)

=
∑

ω

|∆ωG(ω)f(ω)|

=
β

2

∑

ω

∆ωG(ω)
∣∣∣ei(ω−ω0)t − e−i(ω−ω0)t

∣∣∣ . (3.112)

We finally perform the continuum limit to obtain the trace-distance dephasing distur-
bance (3.7),

D(ρSE) =
β

2

∫
dωG(ω)

∣∣∣ei(ω−ω0)t − e−i(ω−ω0)t
∣∣∣ , (3.113)

which quantifies the quantum discord in ρSE .

3.3.6 Open-system evolution depending on initial correlations

By now we have established a reference state, which was produced by local dephasing of
the original, unknown state ρSE . We know that the two total states differ if the initial
state contained discord-type correlations, but since we cannot measure the full state,
we try to map the influence of the correlations onto the local, observable dynamics of
the qubit. To this end, both, the original state ρSE and the dephased state ρ′SE are
subjected to the same time evolution, which is observed locally on the qubit degree of
freedom.

This dynamics is generated by a Michelson delay setup, which consists of a half-
wave plate (HWP2) with an adjustable angle η/2, followed by a polarizing beam
splitter (PBS1), see figure 3.8. The beam splitter then sends the two polarization
components |η〉 and |η⊥〉, into different arms of an interferometer. The two polarization
states accumulate a relative phase shift which depends on the difference of the two
interferometer path lengths. This is described by

U(η, τ) :

{
|η, ω〉 −→ |η, ω〉
|η⊥, ω〉 −→ e−iωτ |η⊥, ω〉

, (3.114)

where τ = 2x/c correponds to the coordinate of the delayable mirror (M2). The
half-wave plate HWP2 generates the basis vectors

|η〉 =

(
cos η
sin η

)
, |η⊥〉 =

(
− sin η
cos η

)
. (3.115)
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Figure 3.9.: The trace distance evolution of the qubit reveals the initial correlations to the
local subsystem. The time variable τ = 2x/c is determined by the difference x
between the path lengths of the interferometer’s arms, which is adjusted via the
position of the mirror M2, see figure 3.8. The plots (a)–(h) show the evolution
for different orientations of the half-wave plate HWP2, specified by the angles
η = nπ/16 with n = 0, . . . , 7. The data was obtained for an initial state (3.91)
whose correlation properties (3.113) are determined via the length of the calcite
crystal leading to interaction time t = ∆ncalL/c with L = 35.92 mm. The black
lines represent the theoretical prediction (3.128), which is independent of η, and
therefore makes identical predictions for all subfigures (a)–(h), as confirmed by
the experimental data. Adapted from (Tang et al., 2013).

Using

|H〉 = cos η|η〉 − sin η|η⊥〉, |V 〉 = sin η|η〉+ cos η|η⊥〉, (3.116)

we express the interferometer dynamics in terms of the basis |H〉 and |V 〉,

U(η, τ) :

{
|H,ω〉 −→ cos η|η, ω〉 − sin ηe−iωτ |η⊥, ω〉
|V, ω〉 −→ sin η|η, ω〉+ cos ηe−iωτ |η⊥, ω〉

. (3.117)

3.3.7 Local trace distance

To determine the evolution of the local trace distance as a function of the correla-
tions we study the evolution of the difference operator ∆ρSE = ρSE − ρ′SE ; using
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equations (3.105) and (3.117):

U(η, τ)(ρSE − ρ′SE)U†(η, τ)

=
∑

ω

∆ωG(ω)f(ω)
[
sin η cos η|η, ω〉〈η, ω|+ cos2 ηeiωτ |η, ω〉〈η⊥, ω|

− sin2 ηe−iωτ |η⊥, ω〉〈η, ω| − sin η cos η|η⊥, ω〉〈η⊥, ω| −H.c.]

=
∑

ω

∆ωG(ω)f(ω)
[
eiωτ |η, ω〉〈η⊥, ω| − e−iωτ |η⊥, ω〉〈η, ω|

]
. (3.118)

The qubit dynamics is given after the partial trace over the frequency space

ρS(η, τ)− ρ′S(η, τ) = TrE{U(η, τ)(ρSE − ρ′SE)U†(η, τ)}
=
∑

ω

∆ωG(ω)f(ω)
[
eiωτ |η〉〈η⊥| − e−iωτ |η⊥〉〈η|

]
. (3.119)

We represent this operator in the basis {|η〉, |η⊥〉} as

ρS(η, τ)− ρ′S(η, τ) =

(
0 z
z∗ 0

)
, (3.120)

where

z =
∑

ω

∆ωG(ω)f(ω)eiωτ . (3.121)

Since this result does not depend on η, we omit the argument η in the following. The
trace distance yields

d(τ) = ‖ρS(τ)− ρ′S(τ)‖ (3.122)

= |z|

=

∣∣∣∣∣
∑

ω

∆ωG(ω)f(ω)eiωτ

∣∣∣∣∣

=
β

2

∣∣∣∣∣
∑

ω

∆ωG(ω)
(
ei(ω−ω0)t − e−i(ω−ω0)t

)
eiωτ

∣∣∣∣∣ .

In the continuum limit we obtain,

d(τ) =
β

2

∣∣∣∣
∫
dωG(ω)

(
ei(ω−ω0)t − e−i(ω−ω0)t

)
eiωτ

∣∣∣∣ . (3.123)

Comparison with equation (3.113) confirms that the general contractivity property, as
expressed via the inequality

‖TrE{U(η, τ)(ρSE − ρ′SE)U†(η, τ)}‖ ≤ ‖ρSE − ρ′SE‖, (3.124)
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Figure 3.10.: For each initial state (3.91), the maximum value of the local trace dis-
tance (3.129) bounds the total trace distance (3.113) from below. The dynamics
does not reveal the full correlations to the local system, but the theoretical up-
per limit is experimentally reached. These functions hardly depend on δω in
equation (3.87) when the propagation time is rescaled accordingly, and as long
as (3.125) is valid. Adapted from (Tang et al., 2013).

is satisfied here, as a consequence of the triangle inequality.
We can further analytically simplify the local trace distance (3.123), since due to a

sufficiently sharp, optical frequency range, ω0 � δω > 0, the support of the function
G(ω) restricts to a good approximation to the positive domain,

∫ ∞

−∞
G(ω) '

∫ ∞

0

G(ω) = 1. (3.125)

The Fourier transform is given by
∫ ∞

0

G(ω)e±iωtdω = e±iω0tC(t), (3.126)

with

C(t) = e−δω|t|. (3.127)

Using this in the expression for the local trace distance (3.123), we obtain

d(τ) =
β

2

∣∣∣e−δω|t+τ | − e−δω|t−τ |
∣∣∣ . (3.128)

Figure 3.9 shows the local trace distance, for β = 1/2 in (3.88), as a function of
x = cτ/2 for different angles of the half-wave plate HWP2. As becomes evident from
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equation (3.117), this angle determines the parts of the polarization state that are sent
into the short and long interferometer arms after passing the beam splitter PBS1. The
maximum value represents the closest lower bound to the total trace distance. Using
equation (3.128), the maximum local distance is found as

max
τ

d(τ) =
β

2
(1− e−2δωt). (3.129)

This procedure is repeated for different lengths of the calcite crystal, which varies the
correlations in the initial state. The nature of the polarization-frequency interaction,
induced by the birefringence of the calcite crystal, converts the initial coherence of
the polarization state gradually into entanglement with the frequency modes, by de-
localizing the initial populations over both degrees of freedom. The longer the photon
spends inside the crystal, the stronger are the correlations at the end of the evolu-
tion, as illustrated by the blue line in figure 3.10. The maximum values of (3.129),
obtained via local monitoring of the polarization state, are compared to the theoreti-
cally determined total trace distance and the predicted theoretical bound of the local
distance in figure 3.10. Even though the local bound does not reach the actual value
of the total trace distance, it provides a clear signature of the influence of the initial
polarization-frequency correlations on the local dynamics of the qubit, even when the
environmental state represents a continuum of infinite-dimensional modes.

The induced, effective open-system dynamics of the polarization degree of freedom
is described by a monotonous decay of coherences. This is an irreversible decoherence
process whose time scale is determined by δω in the spectral distribution of the envi-
ronmental state (3.87), and such an environment is therefore considered Markovian2

(Liu et al., 2011). Numerical studies of the total trace distance (3.113) and of the
observable local distance (3.129) (as plotted in figure 3.10) confirm that the observed
results do not depend on δω, as long as the environmental frequency range can be
assumed positive, as in equation (3.125). Since changing the width δω of the spectral
distribution also changes the time scale of the exponential decay of coherences, the
propagation time in the calcite crystal must be rescaled accordingly.

In conclusion, the present all-optical experiment demonstrates the applicability of
the local detection method in the presence of a memoryless environment, generated by
a continuum of modes with a Lorentzian spectral density. Upon appropriate rescaling
of the time scale, the result is independent of the spectral width. In the next section,
we will theoretically explore the limitations of the method, by studying the example
of spontaneous emission.

3.4 Theoretical studies of further examples

So far, in this chapter, we have introduced a method to detect discord-type correlations
in a bipartite scenario with local operations, and presented experimental realizations

2A non-Markovian environment can be generated in this scenario by inducing additional peaks and
structure in the environmental spectral distribution, as was realized in the experiment reported
in (Liu et al., 2011).
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with photons and ions. Recently, another experimental realization with polarization
qubits was reported, where correlations are created with two spatial propagation modes
(Cialdi et al., 2014). In this section we discuss the application of the method in different
scenarios theoretically. Some applications were already discussed in (Gessner, 2011;
Gessner and Breuer, 2011; Gessner and Breuer, 2013a; Gessner and Breuer, 2013b),
mostly in the context of random, generic systems, which we do not review here.

3.4.1 Atom-photon correlations during spontaneous decay

In the course of the preceding sections, we have often tried to test the limits of the
efficacy of the local detection method, for example by studying the high-temperature
limit in the trapped-ion environment in section 3.2, and a broad frequency distribution
of the photonic environment in section 3.3. So far, numerical studies always confirmed
that the method successfully reveals the system-environment correlations to the local
dynamics.

In the trapped-ion experiment, the electronic qubit exchanges excitations with a
rather simple model environment, described by only a single frequency mode. The
frequency degree of freedom of a single photon contains a continuum of modes. Here,
the resulting irreversible dynamics is described by a pure decoherence process, where
no excitations are transferred between the system and the environment (Liu et al.,
2011). In this section, we combine the infinite-dimensional Hilbert-space, represented
by a continuum of modes, with the excitation-exchanging coupling. To this end, we
apply the local detection protocol to the extreme case of the spontaneous, irreversible
emission process into an infinite environment. Our goal is to study the influence of the
atom-field entanglement which builds up in the transient state, when an initial atomic
excitation decays spontaneously into the free-space modes of the electromagnetic field.
In this case we do not expect any back-action of the correlations on the system dy-
namics. Indeed, we will find that in this case, employing the local dephasing at any
time during the decay process of an excited atom will not produce any effect on the
atomic dynamics.

Given the difficulty to detect a spontaneously emitted photon in a random spatial
direction (Volz et al., 2006), the local detection method, in principle, represents a
convenient alternative to other entanglement detection methods3 since it only demands
access to the controllable open system, which here is described by the atom. The
fact that no effect on the local dynamics can be observed when the entanglement
is destroyed by local dephasing indicates that the effect of the correlations on this
particular irreversible dynamics are negligible.

3.4.1.1. Atomic evolution with and without local dephasing: Resolvent method

Following standard treatments of spontaneous emission (Weisskopf and Wigner, 1930;
Cohen-Tannoudji et al., 1992), we assume a unitary evolution U(t) = e−iHt/~ which

3Note that in (Volz et al., 2006), the entanglement between the atomic state and the emitted photon’s
polarization degree of freedom is investigated, instead of the atom-field entanglement which we
discuss here.
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transfers excitations between the atomic states |e〉 and |g〉 and the modes |k〉 of the
electromagnetic field. The Hamiltonian is given by H = H0 + V with

H0 = Ee|e〉〈e|+ Eg|g〉〈g|+
∑

k

~ωka
†
kak (3.130)

and

V =
∑

k

(gka
†
k|g〉〈e|+ g∗kak|e〉〈g|). (3.131)

The combined states {|g,k〉, |e,k〉} form a basis of the free Hamiltonian, H0|i,k〉 =
(Ei + ~ωk)|i,k〉, i ∈ {e, g} and ωeg = Ee − Eg. We start with the dynamics

U(t)|e, 0〉 = u00(t)|e, 0〉+
∑

k

uk0(t)|g,k〉,

U(t)|g,k〉 = u0k(t)|e, 0〉+
∑

k′

uk′k(t)|g,k′〉. (3.132)

Irreversibility is later introduced when the transition amplitudes are determined and
by performing the continuum limit of the sum over all modes. We use the resol-
vent method (Cohen-Tannoudji et al., 1992) to determine the matrix elements non-
perturbatively

u00(t) = 〈e, 0|U(t)|e, 0〉 ,
uk0(t) = 〈g,k|U(t)|e, 0〉 ,
u0k(t) = 〈e, 0|U(t)|g,k〉 ,
ukk′(t) = 〈g,k|U(t)|g,k′〉 . (3.133)

Unitarity requires u0k(t) = u∗k0(−t) for time-independent Hamiltonians.

The initial state |e, 0〉 evolves after time t0 into

|Ψ(t0)〉 = u00(t0)|e, 0〉+
∑

k

uk0(t0)|g,k〉. (3.134)

Local dephasing in the local eigenbasis {|e〉, |g〉} erases all except the off-diagonal
matrix elements and generates the classically correlated reference state,

ρ′(t0) = (Φ⊗ I)|Ψ(t0)〉〈Ψ(t0)|, (3.135)

from the initially entangled state ρ(t0) = |Ψ(t0)〉〈Ψ(t0)|. When dephasing is imple-
mented after time t0, the difference between the two states is given by

ρ(t0)− ρ′(t0) =
∑

k

(u00(t0)u∗k0(t0)|e, 0〉〈g,k|+ u∗00(t0)uk0(t0)|g,k〉〈e, 0|) . (3.136)



3. Local detection of correlations 93

Further evolution from t0 to t yields, after tracing out the electromagnetic field modes,

ρS(t, t0)− ρ′S(t, t0) = TrE{U(t− t0)(ρ(t0)− ρ′(t0))U†(t− t0)}

= 2<
[∑

k

u00(t0)u∗k0(t0)u00(t− t0)u∗0k(t− t0)

]
σz, (3.137)

where < denotes the real part of a complex number.
The unitary time evolution operator is expressed in terms of the resolvent G(z) =

1/(z −H) as (Cohen-Tannoudji et al., 1992),

U(t) = lim
η→0+

1

2πi

∞∫

−∞

dEe−iEt/~[G(E − iη)−G(E + iη)]. (3.138)

Projecting this matrix onto the subspace spanned by |e, 0〉 and assuming that the
radiative level shift ∆e and the decay constant Γ are energy-independent, we obtain
(see, for instance, (Cohen-Tannoudji et al., 1992), III.C.1)

u00(t) = e−iẼet/~−Γ|t|/2, (3.139)

where Ẽe = Ee + ~∆e. If the above assumptions are satisfied, this expression is exact.
In order to obtain uk0(t), we use equation (C.29), III.C.2 in (Cohen-Tannoudji et al.,
1992):

〈g,k|G(E ± iη)|e, 0〉 ' gk

(E ± iη − Ẽg − ~ωk)(E − Ẽe ± i~(Γ/2))
, (3.140)

where, again, the radiative level shift ∆g yields Ẽg = Eg + ~∆g. Equation (3.138) can
be integrated using a contour integral if we choose the integration path appropriately.
This requires the numerator e−izt/~ to tend towards zero for |z| → ∞. Inserting
z = |z|(cosφ+ i sinφ) yields

|e−izt/~| = |e−i|z|(cosφ+i sinφ)/~| = |e−it|z| cosφ/~e|z|t sinφ/~| ≤ e|z|t sinφ/~. (3.141)

Hence, for t > 0 we must close the contour below the x-axis, with sinφ < 0 for
φ ∈ (π, 2π). Since the only poles of G(z) are on the x-axis, it follows from Cauchy’s
integral theorem that the contribution of G(E − iη) is zero. Conversely, for t < 0 the
contour must be closed above the x-axis, sinφ > 0 for φ ∈ (0, π) and in this case the
term G(E + iη) does not contribute. We start with t > 0:

uk0(t) = lim
η→0+

1

2πi

−∞∫

∞

dEe−iEt/~〈g,k|G(E + iη)|e, 0〉

' lim
η→0+

1

2πi

−∞∫

∞

dEe−iEt/~
gk

(E + iη − Ẽg − ~ωk)(E − Ẽe + i~(Γ/2))
. (3.142)
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Substituting E by a complex number z and integrating in the complex plane over a
contour from R ∈ R to −R, which is closed below the real axis as described before we
obtain by the residue theorem

∮

C

f(z)dz =

−R∫

R

f(z)dz +

∫

arc

f(z)dz = 2πi(Res(f, z0) + Res(f, z1)), (3.143)

where

f(z) = e−izt/~
gk

(z − z0)(z − z1)
, (3.144)

has two complex poles of first order at z0 = Ẽg +~ωk− iη and z1 = Ẽe− i~(Γ/2). The
residues are given by

Res(f, z0) =
e−iz0t/~

z0 − z1
,

Res(f, z1) =
e−iz1t/~

z1 − z0
. (3.145)

After the limits R→∞ and η → 0+ we finally obtain

uk0(t) = gk
e−i(Ẽg/~+ωk)t − e−iẼet/~−Γt/2

~ωk − (Ẽe − Ẽg) + i~Γ/2
. (3.146)

Analogously, for t < 0 we get

uk0(t) ' lim
η→0+

1

2πi

∞∫

−∞

dEe−iEt/~
gk

(E − iη − Ẽg − ~ωk)(E − Ẽe − i~(Γ/2))

= gk
e−i(Ẽg/~+ωk)t − e−iẼet/~+Γt/2

~ωk − (Ẽe − Ẽg)− i~Γ/2
. (3.147)

Using the unitarity condition for time-independent Hamiltonians we get (t > 0)

u0k(t) = u∗k0(−t) ' g∗k
e−i(Ẽg/~+ωk)t − e−iẼet/~−Γt/2

~ωk − (Ẽe − Ẽg) + i~Γ/2
. (3.148)

We now use this to determine the difference in the open-system evolution of the
atomic electronic levels, after the entanglement with the electromagnetic field has
been removed and replaced by classical correlations. To this end, we insert the derived
expressions into equation (3.137), which yields

ρS(t, t0)− ρ′S(t, t0)

' 2

~
<
∑

k

|gk|2e−Γt

(
e−i(ω̃eg−ωk)t+Γt/2 − e−i(ω̃eg−ωk)(t−t0)+Γ(t−t0)/2

(ωk − ω̃eg − iΓ/2)2

+
−e−i(ω̃eg−ωk)t0+Γt0/2 + 1

(ωk − ω̃eg − iΓ/2)2

)
σz, (3.149)



3. Local detection of correlations 95

with the radiation-shifted atomic resonance ~ω̃eg = Ẽe − Ẽg. We now evaluate the
sum in the continuum limit (Weisskopf and Wigner, 1930),

ρS(t, t0)− ρ′S(t, t0)

' 2|µeg|2
3(2π)2~ε0c3

2

~
<
∞∫

0

dωkω
3
ke
−Γt

(
e−i(ω̃eg−ωk)t+Γt/2 − e−i(ω̃eg−ωk)(t−t0)+Γ(t−t0)/2

(ωk − ω̃eg − iΓ/2)2

+
−e−i(ω̃eg−ωk)t0+Γt0/2 + 1

(ωk − ω̃eg − iΓ/2)2

)
σz

≈ |µeg|
2ω̃3

eg

3π2~2ε0c3
e−Γt<

∞∫

−∞

dωk

(
e−i(ω̃eg−ωk)t+Γt/2 − e−i(ω̃eg−ωk)(t−t0)+Γ(t−t0)/2

(ωk − ω̃eg − iΓ/2)2

+
−e−i(ω̃eg−ωk)t0+Γt0/2 + 1

(ωk − ω̃eg − iΓ/2)2

)
σz, (3.150)

where µeg denotes the dipole moment of the atomic transition, and ε0 is the dielectric
constant of the vacuum. Due to a narrow resonance of the transition amplitudes at
ωk = ω̃eg, we approximate the ω3

k-term in the integral with the term ω̃3
eg. We evaluate

the remaining integral with the same contour integral methods as before. Closing the
contour above the x-axis, we find a second order pole at z0 = ω̃eg + iΓ/2 whereas the
residue for functions of the type f(z) = eizt/(z − z0)2 is given by

Res(f, z0) = iteiz0t. (3.151)

Finally, this leads to a vanishing difference in the evolution of the atom:

ρS(t, t0)− ρ′S(t, t0) ' 2|µeg|2
3(2π)2~ε0c3

2

~
e−Γt<{it− i(t− t0)− it0}σz = 0, (3.152)

independently of the observation time t and the dephasing time t0.

3.4.1.2. Evolution of atom-field negativity

Before concluding that the atom-field entanglement cannot be detected in the atomic
evolution based on the local detection method, we have to demonstrate that, within
the same approximations, the atom-field entanglement is finite. Based on (3.16) we
can use the trace-distance dephasing disturbance (3.7) to determine the atom-field
negativity of the transient state |Ψ(t0)〉, as given in equation (3.134). To this end, we
determine the trace norm of the difference operator M(t0) = ρ(t0) − ρ′(t0), which is
given in equation (3.136). We obtain

M†(t0)M(t0) = |u00(t0)|2 (|e〉〈e|+ |g〉〈g|)⊗N(t0) (|0〉〈0|+ |ΨE(t0)〉〈ΨE(t0)|) ,
(3.153)

with the pure state

|ΨE(t0)〉 =
1√
N(t0)

∑

k

uk0(t0)|k〉, (3.154)
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and the normalization constant N(t0) =
∑

k |uk0(t0)|2. We express N(t0) using equa-
tions (3.146) and employ the same approximations as before:

N(t0) =
1

~2

∑

k

|gk|2
1− 2 cos [(ωk − ω̃eg)t0] e−Γt0/2 + e−Γt0

(ωk − ω̃eg)2 + Γ2/4

' 1

~2

|µeg|2
6π2ε0~c3

∞∫

0

dωkω
3
k

1− 2 cos [(ωk − ω̃eg)t0] e−Γt0/2 + e−Γt0

(ωk − ω̃eg)2 + Γ2/4

≈ 1

~2

|µeg|2ω̃3
eg

6π2ε0~c3

∞∫

0

dωk
1− 2 cos [(ωk − ω̃eg)t0] e−Γt0/2 + e−Γt0

(ωk − ω̃eg)2 + Γ2/4

=
1

~2

|µeg|2ω̃3
eg

6π2ε0~c3
2π

Γ

(
1− e−Γt0

)
. (3.155)

Using (3.139), we obtain the atom-field negativity via the trace distance from (3.153),

N (|Ψ(t0)〉〈Ψ(t0)|) =
1

2
Tr
√
M†(t0)M(t0)

= 2|u00(t0)|
√
N(t0)

= 2

√
|µeg|2ω̃3

eg

3πε0~3c3Γ
e−Γt0(1− e−Γt0). (3.156)

The temporal behavior described by (3.156) matches the physical intuition: At initial
times t0 ∼ 0, the atom is described by the excited state |e〉, whereas after long waiting
times t0 →∞, the atom has decayed with high probability into the ground state |g〉.
In both cases, the system is completely decoupled from the environment, and, hence,
no atom-field entanglement is present in those limits. However, at transient times t0,
we find finite amount of entanglement, as quantified by the trace distance of the total
atom-field states with and without quantum correlations, which coincides with the
negativity. Since the local state difference (3.152) vanishes also for transient values of
t0, we find that the local detection method is not able to reveal these dynamically in
the present context.

3.4.1.3. Discussion

As indicated in the beginning of this section, the atomic evolution is not influenced
by removing the entanglement between the radiation field and the atom during the
spontaneous decay process. This can be attributed to the complete lack of structure in
the environmental frequency modes, and a system-environment coupling which induces
exchange of excitations. The resulting irreversible exponential decay of the atomic
population has the unique property that it can be interrupted at arbitrary moments,
and the subsequent dynamics always has the exact same shape. Slight modulations
thereof, for example, by higher-order corrections (Cohen-Tannoudji et al., 1992) or
coupling the atom to a lossy cavity (Puri and Agarwal, 1986), are expected to change
this behavior (Breuer and Petruccione, 2002).
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3.4.2 Many-mode extension of the trapped-ion experiment: A proposal

The example of an infinite-size continuum of free-space modes shows that there exists
a limit in which the bipartite correlations no longer significantly influence the local
subsystem dynamics. In contrast, the trapped-ion experiment showed strong signa-
tures of the correlations on the qubit dynamics when the ion couples to a single mode
where only few discrete energy levels are occupied. The question is, what happens in
between, when the open system couples to a finite-size mesoscopic environment? At
which size can we neglect the influence of correlations on the reduced dynamics and
how long is it possible to locally detect these correlations dynamically?

In this section we discuss possible extensions of the trapped-ion experiment, where
the number of harmonic modes can be tuned to probe the transition from small model
environments with low effective dimensions to an almost irreversible and memoryless
decay into a continuum of modes. To this end, instead of a single ion, we consider
a full chain of N ions. We now find 3N motional modes, whereas depending on the
specific geometric arrangement of the laser system one can restrict to the N modes in
just one spatial dimension. How can we entangle a single qubit with several motional
modes at the same time? Driving one of the sidebands resonantly would still only
couple the ion to the addressed single eigenmode, and the theoretical treatment would
be equivalent to the one presented in section 3.2.

A possibility to generate interactions with many modes at the same time are fast
pulses on local sidebands. This corresponds to a sideband pulse which is fast enough
such that its Fourier bandwidth contains all eigenmodes (Brown et al., 2011; Harlan-
der et al., 2011), which is possible if sufficient laser power is available. These local
sideband pulses are essentially local, spin-dependent kicks, which displace the ion in
the laser focus on time scales which are too fast for the rest of the chain to follow the
movement. The created local vibrational excitations are non-equilibrium wave-packets
of the phonon system (Haze et al., 2012; Toyoda et al., 2013) and can be used to study
energy transport within the ion chain (Ramm et al., 2014; Ramm, 2014); see also
section 6.4.

An interaction of a single electronic qubit with an ensemble of modes can be gener-
ated based on the following scheme:

• Apply a spin-dependent kick on the selected ion.

• Let the system evolve freely for time t.

• Apply another spin-dependent kick, 180◦ out of phase to the first one.

To illustrate the mechanism of this sequence, let us assume that the ion was prepared
in a product state of |ϕ〉 = |0〉 and ρm = |0〉〈0|, which denote the respective ground
states of qubit and motion. The first spin-dependent kick promotes the ion in a
superposition state (Monroe et al., 1996)

|Ψ〉 =
1√
2

(|0, 01〉+ |1, α1〉) , (3.157)
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where |α1〉 denotes a coherent state on the Fock space describing the motion of the
addressed ion. Such an excitation is not an eigenstate of the full coupled ion chain,
and will therefore evolve during t, which constitutes the next step. During the free
evolution, the populations of the electronic qubit do not evolve. Finally, the phonon
evolution is mapped back onto the electronic degree of freedom with a second dis-
placement. The 180◦ out-of-phase shift of the second kick ensures that at t = 0, the
excitation is mapped right back to the initial state. This combination of π/2-pulses
(creating equal superpositions of ground and excited states) and free evolution basi-
cally constitutes a Ramsey scheme (Ramsey, 1990) on the local phonons.

The advantage of this scheme is that it can be implemented with arbitrary ion
numbers N . Furthermore the ratio of the trap frequencies in axial and radial direc-
tions controls how densely the motional frequencies along the observable direction are
packed, which allows to tune the spectral density of the phonon bath. When the inter-
ion distance reduces, it becomes experimentally more challenging to focus the laser
only onto a single ion. This technical problem may be circumvented using the fact
that the outer ions usually show significantly larger spacings than those in the center
when the chain becomes large, which facilitates the local addressing, see also the inset
in figure 2.2. A study of a related scheme (De Chiara et al., 2008) demonstrated that
the trace-distance information backflow from the phonons to the qubit – a quantifier
of non-Markovian effects – peaks at the structural phase transition (Borrelli et al.,
2013), which occurs when the axial trap frequency exceeds a threshold value and the
ions change their arrangement from a linear to a zig-zag structure (Birkl et al., 1992;
Waki et al., 1992).

Using the above Ramsey scheme, the qubit can be coupled to a tunable bath of
phonons. To explore the influence of correlations on the qubit dynamics, several pos-
sibilities emerge. The most natural choice would be to submit correlated states to the
Ramsey dynamics, and to check for a different resulting qubit evolution when addition-
ally the local dephasing operation is implemented before the first spin-dependent kick.
Correlated states of spin and motion may be generated by the same spin-dependent
displacement operations or other sideband pulses. Alternatively, one may interrupt
the Ramsey scheme to implement a dephasing operation after the first spin-dependent
kick.

3.4.3 Quantum phase transition in a transverse-field Ising chain

Finally, we study another scenario of a many-body interacting system. We now move
from an interacting multi-phonon environment to a system of interacting spins which
describes a quantum magnet and shows interesting phenomena, such as a quantum
phase transition (Sachdev, 1999). A detailed study of this model will be provided in
section 5.

Quantum phase transitions are essentially crossings or avoided crossings of energy
levels, as a function of an external control parameter, which involve the ground state.
After such a crossing, a new state has lower energy than the ground state in the pre-
vious quantum phase, which renders it the new ground state. Quite generically, this
new ground state exhibits different properties than the original ground state, includ-
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ing, for example its entanglement properties. This makes the ground-state quantum
correlations perceptive to the quantum phase transition, as confirmed in a series of
case studies (Osterloh et al., 2002; Osborne and Nielsen, 2002; Vidal et al., 2003; Wu
et al., 2004).

Detecting quantum correlations in a large crystal can, however, not be achieved on
the basis of conventional detection schemes—which require access to each individual
spin. For this reason, a direct experimental verification of diverging entanglement
quantifiers at the critical point of a phase transitions has not yet been achieved. Such
an experiment would directly demonstrate the existence of a striking link between
concepts from quantum information and solid state physics. In controlled quantum
systems, Hamiltonians that mimic the dynamics of solid-state systems can be designed,
and individual access is given to individual constituents; recall section 2.2 for a brief
overview. Thus, in this last study, we apply the local detection protocol to detect the
quantum correlations in the ground state of large spin chains, by considering only one of
the spins as the accessible subsystem and treating the remaining spins as environment
(Gessner et al., 2014b).

To be precise, we study a family of spin chain models with variable-range interac-
tions, given by

H = −
N∑

i,j=1
(i<j)

J0

|i− j|ασ
(i)
x σ(j)

x −B
N∑

i=1

σ(i)
y . (3.158)

As discussed in sections 2.2.1.7 and 2.2.2, this Hamiltonian can be simulated efficiently
with a chain of trapped ions, and cold atoms on tilted optical lattices. The interaction
range is determined by the continuous parameter α, and in trapped-ion experiments
this parameter can be tuned within the values 0 < α < 3 (Kim et al., 2010), whereas
typically, these experiments work around α ≈ 1. A detailed study of this model and
the associated quantum phase transition will be provided in chapter 5. In this section,
we restrict to the application and interpretation of the local detection protocol, for
both zero- and nonzero temperature states.

The Hamiltonian (3.158) shows a quantum phase transition from (anti-)ferromagnet
to paramagnet when the external magnetic field B exceeds the strength of the spin-
spin interactions, which are determined by J0. The sign of J0 determines whether
the system behaves as a ferromagnet (J0 > 0) or anti-ferromagnet (J0 < 0) when
B = 0. While both cases are scrutinized in chapter 5, in this section we restrict to the
ferromagnetic case J0 > 0. The theoretical treatment, however, is easily transferred to
the anti-ferromagnet. In the ferromagnetic phase, for example at B = 0, the ground
state4 is described by superposition states of Greenberger-Horne-Zeilinger (GHZ ) type
(Greenberger et al., 1989; Dür et al., 2000; Štelmachovič and Bužek, 2004),

|GHZϕ〉 =
1√
2

(
| ↑↑ . . . 〉+ eiϕ| ↓↓ . . . 〉

)
. (3.159)

4See also (Heisenberg, 1928; Bethe, 1931) for pioneering work on quantum magnetism.
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In such a configuration, each spin is entangled with the rest of the chain.5 The ground-
state entanglement reduces when B increases since the spins start to align along the
y direction of the external magnetic field. In the extreme case of B � J0, the ground
state forms a completely uncorrelated product state | ↑y〉⊗N . Hence, we expect the
bipartite ground-state entanglement between a randomly selected spin and the rest of
the chain to decay monotonously as the external magnetic field is scanned from zero
to large fields, where the transition from entangled to separable becomes sharper with
increasing system size.

3.4.3.1. Ground-state negativity from the evolution of the single-spin
magnetization

Let us first consider the case of the pure ground state |Ψ0〉 of H, as given in (3.158).
We apply the local detection protocol to the state |Ψ0〉, by considering the left-most
spin the accessible subsystem, whereas the remaining spins are considered as part of an
inaccessible reservoir. In this case, the initial state |Ψ0〉 does not evolve in time, since
it is the ground state, hence, an eigenstate of H. Dephasing in the local eigenbasis,
however, populates a combination of excited states, which can lead to time evolution.
The signatures of this time evolution on the single spin are then employed to detect
and estimate the ground-state entanglement.

The Z2 symmetry of the Hamiltonian H (invariance under a 180◦ rotation around
the y-axis) requires that the reduced, single-spin density matrices are diagonal in
the eigenbasis of σy, for all eigenstates. For further details we refer to chapter 5.
Therefore, the local dephasing is always implemented by projecting non-selectively in
the eigenbasis of σy of the left-most spin. The resulting dephasing operation yields
the reference state (Φ ⊗ I)|Ψ0〉〈Ψ0|, which, in general, is no longer an eigenstate of
the system. Recall from section 3.1.2 that the dephasing in the eigenbasis minimizes
the trace distance over all possible dephasing bases in the case of a pure state. Since
the local spin is described by a two-level system, we obtain the negativity (3.12) as a
figure of merit for the quantum correlations as [see equations (3.7) and (3.16)]

D(|Ψ0〉〈Ψ0|) = ‖Ψ0〉〈Ψ0| − (Φ⊗ I)|Ψ0〉〈Ψ0|‖ = N (|Ψ0〉〈Ψ0|). (3.160)

To obtain a locally observable lower bound on this quantity, we monitor the time
evolution of the dephased state on the single-spin level

ρS(t) = TrE{U(t)(Φ⊗ I)|Ψ0〉〈Ψ0|U†(t)}, (3.161)

with U(t) = e−iHt/~. Any deviation from ρS(0) indicates the presence of entanglement
in |Ψ0〉 and the trace distance

d(t) = ‖ρS(t)− ρS(0)‖ (3.162)

5Multipartite entanglement will only be introduced in the next chapter. We already remark here
that the GHZ-states contain global multipartite entanglement, but when one or more particles are
traced out, no entanglement remains in the subsystem (Dür et al., 2000).
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a)

b)

dmax

B/J0 = 0.8

Figure 3.11.: Monitoring the dephasing-induced time evolution (3.163) of the local single-spin
magnetization along the y-axis is sufficient to provide a lower bound for the total
ground state negativity (3.160). The maximal local trace distance [maximized
over t, see equation (3.164)] shows a peak close to the critical point of the
quantum phase transition, of which predecessors can be observed in this small
system of N = 7 spins. Observation of the time evolution over a longer interval
can further improve the lower bound. The total trace distance D(|Ψ0〉〈Ψ0|)
is equal to the ground-state negativity, see equation (3.160). Adapted from
(Gessner et al., 2014b).

provides a lower bound on the negativity N (|Ψ0〉〈Ψ0|) at all times t. Since the local
state ρS(t) must remain diagonal in the eigenbasis of σy, the trace distance (3.162)
is fully determined by the magnetization my(t) = Tr{ρS(t)σy} of the observable spin
along the y direction as

d(t) =
1

2
|my(t)−my(0)|. (3.163)

The maximum local distance

dmax = max
t
d(t) ≤ N (|Ψ0〉〈Ψ0|) (3.164)

is plotted in figure 3.11. We find that for very small values of B, despite large amounts
of entanglement in the ground state (as quantified by D(|Ψ0〉〈Ψ0|) and plotted by the
green dashed line in figure 3.11 b), the dynamics does not reveal those correlations to
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Figure 3.12.: For low, finite temperatures, the minimum dephasing disturbance Dmin (dashed
lines), defined in equation (3.11), vanishes when the excitation gap between
the almost-degenerate ground states is smaller than the thermal energy kT (see
figure 3.13). The parameters are N = 7 spins with kT = 10−5 (thick, red),
kT = 0.1 (medium, blue), and kT = 1 (black, thin line). The local signature
dmin (corresponding continuous lines), defined in equation (3.20), is, however,
only weakly affected by finite temperatures. The simulations consider a set of
20 uniformly distributed pairs of qubit basis states for the different dephasing
bases that occur in the definition (3.11) of the minimum dephasing disturbance.
Adapted from (Gessner et al., 2014b).

the local spin state. When we approach the quantum critical point around B ' J0,
a strong, visible signal emerges and almost reaches the upper bound which is given
by the negativity of the total state. As the external field is further increased, the
total correlations decrease, and consequently the local signal disappears. The distinct
peak identifies the critical point of the quantum phase transition. An explanation for
this behavior can be given after realizing that the dephasing operation connects the
ground-state properties to the excitation spectrum, since these are revealed via the
dephasing-induced dynamics. Indeed, the excitation spectrum undergoes a significant
structural change around the critical field of the quantum phase transition, which
induces complex dynamics which is more likely to reveal correlation properties to the
local system, as we will discuss in further detail in chapter 5.

Typical parameters are J0 ≈ 2π × 500 Hz and coherence times are usually around
3 ms. In the simulations, we therefore restrict the observable time window to a range
of 5 ms. The simulations are implemented with a python code employing the qutip

package (Johansson et al., 2013).

3.4.3.2. Local bound for the minimum entanglement potential of thermal states

For finite-sized ferromagnetic systems, there exists a small energy gap ∆ between the
ground state and the first excited state of H. This gap vanishes in the thermodynamic
limit, N →∞, where the ground state becomes two-fold degenerate. Despite very low
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temperatures, it is therefore more realistic to consider the thermal state

ρβ =
e−βH

Tre−βH
, (3.165)

instead of the pure ground state, with β = 1/kT , where k denotes the Boltzmann
constant and T the temperature. Even in the zero-temperature limit, the degeneracy
produces an incoherent mixture of the two ground states instead of a pure state. This
has the effect that the entanglement, and even the discord-type correlations vanish:
The mixture of the two ground states

ρ∞|B=0 =
1

2
(|GHZϕ〉〈GHZϕ|+ |GHZϕ+π〉〈GHZϕ+π|) , (3.166)

describes a state of zero discord since the opposing phase factors lead to complete
cancellation of the coherences when both states are mixed. The minimum dephasing
disturbance Dmin, as introduced in equation (3.11), therefore yields zero for the low-
temperature thermal ground state (3.166) when B = 0, and increases to a nonzero
value when the energy gap between the ground states exceeds the thermal excitation
energy kT , and recovers the negativity of the energetically lower-lying state, as can be
seen from the dashed lines in figure 3.12 and the inset in figure 3.13. From these figures
we can also observe how the sharpness of this transition increases with decreasing T . A
lower bound for Dmin can be obtained by dephasing in a large ensemble of basis states,
and monitoring the subsequent time evolutions, which yields the optimal local witness
dmin, as defined in equation (3.20). While the total correlations are strongly affected
by the mixing process, the local dynamical signature remains largely unaffected, and
still shows a maximum in the vicinity of the quantum phase transition.

In the present study, we have established a dynamical witness for the critical field
of the quantum phase transition based on entanglement. It is based on measurements
of dephasing-induced dynamics of the the single-spin magnetization. This dynamics is
entirely determined by the excitation spectrum which is populated by the local dephas-
ing operation. The fact that we observe a strong peak at the phase transition point
indicates a connection of the quantum phase transition to the excitation spectrum,
which we will study in further detail in chapter 5.

3.5 Discussion

We have seen in this chapter that the coupling of a small controllable subsystem to
additional, inaccessible degrees of freedom can be harnessed to reveal global properties,
such as bipartite correlations, via the local subsystem dynamics. The basic mechanism
which enables the local detection protocol presented in this chapter is the strong
influence of correlations on the subsequent time evolution of an open quantum system.
The method can always be applied when full coherent control is available over a part
of the full system. Whether or not the method successfully reveals the presence of
correlations through the local dynamics depends on the time evolution of the full
system.
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Figure 3.13.: Lower part of the excitation spectrum of the ferromagnetic spin chain (3.158) at
α = 1 for different system sizes. The gap ∆ between the ground- and first ex-
cited state (inset) determines at which temperature the low-temperature thermal
state (3.165) turns from a pure ground state to an incoherent mixture of both
ground states. Unlike the pure ground state, which contains GHZ-type entan-
glement (3.159), the incoherent mixture (3.166) contains neither entanglement
nor discord-type correlations. In the thermodynamic limit the two ground states
are degenerate for values of B below the critical field. A detailed discussion of
the spectrum is provided in chapter 5.

The examples studied in this chapter have explored the limitations of the method for
different couplings, environments, and physical settings. Scenarios where the detection
was successful included the dissipative coupling to a single-mode harmonic oscillator,
which was studied in the trapped-ion experiment. Numerical simulations also suggest
an observable local signature of correlations in a high-temperature limit. Moreover, the
photonic experiment demonstrated a clearly observable signature of initial correlations
in the presence of coupling to a continuum of modes that lead to irreversible, memo-
ryless dephasing of a qubit. The important difference to the trapped-ion case is that,
here, the coupling does not induce exchange of excitations between system and envi-
ronment. A completely memoryless, dissipative environment was studied theoretically
using the example of spontaneous emission of an atomic excitation into the free-field
modes. In this case, there is no influence of the atom-field entanglement on the atomic
subdynamics. Taken together, these findings suggest that the efficacy of the method
does not rely on non-Markovian memory effects or structured environments, as long
as the reduced dynamics is described by pure dephasing (no excitation exchange). For
dissipative environments (including excitation exchange), a structured environment,
leading to back-action on the system, seems to be a necessary requirement for a local
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signature of initial correlations based on the present method.
The boarder where the influence of initial correlations on the reduced dynamics van-

ishes due to dispersion into many modes of a high-dimensional system may be explored
thoroughly with a proposed generalization of the trapped-ion experiment. Based on
the intuition developed in this chapter, we expect the local signal to decrease when the
environment becomes sufficiently large and spectrally broad, to be effectively memory-
less. In this case, when we find irreversible dissipation, free of revivals, we expect little
influence of the initial correlations on the open-system dynamics. Similarly, theoretical
studies in the context of a lossy cavity, described by coupling to a continuum of modes
of variable spectral width, may also directly test the dependence of the method on
non-Markovian effects in the presence of dissipative couplings.

The separation into system and environment can formally be carried over to few-
body or many-body systems, where local control of some of the constituents is possible,
while complete control over the state of the full system is not available. To verify the
presence of discord-type correlations, which are necessary for carrying out specific
quantum information protocols, one may employ the local detection method, given
that interactions between the constituents are present. To this end, one treats the
accessible subsystem as the “open system” and the remaining constituents of the in-
teracting system as “environment”. The method is expected to be useful when the
total system becomes too large to employ tomographic reconstruction methods or to
measure complicated entanglement witnesses, which require measurements on all par-
ties. In this case, one may restrict to controlling a low-dimensional subsystem, which
is more feasible. In the case of excitation-exchanging interactions, however, we must
consider the limitation of the method in the extreme case when the environmental part
becomes effectively memoryless, as discussed above. The discussion of the example of
the spin-chain model furthermore raises the intriguing question about the connection
between ground-state quantum correlations, the excitation spectrum and the quantum
phase transition, which will be analyzed in chapter 5.





4 From local operations to
collective dephasing:
Behavior of correlated
quantum states

To analyze the correlation properties of quantum states with nonzero discord, we inves-
tigate the possibilities to create quantum discord with local operations. We introduce
the correlation rank as a complementary notion for correlations in quantum states.
Furthermore we study an experimentally relevant, classically correlated dephasing pro-
cesses and its effect on different notions of correlations in quantum states.

4.1 Creation of quantum discord by local operations

In the previous chapter, the detection of quantum discord was discussed on the basis
of local operations. In the present chapter, we take on the converse point of view and
analyze the possibility to use local operation to create discord (Gessner et al., 2012).
As we will see, this possibility indeed exists, which affirms that quantum discord is
not a measure for correlations.1 Correlations are required to be non-increasing un-
der local operations (Bennett et al., 1996a): The impossibility to increase under local
operations (and classical communications) is one of the fundamental requirements for
appropriate measures of quantum entanglement (Werner, 1989; Bennett et al., 1996b;
Vedral et al., 1997). Also total correlations – which express how far a given quantum
state differs from a completely uncorrelated product state, without distinguishing be-
tween the quantum or classical nature of these correlations – cannot be created by

1In the original publication, it was introduced as a “measure for the quantumness of correlations”
(Ollivier and Zurek, 2001).
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local operations. If a local operation Φ ⊗ I is applied to a product state (which has
zero total correlations), the resulting state

(Φ⊗ I)ρA ⊗ ρB = Φ(ρA)⊗ ρB , (4.1)

is still an uncorrelated product state. How can we picture the creation of nonzero
quantum discord from a classical state by local operations? Consider the following
example of a classically correlated, zero-discord state of two qubits (Dakić et al., 2010),

ρc =
1

2
(|00〉〈00|+ |11〉〈11|). (4.2)

The local orthogonal states |0〉 and |1〉 can be mapped onto new states

|0〉 → |ϕ0〉, |1〉 → |ϕ1〉. (4.3)

with a completely positive and trace-preserving local operation in one of the systems.
The resulting state

ρq =
1

2
(|ϕ00〉〈ϕ00|+ |ϕ11〉〈ϕ11|). (4.4)

has nonzero discord as soon as the states |ϕ0〉 and |ϕ1〉 are non-orthogonal, 〈ϕ0|ϕ1〉 6= 0.
In this example, the quantum discord assesses the non-orthogonality of local states
in an incoherent mixture. This non-orthogonality can lead to effects, such as non-
commutativity with certain observables and disturbance by measurements, which are
interpreted as quantum phenomena.

Furthermore, it is crucial to note that a key prerequisite for such a local creation
of discord is the presence of classical correlations in the initial state ρc, as becomes
apparent by reconsidering the case of a product state (4.1). It is therefore not correct
to assume that a local operation can create discord “from nothing”. Instead, a more
appropriate interpretation is the conversion of classical correlations into discord by
manipulating the local orthogonality of the basis states. The final state is then still
separable and cannot be more strongly correlated than the initial state. Indeed, re-
calling section 2.1.1, we know that nonzero quantum discord only reflects the absence
of a local observable that commutes with the total state (Girolami et al., 2013), which,
in principle, does not quantify the state’s correlation properties. However, since such
an observable can always be found for uncorrelated states (see section 2.1.1), nonzero
discord also implies nonzero correlations.

The above scenario demonstrates that the mere presence of quantum discord does
not imply the presence of correlations which are necessarily stronger than those of
other classical (zero-discord) states. Since the maximum number of local orthogonal
basis states is bounded by the dimension of the local subsystem, the nonzero discord
states which can be created from classically correlated states by local operations must
be severely limited, even when we exclude the entire set of entangled states, which
of course have nonzero discord but, by definition, cannot be reached with local op-
erations. In order to put these two statements into a more quantitative picture, and
to complement the information provided by the quantum discord, we introduce the
correlation rank (Gessner et al., 2012).



4. From local operations to collective dephasing: Behavior of correlations 109

4.2 Correlation rank: Schmidt decomposition for mixed states

To introduce the correlation rank, we employ a decomposition of the total, possibly
mixed density matrix, close in spirit to the Schmidt decomposition of a pure entangled
state. We consider a bipartite Hilbert space H = HA⊗HB where the two subsystems
are described by their respective Hilbert spaces of dimensions dA and dB . We express
an arbitrary bipartite quantum state ρ, that is, a normalized, positive, and bounded
operator on H, in terms of arbitrary operator bases {Ai} and {Bi} on the individual
respective Hilbert spaces (Dakić et al., 2010),

ρ =

d2A∑

i=1

d2B∑

j=1

rijAi ⊗Bj . (4.5)

A singular value decomposition of the real-valued correlation matrix R = (rij) yields
a diagonal representation

ρ =

L∑

i=1

ciSi ⊗ Fi, (4.6)

with Si =
∑
j ujiAj , Fi =

∑
j vjiBj and orthogonal matrices U = (uij) and V = (vij)

which transform the correlation matrix into diagonal form,

R = Udiag(c1, c2, . . . , cL, 0, . . . )V
T , (4.7)

and the ci denote the nonzero singular values of R. The number L denotes the corre-
lation rank of the quantum state ρ. Before we proceed, we remark that the diagonal
form (4.6) allows for a simple check for nonzero discord, which nicely generalizes the
above intuition about local non-orthogonality to non-separable states: The state ρ has
zero quantum discord with respect to subsystem HA if and only if [Si, Sj ] = 0 for all
i and j (Dakić et al., 2010). Analogously, the commutativity of the Fj determine the
quantum discord with respect to measurements on subsystem HB . The Si and Fi,
however, can in general not be interpreted as quantum states since, for example, they
may exhibit negative eigenvalues.

The correlation rank quantifies the total correlations by precisely counting the num-
ber of uncorrelated product operators that are necessary to decompose a given quan-
tum state. Let us consider a pure state ρ = |Ψ〉〈Ψ| with Schmidt decomposition

|Ψ〉 =
∑S
i=1 λi|ϕi〉 ⊗ |χi〉 (Schmidt, 1907) to investigate how the two concepts are re-

lated. The Schmidt number S denotes the number of nonzero Schmidt coefficients λi
and quantifies the entanglement of |Ψ〉 (Barnett and Phoenix, 1991; Ekert and Knight,
1995). We write

ρ = |Ψ〉〈Ψ| =
S∑

i=1

S∑

j=1

λiλj |ϕi〉〈ϕj | ⊗ |χi〉〈χj |. (4.8)

Combining the two indices i and j into a single index k = (i, j) = 1, . . . , S2 allows us
to cast this decomposition into the form (4.6) with local operator bases Ak = |ϕi〉〈ϕj |
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and Bk = |χi〉〈χj | and coefficients ck = λiλj . This decomposition cannot be further
reduced, and we find L = S2, demonstrating that the correlation rank represents a
direct generalization of the Schmidt decomposition to mixed states. It is important
to emphasize here that L is not an entanglement measure, but, rather quantifies total
correlations. As we have confirmed with the previous example, the total correlations
of pure states are equivalent to their entanglement.

We first establish that the correlation rank cannot increase under local operations.
To this end, we employ the diagonal representation (4.6),

(Φ⊗ I)ρ =

L∑

i=1

ciΦ(Si)⊗ Fi

=

L∑

i=1

d2A∑

j=1

cidijAj ⊗ Fi (4.9)

where we decomposed each of the Φ(Si) in terms of the local operator basis Aj using
the coefficient matrix D = (dij). The resulting correlation rank L′ is given by the rank
of the matrix M = (cidij), which yields

L′ = rkM ≤ min{L, rkD} ≤ L, (4.10)

and can never exceed the initial correlation rank (Gessner et al., 2012). This can be
generalized straight-forwardly to show that this still holds for bilocal operations of the
form ΦA ⊗ ΦB (Lanyon et al., 2013).

This provides a strict constraint on the nonzero discord states which can be created
from zero discord states by local operations. Consider a general classical state, that
is, a state of zero discord with respect to both subsystems,

ρcc =

dA∑

i=1

dB∑

j=1

pijΠ
A
i ⊗ΠB

j . (4.11)

The number of projectors ΠA
i = |iA〉〈iA| and ΠB

j = |jB〉〈jB | onto orthogonal pure
states |iA〉 and |jB〉 is fundamentally limited by the dimensions of the respective lo-
cal Hilbert spaces HA and HB . Therefore, the correlation rank of classical states is
bounded from above by the minimal subsystem dimension dmin = min{dA, dB} (Dakić
et al., 2010). Since local operations cannot increase the correlation rank, the same
must hold for all nonzero discord states that can be created from classical states with
local operations (Gessner et al., 2012).

From this we draw the conclusion that any state with L > dmin contains correlations
that are beyond the reach of any classical state in the same Hilbert space, which
separates the nonzero discord states into the classes above and below this threshold.
This information about the total correlations, then, can be complemented by measures
of quantum discord, which determine the quantum nature of these states with respect
to local measurements. Note that even some (not maximally) entangled states may
have L ≤ dmin in Hilbert space dimensions larger than two (Gessner et al., 2012).
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Appropriate local transformations of the local bases |iA〉 and |jB〉 allow to convert
the state (4.11) into arbitrary states of the form (Gessner et al., 2012)

ρ =

dmin∑

i=1

piρ
A
i ⊗ ρBi , (4.12)

with local density matrices ρAi and ρBi . Note that the number of product states that
are mixed in (4.12) is upper bounded by the minimum dimension of the two subsystems
dmin. At the same time, states of the form (4.12) form the most general class of states
that can be created from classical states with local operations and it can be shown that
these states form a set of Lebesgue measure zero in the total set of quantum states
(Gessner et al., 2012). One can, however, design an example of a mixed separable
state in a bipartite Hilbert space with unequal subsystem dimensions dB > dA > 2,
which has L = dmin but cannot be represented as a convex linear combination of less
than dmin + 1 product states (Zhao, 2012). This example shows that not all separable
states whose correlation rank is compatible with classical states can be created from
a classical state with local operations, as one may have suspected intuitively.

The correlation rank has also been employed (Giorgi, 2013) to argue against the
universality of claims which identify quantum discord as a resource in the remote
state preparation protocol (Dakić et al., 2012). Moreover, the information which can
be transmitted from one party to another in a tomographic multiple-copy teleportation
scenario with mixed states is determined by the correlation rank (Wang et al., 2013).

4.3 Trapped-ion experiment

Theoretical studies showed that even local Markovian noise processes can suffice to
create states of nonzero discord from classically correlated initial states (Hu et al.,
2011; Ciccarello and Giovannetti, 2012; Streltsov et al., 2011a), and an experiment
with two trapped ions, carried out at the Institute for Quantum Optics and Quantum
Information in Innsbruck, measured this effect (Lanyon et al., 2013). The experiment
also confirmed that the correlation rank was at all times bounded by the initial value
during the local noise process.

4.3.1 Local amplitude damping

In the experiment, the classical two-qubit state

ρ1 =
1

2
(|+ +〉〈+ + |+ | − −〉〈− − |), (4.13)

with |±〉 = (|0〉 ± |1〉)/
√

2 was exposed to a local amplitude damping channel on the

second qubit, described by Ead(ρ) = E0ρE
†
0 +E1ρE

†
1, with E0 = |0〉〈0|+√1− p|1〉〈1|

and E1 =
√
p|0〉〈1|. This channel describes one of the elementary loss processes of

quantum computers due to energy dissipation (Nielsen and Chuang, 2000). Figure 4.1
displays the experimental result of full state tomography of the two-qubit density
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Figure 4.1.: Real values of the elements of the full two-qubit density matrix under the influence
of a local amplitude damping channel [see text below equation (4.13)] for p = 0
(a), p = 0.79 (b) and p = 1 (c). The initial state ρ1, defined in (4.13), has
zero discord and correlation rank L = 2. While the discord can be shown to
be nonzero in (b), the singular values of the correlation matrix (blue bars) never
indicate a correlation rank above the initial value of L = 2. Figure taken from
(Lanyon et al., 2013).

matrices for different values of 0 ≤ p ≤ 1, as well as the singular values of the associated
correlation matrices. While the quantum discord in the reconstructed quantum states
can be shown to increase for intermediate values of p, the correlation rank is never
found to exceed the initial value L = 2, within the experimental error bars (Lanyon
et al., 2013).

Since the qubit resonance frequencies are controlled by the magnitude of the external
magnetic field, an additional dephasing effect is induced by fluctuations of the latter;
see section 2.2.1. This results in a correlated dephasing process since the field is, to
a good approximation, spatially homogeneous within the trap center, and, thus, the
fluctuations affect all ions equally. Under such separable operations,

∑
i piΦ

A
i ⊗ΦBi , the

correlation rank is no longer bounded and can increase arbitrarily, as can be seen by

starting from equation (4.6), and employing the decompositions ΦAi (Sj) =
∑d2A
k=1 d

i
jkAk

and ΦBi (Fj) =
∑d2B
l=1 e

i
jlBl to describe the final state as (Lanyon et al., 2013)

ρ′ =

P∑

i=1

pi(Φ
A
i ⊗ ΦBi )ρ =

P∑

i=1

L∑

j=1

d2A∑

k=1

d2B∑

l=1

picjd
i
jke

i
jlAk ⊗Bl. (4.14)

The rank of the correlation matrix fkl =
∑P
i=1

∑L
j=1 picjd

i
jke

i
jl can now become as

large as min{P · L, d2
A, d

2
B}.

Thus, separable processes, such as collective dephasing are able to synthesize sep-
arable quantum states with strong total correlations. The dephasing effect is quite
interesting as a process on its own. By ensemble-averaging over classically fluctuating
external parameters, an effective, incoherent atom-atom interaction is induced, allow-
ing for the generation of correlations even when the atoms are not coupled by other
mechanisms. We will first discuss the asymptotics for the special case of two qubits
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and its implications for the created correlations to describe the trapped-ion experiment
reported in (Lanyon et al., 2013). In section 4.4, a general description of the dynamics
towards the asymptotic state, for arbitrary numbers of spins, will be provided and
applied to study the decay and robustness of multipartite entanglement.

4.3.2 Collective dephasing

As described in section 2.2.1, the transition frequency of the electronic trapped-ion
qubits are determined by the strength of the external magnetic field B due to the
Zeeman effect. The fluctuations of this external field, which in turn are caused by
instabilities of the currents of the generating coils, lead to fluctuations of the qubit
frequencies. This effect is strongly correlated, since all ions in the trap experience
the same magnetic field due to the relatively small inter-ion distances. Usually, the
induced effect on the qubit dynamics is small on relevant time scales of trapped-ion
experiments. By intentionally exposing the ions to such fluctuations for long times,
full dephasing towards some asymptotic state can be achieved (Lanyon et al., 2013).

To describe this effect, we derive the corresponding Hamiltonian and the resulting
ensemble-averaged dynamics induced by the fluctuations. The direction n of the ex-
ternal magnetic field B = Bn determines the eigenbasis of the electronic two-level
system

Hω =
~ω
2

n · σ, (4.15)

and the transition frequency is proportional to the magnitude of the field B,

ω = µB, (4.16)

where the proportionality factor µ can be interpreted as a magnetic moment. The
resulting time evolution describes a rotation of the qubit,

Uω(t) = e−iHωt/~ = e−iωtn·σ/2, (4.17)

where the angle of rotation θ = ωt is determined by the duration of the evolution. In
this section we restrict to the case of two ions, subject to the same fluctuating external
field. To estimate expectation values, experiments have to be repeated many times.
The appropriate description for the associated resulting quantum state is the ensemble
average

ρ(t) = Ent,0[ρ(0)] =

∫
dωp(ω)Uω(t)⊗ Uω(t)ρ(0)U†ω(t)⊗ U†ω(t), (4.18)

which is governed by the frequency distribution p(ω). In writing (4.18), we assume that
the fluctuations occur on time scales that are much longer than the typical time scale of
the atomic evolution, which allows us to model the dynamics of a single experimental
run by a time-independent Hamiltonian, characterized by a constant magnetic field.
From one experimental repetition to another, the magnetic field may have changed.
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Since the time scale of the atomic evolution, and with it the typical duration of a
single experimental run, is determined by the strength of the magnetic field, the above
condition is met when the fluctuation amplitude of B is much weaker than its mean
value.

When this condition is satisfied we can also investigate the asymptotic limit of this
evolution, which is reached when the system evolves for a time τ , which is long enough,
such that the fluctuations of ω distribute the resulting phases e−iωτ uniformly over
the unit circle, but not too long to conflict with the assumption of a time-independent
Hamiltonian. Formally, the asymptotic state is given by

ρs = lim
t→∞

ρ(t), (4.19)

whereas we will show in section 4.4 that for experimentally realistic distributions p(ω),
this state is independent of the exact form of p(ω). Hence, we restrict the analysis in
this section to

ρs = En[ρ(0)] =
1

2π

∫ 2π

0

dθRn(θ)⊗Rn(θ)ρ(0)R†n(θ)⊗R†n(θ), (4.20)

with Rn(θ) = e−iθn·σ/2. As we will show in section 4.4, this map can be written in
Kraus form as (Lanyon et al., 2013)

En[ρ(0)] =

2∑

i=0

Θiρ(0)Θi, (4.21)

with Kraus operators

Θ0 = Λ+ ⊗ Λ+,

Θ1 = Λ+ ⊗ Λ− + Λ− ⊗ Λ+,

Θ2 = Λ− ⊗ Λ−, (4.22)

and the orthogonal projectors

Λ± = (I± n · σ)/2. (4.23)

To analyze the evolution and correlation properties of arbitrary two-qubit states, it
is most convenient to represent those in the Fano form (Fano, 1983; Bengtsson and
Życzkowski, 2006)

ρ =
1

4


I⊗ I +

3∑

i=1

rAi σi ⊗ I +

3∑

i=1

rBi I⊗ σi +

3∑

i=1

3∑

j=1

βijσi ⊗ σj


 . (4.24)

The two reduced Bloch vectors rA, rB , and the matrix β can be chosen real. The
correlation matrix is given by

R =
1

4

(
1

(
rB
)T

rA β

)
, (4.25)
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n = w n ·w = 0 |n ·w| > 0
n = v 2 1 2
n · v = 0 1 3 3
|n · v| > 0 2 3 4

Figure 4.2.: The correlation rank L after collective dephasing into the asymptotic state can
be controlled via the orientation n of the external magnetic field. The initial
classically correlated state with L = 2 and maximally mixed reduced density
matrices is characterized by the two vectors v and w. Appropriate choice of n
can lead to a strongly correlated state of maximal correlation rank, L = 4.

with the 1× 3 matrix rT = (r1, r2, r3). This representation allows for direct determi-
nation of the rank L of the correlation matrix R by (Meyer, 1973)

L = 1 + rk(β − rA ⊗ rB), (4.26)

where the elements of rA ⊗ rB are defined as (rA ⊗ rB)ij = rAi r
B
j . The matrix β can

always be decomposed into singular values dk as βij =
∑3
k=1 vikdkwjk, with orthogonal

matrices V and W . We rewrite the state ρ as

ρ =
1

4

(
I⊗ I + rA · σ ⊗ I + I⊗ rB · σ +

3∑

k=1

dkvk · σ ⊗wk · σ
)
, (4.27)

where we have introduced two sets of orthonormal vectors (vk)i = vik and (wk)j =
wjk.

Using this representation, the correlation rank of the asymptotic state ρs can be
deduced from geometric relations between the vectors {vk,wk} and the direction n
of the external magnetic field. For details we refer to (Lanyon et al., 2013). In the
experiment, two classes of initial states were considered:

(A) uncorrelated states (L = 1),

(B) classically correlated, zero-discord states (L = 2) with maximally mixed reduced
density matrices.

One can show that the states of class (A), that is, states with L = 1, coincide with
the set of product states and that, in this case, β = rA ⊗ rB (Lanyon et al., 2013).
Based on elementary geometric considerations, this allows to conclude that application
of the collective dephasing operation yields a state of L = 3 if and only if n coincides
neither with rA nor rB ; otherwise the asymptotic state remains at L = 1 (Lanyon
et al., 2013). An explicit expression for the two-qubit density matrix after collective
dephasing of a product state under arbitrary magnetic field orientations can be found
in (Carnio, 2014). Moreover, two consecutive applications of the collective dephasing
operation can transform arbitrary initial states into states with L = 4. This requires
that the direction of the magnetic field differs for the two dephasing processes, since
otherwise the map is idempotent (Carnio, 2014).
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Figure 4.3.: Real values of the elements of the full two-qubit density matrix under the in-
fluence of collective dephasing. The plots show Ez(ρ1) with ρ1 defined in
equation (4.13) and measured in the left-most tomography (a) of figure 4.1;
the map En is defined in equation (4.21). The other subplots show ρ2 =
Ry(π/8)⊗2ρ1R†y(π/8)⊗2 (b); En(ρ2) (c); |Ψ〉 = | + +〉 (d); Ez(|Ψ〉〈Ψ|) (e);
Ez(Ry(π/2)⊗2Ez(|Ψ〉〈Ψ|)R†y(π/2)⊗2) (f); with y ·σ = σy and z ·σ = σz. The
number L of nonzero singular values (blue bars) after collective dephasing agrees
with the predictions made from figure 4.2 within uncertainties. Figure taken from
(Lanyon et al., 2013).

All states of class (B) have zero discord and can be characterized by β = dv ⊗w.
The geometric interpretation yields the possible values of the asymptotic correlation
rank, which are summarized in Table 4.2. (Lanyon et al., 2013). We see that the
full spectrum of correlation ranks 1 ≤ L ≤ 4 for a two-qubit system can be reached
after a single collective dephasing operation, including the maximally correlated states
with L = 4. This is confirmed in the experimental data of figure 4.3, which displays
different initial and final states under the influence of collective dephasing after long
times.

To summarize, we have seen that local operations are able to transform classical cor-
relations into correlations with quantum nature with respect to local measurements
as quantified by quantum discord. The correlation rank is able to assess the amount
of total correlations and cannot increase under local operations. Classically correlated
noise processes, however, can produce strongly correlated states. In trapped-ion exper-
iments such noise processes are naturally present due to fluctuations of the magnetic
field. Manipulation of the orientation of this field, or equivalently, rotations of the
qubit state before dephasing, allow to control the correlation properties of the asymp-
totic state. In the next section, we generalize the present analysis of the steady-state
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of two qubits to a full description of the general multipartite dephasing process of N
qubits, including its transient time evolution.

4.4 General dynamics of collective dephasing

The collective dephasing process, discussed in the trapped-ion experiment of the pre-
vious section, represents one of the remaining dominant error sources for experimental
quantum computations. To correct or avoid the errors induced thereby, it is of pri-
mordial importance to fully understand and characterize the associated dynamics in
the general setting of N qubits. Due to the necessity to repeat experiments with few
atoms many times to obtain statistically significant measurements of populations, this
represents a natural embedding of an ensemble-averaged effective dynamics. From a
theoretical point of view, this constitutes an intuitive alternative to the conventional
system-environment scenario for the description of noise and decoherence.

The present section summarizes a selection of results on the dynamics of the mul-
tipartite collective dephasing process, which were obtained in collaboration with Edo-
ardo Carnio in the course of his Master’s thesis. We refer to the thesis (Carnio, 2014)
and the corresponding publication (Carnio et al., 2015) for most of the details and
further discussions. The treatment presented here generalizes the considerations of
the previous section by describing

• a system of N qubits,

• the transient time evolution as a function of the intensity fluctuations.

Finally, aside from Zeeman shifted qubit resonances, a dynamics of the form (4.15)
describes the general interaction of a dipole with an external field, and applies to
paramagnets as well as electric dipoles.

4.4.1 Kraus representation

The first goal in this section is to derive an expression for the dynamics of N qubits
under the influence of collective dephasing. The task is, thus, to evaluate the ensemble
average

ρ(t) =

∫
dωp(ω)Uω(t)⊗Nρ(0)U†ω(t)⊗N , (4.28)

where ρ(t) and ρ(0) denote states of N qubits, and the unitary dynamics during each
realization is given by equation (4.17) with the same frequency for each atom. Again,
this expression implies a separation of time scales, as discussed below equation (4.18).

Using the pairs of orthogonal projectors Λ±, which were defined in equation (4.23),
allows us to rewrite the time evolution operator as

Uω(t)⊗N =
(
e−iωt/2Λ+ + eiωt/2Λ−

)⊗N
. (4.29)
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To expand this we introduce the permutation operator Vσ, which mediates the per-
mutation σ ∈ SN on the N -partite tensor space,

Vσ =
∑

i1...iN

|iσ(1) . . . iσ(N)〉〈i1 . . . iN |, (4.30)

where SN denotes the symmetric group of N elements. We obtain (Carnio et al.,
2015),

Uω(t)⊗N =

N∑

j=0

eiωt(j−N/2)

j!(N − j)!
∑

σ∈SN
Vσ

[
Λ⊗j− ⊗ Λ⊗N−j+

]
V †σ

=

N∑

j=0

eiωt(j−N/2)Θj , (4.31)

where we introduced the operators

Θj =
1

j!(N − j)!
∑

σ∈SN
Vσ

[
Λ⊗j− ⊗ Λ⊗N−j+

]
V †σ . (4.32)

Inserting equation (4.31) into the ensemble average (4.28) yields the time evolution in
shape of a Kraus form (Bengtsson and Życzkowski, 2006)

ρ(t) =

N∑

i,j=0

Mij(t)Θiρ(0)Θj , (4.33)

which is characterized by

Mjk(t) =

∫
dωp(ω)eiω(j−k)t = ϕ[(j − k)t]. (4.34)

In the last step we expressed the matrix elements Mjk(t) via the characteristic function

ϕ(t) =

∫
dωp(ω)eiωt (4.35)

of the probability distribution p(ω). The (N + 1) × (N + 1) matrix M(t) = (Mij(t))
is Hermitian and semi-positive definite for all t, due to Bochner’s theorem (Rudin,
1990). At each time t, we can therefore diagonalize this matrix using a unitary matrix
V (t) = (vij(t)) with Mij(t) =

∑
k vik(t)λk(t)v∗jk(t), to obtain the canonical Kraus

form (Bengtsson and Życzkowski, 2006)

ρ(t) = Ent,0 [ρ(0)] =

N∑

k=0

λk(t)

(
N∑

i=0

vik(t)Θi

)
ρ(0)




N∑

j=0

v∗jk(t)Θj




=

N∑

i=0

Ai(t)ρ(0)A†i (t), (4.36)
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with the canonical Kraus operators

Ai(t) =
√
λi(t)

N∑

j=0

vji(t)Θj . (4.37)

Notice that the Ai are composed of the permutationally invariant Θi, as defined in
equation (4.32), which implies that they act upon all the atoms simultaneously and
cannot be decomposed into local, single-atom operators. Thus, the coupling to a
common, classical, fluctuating field mediates an incoherent atom-atom interaction.

While for the details we refer to (Carnio et al., 2015), let us remark here that one
can use the orthogonality of the projectors Λ± to show that

∑

i

A†i (t)Ai(t) =
∑

i

Θ†iΘi = I, (4.38)

which ensures that the map Ent,0 in equation (4.36) is completely positive and trace-
preserving for all t.

Let us now consider the implications of this description for the asymptotic state,
which is reached in the limit t → ∞. Note that in a common scenario, we will
find that the characteristic function ϕ(t) vanishes for long times. Exceptions are cases
where, for example, only few discrete frequencies play a role in the frequency spectrum,
which happens if p(ω) is described by a discrete sum of delta functions. Instead, we
assume that the frequency distribution has finite, continuous support and typically
can be described by Lorentzian or Gaussian distributions, for which limt→∞ ϕ(t) = 0
is satisfied. In this case we find limt→∞Mij(t) = δij which leads to the asymptotic
form of the Kraus operators limt→∞Ai(t) = Θi, and

En[ρ(0)] =

N∑

i=0

Θiρ(0)Θi, (4.39)

independently of the specific form of p(ω). This behavior is intuitively expected if we
recall the discussion of the asymptotic state preceding equation (4.19): If the wait-
ing time τ is chosen long enough, any shape of continuously distributed fluctuations
of ω will lead to the same, uniformly distributed phases e−iωτ . The general expres-
sion (4.39) reduces to equation (4.21) in the special case of N = 2.

4.4.2 Ensemble-average evolution: Interpretation and non-Markovian effects

We have derived an explicit form to describe the dynamics (4.36) and asympto-
tics (4.39) of the collective dephasing process of atomic two-level systems in an external
classical field. The Kraus representation describes this dynamics in a canonical form,
which is commonly applied to describe the dynamics of open quantum systems (Breuer
and Petruccione, 2002), for example in terms of noisy quantum channels (Nielsen and
Chuang, 2000; Bengtsson and Życzkowski, 2006). Unlike typical microscopic deriva-
tions of theoretical models describing incoherent effects induced by an environment, we
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started from the unitary evolution of a closed system. The resulting Kraus representa-
tion shows that the ensemble-average over fluctuating system parameters leads to an
equivalent description, where the fluctuation distribution p(ω) takes on the role of the
spectral density of a conventional open-system approach. Given the necessity to repeat
experiments many times to measure an expectation value, our derivation represents
an experimentally very intuitive approach to quantum noise. While, here, we restrict
to the formal solution of the dynamics, in (Carnio, 2014) it is further shown that this
problem can be cast equivalently into the form of a master equation, including effec-
tive incoherent effects described by Lindblad operators as in the standard treatment
of open quantum systems; see also (Benatti et al., 2012; Rossi et al., 2014).

Let us briefly discuss the transient time evolution towards the asymptotic state,
whereas for the details we refer to (Carnio, 2014). Whether this process will be irre-
versible or display revivals is determined by the spectral probability distribution p(ω).
To formally quantify the induced memory effects we can observe the evolution of ρ(t)
towards the steady-state ρs. A suitable auto-correlation function is defined on the
basis of the trace distance D(t) = ‖ρ(t)− ρs‖. It is indeed found to be monotonically
decaying for Lorentzian and Gaussian spectral distributions p(ω), whereas the distance
reaches zero and revives in a damped oscillatory fashion for a uniform box distribu-
tion (Carnio et al., 2015), similarly to what one intuitively expects from couplings to
structured reservoirs (Lambropoulos et al., 2000; Walther et al., 2006; Haroche and
Raimond, 2006). In this sense, the finite support of the box distribution represents
an environment with pronounced structure, while in the other distributions the full
frequency spectrum contributes. From an information-theoretic point of view, the dis-
tance D(t) represents the auto-correlation function of just one of many state-dependent
time evolutions. For a state-independent analysis of the underlying dynamical map,
one would try to identify the pair of initial states which would maximize the increase
of the trace distance (Breuer et al., 2009).

4.4.3 Robustness of bipartite entanglement

For a complete analysis of the bipartite case, we refer to (Carnio, 2014), where the
influence of collective dephasing on arbitrary initial states is discussed in terms of
correlation rank and the concurrence, which measures the entanglement of arbitrary
mixed states (Wootters, 1998; Mintert et al., 2005). These results generalize the
discussions of the previous section in the context of the trapped-ion experiment. Bi-
partite states can be represented conveniently in a tetrahedron picture (Horodecki
and Horodecki, 1996), in which the entanglement, as well as the time evolution under
collective dephasing have clear geometric interpretations. In particular, for arbitrary
initial entangled states, a magnetic field direction can be identified, which preserves
the entanglement at all times (Carnio et al., 2015). There also exists an entire family
of entangled states whose entanglement remains time-invariant under arbitrary mag-
netic field directions—even if the states do evolve in time (Carnio et al., 2015). Under
the influence of strongly structured spectral distributions p(ω), entanglement can also
increase temporarily, which shows that the dynamics, as defined in equation (4.28),
can lose its separable character for intermediate time intervals.
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Furthermore, applications are discussed, such as the noise-assisted generation of
bipartite Werner states (see next section for a definition), which always have correlation
rank L = 4, by exposing a classical state of L = 2 to collective dephasing with
appropriate field direction. In a three-partite setting, the resulting Werner state can
then be used as a separable carrier for entanglement distribution (Chuan et al., 2012);
see section 2.1.2.

4.4.4 Time-invariant states: Multipartite Werner states

We identify a set of time-invariant states, characterized by the condition

ρ(t) = Ent,0[ρ(0)] = ρ(0), ∀t, (4.40)

which we require to hold for all orientations n of the external field. Using the permu-
tation invariance of the operators Θj , one finds that all permutations s ∈ SN , which
in operator form can be written as Vσ in equation (4.30), are invariant under the time
evolution (4.33) (Carnio et al., 2015). Here, {|0k〉, |1k〉} represents a basis of the kth
qubit. The set of time-invariant states under collective dephasing is given by all linear
combinations

ρW =
∑

σ∈SN
cσVσ. (4.41)

This set of states is known as the multipartite Werner states (Eggeling and Werner,
2001), with the defining property that they are invariant under local unitary transfor-
mations U⊗N (Weyl, 1950; Werner, 1989; Vollbrecht and Werner, 2001). The time-
invariance under collective dephasing applies to arbitrary directions of the external
field, which, given the invariance property of Werner states, is quite intuitive since
the rotation of the field can be compensated by such local unitary transformations.
The set of multipartite Werner states (4.41) identifies an (N ! − 1)-parameter family
of states which span a decoherence-free subspace (Lidar et al., 1998) under collective
dephasing. We consider any subspace that is completely insusceptible to the incoher-
ent dynamics a decoherence-free subspace, implying that this subspace may contain
mixed states.

This relates directly to a pure dephasing model, obtained from a microscopic de-
scription of non-interacting qubits, which are coupled, without exchange of excitations,
to a common bath of harmonic oscillators (Palma et al., 1996). This model is exactly
solvable and shows that collective interactions can lead to strongly enhanced decoher-
ence or complete suppression of decoherence (Palma et al., 1996; Fischer and Breuer,
2013). Decoherence can be enhanced by a factor of N2 compared to the decoherence
rates of individual qubits, in analogy to the collective decay of excited states, called
superradiance, which can occur when the coupling is dissipative (Dicke, 1954). On
the other hand, decoherence in the pure dephasing model is completely suppressed
for coherent superpositions of quantum states whose quantum numbers sum up to the
same value. This is indeed the case for all multipartite Werner states, since each term
of the permutations, as defined in equation (4.30), satisfies

∑
k ik =

∑
k iσ(k).



122 4. From local operations to collective dephasing: Behavior of correlations

This identifies the Werner states as a remarkable family of states characterized by
resilience to collective decoherence. Decoherence-free subspaces are considered use-
ful in the context of quantum memories, where a given superposition of states must
be conserved for long times (Lidar et al., 1998; Bacon et al., 1999). In a dynami-
cal scenario, which is required, for example, to describe quantum computations, the
decoherence-free subspaces are, however, fragile to perturbations and therefore do not
represent an experimentally feasible alternative to error correction methods (Bacon
et al., 1999).

Consequently, the identification of the time-invariant set of states is not sufficient.
A more promising alternative, which still needs further investigation, might be given
by the phenomenon of time-invariant entanglement outside of decoherence-free sub-
spaces, which was briefly mentioned in section 4.4.3; see also (Carnio et al., 2015). We
complement this result with the description of the decay of multipartite entanglement
properties under collective dephasing, as a function of the external field’s orientation.

4.4.5 Robustness of multipartite entanglement

Multipartite entanglement can be characterized in a hierarchical way, assessing the
number of parties which are entangled with each other (Levi and Mintert, 2013). The
definition of separability, given by equation (2.2), can be straight-forwardly extended
to a multipartite setting by defining a completely separable multi-particle state as a
state which can be written as a convex linear combination of product states (Linden
and Popescu, 1998; Mintert et al., 2005), that is

ρs =
∑

i

piρ
i
1 ⊗ · · · ⊗ ρiN . (4.42)

Otherwise the state is considered entangled. To express the number of parties which
are described by a non-separable superposition, the above definition is refined. A
k-separable state is a state of an N -partite quantum system which can be written as

ρk =
∑

i

piρ
i
A1
⊗ · · · ⊗ ρiAk , (4.43)

where A1, . . . , Ak represents an arbitrary division of the total N -partite Hilbert space.
If the state is N -separable, it is completely separable across any division of the Hilbert
space. Conversely, states with k = 1 are fully N -partite entangled, which, in an N -
partite system is commonly referred to as genuine multipartite entangled or genuine
multi-particle entangled.

Efficient separability criteria can be derived in form of inequalities, which avoid
the optimization over complicated convex-roof constructions2 (Gühne and Seevinck,

2One typically tries to characterize the entanglement of mixed states in terms of the pure states of
which it is decomposed. Since there exist many equivalent decompositions of a pure state into
mixed states, one minimizes the entanglement over all possible convex decompositions (Uhlmann,
1998). This commonly referred to as a convex-roof.
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2010; Huber et al., 2010). When expressed in an arbitrary basis, the elements of any
k-separable density matrix must satisfy the inequality (Gao et al., 2013)

∑

0≤i<j≤N−1

|ρ2i+1,2j+1| ≤
∑

0≤i<j≤N−1

√
ρ1,1ρ2i+2j+1,2i+2j+1 +

N − k
2

N−1∑

i=0

ρ2i+1,2i+1.

(4.44)

Solving for the largest integer k saturating this bound, we define keff ≥ k. For keff < 2,
the state contains genuine multi-particle entanglement, and the state may be separable
only if keff ≥ N (Gao et al., 2014).

We study the evolution of an initially multipartite entangled W -state (Dür et al.,
2000),

|W 〉 =
1√
N

(|10 . . . 0〉+ |01 . . . 0〉+ · · ·+ |0 . . . 01〉), (4.45)

under collective dephasing. Again, the time evolution of keff can be non-monotonic,
depending on the spectral distribution p(ω) (Carnio, 2014). Similarly to the results
discussed in the bipartite setting, we can control the entanglement properties of the
asymptotic state by changing the external magnetic field direction. The z direction
represents a natural axis for the state (4.45), since it defines the eigenbasis of each
individual qubit state, and if the magnetic field is chosen in this direction, the multi-
partite entanglement is perfectly preserved (Carnio et al., 2015). It is further possible
to numerically extract a finite angle θNPE which defines the allowed deviation from the
z axis to maintain multipartite entanglement in the asymptotic state. We find that
this angle is well described, as a function of N , by (Carnio et al., 2015)

θNPE = arctan

(
1√

N(N − 1)

)
. (4.46)

Analogously, the critical angle which defines the range of directions around the z
axis that certainly lead to preservation of at least bipartite entanglement follows the
relation

θE = arctan

(
1√
N

)
. (4.47)

General symmetry of the dephasing evolution under n→ −n, and rotational symmetry
around z, which also holds for the initial state (4.45), allow to characterize the resulting
keff using only the polar angle θ to the z axis, see figure 4.4. In general, the keff show
a non-monotonic distribution over the sphere of directions in R3.

Finally, we mention a special class of W states, equipped with the phase relations

|W̃ 〉 =
1√
N

N∑

i=1

ei2πk/N |1k〉, (4.48)
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Figure 5.13: Left: ke� in the stationary state obtained by application of the map (3.303.30)
on a 5-partiteW state for a sampling of all possible magnetic field directions. Right:
ke� of the stationary states ofN-partiteW states, withN = 2 . . . 10 qubits (particle
number given by the radius), for polar angles 0 6 ✓ 6 ⇡/2 of the magnetic field
direction with the z-axis. The lines represent the polar angles ✓MPE(N) for which
ke� = 1 (see eq. (5.205.20) and the related discussion in the main text).

A feature common to all dimensions is that a larger deviation from the preferred
direction implies an increase of the k-separability class of the stationary state. It
is however worth remarking that for N > 3 this increase is not monotonic: for a
certain polar angle the state might become at worst fully separable, but for a larger
angle the state might be (N - 1)-separable. In particular, for ✓ = ⇡/2, systems with
N < 6 have at worst a fully separable stationary state, while those withN > 6 have
at worst an (N-1)-separable stationary state, whichmeans that some entanglement
is still preserved.

Another interesting feature suggested by figure 5.135.13 (right) is that, the larger
the number of qubits, the smaller and closer to 0 the angle intervals where the
stationary state might be fully separable. In particular, the numerical data suggest
that the stationary state has still certainly some entanglement left (i.e. is certainly
not fully-separable) as long as ✓ < ✓E, where

✓E(N) = arctan
✓

1p
N

◆
. (5.19)

A similar observation can be made for those angles that ensure the preservation
of genuine multipartite entanglement in the stationary state. From Figure 5.135.13
(right) we might say that these angles become smaller as the dimension increases.
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is however worth remarking that for N > 3 this increase is not monotonic: for a
certain polar angle the state might become at worst fully separable, but for a larger
angle the state might be (N - 1)-separable. In particular, for ✓ = ⇡/2, systems with
N < 6 have at worst a fully separable stationary state, while those withN > 6 have
at worst an (N-1)-separable stationary state, whichmeans that some entanglement
is still preserved.

Another interesting feature suggested by figure 5.135.13 (right) is that, the larger
the number of qubits, the smaller and closer to 0 the angle intervals where the
stationary state might be fully separable. In particular, the numerical data suggest
that the stationary state has still certainly some entanglement left (i.e. is certainly
not fully-separable) as long as ✓ < ✓E, where
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A similar observation can be made for those angles that ensure the preservation
of genuine multipartite entanglement in the stationary state. From Figure 5.135.13
(right) we might say that these angles become smaller as the dimension increases.

22
33445566771010

� � � � � ��
����

�
�
�
�
��

�

����
� � � � � � � � � ��

22
33445566771010

� � � � � ��
����

�
�
�
�
��

�

����
� � � � � � � � � ��

22
33445566771010

� � � � � ��
����

�
�
�
�
��

�

����
� � � � � � � � � ��

� � � � � � � � ��
���
���
���
���
���
���

�

θ(
�
) θ���

θ�� � � � � � � � ��
���
���
���
���
���
���

�

θ(
�
) θ���

θ�

� π/� π/� �π/� π/�
�
�
�
�
�
�
�
�
��

θ

�

b)

Figure 4.4.: Decoherence and robustness of multipartite entanglement of a |W 〉-state (4.45),
subject to collective dephasing (4.39). The integer keff , defined in (4.44), is an
upper bound to the k-separability class of the asymptotic state. The resulting
distribution is rotationally symmetric around the z axis, and mirror symmetric
around the x−y plane, which is shown in a) for N = 5. Thus, the distribution of
keff can be characterized solely based on the polar angle angle θ of n with respect
to the z axis, which is shown for N = 2 . . . 10 in b). The solid lines represent the
angles (4.46) and (4.47), which provide lower bounds for the allowed deviation
from z, such that multipartite and bipartite entanglement, respectively, can be
preserved, as a function of N . Adapted from (Carnio, 2014; Carnio et al., 2015).



4. From local operations to collective dephasing: Behavior of correlations 125

where the |1k〉 denote states where all qubits are in the ground state, except for one
excited state at the kth position, in an arbitrary, but fixed ordering. These states
share the remarkable property that, despite themselves not being time-invariant, their
multipartite entanglement is completely preserved at all times under the collective
dephasing dynamics. This effect is not yet well understood, and the question re-
mains whether further states can be identified that share this property, We expect
this entanglement-preservation to be potentially more robust than decoherence-free
subspaces, since it does not require complete time-evolution invariance. For further
discussions and details we refer to (Carnio, 2014; Carnio et al., 2015).

4.5 Discussion

In the previous chapter, we had detected quantum discord with the help of local op-
erations, which was based on a local dephasing operation that destroyed quantum
discord. Conversely, in the present section, we discussed the possibility to create dis-
cord with local operations. Introducing the correlation rank, we were able to derive
strict boundaries for the set of discordant states which can be created with local opera-
tions. Classically correlated dephasing processes, which occur naturally in trapped-ion
experiments, can, however, generate separable states with nonzero discord, whose cor-
relations are not subject to these bounds.

We further developed an analytical description of a general, multipartite collec-
tive dephasing process, which describes an important noise process in an intuitive
ensemble-average approach to noisy quantum systems. The resulting dynamics de-
scribes effective, noise-induced atom-atom interactions which can generate classically
correlated states and ensure the preservation of entanglement. Most interestingly,
the dynamics allows to identify states with time-invariant entanglement even beyond
decoherence-free subspaces, that is, the states do evolve in time, but their entangle-
ment remains constant. These states have not yet been systematically explored in a
multipartite scenario, and the measure of the set of states exhibiting this feature is so
far unclear.





5 Quantum phase transition
in a family of
quantum magnets

We analyze the role of the excitation spectrum for the quantum phase transition in
the spin-chain model, describing a quantum magnet with variable-range interactions.
Developing a variational mean-field ansatz we reproduce the semiclassical backbone of
the quantum spectrum with simple analytical tools. The semiclassical result is exact
in certain limits, and further provides an intuitive interpretation of the second-order
quantum phase transition, which affects the entire excitation spectrum.

5.1 Variable-range quantum magnets: From Ising to Lipkin-Meshkov-
Glick

Recalling section 2.6, we had introduced quantum phase transitions as changes of a
material’s macroscopic character (phase) that are induced by changes of an external
parameter at zero temperature, and not, as “classical” phase transitions by thermal
fluctuations at finite temperatures. We had also introduced the example of a ferro-
magnetic material that behaves paramagnetically, as soon as the external field ex-
ceeds a certain threshold value. Since, by definition, these transitions occur at zero
temperature, the quantum mechanical ground state plays an important role in their
description.

In section 3.4.3, we saw that single-spin dynamics can be made susceptible to the
ground-state quantum correlations characteristic of a quantum phase transition. To
link ground-state properties to the locally observable dynamics, we have to take the
excitation spectrum into account. In this chapter, we revisit this model and describe
its features by focussing on the complete energy spectrum rather than only on the
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ground state. Let us first recall the model.

5.1.1 A one-parameter family of models

We consider a family of spin chain models described by the Hamiltonian

H = −
N∑

i,j=1
(i<j)

Jijσ
(i)
x σ(j)

x −B
N∑

i=1

σ(i)
y , (5.1)

where σ
(i)
x and σ

(i)
y are Pauli spin operators of the ith spin, and the spin-spin interac-

tions are algebraically decaying,

Jij =
J0

|i− j|α . (5.2)

The model is continuously parametrized by α ∈ [0,∞), which determines the range
of the spin-spin coupling. Roughly speaking, and disregarding the term proportional
to B, for J0 > 0, the energy minimizes when two neighboring spins align in parallel.
In this case, the model describes a ferromagnet. Conversely, for J0 < 0, neighboring
spins favor opposite orientations, and the model describes an anti-ferromagnet.

The properties of the system are determined by the competition between the two
terms that enter the Hamiltonian (5.1). On the one hand, the strength of the internal
spin-spin coupling (depending on the spins’ relative orientation along the x direction)
is determined via the exchange interaction by the term J0 (Cohen-Tannoudji et al.,
1977b). On the other hand, a paramagnetic contribution to the total energy is gener-
ated by an external, transverse (in y direction) magnetic field with strength B. The
relative strength of these two interaction terms determines the system’s microscopic
ordering, which can become observable on macroscopic scales. When B/J0 � 1, the
spins aim to minimize their potential energy with respect to their neighbors, whereas,
for B/J0 � 1, the spins follow the external magnetic field’s orientation. Conse-
quently, for increasing B/J0, the system undergoes a quantum phase transition from
an (anti-)ferromagnet to a paramagnet.

As was already mentioned in section 3.4.3, the Hamiltonian exhibits a Z2 symmetry,
which reflects the invariance under a 180◦ rotation around the y axis,

Z2 =

N⊗

j=1

eiπσ
(j)
y /2 =

N⊗

j=1

iσ(j)
y . (5.3)

This rotational invariance of the Hamiltonian is expressed by

[H,Z2] = 0, (5.4)

and the rotation effectively leads to the substitution of all of the local spin operators
as follows:

Z2σ
(i)
x Z†2 = −σ(i)

x , Z2σ
(i)
y Z†2 = σ(i)

y , Z2σ
(i)
z Z†2 = −σ(i)

z . (5.5)
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Furthermore, the system is invariant under a mirror operation with respect to the
center of the chain, described by replacing the indices by

i −→ N − i+ 1. (5.6)

While for such systems only few results are known for arbitrary, intermediate values
of α (Dyson, 1969; Cannas and Tamarit, 1996; Koffel et al., 2012), the model reduces
to very well known models in the special cases α = 0 and α→∞.

5.1.2 Special case: Nearest-neighbor Ising model

For α → ∞, the spin-spin interactions are limited to nearest neighbors. In this case,
we recover the well-known one-dimensional quantum Ising model (Ising, 1925),

HI = −J0

N−1∑

i=1

σ(i)
x σ(i+1)

x −B
N∑

i=1

σ(i)
y . (5.7)

There exists an exact solution for this model, which can be obtained by employ-
ing a Jordan-Wigner transform, leading to a system of noninteracting fermions (Jor-
dan and Wigner, 1928). The quantum phase transition from the symmetry-broken
(anti-)ferromagnetic phase to the symmetric paramagnetic phase occurs at the critical
field B = |J0| (Sachdev, 1999). A semiclassical intuition for the different symmetries
of the two phases will be provided in section 5.4.4.

5.1.3 Special case: Fully-connected Lipkin-Meshkov-Glick model

For α = 0, all spins are coupled to each other with the same strength—the interaction
range is infinite. In this case, one can combine all spins into one large spin: We
introduce

S =
1

2

N∑

i=1

σ(i), (5.8)

with σ(i) = (σ
(i)
x , σ

(i)
y , σ

(i)
z ), to rewrite the Hamiltonian as1

HLMG = −2J0S
2
x − 2BSy +

J0

2
NI. (5.9)

In this limit we recover the Lipkin-Meshkov-Glick model (Lipkin et al., 1965; Meshkov
et al., 1965; Glick et al., 1965). In addition to the Z2 symmetry of the general model,
the total angular momentum S2 becomes a conserved quantity, since it commutes
with all of the components of S. Exact analytical solutions exist for special cases
(Lipkin et al., 1965), and can, in principle, generally be obtained algebraically (Pan
and Draayer, 1999; Links et al., 2003) using a “Bethe ansatz” (Bethe, 1931). This is,

1The final term proportional to the identity is caused by restricting to i < j in the first term in (5.1).
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however, a rather complicated task in practice, and in many cases becomes computa-
tionally more expensive than numerically exact diagonalization (Ribeiro et al., 2007).
The model further allows for an efficient perturbative treatment for large N . In this
limit, the total angular momentum S becomes larger and, eventually, is effectively
described by a classical Hamiltonian (Leyvraz and Heiss, 2005). Semiclassical mean-
field approximations are derived most efficiently by employing spin coherent states
(Ribeiro et al., 2007), which we will introduce in section 5.4.2. In fact, this ansatz is
exact in the thermodynamic limit N →∞ (Ribeiro et al., 2008). A suitable method to
gain an expansion of quantum corrections in orders of 1/N is the “Holstein-Primakoff
mapping” onto a system of bosons (Holstein and Primakoff, 1940). The semiclassical
solution based on spin coherent states constitutes the zeroth order of this expansion
(Dusuel and Vidal, 2005).

5.2 Single-spin signatures of a quantum phase transition

Let us start by briefly recalling the results of section 3.4.3. We considered a partition
of the spin chain into the left-most spin, which was considered an easily controllable
local subsystem, and the rest of the chain. The bipartite correlations across this split
are expected to indicate the quantum phase transition. To detect these correlations
with reasonable experimental overhead, we implement the local detection protocol. By
preparing the system in the ground state and locally dephasing the left-most spin, the
incoherent counterpart to the ground state is created. However, this locally dephased
state may still contain coherences in the energy eigenbasis, which allow the state to
evolve in time, and the time evolution serves as a witness for the correlations of the
ground state.

The dynamics of the locally dephased state represents the key feature which maps
signatures of the correlations, and with it of the quantum phase transition, to the lo-
cally controllable subsystem. This evolution, in turn, is determined by the distribution
of excited states that are populated when the local dephasing operation is applied to
the ground state.

In this section, we study the effect of the dephasing on the ground state, to bet-
ter understand the mechanism behind the successful local detection of ground-state
quantum correlations via the coupled spin dynamics.

5.2.1 Distribution of dephasing-induced excitations

The distribution of excitations which are induced by locally dephasing the pure ground
state |Ψ0〉 in the eigenbasis of the accessible spin may give us a first hint on why the
single-spin dynamics is much richer in some parts of the parameter range than in
others. As noted in section 3.4.3, due to the Z2 symmetry of the Hamiltonian, the
single-spin state is always diagonal in the eigenbasis {| ↑y〉, | ↓y〉} of σy. Thus, the
locally dephased state ground state is given by

ρΦ = (Φ⊗ I)|Ψ0〉〈Ψ0| =
∑

ϕ∈{↑y,↓y}
(|ϕ〉〈ϕ| ⊗ I) |Ψ0〉〈Ψ0| (|ϕ〉〈ϕ| ⊗ I) . (5.10)
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B/J0 = 0.01

B/J0 = 1.0

B/J0 = 10.0

cj = h j |⇢�| ji

Figure 5.1.: Dephasing-induced excitations of the ground state for α = 1 and N = 10. The
coefficients cj , equation (5.11), which quantify the overlap of the locally dephased
ground state (5.10) with the energy eigenstates, demonstrate the broad excitation
spectrum in the vicinity of the phase transition (center), while hardly any (top)
or regularly spaced (bottom) excitations are populated far away from the phase
transition.

To analyze the excitation spectrum of ρΦ, we introduce the overlap

cj = 〈Ψj |ρΦ|Ψj〉, (5.11)

with the eigenstates |Ψj〉 of H. The distribution of dephasing-induced excitations is
shown in figure 5.1 for a ferromagnetic system, J0 > 0. We find that for very weak ex-
ternal fields B, the excitations hardly extend beyond the ground state manifold, while
for very strong external fields, the band structure of paramagnets can be recognized.
These equally-spaced bands are determined by the number of spins which align against
the direction of the external field. The energy of the bands increases linearly with B,
leading to energy bands around the values of E/J0 = −NB,−(N−2)B,−(N−4)B, . . . ,
as we will discuss later in equation (5.64). This means that beyond the populated bands
at (E−E0)/J0 = 40, 80 there exist energy bands at (E−E0)/J0 = 20, 60 which are not
populated. This is explained by the symmetry of the ground state and the dephasing
operation, as we will see in the following.
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Most interestingly, in the intermediate range, when B ' J0, the excitations are
broadly distributed over the entire energy spectrum. This is also nicely seen in fig-
ure 5.2, where the dephasing-induced population cj of excited states is plotted as a
function of the index j, which labels the excited states according to their correspond-
ing energy eigenvalues. Naturally, such a broad population distribution leads to the
most complex dynamics, which is responsible for the local signature of the quantum
phase transition, observed in section 3.4.3.

Now let us come back to the reason for the omission of some excited states in the
dephasing-induced excitation spectrum. Being an eigenstate of H, the ground state
can be defined to have definite parity under the Z2 rotation, Z2|Ψ0〉 = ±|Ψ0〉. The

operation Φ̃ = (Φ⊗ I) as defined in equation (5.10) does not break the Z2 symmetry,
since it operates in the y basis:

Φ̃(Z2ρZ
†
2) = Z2Φ̃(ρ)Z†2 . (5.12)

This means that only half of the excitation spectrum can be reached by the local
dephasing operation, since we are limited to stay within the parity subspace of the
ground state.

The dephasing-induced population of excited states is an important ingredient to
understand the strong local signal close to the quantum phase transition, shown in
figures 3.11 and 3.12. The complex dynamics which we expect from the broad spectral
distribution of excitations in the dephased state can be considered more likely to
reveal global properties to the local subsystem. For weak external fields we see only
few populated excited states, which nevertheless does not exclude the possibility that
there might be non-trivial time evolution of the dephased state.

Another important point to consider in this context is the partial trace operation.
How do we know that tracing over the remaining spins does not hide all the interesting
dynamics of the total dephased state from the local dynamics of the accessible spin?
In order to study the full dynamics of the dephased state, we consider the global
time-autocorrelation function

C(t) =
1

P(ρΦ)
Tr{ρΦU(t)ρΦU

†(t)}, (5.13)

with U(t) = e−iHt/~. We have renormalized this function with the purity P(ρΦ) =
Trρ2

Φ to ensure that C(0) = 1. This function is directly related to the coherences of
ρΦ in the energy eigenbasis, which govern the time evolution. This can be seen from
the following decomposition:

C(t) =
1

P(ρΦ)

∑

ij

|〈Ψj |ρΦ|Ψi〉|2e−i(Ei−Ej)t/~. (5.14)

In figure 5.3, we display the maximum deviation from the initial state given by the
minimum value of C(t). This confirms that, indeed, for very weak and very strong
B, almost no dynamics is observable on the global level, and the fact that we do not
observe dynamics on the local level is not caused by locally monitoring only a small
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(j � 1)/(2N � 1)

N = 10

N = 9

N = 8

N = 7

Figure 5.2.: Dephasing-induced excited-state populations cj , equation (5.11), in the dephased
state ρΦ, equation (5.10), for α = 1. The y-axes show the (renormalized) index
of the excited state, which is why the paramagnetic energy bands seem broader
than they are when plotted against the energy. Again, we see mostly ground-
state contributions when B is small. Most prominently, the broad distribution
around B ' J0 confirms the broad distribution of excited-state populations close
to the quantum phase transition. The plot further shows the rapid convergence
with increasing N , due to the exponentially increasing Hilbert space dimension.
For values of B/J0 & 10, we observe how excited states are skipped due to the
Z2 symmetry of the dephasing operation; see discussion around equation (5.12).
The color code is logarithmically scaled and normalized to 100 steps between the
respective minimum and maximum values of cj , increasing from blue to red.



134 5. Quantum phase transition in a family of quantum magnets

10-1 100 101

B/J0

0.0

0.1

0.2

0.3

0.4

0.5

1
−

m
in
C

(t
)

3

4

5

6

7

Figure 5.3.: The global time-autocorrelation function demonstrates that even on the global
level, no dynamics can be observed when B is very large or very small. This is
plotted for various values of N (see legend) with J0 > 0 and α = 1.The strongest
deviation from the initial state is found around B ∼ J0, which agrees with the
findings of the local single-spin dynamics, shown in figure 3.11.

part of the full system. The most pronounced time evolution of the dephased ground
state is observed at values of B ' J0. In order to find out what causes such rich
dynamics, we will study the full spectrum of H in the next section.

5.3 Spectral analysis

The dephasing-induced populations seen, for example, in figure 5.1, already indicate a
significant qualitative change of the excitation spectrum as the external field is scanned.
This intuition is confirmed already for small system sizes, when we plot the full spec-
trum in figure 5.4. The red and black plotted spectral lines separate odd and even
parity subspaces of the Z2 operation, respectively. For weak external fields B, pairs
of eigenstates, comprised of states from both parity subspaces, approach each other
energetically. For example, in the thermodynamic limit (N → ∞), the ground state
becomes two-fold degenerate below B . J0. In fact, the magnetic field above which the
ground-state degeneracy is suddenly lifted, defines the critical point of the quantum
phase transition. Already in finite-size systems, we observe at intermediate B that the
levels within each subspace start to bend, inducing avoided crossings due to nonzero
couplings between the eigenstates. The two subspaces, however, evolve independently
of each other and the lack of interaction causes frequent direct crossings between two
levels from different subspaces. When B increases even further, the two subspaces
occupy completely disjunct spaces of the energy spectrum. The paramagnetic bands
alternate from one subspace to the other as the energy is increased.

Our initial motivation to dig into the spectral features of this spin chain model
was to explain the success of the local detection method in revealing the ground-state
correlations to the single-spin dynamics. The effects observed in section 3.4.3 are
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Figure 5.4.: Spectra of the spin chain Hamiltonian (5.1) for α = 1, J0 > 0 and N = 5 (left)
and N = 8 (right), respectively. Energy eigenvalues are plotted in red (black)
when the corresponding eigenstate belongs to the odd (even) parity subspace
with respect to the Z2 operation, as defined in equation (5.3). We observe the
onset of two-fold degeneracy (which occurs in the limit N → ∞) comprising
both subspaces for B � J0, broadly distributed spectra around B ' J0, with
frequent avoided crossings within each subspace, and paramagnetic energy bands
at B � J0, which have definite parity.

well explained by the interplay of dephasing-induced excitations and complex level
structures in the vicinity of the quantum phase transition. The characteristic spectral
features that accompany this quantum phase transition are intriguing, independently
of their relevance for the local detection method. For arbitrary α, the system is poorly
understood since previous studies mostly focussed on the limiting cases of the Ising
and Lipkin-Meshkov-Glick models. We thus dedicate the rest of this chapter to the
development of a general understanding of the spectral features of the spin chain
Hamiltonian as a function of the parameters J0 and α while the external field B is
being varied. After a brief, qualitative analysis of the level statistics in the next two
subsections, we develop a semiclassical ansatz to describe features of the excitation
spectrum, which we relate to the quantum phase transition in section 5.4.

In order to extract statistical information about the level dynamics, we run statis-
tical analysis of the nearest-neighbor spacings. This may allow us to identify chaotic
structures in the quantum spectrum; recall section 2.5.2. We remark, however, that
in this section, we restrict to elementary analysis of the spectral features, whose goal
is to establish a qualitative understanding without necessarily providing a stringent
random-matrix analysis which would be able to extract quantitative statements. The
results of the semiclassical mean-field analysis, presented in section 5.4, are indepen-
dent of the spectral analysis in the present section.
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B/J0 = 0.01

B/J0 = 3.00

B/J0 = 9.95

B/J0 = 100.00

E/J0

Figure 5.5.: Density of states ρ(E), equation (5.17), and its integral, the counting func-
tion (5.15), for a spin chain (5.1) with parameters N = 12, α = 1, J0 > 0.
The numerically obtained density of states shows a transition from a broadly dis-
tributed, asymmetric ferromagnetic spectrum at B = 0 (see also figure 5.13 later
in this chapter) to a paramagnetic spectrum, characterized by strongly degenerate,
equally-spaced energy bands at B � J0.
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5.3.1 Density of states

We begin with an analysis of the staircase or counting function

N(E) =

2N−1∑

i=0

θ(E − Ei), (5.15)

where θ denotes the Heaviside function. The counting function is related to the density
of states ρ(E) as

N(E) =

∫ E

0

ρ(E′)dE′, (5.16)

and the density of states is given by

ρ(E) =

2N−1∑

i=0

δ(E − Ei). (5.17)

Both quantities can be obtained numerically from the generated spectra. Figure 5.5
shows the normalized density of states, as well as the corresponding counting function
for different values of B in a ferromagnetic chain of N = 12 spins at α = 1. At B = 0,
the spectrum is strongly influenced by α. The case α = 1 leads to an extremely broadly
distributed ferromagnetic spectrum. We will see later in this chapter, that this is no
longer the case when α becomes very large or very small, when many degeneracies
emerge. The influence of α diminishes with increasing B. In the opposite limit, when
B � J0, the counting function shows a regular staircase with consecutive steps of
equal spacings. The height of the steps are, however, not equal, since the center bands
of the paramagnetic system are more strongly degenerate than the outer values, which
can already be anticipated from the two top plots in figure 5.4. In the intermediate
regime, for moderate values of B, a smooth interpolation between the two cases can
be observed.

5.3.2 Level statistics

Trying to identify signatures of quantum chaos, we finally turn to an analysis of the
level statistics. To obtain significant statistics, we collect the nearest neighbor spacings
over different intervals of B. At each fixed value of B, the nearest-neighbor spacings

si = Ei+1 − Ei are renormalized as si/s̄ with the average value s̄ = 2−N
∑2N−1
i=0 si.

This simple form of spectral unfolding ensures that the statistics of systems with
different energy scales can be compared (Haake, 2001). We emphasize again that the
purpose of the present section is only to provide a brief qualitative impression of the
level dynamics. For a more thorough analysis, the unfolding needs to be performed
on the basis of a local mean value of the level spacings, whereas the range would
have to be tested through the robustness of the resulting level statistics (Haake, 2001).
Moreover, in the present section we only distinguish between the two parity subspaces,
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Figure 5.6.: Spectrum of a N = 11, J0 > 0, and α = 1 spin chain, described by (5.1).
The statistical analysis of the nearest-neighbor level spacing distributions P (s)
shows a strong cusp in the vicinity of s = 0, followed by an exponential decay for
s > 0, for 0.01 ≤ B/J0 ≤ 0.7 (bottom left). In the regime 0.7 ≤ B/J0 ≤ 10,
level repulsion becomes more prominent. However, the level statistics (top left)
does not match a Wigner-Dyson distribution (2.19); compare to predictions from
random matrix theory in figure 2.7. The integrated level spacing distributions
(top and bottom right) confirm this observation.
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whereas an unambiguous identification of chaotic signatures requires that all known
symmetries are removed. Apart from the Z2 symmetry, the model discussed here is
mirror symmetric with respect to the center spin, see section 5.1.1.

Figure 5.6 provides qualitative intuition of the level statistics using the example of
N = 11, α = 1 and J0 > 0. Over the range 0.01 ≤ B/J0 ≤ 0.7 we see exponential
decay of the nearest-neighbor probability distribution P (s). This is expected for un-
correlated level statistics, which lead to a Poissonian distribution P (s) and indicate
regular dynamics; see equation (2.18). However, we observe a strong cusp for very
small values of s, which is not predicted by the Poissonian distribution. This cusp
persists even when we separate the two parity subspaces and indicates the tendency
to form degenerate energy levels in the ferromagnetic spectrum. A possible expla-
nation for this cusp could be the system’s mirror-symmetry, which leads to further
degeneracies.

When we move on to the intermediate range 0.7 ≤ B/J0 ≤ 10, we find clear sig-
natures of level repulsion in the individual parity subspaces. Nevertheless, the distri-
bution does not match a Wigner-Dyson distribution (2.19), as apparent, for example,
from the nonzero value of P (s) at s = 0. Again, the remaining mirror symmetry cer-
tainly leads to degenerate levels, but it remains unclear whether the spectrum would
follow a clean Wigner-Dyson distribution if this symmetry was removed. The figure
also shows the integrated level spacing distributions, which often allow for a more pre-
cise comparison to Wigner-Dyson and Poissonian distributions. Yet, the present case
constitutes an example of a mixed level statistics, in which neither completely regular
nor to totally chaotic structures can be identified. We are limited by the exponentially
increasing Hilbert space dimension, which complicates exact numerical diagonaliza-
tion.2 Conversely, for small systems, the limited number of levels at a single value of
B is not sufficient to obtain significant statistical data. To circumvent this, we mix
the statistics of many systems over a range of values for B, which complicates the
extraction of clean signatures of either regular or chaotic structures.

The spectral analysis provided in this section has provided a qualitative understand-
ing of the essential features of the quantum spectrum throughout different values of the
external field parameter B. In the next section, we describe features of the excitation
spectrum by developing a semiclassically motivated, variational ansatz.

5.4 Semiclassical mean-field description

We now turn to the main part of the present chapter. We begin by reviewing semi-
classical approximations for spin systems, and their implications for quantum phase
transitions.

2Exact numerical diagonalization (Johansson et al., 2013) of the full Hamiltonian (5.1) for N = 12
spins, described by a complex-valued 4096× 4096-matrix, requires about 1 GB of RAM, whereas
each additional spin increases the memory requirements by at least a factor of two.
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5.4.1 Semiclassial approximations and quantum phase transitions

In section 2.5.1, we had already mentioned different approaches to derive semiclas-
sical limits of quantum mechanics. One class of such approaches is represented by
mean-field theories. By discarding the quantum fluctuations, the quantum mechan-
ical Hamilton operator is transformed into a classical Hamiltonian. The magnitude
of these fluctuations typically decreases as the number of particles increases, and the
classical model is recovered in the thermodynamic limit, N → ∞; see for example
(Raghavan et al., 1999; Pitaevskii and Stringari, 2003; Wen, 2004; Leyvraz and Heiss,
2005; Shchesnovich and Konotop, 2007; Caprio et al., 2008).

This is realized effectively by replacing operators with complex numbers, which
in turn correspond to the operator’s expectation value, when, for example, the trial
state is chosen as a coherent state (Zhang et al., 1990; Gnutzmann and Kuś, 1998;
Caprio et al., 2008). Thus, in many cases, a mean-field approximation can be formally
understood as a variational ansatz, where the classical Hamiltonian corresponds to
the energy expectation value of the Hamilton operator, and suitably chosen variational
parameters of the trial function emerge as the coordinates of the corresponding classical
system (Botet et al., 1982; Wen, 2004; Dusuel and Vidal, 2005). To achieve this also
in the context of spin systems one defines formal analogues of coherent states based
on the spin algebra, which we will review in the next section. A variational ansatz in
terms of such “spin-coherent states” can then be interpreted as a semiclassical limit
of the spin model (Balakrishnan and Bishop, 1985; Schliemann and Mertens, 1998;
Ribeiro et al., 2007; Ribeiro et al., 2008). Trial functions for such variational mean-
field approaches are mostly product states, in which all particles are described by the
same single-particle state. Such an ansatz completely neglects the correlations between
the particles. Yet, mean-field approaches have successfully provided valuable insight
into various systems, ranging from magnetic systems (Curie, 1895; Weiss, 1907) to
dilute Bose-Einstein condensates (Bogoliubov, 1947).

Semiclassical descriptions become especially relevant in the context of phase tran-
sitions, which describe the discontinuous change of a system’s properties in the ther-
modynamic limit—when mean-field approaches typically yield good results. Charac-
teristic features of a quantum phase transition (recall section 2.6) are

(i) non-analytic behavior of the ground state energy, and

(ii) a closing energy gap between the ground state and the first excited state.

Both of these phenomena occur when the external control parameter reaches its critical
value. Using the Feynman-Hellmann theorem3 (Feynman, 1939), feature (i) can be
linked to the discontinuous behavior of an order parameter at the critical value (Caprio
et al., 2008). The order parameter, in turn, reflects the spontaneous breaking of
symmetry, when the critical field is crossed—in analogy to the well-known classical
theory of thermal phase transitions (Landau and Lifshitz, 1969).

3The Feynman-Hellmann theorem determines the change of a Hamiltonian’s energy eigenvalue as a
function of a parameter of the Hamiltonian (Feynman, 1939).
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All of these features are intuitively illustrated at the hand of the example of a
double-well potential with tunable barrier—we will encounter such structures later
in this chapter; an illustration can be found in figure 5.10 a). In fact, semiclassical
methods, as described above, often map the quantum model undergoing the quantum
phase transition onto such a problem (Leyvraz and Heiss, 2005; Caprio et al., 2008).
The barrier then emerges exactly when the control parameter drops below its critical
value. Above this value, there is no barrier, and the minimum is always found at the
center of the potential. This implies that in this case, the ground state is symmetric
under reflections with respect to the potential’s symmetry axis. Below the critical
value, when the barrier appears, one finds two degenerate potential minima, with
their associated ground states being localized in the respective left and right well.
Hence, below the critical value, the symmetry of the two ground states is broken. The
nonzero displacement (the ground-state expectation value) from the potential center
reflects this observation and can be interpreted as an order parameter.

In the above example the ground state becomes two-fold degenerate in the symmet-
ric phase, thus, as anticipated in (ii), the energy gap closes. However, the double-well
potential also entails consequences for the excited states, which are, again, most effi-
ciently described by semiclassical methods. When the barrier appears, the fixed point
at the potential center becomes unstable. Hence, the energy at the top of the bar-
rier separates the phase space into three regions and a separatrix emerges (Ozorio de
Almeida, 1988). For energies below the separatrix the motion is constrained to either
one of the two wells, which corresponds to the symmetry-broken phase. Above this
energy threshold, the trajectories explore both sides of the barrier and the symmetry
is restored, similarly to the case where no barrier was present. Close to the separatrix
energy, the periods of the classical orbits diverge, which, from semiclassical correspon-
dence, leads to a diverging density of states of the associated quantum system; see, for
example, (Tennyson et al., 1986; Leyvraz and Heiss, 2005). This is a direct extension
of (ii) to higher excited states, and is therefore labelled an excited-state quantum phase
transition (Caprio et al., 2008; Bastidas et al., 2014).

The singularity of the ground state at a given value of the external control param-
eter can be considered a boundary between phases, which can be distinguished via
the ground-state expectation value of a suitably chosen order parameter. Thus, the
ground state exhibits qualitatively different properties, with macroscopic signatures,
depending on the value of the order parameter. In the case of excited-state quantum
phase transitions, the properties that characterize the “phase” of the respective ex-
cited state can only be assessed via dynamical quantities, as becomes apparent from
the above semiclassical illustration (Caprio et al., 2008; Engelhardt et al., 2015).

In this dissertation, we will analyze features of the quantum phase transition that
manifest in the excitation spectrum by developing a variational product-state ansatz
for the spin chain Hamiltonian (5.1). First, we generalize the commonly employed
mean-field ansatz of coherent spin states to a multi-variable product state. This leads
to an high-dimensional energy landscape which we can optimize numerically. Second,
by introducing physically motivated constraints, we reduce the problem to a series
of one-dimensional optimization problems (each one characterized by a specific spin
configuration), which can be treated analytically. This multi-configurational mean-
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field ansatz is able to reproduce key features of the quantum model, including the
second-order quantum phase transition.

5.4.2 Spin-coherent states

Coherent states are well known in quantum optics for the description of laser light
(Glauber, 1963; Klauder, 1963; Sudarshan, 1963). They form an overcomplete basis of
states of the quantum harmonic oscillator, describing, for instance, a single light mode.
Their expectation values of momentum and position follow the classical equations
of motion,4 and the quantum uncertainty which defines the spread of the state in
phase space remains constantly at the lowest possible value, saturating Heisenberg’s
uncertainty relation (Heisenberg, 1927). Hence, coherent states behave very classically.
Formally, they can be created by a coherent displacement of the vacuum—or in the
language of the harmonic oscillator, the state of zero excitations. For further details,
see (Mandel and Wolf, 1995; Scully and Zubairy, 1997; Schleich, 2001).

In close analogy, such states can be defined for spin-1/2 systems (Radcliffe, 1971;
Arecchi et al., 1972). To this end, we first consider total angular momentum eigenstates
of a collection of N spin-1/2 particles. The eigenvalues of S2 are given by l(l+ 1) with
−N/2 ≤ l ≤ N/2, and for each l the 2l+1 sublevels are characterized by the eigenvalue
m = −l,−l + 1, . . . , l − 1, l via the relation Sz|l,m〉 = m|l,m〉. The states |l,m〉 are
denoted Dicke states (Dicke, 1954), and for l = N/2 they contain N/2+m particles in
the excited state while the remaining N/2−m particles are in the ground state. These
states were first introduced to describe the influence on the photon emission rate of a
collection of two-level atoms subject to coupling to a common electromagnetic field,
which can lead to strongly enhanced radiation. We have already briefly commented on
this effect, called superradiance (Dicke, 1954), when we discussed collective dephasing
processes in section 4.4.4; note also the direct correspondence of the Dicke states and
the projectors that occur in the spectral decomposition (4.31).

All Dicke states can be generated by multiple applications of the raising operator
S+ to the respective ground state |l,−l〉, which has the lowest possible value of m,
and we define S± = Sx ± iSy (Mandel and Wolf, 1995). We further note that the
spectrum of the Dicke states resembles the equidistant spectrum of the quantum har-
monic oscillator. In the spirit of this analogy, we can now formally introduce an atomic
displacement operator (Arecchi et al., 1972)

D(z) = exp(ζS+ − ζ∗S−), (5.18)

where z = tan |ζ|ei arg ζ , to define a spin coherent state

|l, z〉 = D(z)|l,−l〉, (5.19)

as a displaced ground state. These states are the analog of the well-known coherent
states of the boson field,5 and sometimes (for reasons that will become clear soon) they

4This is a result of Ehrenfest’s theorem for the special case of a quadratic potential (Ehrenfest,
1927).

5Note, however, that spin coherent states are not eigenstates of S−, but instead of a much less
intuitive linear combination of S− and Sz (Arecchi et al., 1972).
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are referred to as Bloch states or atomic coherent states (Arecchi et al., 1972; Mandel
and Wolf, 1995). In the special case l = N/2, these states reduce to the rather simple
expression

|N/2, z〉 =

N⊗

i=1

1√
1 + |z|2

(| ↓〉(i) + z| ↑〉(i)). (5.20)

As they form a pure product of identical single-spin states, these states can be repre-
sented conveniently via the Bloch vector of the single-spin states (Bloch, 1946). The
parameter z can be identified with the Bloch vector coordinates via z = cot(θ/2)e−iφ,
which yields the expectation values

〈N/2, z|Sx|N/2, z〉 =
N

2
sin θ cosφ, (5.21)

〈N/2, z|Sy|N/2, z〉 =
N

2
sin θ sinφ, (5.22)

〈N/2, z|Sz|N/2, z〉 =
N

2
cos θ, (5.23)

and, thus, we rewrite

|N/2, z〉 = |θ, φ〉 =

N⊗

i=1

[
sin

(
θ

2

)
| ↓〉(i) + cos

(
θ

2

)
e−iφ| ↑〉(i)

]
. (5.24)

We see that this decomposition is completely general on the level of a single spin (N =
1), hence, any pure state of a spin-1/2 particle can be written as a spin coherent state.
The Bloch vector representation can be generalized to arbitrary l, where l generally
enters as the length of the Bloch vector (Mandel and Wolf, 1995). Spin coherent
states further form an overcomplete basis, and represent wavepackets of minimum
uncertainty with respect to the components of the rotated total angular momentum,
where the angles of rotation correspond to the angles characterizing the Bloch vector
(Arecchi et al., 1972).

5.4.3 Multidimensional numerical search for critical points

Considering the spin-spin interactions in the variable-range quantum magnet (5.1),
we do not necessarily expect that the symmetry of the spin-coherent states (5.24) in
their standard construction applies, that is, it is unlikely that all spins align along
the same direction and can be characterized by a single Bloch vector. Instead, we
will formulate a variational ansatz which allows to tune the orientation of individual
spins independently. Furthermore, we see from the Hamiltonian (5.1) that the energy
expectation value does only depend on the Bloch vector’s x and y components, but
not on the z component. Hence, to analyze the energy landscape of the variable-range
quantum magnet semiclassically, we suggest a product state of individual states of the
form

|Ψ(φ)〉 =

N⊗

i=1

|φi〉, (5.25)
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where φ = (φ1, . . . , φN ) are the local angles characterizing the single spin states

|φi〉 =
1√
2

(
| ↓〉(i) − ieiφi | ↑〉(i)

)
. (5.26)

The states |φi〉 can be interpreted as spin coherent states for N = 1 and take the
usual form, equation (5.24), upon replacing θ → π/2 and φ → π/2 − φi. Using
equations (5.21) to (5.23), the expectation values of the Pauli matrices yield the Bloch
vector coordinates6

〈φi|σx|φi〉 = sinφi, (5.27)

〈φi|σy|φi〉 = cosφi, (5.28)

〈φi|σz|φi〉 = 0. (5.29)

The ansatz was chosen such that it parameterizes the xy plane without adding unnec-
essary variables in the z direction. Using this ansatz and (5.1), the energy expectation
value per site yields

E(φ) =
1

N
〈Ψ(φ)|H|Ψ(φ)〉 = −J0

N

N∑

i,j=1
(i<j)

sinφi sinφj
|i− j|α − B

N

N∑

i=1

cosφi, (5.30)

which represents an N -dimensional semiclassical energy landscape. We find that the
minimum of E(φ) reproduces the ground state energy of the true quantum spec-
trum reasonably well over a broad range of parameters, except for B ∼ |J0|, see the
circles in figure 5.7. This approach can be understood as an application of the varia-
tional principle with (5.25) as trial state (Ritz, 1909; Cohen-Tannoudji et al., 1977b).
The agreement with the quantum ground state energy is somewhat unexpected for
B/|J0| � 1, since the trial state is a product state, whereas we know that the true
ground state must be a GHZ-type (J0 > 0) or W-type (J0 < 0) multipartite entangled
state (Štelmachovič and Bužek, 2004). A possible reason for this could be the sym-
metry of the system, which allows to approximate the description of the subsystems
by assuming statistical independence between them (de Finetti, 1937; Fannes et al.,
1988; Renner, 2007).

Next, we use this ansatz to analyze the semiclassical energy values beyond the
ground state, by classifying extremal points of the energy manifold. We first define a
set C of critical points, characterized by vectors φ0 of local angles, where the gradient
of E vanishes:

∂E(φ)

∂φi

∣∣∣∣
φ=φ0

= 0, ∀ i = 1, . . . , N ∀ φ0 ∈ C. (5.31)

The condition ∂E(φ)/∂φi = 0 leads to

tanφ0
i =

J0

B

N∑

j=1
(j 6=i)

sinφ0
j

|i− j|α , (5.32)

6The factor 1/2 in comparison to equations (5.21) to (5.23) stems from the definition (5.8).
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Figure 5.7.: Lower part of the exact quantum spectrum (black lines) of (5.1) for N = 11,
J0 > 0, α = 100 (top), and for J0 < 0, α = 0.01 (bottom). The ground state
energy is very well approximated by the minimum of the semiclassical energy
manifold E(φ), defined in (5.30), (red circles and dashed line), for B/|J0| � 1
and B/|J0| � 1. Deviations emerge in the vicinity of the critical magnetic field,
when B ∼ |J0|, especially for small α (see insets).
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which must hold for all i = 1, . . . , N . The diagonal elements of the Hessian matrix
then yield

hii =
∂2E(φ)

∂φ2
i

=
J0

N
sinφi

N∑

j=1
(j 6=i)

sinφj
|i− j|α +

B

N
cosφi, (5.33)

which, by equation (5.32), at any critical point φ0 reduces to

hii|φ=φ0 =
B

N

1

cosφ0
i

. (5.34)

The Hessian matrix h = (hij) is completed by its off-diagonal entries (i 6= j),

hij =
∂2E(φ)

∂φi∂φj
= −J0

N

cosφi cosφj
|i− j|α . (5.35)

Critical points which satisfy deth|φ=φ0 = 0 are called degenerate critical points. They
correspond, for instance, to plateaus of E(φ). Non-degenerate critical points can be
classified by the dimension of the positive-definite subspace of the Hessian matrix,
which is defined as the index λ of the critical point (Milnor, 1963). Local minima of
E(φ) are characterized by a positive definite Hessian matrix, hence, they have λ = N ,
while maxima satisfy λ = 0. For values 0 < λ < N we find different classes of saddle
points, which can be visualized as crossings of two lines of constant energy E. Those
saddle points are classified by their index λ: In a local environment around the critical
point, there are λ directions in which the potential shows a local minimum, whereas
it exhibits local maxima with respect to the the remaining N − λ directions.

The critical points and their indices are determined numerically,7 and the corre-
sponding critical values, E(φ0), are plotted for N = 11, J0 > 0, α = 100 in figure 5.8.
We find the paramagnetic bands (B/|J0| � 1) are perfectly labeled by the indices λ.
The semiclassical energy spectrum also reproduces the values of the strongly degen-
erate energy levels deep in the (anti-)ferromagnetic regime (B/|J0| � 1). However,
there a labelling of the energy levels in terms of λ is no longer possible.

In the regime where the two competing interaction strengths J0 and B are of equal
order of magnitude, which corresponds to the parameter range where we expect the
quantum phase transition in the thermodynamic limit, we find a very broadly dis-
tributed quantum spectrum, while the semiclassical critical points only reproduce cer-
tain central aspects thereof. Moreover, the semiclassical spectrum describes energy
levels that transition continuously from a paramagnetic band to a ferromagnetic bun-
dle, as can be seen, for example by following the dots of equal λ in figure (5.8). In
the quantum spectrum the occurrence of avoided crossing can prevent such a direct
connection; see figure 5.9. Nevertheless, despite the rather simple ansatz, the essential
features are well reproduced by the semiclassical spectrum.

7For α→∞, h becomes a tridiagonal matrix, which allows for efficient calculation of its determinant
in terms of a recursion formula (Muir, 1960).
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Figure 5.8.: Quantum spectrum (black lines) and saddle points of the semiclassical energy
manifold E(φ) for a ferromagnetic system (J0 > 0) of N = 11 spins with
short-range interactions defined by α = 100; see equations (5.1) and (5.30).
The saddle points are marked according to their index λ, represented by symbols
in the box insets, which determine the number of positive eigenvalues of the
Hessian matrix at the critical point. Thus, λ ranges from λ = 0 (maxima) to
λ = N = 11 (minima), and in between labels the saddle points, which were
obtained numerically. The quantum spectrum is well represented, and in the
paramagnetic regime, B/J0 & 1, λ labels the energy bands. This is no longer
true for B/J0 . 1, where also some deviations can be observed at λ = 5 and
λ = 6 around E/J0 ≈ 0 (lower panel).
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Figure 5.9.: The saddle-point search over the multidimensional semiclassical energy land-
scape (5.30) fails to describe the quantum mechanical energy levels (black lines)
of very long-range spin chain models when B � |J0|. The plot compares the
critical points, labeled by their index λ (see legend) to the spectrum of (5.1) for
N = 11, α = 0.01, J0 < 0. This shortcoming can be compensated by a simplified
ansatz, which puts physically motivated constraints on the hitherto independent
spin variables φi (see section 5.4.4 and figure 5.11)

One may have expected an adequate description of the vicinity of the ground state
in the limit of large N , for small α, when we recover the Lipkin-Meshkov-Glick model
with a well-known semiclassical approximation (Botet et al., 1982; Leyvraz and Heiss,
2005; Ribeiro et al., 2007). Counterintuitively, the semiclassical spectrum reflects the
quantum spectrum particularly well when α� 1, which includes the nearest-neighbor
Ising model. However, we are not able to reproduce the (anti-)ferromagnetic part of
the quantum spectrum, when α� 1. In the next section, we remedy this problem by
introducing an even simpler ansatz, which allows for an analytical optimization.

5.4.4 Analytical critical points from a set of single-parameter energy landscapes

In the previous section, we allowed the spins in the chain to independently adjust the
orientation of their local pure state. In this section, we impose physically motivated
constraints on the relative orientation of the spins across the chain, which reduces the
dimensionality of the energy manifold.

5.4.4.1. Ground state

We first focus on the ferromagnetic case, J0 > 0, to construct a physically moti-
vated trial function for the ground state. Since the ferromagnetic interaction favors
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Figure 5.10.: a) The semiclassical energy manifold Ee(φ), equation (5.37), obtained from
the equal mean-field ansatz shows a bifurcation when the magnetic field B
reaches its critical value Bce = 2J̃e, where J̃e > 0; see equation (5.42). Then,
the minimum energy changes from quadratic to linear dependence on B. This
provides a good approximation for the ground state energy of the ferromagnet.
b) By maximizing Ea(φ), equation (5.48), for the alternating mean-field, we
estimate the energy of the highest excited state. Analogously, we observe a
second order transition at Bca = −2J̃a, with J̃a < 0; see equation (5.50). The
coordinates φ = π and φ = −π are equivalent.

neighboring spins to align along the same direction, we impose the equal mean-field
constraint

φ1 = φ2 = · · · = φN ≡ φ ∈ [−π, π]. (5.36)

This corresponds to a conventional spin coherent state, as defined in equation (5.24),
which is constrained to the xy plane. In this case the energy manifold (5.30) reduces
to the one-dimensional function8

Ee(φ) = −J̃e sin2 φ−B cosφ, (5.37)

with

J̃e =
J0

N

N∑

i,j=1
(i<j)

1

|i− j|α . (5.38)

As in the previous section, Ee(φ) is rescaled by N and thus denotes the energy per

site. We note that for ferromagnetic interactions, J0 > 0, we obviously obtain J̃e > 0.
Critical points are easily identified by the condition

dEe(φ)

dφ
= B sinφ− 2J̃e sinφ cosφ

!
= 0, (5.39)

8The subscript e stands for equal (mean-field).
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which always has at least the three solutions

φ(1) = −π, φ(2) = 0, φ(3) = π. (5.40)

If the condition B ≤ 2J̃e is met, we find two additional solutions

φ(4,5) = ± arccos
B

2J̃e

. (5.41)

Thus, we find a bifurcation at a critical magnetic field of

Bce = 2J̃e. (5.42)

The corresponding critical values are

Ee(φ(1)) = Ee(φ(3)) = B, Ee(φ(2)) = −B (5.43)

and

Ee(φ(4)) = Ee(φ(5)) = −J̃e −
B2

4J̃e

. (5.44)

Since we are trying to reproduce the ground state energy, we look for the global
minimum. We find

Emin
e (B) =

{
−J̃e −B2/(4J̃e), B ≤ Bce
−B, B > Bce

. (5.45)

The energy landscapes and their minima are shown in figure 5.10 a) for different B.

The transition from quadratic to linear dependence on B implies a jump in the
second derivative of the ground state energy at the bifurcation point, which identi-
fies the second-order quantum phase transition. The two degenerate minima nicely
illustrate the spontaneous breaking of symmetry, which happens in the semiclassical
picture when the system relaxes into one of the two degenerate solutions φ(4,5) in the
ferromagnetic phase (Wen, 2004). The symmetry of the paramagnetic phase is also
represented in the semiclassical picture since the absolute minimum is always found
at the center, φ(2) = 0.

For ferromagnetic systems, J0 > 0, the analytical ground state energy Emin repro-
duces the numerical minimum of the multi-variable optimization of the previous sec-
tion. However, if we maximize the function E(φ), we obtain Emax = B, which matches
the true spectrum for B � J0, but does not describe the behavior for B � J0. This
is quite intuitive, since the energy of the ferromagnetic interaction term is maximal
when neighboring spins are oriented in opposite directions, which cannot be achieved
by the equal mean-field ansatz.
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5.4.4.2. Highest excited state

Thus we ask, is it possible to modify the equal mean-field ansatz (5.36) to reproduce
other features of the spectrum? To recover the highest excited state deep inside the
ferromagnetic regime, we impose the alternating mean-field condition

φi = (−1)iφ, i = 1, . . . , N. (5.46)

We expect this arrangement of spins to be the energetically least favorable for ferro-
magnetic interaction. Furthermore, one can see that this ansatz does not change the
contribution of the paramagnetic term in (5.30), since the cosine is symmetric. Intu-
itively, this can be attributed to the transverse orientation of the external field: The
field is oriented along the y direction, while the natural spin-spin interaction is deter-
mined on the basis of the spin’s orientation along x. The resulting one-dimensional
energy manifold has the same form as equation (5.37), where J̃e is replaced by9

J̃a =
J0

N

N∑

i,j=1
(i<j)

(−1)i+j

|i− j|α . (5.47)

We analyze this expression later in section 5.4.7. For now it is sufficient to know that
J̃a < 0 when J0 > 0, and, thus, the maxima of

Ea(φ) = −J̃a sin2 φ−B cosφ (5.48)

are given by

Emax
a (B) =

{
−J̃a −B2/(4J̃a), B ≤ Bca
B, B > Bca

. (5.49)

Strikingly, we again can observe a second-order transition—this time at the critical
magnetic field strength

Bca = −2J̃a, (5.50)

see figure 5.10 b). We will see soon that this semiclassical description represents an
adequate approximation of the highest excited energy eigenvalue. Before doing so, we
generalize this ansatz even further.

5.4.4.3. Generalization for arbitrary states

In the preceding two sections, we have recovered the energy of the ground state and of
the highest excited state of a ferromagnetic spin chain from a semiclassical approach of
spin coherent states. Can we further modify this ansatz to reproduce also intermediate
energy levels? We develop such a general ansatz, by considering first on the two limiting

9The subscript a stands for alternating (mean-field).
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cases: the perfect paramagnet and ferromagnet. For example, when B � J0, we have
already seen that by flipping half of the spins against the mean field φ,

φi = −φ, (5.51)

we can transform the ansatz for the ground state to an ansatz for the highest excited
state. If none of the spins are flipped [equation (5.36)], the ferromagnetic ground state
energy is extracted by minimizing the resulting energy manifold, whereas if we flip
every second spin [equation (5.46)], we obtain the highest excited state by maximizing.

To extract the values of intermediate energy levels, we start from the equal mean-
field ansatz and flip a subset of k ≤ N/2 spins (k ∈ N). We then proceed as before
and study the resulting one-dimensional energy manifold, obtained from inserting the
ansatz into equation (5.30). By flipping more than half of the spins we do not generate
new energy manifolds since the replacement of φ → −φ would yield an equivalent
manifold with less than half the spins flipped. The number and position of the spin
flips govern the resulting effective spin-spin coupling energy

J̃µ =
J0

N

N∑

i,j=1
(i<j)

sgn(φµi /φ)sgn(φµj /φ)

|i− j|α , (5.52)

where the configuration is defined by the vector φµ = (φµ1 , . . . , φ
µ
N ) with φµi = ±φ. For

finite values of α, the distance-dependent denominator can trigger a strong dependence
of J̃ε on, not only the number of flips, but also their relative orientation.

These local spin flips are able to modify the energy deep inside the ferromagnetic
regime. However, they have no influence on the potential energy generated by the
transverse magnetic field. Thus, we now turn our attention to the paramagnetic
regime. For B � J0, the ground state will be a product state where all spins align
along the direction of the external magnetic field. Conversely, if all spins are shifted
180◦ with respect to the external field direction, the energy is maximal. The intermedi-
ate levels are determined by the number of spins which are shifted. In the semiclassical
model, such local spin shifts are described by

φi = φ+ π. (5.53)

Indeed, due to cos(φ + π) = − cos(φ), we see that the paramagnetic energy changes,
depending on the number of shifted spins. If s spins experience a shift, we obtain

B

N

N∑

i=1

cosφi = B
N − 2s

N
cosφ. (5.54)

In general, given a configuration φµ, with all elements satisfying either φµi = ±φ or
φµi = ±φ+ π, we define

B̃µ = B
N − 2sµ

N
, (5.55)



5. Quantum phase transition in a family of quantum magnets 153

where

sµ = # {i = 1, . . . , N which satisfy φµi |φ=0 6= 0} (5.56)

denotes the number of shifted spins. This means, by adjusting the number of shifted
spins, we can scan through all of the N + 1 paramagnetic bands. We consider at
most sµmax = N/2, sµmax ∈ N shifted spins, since we obtain the negative-energy part of
the paramagnetic spectrum by minimizing the semiclassical energy manifold, and the
positive sector by maximizing. This finally yields the values

B̃µ = B,B
N − 2

N
,B

N − 4

N
, . . . , B̃min, (5.57)

with B̃min = 0 if N is even and B̃min = B/N if N is odd.
How do such spin flips modify the ferromagnetic interaction? Since sin(φ + π) =

− sin(φ), a shift will affect the spin-spin interaction energy. This effect, however, can
be compensated by combining the spin shift with a spin flip,

φi = −φ+ π. (5.58)

We modify equation (5.52) to take possible shifts into account:

J̃µ =
J0

N

N∑

i,j=1
(i<j)

εµi ε
µ
j

|i− j|α , (5.59)

with

εµi =

{
+1, φµi = φ or φµi = −φ+ π

−1, φµi = −φ or φµi = φ+ π
. (5.60)

Hence, combinations of the two operations, shifts and flips, allow us to independently
tune the effective spin-spin coupling J̃µ and the effective magnetic field B̃µ. This

means that for every combination of possible values for J̃µ and B̃µ, we can design a
one-parameter spin configuration φµ, which would produce this scenario.

In conclusion, appropriate modifications of the equal mean-field ansatz can generate
a family of single-parameter energy manifolds of the type

Eµ(φ) = −J̃µ sin2 φ− B̃µ cosφ. (5.61)

While the B̃µ are strictly positive, the J̃µ can either be positive or negative. These
two cases effectively reduce to the expressions which were already discussed for the
ground state and the highest excited state (see figure 5.10). If J̃µ > 0, we analytically
minimize the energy Eµ(φ), yielding a semiclassical energy level

Emin
µ (B) =

{
−J̃µ − B̃2

µ/(4J̃µ), B̃µ ≤ 2J̃µ

−B̃µ, B̃µ > 2J̃µ
, (5.62)
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Figure 5.11.: Quantum spectrum (black lines) of (5.1) and maxima (minima) of the one-
dimensional semiclassical energy manifolds Eµ(φ), given in (5.61), [red (green)
dots and dashed lines] for an anti-ferromagnetic system (J0 < 0) of N = 11
spins with α = 0.01. For B � |J0| and B � |J0|, the quantum spectrum is
well reproduced by the semiclassical approximation. Despite significantly simpli-
fying the multi-dimensional ansatz, the level scheme is much better represented
(compare to figure 5.9), in particular in the anti-ferromagnetic parameter regime.
Still, deviations are observed around the critical field B ∼ |J0|.
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where B̃µ depends on B via equation (5.55). We further find semiclassical energy levels

for J̃µ < 0 by analytically maximizing the energy manifold Eµ(φ), with the result

Emax
µ (B) =

{
−J̃µ − B̃2

µ/(4J̃µ), B̃µ ≤ −2J̃µ

B̃µ, B̃µ > −2J̃µ
. (5.63)

The results of the two preceding sections, that is, ground state and highest excited state
for J0 > 0, are recovered using the equal mean-field ansatz φe

i = φ or the alternating
mean-field ansatz φa

i = (−1)iφ, i = 1, . . . , N , respectively.
We emphasize that the generalized approach can also be applied to anti-ferromagne-

tic interactions, J0 < 0. In this case, we will find that the alternating mean-field ansatz
actually yields a positive value for J̃a, which will minimize the energy, while the equal
mean-field is energetically the least favorable and generates the highest excited state.

By imposing physically motivated constraints on the spin orientation, we have re-
duced the high-dimensional optimization problem of section 5.4.3 to a simple, one-
dimensional problem, which can be treated analytically. Remarkably, the simplified
ansatz also significantly improves the performance of the semiclassical approximation.
The resulting semiclassical spectrum reproduces all of the paramagnetic bands, as well
as all of the energy levels in the (anti-)ferromagnetic regime, independently of the pa-
rameter α. This is displayed for in Figs. 5.11 and 5.12. There are essentially two
quantum features, which are not reflected by this simple family of energy levels:

(i) The finite width of energy bands. These are generated in the paramagnetic
regime by residual influence of the (anti-)ferromagnetic interaction term, when
B is not sufficiently large compared to J0. The semiclassical energy does not take
this into account, since the maximal and minimal energy do no longer depend
on J0 once the external field exceeds the value Bc. Similarly, when the energy
levels are mostly determined by the spin-spin coupling J0, nonzero values of B
lead to a broadening of the lines.

(ii) Avoided crossings. We see that, by construction, we can generate a semiclassical
energy line which continuously moves from any given (anti-)ferromagnetic cou-
pling energy to any given paramagnetic band with the same sign. In the actual
quantum spectrum, such lines are often bent by strong couplings to other states.

Hence, we can interpret the semiclassical energy levels as the structured backbone of
the full quantum spectrum. In the next sections we try to quantify the performance of
this approximation, and show that in some cases we actually recover exact quantum
mechanical results. Moreover, (almost) each of the parametrized semiclassical energy
levels can be assigned a critical magnetic field Bc, at which the dependence on B
changes from quadratic to linear, implying a jump of the second derivative. The
distribution of these critical fields will be discussed in section 5.4.7.

5.4.5 Performance of the semiclassical ansatz

We now proceed towards a quantitative comparison between the true quantum spec-
trum and the semiclassical prediction. First, we focus on special cases where we can
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Figure 5.12.: The semiclassical energy levels (green and red lines) coincide with the exact
quantum spectrum (black lines) for B � J0 and B � J0. This is plotted here
for a ferromagnetic system (J0 > 0) of N = 11 spins with intermediate-range
interactions, α = 1, which leads to a broadly distributed ferromagnetic spectrum
at B = 0. Around the critical field B ∼ |J0|, competing interactions lead to an
abundance of avoided crossings which cannot be captured by the semiclassical
approach.

establish analytically that the semiclassical spectrum is exact. Then, in the subsequent
section, we analyze the deviation to the exact ground state energy as a function of the
system parameters.

5.4.5.1. Exact results

From Figs. 5.11 and 5.12 we observe the striking agreement of the semiclassical pre-
diction with the quantum spectrum in the limiting cases B � |J0| and B � |J0|. It
is crucial to recall equations (5.62) and (5.63) to realize that the sets of admissible

values for J̃µ and B̃µ precisely determine the entire semiclassical spectrum in the two
extreme cases, when J0 = 0 and B = 0, respectively.

For example, for J0 = 0, the (semiclassically predicted) paramagnetic energy levels10

are given by the N + 1 possible values of

Eµ = ±NB̃µ = −NB,−B(N − 2), . . . ,+B(N − 2),+NB, (5.64)

where the positive (negative) solutions corresponds to NEmax
µ (NEmin

µ ), and the pos-

sible values for B̃µ were given in equation (5.57). It is a straight-forward task to

10We introduce the sans-serif letter to distinguish the total energy E from the energy per site E = E/N .
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determine the exact quantum spectrum of the paramagnetic Hamiltonian

Hp = H|J0=0 = −B
N∑

i=1

σ
(y)
i . (5.65)

This Hamiltonian immediately reminds us of the spin coherent states, as introduced in
section 5.4.2, and is equivalent to the Hamiltonian of non-interacting two-level atoms,
as discussed in sections 4.3.2 and 4.4: We have Hp = −2BSy [see equation (5.8)],
where the spectra of all three components of the total angular momentum coincide.
Thus, the spectrum of Sy is also given by −N/2,−N/2 + 1, . . . , N/2 − 1, N/2, where
the different energy levels can be labeled by the number of spins which are oriented
against the direction of the external field. This implies that the spectrum of Hp is
exactly given by equation (5.64). Hence, independently of α and N , the semiclassical
energy levels always recover the exact quantum spectrum in the limit B � |J0|.

In the opposite limit, when B = 0, we see from equations (5.62) and (5.63) that the

total energy is entirely determined by the set of possible values for J̃µ:

Eµ = −NJ̃µ. (5.66)

Can we predict the distribution of the J̃µ? Let us first consider α = 0. In this case we
find the following set of effective spin-spin couplings from (5.59):

J̃µ

∣∣∣
α=0

=
J0

2N

N∑

i,j=1
i6=j

εµi ε
µ
j =

J0

2N



(

N∑

i=1

εµi

)2

−
N∑

i=1

(εµi )
2




=
J0

2N

[
(N − 2lµ)

2 −N
]
, lµ = 0, . . . , N. (5.67)

Here, lµ denotes the number of negative εµi in a given configuration φµ, which can be
any number between 0 and N . There are however only d(N +1)/2e different solutions,
which reflects a two-fold degeneracy for each solution. Here dxe denotes the smallest
integer ≥ x. Quantum mechanically, this case corresponds to the Lipkin-Meshkov-
Glick model (Lipkin et al., 1965; Meshkov et al., 1965; Glick et al., 1965) without
external field; see equation (5.9),

HLMG0 = H|B=0,α=0 = −2J0S
2
x +

J0

2
NI. (5.68)

This Hamiltonian’s spectrum is directly related to the paramagnetic spectrum, which
was described below equation (5.65). Inserting this result immediately yields the
energy values −2J0(N/2− k)2 +J0N/2, for k = 0, . . . , N . These coincide exactly with
the semiclassical results provided by equations (5.66) and (5.67). We also recognize
the same two-fold degeneracy caused by the invariance of the squared expression to
changes of the sign of the argument.
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Second, in the limit α→∞, the J̃µ yield the following equally spaced sequence:

lim
α→∞

J̃µ =
J0

N

N−1∑

i=1

εµi ε
µ
i+1 = J0

N − 1− 2kµ

N
, kµ = 0, . . . , N − 1. (5.69)

Here kµ labels the number of nearest-neighbor pairs which have opposite orientations
and thus produce εµi ε

µ
i+1 = −1. The corresponding quantum mechanical Hamiltonian

is given by the Ising model (Ising, 1925) in absence of an external field,

H0
m = lim

α→∞
H|B=0 = −J0

N−1∑

i=1

σ(i)
x σ(i+1)

x . (5.70)

This is a special case of the transverse-field Ising model (5.7), as well as of the
anisotropic XY -model (Lieb et al., 1961). Both can be solved generally by using
a Jordan-Wigner transformation (Jordan and Wigner, 1928; Lieb et al., 1961). For
the present special case, however, we can immediately diagonalize the Hamiltonian by
introducing the states

|φµ〉 = |εµ1 , . . . , εµN 〉, (5.71)

where |εµi 〉 denote eigenstates of σ
(i)
x :

σ(i)
x |εµi 〉 = εµi |εµi 〉, (5.72)

with εµi = ±1. Hence, the energy eigenvalue equation becomes

H0
m|φµ〉 = −J0

N−1∑

i=1

σ(i)
x σ(i+1)

x |εµ1 , . . . , εµN 〉

= −J0

N−1∑

i=1

εµi ε
µ
i+1|εµ1 , . . . , εµN 〉

= − lim
α→∞

J̃µN |φµ〉

= Eµ|φµ〉. (5.73)

In the last step we have used equation (5.66) to show that the semiclassical spectrum
exactly reproduces the quantum spectrum also in this case. In fact, in the quantum
model, the number kµ characterizes the number of domain walls; see, for example
(Sachdev, 1999). In a ferromagnetic system, a domain refers to a collection of adjacent
spins with the same orientation, and domain walls occur when two domains with
different orientations meet, which connects to our interpretation of the semiclassical
configurations. Each domain wall increases the energy by 2J0 and there can be between
0 and N − 1 domain walls, which labels all energy levels. For anti-ferromagnets,
the same concept can be applied with the inverse argument; that is, a domain is
formed by a collection of perfectly alternating spins, and excitations (domain walls)
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Figure 5.13.: Normalized counting function (5.15), the integrated density of states, for a
ferromagnetic system (J0 > 0) without external field (B = 0), as introduced
in (5.74), for various values of α, and N = 15. For α = 0, we obtain quadratic
spacings between neighboring energy bands, while, for α → ∞, the spectrum
becomes harmonic (see text). For intermediate values of α ∼ 1, the energy levels
are broadly distributed, and all degeneracies are lifted. Compare also figure 5.17.

are introduced when neighboring spins have the same orientation. This implies that
the transition from ferromagnet to anti-ferromagnet does not affect the spectrum of
the nearest-neighbor Ising model, even though the eigenstates are ordered in reverse.
From equation (5.69) we can see that the spectrum is symmetric around zero and
consists of N values. This is similar to the paramagnetic case, equation (5.64), where
we had N+1 values, symmetric around zero. The resulting symmetry of the spectrum
over the entire span of magnetic fields can be see nicely in the quantum spectrum
displayed in figure 5.8.

The states |φµ〉 span an orthonormal basis. In fact, they also represent eigenstates
of the magnetic Hamiltonian in the most general case for arbitrary couplings Jij ,

H0
m = H|B=0 = −

N∑

i,j=1
(i<j)

Jijσ
(i)
x σ(j)

x . (5.74)

The eigenvalues are given by

H0
m|φµ〉 = −

N∑

i,j=1
(i<j)

Jijε
µ
i ε
µ
i |φµ〉 = Eµ|φµ〉. (5.75)

In the case of algebraically decaying couplings Jij = J0|i − j|−α, these correspond

to the semiclassical energy values, as determined by the most general form of J̃µ,
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Figure 5.14.: Relative deviation d(B), equation (5.76), between the semiclassical and numer-
ically exact ground state energies, for N = 10 and N = 11 spins of both ferro-
and anti-ferromagnetic interactions of (5.1). The colors represent different in-
teraction ranges, characterized by α = 0.001 (long-range; red), 0.1 (blue), 1.0
(green), and 1000 (short-range; orange).

for all values of α, as given in equation (5.59). Notice that each eigenvalue is at
least two-fold degenerate, due to the invariance under the inversion of the signs of
all εµi . This reflects the Hamiltonian’s symmetry under the operation σx → −σx,
which originates from the Z2 symmetry of the full Hamiltonian H, see equation (5.4).
Moreover, the chain is symmetric under a reflection with respect to its center, i →
N + 1− i. These two symmetries reduce the maximal number of different eigenvalues.
For intermediate values of α ∼ 1, the resulting spectrum rarely contains degeneracies
within the remaining levels, and its interpretation is not as easy as in the two special
cases discussed above. The counting function11 is shown in figure 5.13, for different
values of α. We can recognize the quadratic spacing between neighboring energy
levels for α = 0, as well as the harmonic, equidistant spectrum for α� 1. The smooth
density of states at α = 1 was already observed in figure 5.5.

To summarize, we have analytically demonstrated that the semiclassical energy levels
exactly reproduce the quantum mechanical spectrum in the limits B →∞ and B = 0,
for all values of α.

5.4.5.2. Deviation from the true ground state energy

In order to quantify the approximation of the quantum spectrum, which is provided
by the semiclassical energies for arbitrary intermediate values of B, we determine the

11In figure 5.13, this function is renormalized by dividing by the total number of states, 2N .
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deviation from the exact ground state energy. The latter can be determined exactly
using numerical diagonalization, for moderate sizes of N . To compare the exact ground
state energy E0(B) to the corresponding semiclassical value Emin(B), we introduce the
relative deviation

d(B) =
Emin(B)− E0(B)

|E0(B)| . (5.76)

Considering the ground state, our semiclassical approach can be interpreted as an
instance of the Ritz variational principle, of which we know that the approximate
ground state energy always represents an upper bound to the true value (Ritz, 1909;
Cohen-Tannoudji et al., 1977b), rendering d(B) a positive quantity.

Figure 5.14 shows the relative deviation for various values of α and different lengths
of the spin chain. The largest deviation, as expected, is observed close to B ' J0.
For long-range ferromagnetic interactions, the peak moves to larger B as we increase
N , while for short-range ferromagnetic or arbitrary anti-ferromagnetic interactions,
the position of the maximum deviation remains largely unaffected by N . This is in
agreement with the position of the critical field that induces the quantum phase transi-
tion, as will be discussed in further detail in the next sections. Thus, the semiclassical
approach works better the further we are away from the quantum phase transition,
which confirms the intuition provided, for example, by figure 5.12; see also (Mayer
et al., 2014) for a similar result for the Bose-Hubbard model. In fact, we know (recall
section 5.4.5.1 above) that, if we increase or decrease B far enough, the semiclassical
approximation will become exact. Furthermore, the deviation, even at the critical
field, is always small compared to the absolute ground state energy, and approaches
zero quadratically as we proceed towards the exact solution of the paramagnetic bands.
This is independent of α, since the spin-spin coupling loses influence when |J0| becomes
weak compared to B. In the opposite limit, the exact solution is approached quadrati-
cally, except for very long-range interactions (red lines), which tend towards the exact
solution even faster, approximately following a quartic dependence on B. This may be
due to the well-defined semiclassical limit of the infinite-range Lipkin-Meshkov-Glick
model. In the anti-ferromagnetic case, we find strong dependence of d(B) on N when
the interaction is long-range (red and blue lines). For odd N we observe a quadratic
approach to the exact solution, whereas we find that the deviation increases with the
length of the interaction range, in contrast to what was observed in the ferromagnetic
case. For even N , the long-range systems show a dramatic change in behavior when
B drops below a certain threshold value. Beyond this value, the deviation of long-
range systems falls below that of short-range systems, and even recovers the quartic
approach towards zero in the limit of very long range. Note also that the deviation
from the ground state energy of the system corresponds to the deviation from the
highest excited state of the same system when the sign of J0 is inverted.

5.4.6 Scaling of highest and lowest eigenvalues

In section 5.4.5.1, we saw that the spectra of (5.1) at B = 0 are determined by the J̃µ,
equation (5.59). The latter further determine the critical fields of all of the excited
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Figure 5.15.: a) For the alternating mean-field ansatz (5.46), describing the anti-ferromagnetic

ground state, the effective coupling J̃a, equation (5.78), converges to Dirichlet’s
eta function η(α). b) For the equal mean-field ansatz (5.36), which describes the
ground state of a ferromagnetic system, the effective spin-spin coupling strength
J̃e, equation (5.83), converges to Riemann’s zeta function ζ(α) for α > 1 in the
thermodynamic limit.

states via the condition B̃µ = 2|J̃µ|, where the B̃µ always display a very regular

distribution, see equation (5.57). All values of J̃µ can be bounded by those that lead
to the ground state and the highest excited state. These, in turn, are given by the
two special cases of the equal and alternating mean-fields, J̃e and J̃a, respectively, as
defined in equations (5.38) and (5.47). In this section, we analyze these upper and lower
bounds of the (anti-)ferromagnetic spectrum and their behavior in the thermodynamic
limit.

Let us start with J̃a, whose sign is always opposite to the sign of J0. We take a
moment to analyze the expression (5.47), which turns out to be a mathematically
interesting construction. First, we regroup the terms as a function of |i− j|,

N

J0
J̃a = −

N−1∑

i=1

1

1α

︸ ︷︷ ︸
j=i+1

+

N−2∑

i=1

1

2α

︸ ︷︷ ︸
j=i+2

−
N−3∑

i=1

1

3α

︸ ︷︷ ︸
j=i+3

+ . . . , (5.77)

which leads to

J̃a =
J0

N

N∑

k=1

(−1)k
(N − k)

kα
. (5.78)

From Leibnitz’ alternating series test (Knopp, 1956) follows that this sum is convergent
in the thermodynamic limit (N →∞) for all values of α ≥ 0. We can further rearrange
the terms to obtain

J̃a = J0

N∑

k=1

(−1)k

kα
+
J0

N

N∑

k=1

(−1)k+1

kα−1
. (5.79)

For α > 0, the thermodynamic limit identifies the first term with Dirichlet’s eta func-
tion, η(x), which is defined as the analytic continuation of

∑∞
n=1(−1)k+1k−x (Edwards,

1974; Titchmarsh, 1986), and sometimes called the alternating zeta function.
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We find numerically that12

J0

N

N∑

k=1

(−1)k+1

kα−1
= O(N−α), (5.80)

which allows us to neglect the second term in the thermodynamic limit when α > 0.
Thus, we obtain

lim
N→∞

J̃a = −J0η(α). (5.81)

For α = 0, the sum (5.78) can be evaluated explicitly,

J̃a

∣∣∣
α=0

= J0
1− (−1)N

4N
− J0

1

2

N→∞−→ −J0
1

2
. (5.82)

Since η(0) = 1/2 (Titchmarsh, 1986), we can extend the relation (5.81) to include

α = 0. The convergence of J̃a/J0 towards −η(α) is displayed in figure 5.15 a) as a
function of α for different N .

After discussing the alternating mean-field ansatz, we now turn to the opposite limit,
and analyze the effective coupling constant J̃e, equation (5.38), which corresponds to
the equal mean-field ansatz. This quantity has the same sign as J0. An analogous
rearrangement of terms as before leads to

J̃e =
J0

N

N∑

i,j=1
(i<j)

1

|i− j|α (5.83)

=
J0

N

N∑

k=1

N − k
kα

(5.84)

= J0

N∑

k=1

1

kα
+
J0

N

N∑

k=1

1

kα−1
. (5.85)

For α > 1, the first term converges in the thermodynamic limit, N → ∞, and can
be identified as Riemann’s zeta function, ζ(α), which is defined as the analytic con-
tinuation of the series

∑∞
k=1 k

−α (Riemann, 1859; Edwards, 1974; Titchmarsh, 1986).
Using the Euler–Maclaurin formula (Knopp, 1956), one can show for α < 2, that∑N
k=1 k

1−α ∼ O(N2−α) (Graham et al., 1989; Cannas and Tamarit, 1996). Thus, for
the second term we obtain for 2 > α > 1:

J0

N

N∑

k=1

1

kα−1
∼ O

(
N1−α) N→∞−→ 0. (5.86)

12The asymptotic scaling ∼ N−α seems to coincide with the actual growth rate of the left-hand-side
of equation (5.80), and is not just an upper bound as the O notation suggests. Note that, for
small α, this expression is still of the order of 1 for very large values of N , and approaches zero
very slowly as N increases. A formal proof may be achieved using the Euler-Maclaurin mapping
of the sum to an integral expression (Knopp, 1956).
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Figure 5.16.: a) In the thermodynamic limit (N →∞), the effective spin-spin coupling J̃a [J̃e],
defined in (5.78) [(5.83)], which reproduces the ground state energy if J0 < 0
[J0 > 0], converges to η(α) [ζ(α)]. The functions η(α) and ζ(α) coincide
for α → ∞, that is, in the limit of nearest-neighbor interactions. The figure
further displays the finite-size effects (N = 10 and N = 50, dashed lines) on the

effective couplings J̃a and J̃e, respectively. b) These effects can be taken into
account by rescaling these functions with the correction term cN = 1−1/N . All

rescaled effective spin-spin couplings J̃a/(J0cN ) and J̃e/(J0cN ) collapse onto
the curve of the thermodynamic limit, except for small deviations at very small
values of α; see equations (5.88) and (5.89).

This term also vanishes for all values of α > 2, since in this case the sum converges to
ζ(α− 1). While for α = 1, the sum diverges logarithmically,

∑N
k=1 1/k ∼ O (lnN), we

can conclude for α > 1 that

lim
N→∞

J̃e = J0ζ(α), (α > 1). (5.87)

This can be observed graphically in figure 5.15 b).

Let us briefly discuss the finite size effects in the case when this expression converges
(α > 1). The convergence in both cases, J̃e and J̃a is represented in a unified picture
in figure 5.16. The discrepancy between finite-N terms and the thermodynamic limit
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Figure 5.17.: The ferromagnetic (J0 > 0) spectrum of (5.74) for N = 12 as a function of α
(black lines). In the thermodynamic limit, highest and lowest eigenvalues are
given by the Riemann ζ and Dirichlet η functions, respectively, which generally
serve as upper and lower bounds of the spectrum. In the thermodynamic, limit
the spectrum becomes unbounded from below (above, when J0 < 0) for α ≤ 1.
The figure shows the rescaled functions −(1 − 1/N)ζ(α) and (1 − 1/N)η(α)
(yellow and blue dotted lines), introduced in equations (5.88) and (5.89).

can be compensated by a scaling factor as

J̃e '
(

1− 1

N

)
J0ζ(α), (α > 1) (5.88)

J̃a '
(

1− 1

N

)
J0η(α), (5.89)

which expresses the rate of convergence towards the thermodynamic limit in leading
order of N . With this factor, we observe universal behavior already for moderate
values of N ; see figure 5.16. Moreover, since ζ(α) and η(α) constitute upper and lower
bounds on the spectra at B = 0, for N → ∞, we can predict the energy spread of
the spectrum for quantum magnetic systems of finite N with great accuracy using
the above finite-size corrections; see figure 5.17. Specifically, for J0 < 0 we have
−η(α) ≤ Ek/J0 ≤ ζ(α), while for J0 > 0, we have −ζ(α) ≤ Ek/J0 ≤ η(α), where
Ek = Ek/N represents any arbitrary renormalized energy eigenvalue of H0

m.

Now let us come back to the case of J̃e when α ≤ 1. Using generalized Har-

monic numbers H
(m)
n (Conway and Guy, 1998), J̃e can immediately be written as

J̃e = J0(H
(α)
N + H

(α−1)
N /N) for arbitrary α. The thermodynamic limit of J̃e, however,
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does not exist for α ≤ 1. For example, for α = 1 we obtain

J̃e

∣∣∣
α=1

=
J0

2
(N − 1). (5.90)

Hence, the energy per spin of (anti-)ferromagnetic systems is unbounded from below
(above) whenever the interaction range decays too slowly as a function of distance, as
specified by the condition α ≤ 1, see also figure 5.17. For this reason, one typically
introduces a renormalized coupling constant J0 → J0/N for long-range spin chain
models (Botet et al., 1982; Ribeiro et al., 2007).

5.4.7 Distribution of critical fields

The semiclassical treatment generates a family of energy levels which approximate the
quantum spectrum. As mentioned before, almost each of these levels can be assigned a
critical magnetic field Bc, where a change from quadratic to linear dependence occurs
and the second derivative jumps. To be precise, when N is even, there always exists
a family of levels which do not depend on B, and consequently do not have a critical
magnetic field. The configurations φµ which generate these levels satisfy sµ = N/2,

and therefore B̃µ = 0. These configurations are important to obtain the full spectrum
in the limiting case B � |J0|, but they cannot generate a nontrivial energy landscape
of the type (5.61) as a function of B. The analogous situation (for B � |J0|) arises

when configurations with J̃µ = 0 exist. These rare configurations are excluded from
the following analysis of critical fields. All other levels do show non-analytic behavior
in the second derivative at some point.

5.4.7.1. Ground state critical fields

Let us first focus on the critical field associated with the ground state, since, in a
conventional approach (Sachdev, 1999), this is the decisive quantity to pin-point the
quantum phase transition in the thermodynamic limit. However, we have to be careful
since our semiclassical mean-field ansatz is not guaranteed to deliver exact results in
thermodynamic limit for all values of α.

The bifurcation point of the semiclassical ground state is determined by J̃e when
J0 > 0, and by J̃a for J0 < 0. To connect these with the quantum phase transition,
we have to consider the thermodynamic limit, which was done in the detailed analysis
of the previous section. Let us start with J0 < 0, in which case the thermodynamic
limit is always well defined. Recall from section 5.4.4.1 that the bifurcation point is
defined by the condition Bca = 2J̃a. In the thermodynamic limit, we obtain, using
equation (5.81),

lim
N→∞

Bca = −2J0η(α). (5.91)

For nearest-neighbor interactions (α → ∞) the above expression yields the limit13

limα→∞ limN→∞Bca = −2J0, which does not agree with the critical field of the quan-

13From equations (5.78) and (5.83), we see that the limits for α and N commute for both J0 > 0 and
J0 < 0.
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tum phase transition in the Ising model, which is found at B = −J0. However, the
semiclassically predicted critical point yields the correct order of magnitude and differs
from the exact result only by a factor of 2. In the opposite limit, we have seen that, in
order to maintain a bounded spectrum in the thermodynamic limit, one must renor-
malize the spin-spin coupling constant by dividing it by N . Using these renormalized
constants, the quantum phase transition is found at zero field, B = 0 (Vidal et al.,
2004). This is consistent with the semiclassical result limα→0 limN→∞Bca = −J0,
which, in renormalized units approaches zero as 1/N .

In the ferromagnetic case, J0 > 0, we obtain the bifurcation at

lim
N→∞

Bce = −2J0ζ(α), (5.92)

when α > 1. This converges towards the same critical field for the nearest-neighbor
Ising model, limα→∞ limN→∞Bce = 2J0, which also deviates from the exact result
by a factor of 2. The agreement of nearest-neighbor ferro- and anti-ferromagnetic
ground-state behavior is expected since both η(α) and ζ(α) converge to 1 for α→∞,
albeit from different sides, see figure 5.16 a). To study the quantum phase transition
in the opposite limit, we need to take the growth rate with N into account, since
the corresponding expressions do not converge in our units. For α = 0, we find that
limα→0B

c
e = (3N + 1)J0. Translating back from rescaled units into our units, the

non-analytic behavior of the ground state energy is found at B = NJ0 (Botet et al.,
1982; Botet and Jullien, 1983), which again matches the order of magnitude, but does
not exactly coincide with the semiclassical result.

5.4.7.2. Statistical distribution of excited-state critical fields

What can we say about the distribution of critical fields of intermediate levels? For
each configuration φµ, according to equations (5.62) and (5.63) we find a critical field
at

B̃cµ = 2|J̃µ|, (5.93)

from which we obtain, inserting equation (5.55) for sµ < N/2 (as mentioned before,

we exclude those families of states for which either B̃µ = 0 or J̃µ = 0):

Bcµ =
N

N − 2sµ
2|J̃µ|. (5.94)

We can derive an upper bound for this quantity, by using |J̃µ| ≤ |J̃e|,

Bcµ ≤
{
N |J̃e|, N even

2N |J̃e|, N odd
. (5.95)

This bound is indeed tight, since it is reached for the configuration µ0 that satisfies
J̃µ0

= J̃e and sµ0 = bN/2c, where bxc denotes the largest integer ≤ x.
We conclude that the critical fields of intermediate levels are unbounded in the ther-

modynamic limit. The distribution of critical fields is determined by the distribution
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of the J̃µ, and the B̃µ. As a matter of fact, this precisely connects the spectra of the

limiting cases of B, since the spectrum for B = 0 is entirely determined by the J̃µ,

whereas for B →∞, it is entirely determined by B̃µ. This was already pointed out in

section 5.4.5.1, where it was also noted that, for α =∞ and α = 0, the J̃µ show very

regular distributions, see figure 5.13. Since the B̃µ merely label paramagnetic energy
levels at B →∞, the resulting spectrum for J0 = 0 is always harmonic. Furthermore,
in the limits B = 0 and J0 = 0, the semiclassical prediction for the spectrum was
shown to be exact. Since there exists a semiclassical energy level for each pair of J̃µ
and B̃µ of the same sign, the critical fields associated with these exited-state levels
will in general not fall onto the same spot. The ground state only represents one
of the many realizations. Instead, we will encounter a broad distribution of critical
fields generated by the entire semiclassical energy spectrum, which we analyze in the
following.

Recall from section 5.4.4.3 that some of the critical fields correspond to minima of
semiclassical energy landscapes, while others correspond to maxima. For the statisti-
cal analysis of the critical fields, we will treat those two cases separately. We consider
those critical fields which stem from a maximum (these are always found at positive
energies) as unstable critical points, while those which belong to a minimum are con-
sidered semiclassically stable (at negative energies); see also figure 5.10. Actually, the
replacement J0 → −J0 leads to an inversion of the signs of all of the eigenvalues, since
the paramagnetic part is always symmetric with respect to zero. Thus, the stable
critical fields of the ferromagnetic system correspond to the unstable critical fields of
the same system with anti-ferromagnetic couplings, and vice-versa. For the special
cases of α = ∞ and α = 0, we can make use of the analytic results, equations (5.67)
and (5.69), derived in section 5.4.5.1, to efficiently generate statistical data of large
many-body spin chain models.

Figure 5.18 shows the histograms of stable critical points on logarithmically spaced
bins. Strikingly, this spacing allows us to identify clear maxima. In the case α = 0, we
obtain a maximum at B = |J0| when J0 < 0. This reflects the ground state bifurcation
point as discussed before and agrees with the critical field in the thermodynamic limit
in rescaled units. A clear power-law decay can be identified when B is increased beyond
the position of the maximum. Then, the distribution decays as 1/B.

In the case J0 > 0, we have seen that the position of the ground state bifurcation
point tended towards infinity with a slope of 3N + 1, while we expect from the critical
field of the quantum phase transition to do the same with a slope of N . The maximum
of the corresponding histogram distribution reproduces exactly this behavior. This
maximum is approached from both sides algebraically. Below the critical point, the
maximum is approached as

√
B, whereas above the maximum the distribution, again,

decays as 1/B.

Finally, for α = ∞ the distribution does no longer depend on the sign of J0. The
maximum is always found at B = 2|J0|, which agrees with the ground state bifurcation
point, but differs from the actual critical point by a factor of 2. Here, the distribution
proceeds towards the maximum as B from below, and as 1/B from above. Hence,
in all cases we observe the 1/B-type decay above the maximum. This universality is
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Figure 5.18.: Histograms of stable critical fields of semiclassical energy levels for spin
chains (5.1) of variable sizes. For α = 0 and J0 < 0, the maximum is found at
B = |J0|, whereas for J0 > 0, the global maximum if found at B = NJ0. For
α = ∞, the distribution does no longer depend on the sign of J0, and always
yields a maximum at B = 2|J0|. The logarithmically scaled insets show that the
maxima are in most cases approached following a power-law dependence (see
text).
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caused by the vanishing influence of J0 and α in the limit of large B.

It is now most interesting to extract similar information from the histograms of
quantum magnets with intermediate interaction ranges, 0 < α <∞. This is, however,
computationally much more demanding despite the explicit formula provided by equa-
tion (5.75), since in the most general case, especially for α ' 1, the eigenvalues are
broadly distributed (see also figure 5.17) and have to be figured out by probing expo-
nentially many configurations φµ. At this point we are not able to provide conclusive
and statistically relevant data for intermediate values of α.

5.5 Discussion

In this chapter, we have explored the excitation spectrum of one-dimensional spin
chain models over the full range of tunable interaction ranges. Based on a semiclassical
approach, we were able to reproduce large parts of the quantum mechanical excitation
spectrum. The semiclassical approach further identifies an energy landscape with each
excited level. These landscapes depend on the external field parameter, and when a
threshold value is surpassed, a bifurcation from a single extremal value at zero, to
two degenerate extremal points occurs, which reflects the transition from a symmetric
paramagnetic phase to the symmetry-broken (anti-)ferromagnetic phase in each of the
excited states levels. This shows that the quantum phase transition affects the entire
excitation spectrum just as much as it affects the ground state. The results of this
chapter, thus, imply a significant influence of the quantum phase transition on the
system’s dynamical features, which are not accounted for by (purely static) properties
of the ground state.

The semiclassical approach is of course limited in its possibilities and unable to gen-
erate the full quantum spectrum at all points in the phase transition. In particular, at
intermediate values of B, the abundance of avoided level crossings cannot be expected
to be seen in the semiclassical ansatz. The spectra far away from the phase transi-
tion, however, are exactly reproduced semiclassically. To identify information about
the phase transition, we have analyzed the distribution of the excited state bifurcation
points, which essentially consists in a combination of the two extremal spectra far away
from the phase transition. The resulting histograms were found to be able to identify
the critical point of the quantum phase transition in some cases. Deviations were seen
in the case of the nearest-neighbor Ising model, where the discrepancy consists in a
factor of 2. In the opposite, infinite-range limit, the maximum is even found exactly
at the critical point. In this limit, semiclassical approaches have been known to work
well (Botet et al., 1982; Dusuel and Vidal, 2004; Leyvraz and Heiss, 2005; Dusuel
and Vidal, 2005; Ribeiro et al., 2007), in contrast to the Ising model. The intuitive
reason for this discrepancy is simply the number of interacting partners for each of
the spins: While in the Ising mode, each spin only interacts with its two neighbors,
in the Lipkin-Meshkov-Glick model, each spin is in contact with all other spins, which
improves the performance of mean-field methods (Georges et al., 1996). Thus, we
expect that extensions to two- or three-dimensional lattice arrangements could give
rise to promising future applications of the present method.
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The developed ansatz can be applied to arbitrary interaction ranges and can, in prin-
ciple, also predict the statistics of intermediate-range spin chains. The semiclassical
ansatz allows to avoid diagonalization of a large Hilbert space at the cost of scan-
ning through combinations of spin configurations. Exploiting symmetries reduces the
number of configurations to values below the dimension of the Hilbert space, but the
remaining exponential growth still limits the size of tractable systems significantly.





6 Multidimensional
nonlinear spectroscopy
of controllable
quantum systems

Employing concepts from nonlinear spectroscopy, we develop a general method to probe
multi-time correlation functions of interacting many-body quantum dynamics. Single-
site addressability of controllable quantum systems further provides spatial resolution
which allows us to extend standard methods of multidimensional spectroscopy. This
provides us with a scalable framework for the targeted construction of a probing scheme
to extract information about specific aspects of a complex, interacting many-body quan-
tum system.

The results of the present section have been obtained in collaboration with Frank
Schlawin; a related presentation can be found in (Schlawin, 2015).

6.1 Introduction: Nonlinear spectroscopy and controllable quantum
systems

In the previous chapters we have discussed various examples of controllable quantum
systems. This includes, for example, the dynamics of trapped ions, involving the laser-
induced interaction between different degrees of freedom or the dynamics of long-range
spin-spin couplings in competition with an external field. We have also analyzed envi-
ronmental influences and incoherent dynamics induced by fluctuating external fields.
In chapter 3, our strategy for the detection of quantum correlations consisted in ana-
lyzing only a small subsystem, which allowed us to resort to methods which provide
full information about the subsystem, such as state tomography. To analyze the dy-
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namics of large-scale quantum systems, standard methods from quantum information
theory must be complemented with scalable tools, which are able to identify and ex-
tract relevant and robust information. That is, in complex systems we are interested in
average values and higher moments (or equivalently multi-point correlation functions),
rather than in the details of the distributions that generate these moments; recall also
section 2.5.2.

After successfully demonstrating high-level experimental control over the elementary
constituents of quantum optical systems, experiments are being pushed towards larger
and larger system sizes. This is necessary to bring experimental quantum computations
and quantum simulations to a computationally relevant level of complexity. On the
other hand, one must ensure that the high level of coherent control can be maintained
in the course of the expansion towards larger system sizes.

The goal of the present chapter is to complement the theoretical methods of chap-
ters 4 and 5 with experimental methods, able to extract spectral and dynamical infor-
mation from possibly complex many-body quantum systems. To this end, we refine
methods from nonlinear spectroscopy, which have already proven to be successful in
probing higher-order correlation functions in much more complex situations. Their
straight-forward application to quantum optical systems is, however, not possible. For
example, typical trapped-ion experiments contain only tens or hundreds of ions, with
a rather large separation between them due to the Coulomb repulsion. This leads
to a much smaller optical density and reduces the photon yield for absorption spec-
troscopic methods.1 Conversely, this difference between bulk materials and artificial
quantum systems offers new opportunities to extend standard methods of nonlinear
spectroscopy.

Before we develop our formalism for controllable quantum systems in section 6.3,
we introduce the general principles and the theoretical description of nonlinear spec-
troscopic measurements employing the example of atomic vapor. In this context, we
already discuss the measurement of fluorescence signals in combination with phase-
cycling, and introduce a diagrammatic description which simplifies the theoretical
treatment significantly. These ingredients will be essential for the development of
multidimensional probing techniques for controllable quantum systems later in this
chapter.

6.2 Phase-coherent two-pulse measurements of atomic vapor

To develop an intuition for the principles of nonlinear spectroscopy, we describe a
phase-coherent two-pulse experiment carried out on atomic vapor. Similar experiments
have been reported in references (Fourkas et al., 1989; Tekavec et al., 2006; Tekavec
et al., 2007; Dai et al., 2010; Dai et al., 2012), and are currently also being realized in
the group of Frank Stienkemeier at the University of Freiburg. We first discuss how
the lowest-order single quantum coherence signals can be extracted by changing the
phases of the incoming pulses. We extend the theoretical treatment to higher-order

1This is why one usually employs the electron shelving method to probe the electronic state of the
ions; see section 2.2.1.5.
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terms, allowing for several interactions of the light field with an ensemble of atoms. In
the course of this section, we will gradually introduce the conventional diagrammatic
representation of excitation pathways in terms of Feynman ladder diagrams, which
is commonly employed to treat nonlinear signals (Mukamel, 1995). Its convenience
will become apparent during the following explicit calculations, and in the following
sections, we will make exclusive use the diagrammatic approach.

6.2.1 Atomic vapor

The Hamiltonian describing the relevant electronic states of a single atom, labelled by
the index n, is given as2

Ĥ
(n)
0 =

∑

i

εi|i〉n〈i|n. (6.1)

In the presence of atom-atom interactions, we add terms of the form

V̂ =
∑

i>j

∑

m>n

vnmij (|i〉n〈j|m + |j〉m〈i|n) , (6.2)

such that the total atomic Hamiltonian reads

Ĥ0 =
∑

n

∑

i

εi|i〉n〈i|n +
∑

i>j

∑

m>n

vnmij (|i〉n〈j|m + |j〉m〈i|n) . (6.3)

The coupling constants vnmij express the strength of the interaction between two atoms
n and m, when they are occupying the states |i〉n and |j〉m, respectively. In an atomic
vapor, such interactions are typically given by dipole-dipole interactions. The dipole-
dipole interaction between atoms in the P state, scales with the inter-atom distance r
as r−3, and for atoms in an S state (which is the case for the ground state of hydrogen-
like atoms, such as alkali metals), we have induced-dipole interactions, which depend
on the distance as r−6 (Cohen-Tannoudji et al., 1977b). Except for very large densities,
such interactions are very weak in an atomic vapor and hard to detect from the width
of spectral lines (Dai et al., 2012).

The atomic Hamiltonian can be written in terms of well-defined excited-state man-
ifolds of the collective state of all N atoms,

Ĥ0 = εg|g〉〈g|+
∑

i

ε
(1)
i |e

(1)
i 〉〈e

(1)
i |+

∑

i

ε
(2)
i |e

(2)
i 〉〈e

(2)
i |+ . . . , (6.4)

where |e(n)
i 〉 denote the n-fold excited states (n out of N atoms are excited). If there

are no interactions between the atoms, the first excited state manifold is N -fold de-

generate, that is, ε
(1)
i = ε(1)∀ i—it is comprised of all states, where one atom is excited

while all others remain in the ground state. Weak atom-atom interactions lift these

2Throughout this section, we denote operators with a hat to avoid ambiguities when we replace the
classical electromagnetic field modes by quantized operators.
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degeneracies and produce a band of resonances whose width depends on the strength
of the interaction. Writing out the eigenstates of the full Hamiltonian in terms of dif-
ferent excitation manifolds is close in spirit to the theoretical treatment of molecular
systems. To describe, for instance, the nonlinear spectra generated by the excitons
(bounded electron-hole paris) in molecular aggregates, one frequently employs a sim-
ilar decomposition of the Hamiltonian (Schröter et al., 2015). The different energy
bands – or in a the language of chemical physics, the exciton manifolds – are coupled
via single-photon absorption and emission processes. We will, at some points, make
use of this language for the description and interpretation of nonlinear spectroscopic
signals of quantum optical systems. For example, if the system is initially in the ground
state, we need to absorb two photons to populate the second exciton manifold. This
is important for the perturbative treatment of nonlinear signals which we will develop
in the next section.

6.2.2 Light-matter interactions

To spectroscopically analyze the system, we have to probe it with laser pulses. We
therefore start from the description of the system in the presence of atom-light inter-
actions, given by the Hamiltonian

Ĥ = Ĥ0 + ĤS
int(t), (6.5)

where

ĤS
int(t) = −µ̂SE(t) (6.6)

represents the light-matter coupling via the dipole operator

µ̂S =
∑

i

µ
(0)
ig |e

(1)
i 〉〈g|+

∑

n

∑

ij

µ
(n)
ij |e

(n+1)
i 〉〈e(n)

j |+ H.c., (6.7)

of the atomic ensemble. We have introduce dipole moments µ
(0)
ig , which couple the

ground state to the first excited state manifold, and similarly, couplings induced be-

tween higher-order energy bands described by µ
(n)
ij . The superscript S denotes the

Schrödinger picture. We treat the electromagnetic field as a classical field, which is
justified for typical laser pulses. We will provide a quantum treatment of the vacuum
modes in a later section, when we discuss the emission process of the sample after a
pulse sequence. For the perturbative expansion in the number of light-matter inter-
actions, we transform the quantum state of the atomic ensemble to the interaction
picture using

|Ψ(t)〉 = eiĤ0t/~|ΨS(t)〉, (6.8)

which leads to a time evolution described by

i~
∂

∂t
|Ψ(t)〉 = Ĥint(t)|Ψ(t)〉, (6.9)
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with Ĥint(t) = eiĤ0t/~ĤS
int(t)e

−iĤ0t/~. We assume that the laser frequency, deter-
mining E(t), is close to the transition frequency between excited state manifolds (see
below). In the rotating wave approximation (see, for example, section 3.2.1), the
interaction Hamiltonian reads

Ĥint(t) = −µ̂†(t)E+(t)− µ̂(t)E−(t), (6.10)

where we have introduced the positive-frequency component of the interaction-picture
dipole operator

µ̂†(t) =
∑

i

µ
(0)
ig e

iωigt|e(1)
i 〉〈g|+

∑

n

∑

ij

µ
(n)
ij e

iω
(n)
ij t|e(n+1)

i 〉〈e(n)
j |, (6.11)

with ωig = (ε
(1)
i − εg)/~ and ω

(n)
ij = (ε

(n+1)
i − ε(n)

j )/~. The electromagnetic field is
decomposed into individual pulses E(t) = E1(t) + E2(t) + . . . of the form

Ej(t) = Aj(t− tj) cos[ωL(t− tj) + Φj ]

=
1

2
Aj(t− tj)ei[ωL(t−tj)+Φj ] +

1

2
Aj(t− tj)e−i[ωL(t−tj)+Φj ]

= E−j (t) + E+
j (t), (6.12)

where ωL denotes the laser frequency and Aj describes the time-dependent amplitude,
that is, the temporal envelope of the j-th pulse. The phase Φj of the laser pulse will
play a crucial role for the phase cycling, to be introduced in section 6.2.5. For the

above rotating-wave-approximation, we assume ωL ≈ ωig ≈ ω(n)
jk , for all single excited

states labeled by i and higher-order excited states labeled by j, k and n.

6.2.3 Fluorescence measurements

There are several possibilities to collect the signal at the end of the pulse sequence.
Bulk materials are usually measured by heterodyne detection of the stimulated emis-
sion light, or by collecting the light emitted via spontaneous decay at a random time
after the last interaction. This is possible for atomic vapor (Dai et al., 2010; Dai et al.,
2012), but when we consider extending these methods to cold atomic ensembles of
roughly only hundreds of atoms, the number of scattered photons will be too low to
implement such methods. Furthermore, we will also develop methods to probe, for
instance, the dynamics of phonons in an ion trap. These excitations dissipate slowly
into the environment instead of decaying radiatively. Hence different methods need
to be developed for probing artificial quantum systems. A promising possibility is
to consider the measurement of fluorescence light, which is induced externally, and
its intensity is proportional to the population of the excited states (Tekavec et al.,
2006; Tekavec et al., 2007; Lott et al., 2011; Hildner et al., 2011). In the context of
controllable atomic systems with long lifetimes, considered in the next section, this
technique brings the additional advantage that the time-delay between the final pulse
of the sequence and the collection of the signal can be fully controlled and, as we will
see later, its variation can yield further information about the decay of excitations in
the system.
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6.2.4 Single quantum coherence

We describe the spectroscopic experiment in the weak-coupling limit by a perturbative
expansion in the light-matter interaction. Since we consider a two-pulse measurement
scheme, we have to extend the expansion at least to second order contributions in
the interaction Hamiltonian, with E(t) = E1(t) + E2(t). In this section, we restrict
to a fully coherent perturbation expansion, which means that we consider the time
evolution of a pure state governed by the Schrödinger equation. This simplifies the
theoretical treatment significantly, and, furthermore, is well justified for the description
of electronic excitations in atomic vapor. Incoherent effects can be analyzed efficiently
with methods from nonlinear spectroscopy, and their theoretical description will be
taken into account in later sections. A perturbative expansion of the quantum state
in the number of light-matter interactions yields

|Ψ〉 = |Ψ(0)〉+ |Ψ(1)〉+ |Ψ(2)〉+ . . . , (6.13)

where the superscript denotes the number of interaction events, which can be ab-
sorption or emission processes of the atomic ensemble. We measure fluorescence light
immediately after the final interaction. Thus, the final signal is given, on the one
hand, by the overlap of the final state with the excited states, and, on the other hand,
by their respective coupling to the nearest manifold of energetically lower states (as
expressed by the dipole moments):

S =
∑

n

∑

kj

|µ(n−1)
kj |2〈e(n)

k |Ψ〉〈Ψ|e
(n)
k 〉. (6.14)

Here we only consider a single decay process for each excited state, while for higher-
excited states, there exists the possibility that the fluorescence yield is enhanced by
cascaded emissions. When a higher excited state decays into a lower excited state, the
subsequent decay of that lower excited state occurs – on average – after that state’s
lifetime has passed, and is therefore emitted later. Thus, the above approximation is
not justified if two conditions are met: First the time scale over which the fluorescence
light is recorded is much longer than the lifetime, and, second, the emitted photons
are recorded with high efficiency (that is: if the decay of an excited state leads to the
emission of multiple photons, the photon count will only be affected if also multiple
photons are registered). For the theoretical treatment presented in the following, we
assume that the above approximation is valid, and we will discuss other scenarios
qualitatively at the end of this section.

We assume that initially, the system is prepared in its ground state |Ψ(0)〉 = |g〉,
which does not contribute to the fluorescence light. Inserting equation (6.13) and only
retaining contributions up to second order, we obtain

S =
∑

n

∑

kj

|µ(n−1)
kj |2〈e(n)

k |Ψ(1)〉〈Ψ(1)|e(n)
k 〉

=
∑

k

|µ(0)
kg |2〈e

(1)
k |Ψ(1)〉〈Ψ(1)|e(1)

k 〉, (6.15)
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where with a single interaction, only the first excited-state manifold (n = 1) can be
reached from the ground state. It is thus sufficient to determine the first order terms

|Ψ(1)(t)〉 = − i
~

∫ t

t0

dτĤint(τ)|Ψ(t0)〉. (6.16)

The above mentioned assumption, that long before the interaction, the system was
prepared in its ground state, is now expressed formally by replacing t0 → −∞ and
|Ψ(t0)〉 = |g〉. Moreover, we assume that the measurement is performed long after
the final light-matter interaction, thus, we perform the limit t → ∞. Since, from
equation (6.11), we have µ̂(t)|g〉 = 0, a single interaction with the field E(t) = E1(t) +
E2(t) is determined by the respective positive frequency parts,

|Ψ(1)〉 =
i

~

∫ ∞

−∞
dτµ̂†(τ)E+

1 (τ)|g〉+
i

~

∫ ∞

−∞
dτµ̂†(τ)E+

2 (τ)|g〉

= |Ψ(1)
1 (t1)〉+ |Ψ(1)

2 (t2)〉 (6.17)

with

|Ψ(1)
j (tj)〉 =

i

~

∫ ∞

−∞
dτµ̂†(τ)E+

j (τ)|g〉

=
i

~
∑

i

∫ ∞

−∞
dτµ

(0)
ig e

iωigτE+
j (τ)|e(1)

i 〉〈g|g〉

=
i

~
∑

i

µ
(0)
ig Ẽ

+
j (ωig)|e(1)

i 〉. (6.18)

In the last step, we define the time integral, with equation (6.12), as

Ẽ+
j (ωig) =

1

2

∫ ∞

−∞
dτAj(τ − tj)eiωigτe−i[ωL(τ−tj)+Φj ]

=
1

2

∫ ∞

−∞
dτ ′Aj(τ

′)ei(ωig−ωL)τ ′eiωigtje−iΦj

= αj(ωig)e
iωigtje−iΦj , (6.19)

which contains the spectral amplitude αj(ω), which, formally represents the Fourier
transform of the temporal envelope Aj(t). Inserting this back into equation (6.18), we
obtain

|Ψ(1)
j (tj)〉 =

i

~
∑

i

µ
(0)
ig αj(ωig)e

iωigtje−iΦj |e(1)
i 〉. (6.20)

Thus, if we expand a phase-coherent two-pulse sequence to second order in the light-
matter interaction (one excitation induced by each pulse), we obtain an excited state
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Figure 6.1.: Diagrammatic representation of the contributions to the total signal in a simple
two-pulse measurement scheme. Excitations (red arrows) apply to the ‘bra’-
and ‘ket’ side of the density matrix and induce characteristic phase shifts Φj ,
which label different excitation pathways. The fluorescence readout of excited-
state populations is depicted by two blue arrows. The first two terms describe
populations which are created by a single pulse, and show no time evolution
between the two pulses. These contributions also do not depend on the laser
phase. This is different for the coherences (third and fourth term), which can be
selected based on their phase dependence.

population that leads to the fluorescence signal, given by (6.15), with (6.17) and (6.20),

S =
∑

k

|µ(0)
kg |2|〈e

(1)
k |Ψ

(1)
1 (t1)〉|2 +

∑

k

|µ(0)
kg |2|〈e

(1)
k |Ψ

(1)
2 (t2)〉|2

+
∑

k

|µ(0)
kg |2〈e

(1)
k |Ψ

(1)
1 (t1)〉〈Ψ(1)

2 (t2)|e(1)
k 〉

+
∑

k

|µ(0)
kg |2〈e

(1)
k |Ψ

(1)
2 (t2)〉〈Ψ(1)

1 (t1)|e(1)
k 〉. (6.21)

At this point, we introduce a diagrammatic representation of the resulting four
terms, by writing out the initial pure state as a projector and introducing time as the
upwards direction, see figure 6.1. The first two contributions,

∑

k

|µ(0)
kg |2|〈e

(1)
k |Ψ

(1)
j (tj)〉|2 =

1

~2

∑

i

|µ(0)
ig |4|αj(ωig)|2, (6.22)

describe processes in which the ensemble only interacts with one of the two pulses and
an excited-state population is created by either the first or the second pulse. This
does not lead to any time evolution between the pulses. This is different for the two
interference terms,

∑

k

|µ(0)
kg |2〈e

(1)
k |Ψ

(1)
2 (t2)〉〈Ψ(1)

1 (t1)|e(1)
k 〉 =

∑

i

|µ(0)
ig |4α1(ωig)α2(ωig)e

iωigt21e−iΦ21 ,

(6.23)

which evolve in a coherent superposition of ground- and excited states. Unlike the
populations, these terms evolve as a function of the time delay t21 = t2 − t1 between
the pulses. A Fourier transform of the corresponding signal would yield the energy
spectrum of the first excited states which are coupled to the ground state via µ̂. Had we
included incoherent processes, we would be able to observe the decay of this coherent
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superposition as a function of the delay time. The corresponding terms define the single
quantum coherence signal and they are identified by the characteristic phase shift Φ21 =
Φ2−Φ1. In the present setting, these coherences represent the only relevant excitation
pathway. In higher-order signals, different pathways may be able to reveal different
information about the dynamical and spectral features of the system, and it becomes
increasingly important to selectively extract only specific contributions, characterized
by their phase-dependence. As we already indicated in the introductory section 2.4, in
bulk material, this can be done by adjusting phase-matching conditions. The analogue
of this method in the current setting is phase cycling, which was developed already in
the context of two-dimensional nuclear magnetic resonance experiments (Ernst et al.,
1987).

6.2.5 Phase cycling

Phase cycling is a post-processing method which allows to extract only those contri-
butions with a specific phase dependence from a convoluted signal with many differ-
ent contributions. It relies on the ability to control the phases Φi in a sequence of
pulses. As we have seen in the previous section, each interaction process with a light
field, described by (6.12), adds another phase factor ±Φj to the quantum state. Let
us assume the total signal contains contributions with phase signatures kΦ12, with
k = 0,±1,±2, . . . ,±kmax and kmax is determined by type and strength of the interac-
tion. The total signal can be decomposed into terms labeled by their phase shifts

S(Φ12) =

kmax∑

k=−kmax

Ske
ikΦ12 , (6.24)

and the goal is to extract the contribution Sk. This can be achieved by an inverse
discrete Fourier transform (Ernst et al., 1987)

Sk =
1

2kmax + 1

2kmax∑

j=0

S(δΦj)e
−ikδΦj , (6.25)

with δΦj = 2πj/(2kmax +1). Experimentally, this requires repeating the measurement
while scanning the phase shifts over the set of δΦj . In a perturbative treatment, typical
small values of kmax ≤ 2 allow to extract the relevant terms already with few repetitions
of the experiment. Since the development for nuclear magnetic resonance (Ernst et al.,
1987), phase cycling has been implemented with optical signals (Tian et al., 2003)
and enables for example phase-coherent experiments with single molecules (Hildner
et al., 2011). In the example of the atomic vapor, phase-cycling is implemented by a
slow acousto-optical modulation of the laser pulses, which is extracted with a lock-in
amplifier (Tekavec et al., 2006).

In higher-order pulse sequences, more complicated dependences on the phase differ-
ence between each consecutive pair of pulses may occur. The above method can be
extended easily to a multidimensional inverse Fourier analysis, and optimized phase-
cycling schemes have been developed to reduce the number of experimental repetitions
(Ernst et al., 1987).
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6.2.6 Second-order quantum coherence

From equation (6.21) we see that in the above second-order perturbative treatment,
the only contributions to the fluorescence signal are the induced populations of the
first excited state manifold. If we further employ phase-cycling to extract the signature
Φ12 from the total signal, there cannot be any contribution of higher excited states—
irrespective of the intensities of the pulses. In order to study the dynamics of higher-
excited states in the above two-pulse scheme we must therefore extend the perturbation
theory to higher orders, and adjust the phase-cycling condition.

Thus, we now allow for two interactions with each pulse, leading to a total of four
light-matter interactions. Due to the orthogonality of the excited state manifolds,
there can be no contribution from the third order since this would involve asymmetric
populations in the left and right arm of the ladder diagrams. The next leading order
is therefore the fourth order. We assume the initial state to be the ground state again,
and expand equation (6.14) to fourth order:

S =
∑

n

∑

kj

|µ(n−1)
kj |2

(
〈e(n)
k |Ψ(2)〉〈Ψ(2)|e(n)

k 〉

+ 〈e(n)
k |Ψ(1)〉〈Ψ(3)|e(n)

k 〉+ 〈e(n)
k |Ψ(3)〉〈Ψ(1)|e(n)

k 〉
)
. (6.26)

The first-order contributions were already determined in equation (6.20). The second-
order contributions can also generate second-excited states (n = 2), and therefore
the above sum can no longer be restricted to terms with n = 1. Under the same
assumptions as before, the second-order terms yield, with (6.10), and recalling that
µ̂|g〉 = 0,

|Ψ(2)〉 = − 1

~2

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′Ĥint(τ)Ĥint(τ

′)|g〉

= − 1

~2

∑

i,j=1,2

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′
[
µ̂†(τ)E+

i (τ)µ̂†(τ ′)E+
j (τ ′)

+µ̂(τ)E−i (τ)µ̂†(τ ′)E+
j (τ ′)

]
|g〉

=
∑

i,j=1,2

|Ψ(2)
ij (ti, tj)〉, (6.27)

where, with (6.11),

|Ψ(2)
ij (ti, tj)〉

= − 1

~2

∑

abc

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′µ(1)

cb e
iω

(1)
cb τE+

i (τ)µ(0)
ag e

iωagτ
′
E+
j (τ ′)|e(2)

c 〉〈e(1)
b |e(1)

a 〉

− 1

~2

∑

ab

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′µ(0)∗

bg e−iωbgτE−i (τ)µ(0)
ag e

iωagτ
′
E+
j (τ ′)|g〉〈e(1)

b |e(1)
a 〉
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= − 1

~2

∑

ac

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′µ(1)

ca e
iω(1)
ca τE+

i (τ)µ(0)
ag e

iωagτ
′
E+
j (τ ′)|e(2)

c 〉

− 1

~2

∑

a

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′|µ(0)

ag |2e−iωag(τ−τ ′)E−i (τ)E+
j (τ ′)|g〉. (6.28)

The dependence of these terms on the times t1 and t2 at which the two pulses are
applied will become apparent later. The last term in (6.28), which describes an ex-
citation to a first excited state and a stimulated emission back to the ground state,
does not contribute to the fluorescence light, and we will therefore omit it for future
calculations. For the other term, which describes a two-photon excitation to a double-

excited state, we employ the approximation ω
(1)
cb ≈ ωag ≡ ω0 ∀ c, b, a. This means that

we neglect inter-atom interactions, which would lead to broad bands instead of degen-
erate excited state manifolds. We first consider contributions in which both absorbed
photons origin from the same pulse, that is i = j. The integral in the only contributing
term of (6.28), then, can be written as

|Ψ(2)
jj (tj)〉 = − 1

~2

∑

ac

µ(1)
ca µ

(0)
ag

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′eiω0τE+

j (τ)eiω0τ
′
E+
j (τ ′)|e(2)

c 〉. (6.29)

For simplicity, the equality sign in this, and henceforth in similar terms, reflects equal-
ity up to terms that can lead to a nonzero contribution to the fluorescence light (equal-
ity modulo terms that are proportional to the ground state, and therefore are irrelevant
for the fluorescence signal). For functions satisfying f(τ, τ ′) = f(τ ′, τ) the following
holds:

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′f(τ, τ ′) =

1

2

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′f(τ, τ ′). (6.30)

This follows from

∫∫

R2

dτdτ ′ =

∫∫

τ>τ ′

dτdτ ′ +
∫∫

τ≤τ ′
dτdτ ′ =

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′ +

∫ ∞

−∞
dτ ′
∫ τ ′

−∞
dτ, (6.31)

together with the symmetry of f . We use equation (6.30) to simplify the integral (6.29)

|Ψ(2)
jj (tj)〉 = − 1

2~2

∑

ac

µ(1)
ca µ

(0)
ag

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′eiω0τE+

j (τ)eiω0τ
′
E+
j (τ ′)|e(2)

c 〉

= − 1

2~2

∑

ac

µ(1)
ca µ

(0)
ag Ẽ

+
j (ω0)Ẽ+

j (ω0)|e(2)
c 〉. (6.32)

Using equation (6.19) yields

|Ψ(2)
jj (tj)〉 = − 1

2~2

∑

ac

µ(1)
ca µ

(0)
ag α

2
j (ω0)e2iω0tje−2iΦj |e(2)

c 〉. (6.33)



184 6. Multidimensional nonlinear spectroscopy of controllable quantum systems

In the presence of weak atom-atom interactions, the above integration trick can still
be considered a good approximation (assuming that the resulting width of the excited-
state bands is still small compared to their center value), and we obtain

|Ψ(2)
jj (tj)〉 ' −

1

2~2

∑

ac

µ(1)
ca µ

(0)
ag αj(ω

(1)
ca )αj(ωag)e

i(ω(1)
ca +ωag)tje−2iΦj |e(2)

c 〉. (6.34)

Alternatively, the impulsive limit allows us to include atom-atom interactions with-
out approximations. In the impulsive limit, we assume that the finite pulse duration
can be neglected compared to the time scale of the interacting system dynamics, trans-
forming equation (6.12) into

Ej(t) = Ajδ(t− tj) cos[ωL(t− tj) + Φj ]. (6.35)

Using this in equation (6.28), and omitting again the ground-state contribution, we
obtain,

|Ψ(2)
jj (tj)〉 = − 1

~2

∑

ac

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′µ(1)

ca e
iω(1)
ca τE+

j (τ)µ(0)
ag e

iωagτ
′
E+
j (τ ′)|e(2)

c 〉

= − 1

~2

∑

ac

A2
jµ

(1)
ca µ

(0)
ag e

i(ω(1)
ca +ωag)tje−2iΦj |e(2)

c 〉. (6.36)

Note that in general, excited-state contributions created from a sequence of two pulses
carry a phase shift Φi + Φj :

|Ψ(2)
ij (ti, tj)〉 ∼ e−i(Φi+Φj). (6.37)

If i 6= j, this means that both pulses excite the system once. Such excitations can only
lead to a measurable population when they occur in combination with the Hermitian
conjugate event, in which case the pathway is described by the creation of a population
by each of the pulses. Since these pathways do not involve coherences, they do not
provide information about the spectrum or the dissipative dynamics. They further
do not carry a total phase signature, and, hence, will be discarded by phase-cycling.
Instead, the evolution of double-excited states can be observed from the pathways
involving events with i = j. To measure the second-order quantum coherence3 signal,
one selects the terms with phase signature 2Φ21 = 2Φ2 − 2Φ1 from the total sig-
nal (6.26). The only relevant contribution from second-order perturbation expressions
is therefore, using the expression obtained from the impulsive limit, and recalling the

3We reserve the term double quantum coherence for a particular four-pulse signal, which will be
discussed later in this chapter.
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Figure 6.2.: Diagrammatic representation of contributions to the second-order quantum co-
herence signal. Two elementary processes involving two photons from the same
laser pulse have to be considered (a). Feynman ladder diagrams represent a useful
formalism to visualize the relevant perturbative expressions. For the second-order
quantum coherence signal, one selects the phase signature 2Φ21 (see text). Two
pathways with opposite signs contribute (b). In the current considerations, we
assume that fluorescence happens immediately after the second pulse.

definitions for ωig and ω
(n)
ij below (6.11),

∑

n

∑

kj

|µ(n−1)
kj |2〈e(n)

k |Ψ
(2)
22 (t2)〉〈Ψ(2)

11 (t1)|e(n)
k 〉

=
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~4
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abcj

|µ(1)
cj |2A2

1A
2
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ca µ

(0)
ag µ
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(0)∗
bg ei(ω

(1)
ca +ωag)t2−i(ω(1)

cb +ωbg)t1e−2iΦ21
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1
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abcj
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2
2µ
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(0)
ag µ
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(0)∗
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(2)
c −εg)t2−i(ε(2)c −εg)t1e−2iΦ21

=
1
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∑
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∑
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(∑
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µ(1)
ca µ

(0)
ag µ

(1)∗
cb µ

(0)∗
bg

)
ei(ε

(2)
c −εg)t21e−2iΦ21 . (6.38)

These terms describe the fluorescence signal of double-excited states and can be rep-
resented by the Feynman diagram (Ia) in figure 6.2.

To determine the remaining two contributions to the total signal (6.26), we turn to
the third order terms,

|Ψ(3)〉 =

(−i
~

)3 ∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′
∫ τ ′

−∞
dτ ′′Ĥint(τ)Ĥint(τ

′)Ĥint(τ
′′)|g〉. (6.39)

Here, excitation pathways leading to an excited state are comprised of the sequences
E+
i (τ)E+

j (τ ′)E+
k (τ ′′), E+

i (τ)E−j (τ ′)E+
k (τ ′′), and E−i (τ)E+

j (τ ′)E+
k (τ ′′). The first terms

create triple-excited states |e(3)
m 〉. For the fluorescence detection, these terms are later
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combined with first order terms, and, since the resulting coherence is not diagonal in
the basis of excited states, this pathway will not contribute to a measurable popula-
tion in the total signal (6.26). We can further restrict the number of contributions
by already taking into account the phase dependence 2Φ21, which is selected from the

total signal. The first order terms will be first excited states |e(1)
n 〉 with phase signature

−Φi. Thus, a third-order term will only contribute if it carries the phase signature
2Φj −Φi. This implies that the two excitations (E+ terms) must stem from the same
pulse j and the de-excitation must be induced by the same pulse i which creates the
first excited state in the corresponding first-order term. We thus only need to consider
the term

|Ψ(3)
ij (ti, tj)〉 = −

(−i
~

)3∑

abc

µ
(1)∗
bc µ

(1)
ba µ

(0)
ag

∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′
∫ τ ′

−∞
dτ ′′

× E−i (τ)E+
j (τ ′)E+

j (τ ′′)e−iω
(1)
bc τeiω

(1)
ba τ

′
eiωagτ

′′ |e(1)
c 〉. (6.40)

In the impulsive limit we obtain

|Ψ(3)
ij (ti, tj)〉 = −

(−i
~

)3∑
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µ
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bc µ

(1)
ba µ

(0)
ag AiA

2
je
−iω(1)

bc tieiω
(1)
ba tjeiωagtje−i(2Φj−Φi)|e(1)

c 〉.

(6.41)

The contribution to the fluorescence light is given by, see equation (6.26),
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(2)
b −εg)t21e−i2Φ21 (6.42)

where we have used Eqs. (6.20) and (6.41). These terms correspond to the Feynman
ladder diagram (Ib) in figure 6.2. Note how the third-order interaction on the ‘ket’
side and the first order on the ‘bra’ side of the density matrix can be intuitively read
off the diagram. Furthermore, since this pathway also involves a de-excitation, the
total pathway occurs with a different sign than the one described by diagram (Ia) and
equation (6.38). Moreover, by comparing the two contributions (6.38) and (6.42), we

find that both terms coincide when |µ(0)
kg |2 =

∑
j |µ

(1)
kj |2. This condition is physically

satisfied when the decay probability from the second to the first excited-state man-
ifold is equal to the decay probability from the first excited-state manifold into the
ground state. This is indeed the case for weakly interacting atomic gases, where the
n-th excited-state manifold is just characterized by n excited atoms, and, due to the
opposing signs of (6.38) and (6.42), the two contributions effectively cancel each other.
However, recall that (6.42) is obtained from the fluorescence of first excited states,
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Figure 6.3.: Diagrammatic representation of contributions to the third-order quantum coher-
ence signal. Three pathways have to be considered, each one corresponding to
the fluorescence light of triple- (a), double- (b), and single (c) excited states,
respectively. Note that, according to the third diagram rule, the diagram (b)
contributes with a different sign than (a) and (c) to the total signal.

while (6.38) originates from second-excited states. In writing equation (6.26), we as-
sumed that the same number of photons is collected from the decay of all excited states.
When working with short-lived excited states (typical dipole-allowed transitions yield
lifetimes on the order of few nanoseconds), it is more realistic to assume that higher
excited states (of the full atomic ensemble) emit more photons during the detection
period, and thus produce a stronger contribution to the fluorescence signal. In fact,
these second-order quantum coherences can be measured (Bruder, 2014), and allow to
extract the spectrum and the decoherence of the second excited-state manifold.

6.2.7 Higher-order quantum coherence

The above methods can be extended to higher orders in perturbation theory and
selecting the phase signatures mΦ21. It is convenient to use the diagrammatic theory
to determine the relevant pathways and their signs. These are depicted in figure 6.3
for m = 3. In general, the following diagram rules can generate the entire set of
contributing pathways for arbitrary pulse sequences and phase signatures efficiently:

• Left and right side of the ladder diagram describe the interactions of ‘ket’ and
‘bra’ side of the density matrix, respectively.

• Excitations (de-excitations) are described by arrows pointing towards (away
from) the density matrix. They imprint the phase shift −Φ (+Φ) on the ‘ket’
side of the density matrix, and +Φ (−Φ) on the ‘bra’ side.

• Each de-excitation adds a factor −1 to the overall sign of the diagram.

• To contribute to the fluorescence signal, the diagram must end in a population
of an excited state.
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Finally, the total signal is generated by summing up all relevant diagrams, taking into
account their relative signs. This can lead to destructive interference and cancellation
of pathways. In the context of controllable quantum systems, we will provide a system-
atic introduction to the diagrammatic representation of pathways, see section 6.3.1.
For further background on the diagrammatic method and the theoretical treatment of
nonlinear response functions, we refer to the extensive literature on the topic, see for
instance references (Mukamel, 1995; Hamm and Zanni, 2011; Brańczyk et al., 2014;
Schlawin, 2015).

6.2.8 Coupling to vacuum modes

Fluorescence readout, which was assumed throughout the theoretical treatment of this
chapter, is particularly useful to probe the populations of long-lived excited states and
will be our method of choice to study controllable quantum systems. For short-lived
excited states, another possibility is provided by collecting spontaneously emitted pho-
tons. In this section, we briefly discuss how the theoretical treatment of the preceding
section can be modified to describe the signal obtained by collecting spontaneously
emitted photons, instead of externally induced fluorescence light. One major differ-
ence between the two scenarios is that fluorescence light involves a macroscopic number
of scattered photons whereas spontaneous emission from an ensemble of atoms allows
to distinguish between single photons and coincident two-photon processes. To treat
emission into the vacuum, we have to replace the classical electromagnetic field E with
a quantized operator Ê. The Hilbert space, thus, now also contains the field modes,
and the Hamilton operator reads (Cohen-Tannoudji et al., 1992; Loudon, 1973)

Ĥ = Ĥ0 + ĤF + Ĥint, (6.43)

where ĤF denotes the Hamiltonian of the quantized electromagnetic field. We work
in the interaction picture with respect to Ĥ0 + ĤF .

6.2.8.1. Single-photon detection

We first determine the intensity, as measured, for example, by a photomultiplier tube
from independent single-photon events. Assuming that each emitted photon is detected
(otherwise we add a factor γ < 1 to rescale), we measure the expectation value of the
quantized intensity operator (Loudon, 1973)

S =

∫
dtTr{Ê†(t)Ê(t)ρ(t)}. (6.44)

Here, ρ(t) denotes the density operator of the atomic ensemble and the electromag-
netic field, which is determined perturbatively. The interaction-picture operator Ê(t)
contains the destruction operators of a continuum of quantized electromagnetic field
modes (Loudon, 1973). This expression can be interpreted as the population of the
reduced statistical operator describing the single-particle subspace in second quanti-
zation. We will encounter similar expressions frequently in chapter 7. Here, we do not
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describe the excitation pathway that leads to the population of certain excited states,
which was already done in previous sections. Instead, we are only concerned with
the decay of excited states accompanied by photon emission into the vacuum modes.
Moreover, we also do not care about the time it takes to emit the photon, hence, our
integrated expression reflects the total detected intensity over an infinite time interval.
To describe the single-photon signal obtained by decay of a second-excited state into
a first-excited state, we assume the initial state to be

ρ0 = |e(2)
i 〉〈e

(2)
j | ⊗ |0〉〈0|, (6.45)

where |0〉 describes the vacuum state of the electromagnetic field. Since, eventually,
only populations of at least one photon will yield a signal, the most relevant contribu-
tion of a perturbative expansion in terms of the light-matter interactions, expressed
by Dyson’s series (Sakurai and Napolitano, 1994; Mukamel, 1995), will be the second-
order term:

S ' − 1

~2

∫
dt

∫ t

0

dτ

∫ τ

0

dτ ′Tr
{
Ê†(t)Ê(t)

[
Ĥint(τ),

[
Ĥint(τ

′), ρ0

]]}
. (6.46)

The only contributing terms are those where the atom is de-excited and the field mode
gains one photon:

S ' 1

~2

∫
dt

∫ t

0

dτ

∫ τ

0

dτ ′Tr
{
Ê†(t)Ê(t)

(
µ̂(τ)Ê†(τ)ρ0µ̂

†(τ ′)Ê(τ ′)

+µ̂(τ ′)Ê†(τ ′)ρ0µ̂
†(τ)Ê(τ)

)}
. (6.47)

Inserting the initial state yields terms of the form

Tr
{
Ê†(t)Ê(t)Ê†(τ)|0〉〈0|Ê(τ ′)

}
= 〈0|Ê(τ ′)Ê†(t)Ê(t)Ê†(τ)|0〉

=

(
~ω0

2ε0c3V

)2

δ(t− τ ′)δ(t− τ), (6.48)

to describe the contribution of the light field to the expectation value. In the last step
we have used the commutation relations

[
Ê(t1), Ê†(t2)

]
=

~ω0

2ε0c3V
δ(t2 − t1), (6.49)

with the quantization volume V . Employing the narrow-bandwidth approximation
(Loudon, 1973), we assume that the frequencies of emitted photons are close to some
central resonance frequency ω0, which determines the energy gap between consecutive
excited state manifolds. For the atomic expectation value we obtain

Tr
{
µ̂(τ)|e(2)

i 〉〈e
(2)
j |µ̂†(τ ′)

}
= 〈e(2)

j |µ̂†(τ ′)µ̂(τ)|e(2)
i 〉

=
∑

k

µ
(1)
jk µ

(1)∗
ik eiω

(1)
jk τ

′
e−iω

(1)
ik τ . (6.50)
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Inserting this yields
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i ). (6.51)

As expected, we will only obtain a nonzero signal when i = j, that is, when the
final state describes a population rather than a coherence. The intensity is further
determined by the relevant dipole couplings. Similarly, for the single-photon signal

from single-excited states, that is, ρ0 = |e(1)
i 〉〈e

(1)
j | ⊗ |0〉〈0|, we obtain

S ' 4π

(
ω0

2ε0c3V

)2

µ
(0)
ig µ

(0)∗
jg δ(ε

(1)
j − ε

(1)
i ). (6.52)

6.2.8.2. Two-photon detection

For the expectation value of coincident two-photon detection events, we determine
(Loudon, 1973)

S =

∫
dtTr{Ê†(t)Ê†(t)Ê(t)Ê(t)ρ(t)}. (6.53)

This expression extends the definition of the intensity operator considered before and
represents the populations of the reduced statistical operator describing expectation
values of the two-particle subspace. Here, the leading order terms are given by the
fourth order perturbation in Ĥint. Extending the above analysis to fourth order yields
expectation values of the form

〈0|Ê(τi)Ê(τj)Ê
†(t)Ê†(t)Ê(t)Ê(t)Ê†(τk)Ê†(τl)|0〉

= 4

(
~ω0

2ε0c3V

)4

δ(τi − t)δ(τj − t)δ(τk − t)δ(τl − t), (6.54)

and
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We obtain
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6.2.9 Interpretation

In this section, we discussed higher-order quantum coherence signals using the example
of atomic vapor. The described nonlinear measurement protocols are able to reveal
the energies of specific excited state manifolds beyond single excited states with a two-
pulse measurement scheme. It further allows to monitor the time evolution of these
coherences, and their environment-induced decay.

If resolution permits, one could infer about the strength of atom-atom interactions
and collective effects from the width of an excitation band. However, at low densities
such shifts are typically weak and may be hard to detect. The present two-pulse
method can be extended to a four-pulse sequence which is able to reveal such collective
resonances using the double quantum coherence pulse sequence (Dai et al., 2012). This
scheme is similar to the second-order quantum coherence scheme discussed above,
however, with the crucial difference that the time delays between each of the four
interactions can be scanned. Separating the third and fourth interaction allows to
design a measurement scheme which only contributes if degeneracies are lifted, for
instance by collective resonances. We will discuss a fluorescence-based analogue of
this method in the context of controllable quantum systems.

6.3 Diagrammatic description of nonlinear spectroscopic experiments
of controllable quantum systems

After discussing a simple nonlinear spectroscopic measurement scheme for atomic va-
por, we now turn towards our principal goal, which is the development of efficient and
scalable probing methods to assess spectral and dynamical features of controllable,
many-body quantum optical systems. Atomic vapor represents a quantum optical
sample system which is comprised of a macroscopic number of constituents. Experi-
ments with cold atoms on optical lattices and especially with trapped ions are often
carried out on samples which are not optically dense enough to detect absorption
spectra or direct photon scattering events. The standard methods of nonlinear spec-
troscopy must therefore be adjusted. We have already seen that fluorescence readout,
which is routinely implemented, for instance, with trapped ions, can provide a promis-
ing method to measure the population at the end of a pulse sequence. Furthermore,
acousto-optical modulators allow to control and change the phases of incoming exci-
tation pulses, which allows to perform phase cycling. Furthermore, in many cases,
single-site addressability may be exploited to add spatial resolution to the measured
time-correlation functions. This feature is usually not available in bulk materials, and
may enable us to extract further information about the system at hand.

6.3.1 Basic elements for the design of nonlinear measurement schemes

We start by formally introducing the basic building blocks, which are required to
design an arbitrary pulse sequence to perform a nonlinear spectroscopic experiment.
The basic principle of such experiments is illustrated in figure 6.4. The system is probed
with a sequence of phase-coherent pulses, and the signal is collected as a function of the
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φ1φ2

t1t2

Figure 6.4.: Experimental scheme for a two-pulse nonlinear measurement protocol. Two pulses
with phases Φ1 and Φ2 are applied to a controllable quantum system. The pulses
can be applied to the collection of all atoms in the sample, or by employing
strongly focussed laser beams, they can be targeted onto specific local sites.
After the pulse sequence, the fluorescence light is collected. The experiment is
repeated many times while the time delays t1 and t2 are scanned. Figure taken
from (Schlawin et al., 2014).

time delays between these pulses. The phases are then used to extract the contribution
of individual pathways via phase-cycling. The figure further suggests the possibility to
induce localized excitations using tightly focussed laser beams, which is not essential
but can open up additional possibilities. One may picture such an experiment as an
interference experiment in which each pulse creates or probes excitations in the system,
close in spirit to wave packet interferometry (Fourkas et al., 1989; Scherer et al., 1991).

The essential building blocks of nonlinear spectroscopic experiments on controllable
quantum systems are (Gessner et al., 2014c; Schlawin et al., 2014),

• interactions of the system with a well-controlled external field,

• the time evolution of the system,

• readout schemes,

• phase cycling.

6.3.2 Externally induced excitations and de-excitations

We describe the interaction of the system with an external field in the impulsive
limit, which means that we assume the duration of external pulses to be much shorter
than typical time scales of the system dynamics. This allows us to avoid treating
the electromagnetic fields explicitly as in the previous section, and we can effectively
describe the action of these pulses in terms of creation and annihilation operators of
the system only. This is realized by a transition operator which, in general, can be
written as

Vi(φ) = αI + βeiφA†i + γe−iφAi, (6.57)
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Figure 6.5.: a) Elementary excitation and de-excitation processes in a single interaction event.
Red arrows pointing towards and away from the ‘bra’ and ‘ket’ sides of the quan-
tum state represent excitations and de-excitations, respectively. The different
terms contribute with different signs and can be grouped in terms of the phase
shift, which is used for phase-cycling. b) Time-evolution without external in-
teractions is represented in the upwards direction. c) Readout of populations is
represented by two blue arrows. Adapted from (Schlawin et al., 2014).

where Ai is the annihilation operator of an arbitrary mode of the system, labeled by
i. This mode can be any excitation in the system which can be addressed by exter-
nal control, for example, localized or collective vibrational excitations, or excitations
of electronic states. Higher-order excitations are also possible, for instance, when Ai
represents a displacement operator. For now, we treat Ai as an abstract, unspecified
operator whereas examples and possible experimental implementations will be dis-
cussed later in great detail. The phase φ is a property of the pulse that induces this
transition. During interaction events, this phase shift is imprinted onto the quantum
state of matter, which is crucial for phase cycling. The real-valued parameters α, β
and γ depend on the properties of the applied pulses. For example, weak perturbative
pulses are characterized by β ∼ γ � 1, while strong pulses with well-defined duration
are described by β = γ with α2 + β2 = 1.

To develop a diagrammatic representation of the elementary excitation and de-
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excitation events, we group the terms that describe the possible transitions by their
net phase shift. Consider the system to be described by the density matrix ρ0 before
the interaction event. The induced transitions are described by the superoperator

Vi(φ)ρ0 = Vi(φ)ρ0V
†
i (φ)

= α2ρ0 + β2A†iρ0Ai + γ2Aiρ0A
†
i + αe−iφ (βρ0Ai + γAiρ0)

+ αeiφ
(
γρ0A

†
i + βA†iρ0

)
+ e−2iφγβAiρ0Ai + e2iφβγA†iρ0A

†
i . (6.58)

These contributions are depicted in figure 6.5 a). Excitations are represented by red ar-
rows pointing towards the ‘ket’ or ‘bra’ side of the density matrix, while de-excitations
are denoted by arrows pointing away from the quantum state. The figure also lists
the corresponding signs, which must be considered when various diagrams add up to
yield the total signal. Finally, the different phase shifts allow to distinguish groups of
interaction events via phase-cycling. Note that for transitions of the form (6.57), the
maximal phase shift is ±2φ. For perturbative pulses, the terms with the largest phase
shift can also be neglected since β ∼ γ � 1 and α ∼ 1. This reduces the required
overhead for phase cycling significantly, since distinguishing terms with phase shift 0
or ±φ is possible by repeating the experiment with no more than three sets of phases,
as was shown in equation (6.25).

6.3.3 Time evolution and readout

The time evolution of the system without interactions with the external probing fields
is governed by the system Hamiltonian, and possibly, by dissipative processes caused by
couplings of the system to its environment. In general, we describe the time evolution
from τa to τb by a propagator (Mukamel, 1995)

G(τb, τa) = T exp

[∫ τb

τa

dtL(t)

]
, (6.59)

with the Liouvillian L(t). In the diagrammatic representation, the time axis evolves
upwards, see figure 6.5 b).

Finally, to collect the signal a readout mechanism must be identified. In general, we
describe this by the measurement of the expectation value of an arbitrary operator at
the end of the pulse sequence, which is realizable with significant flexibility in quantum
optical systems. Diagrammatically, this is represented by two outgoing blue arrows at
the end of the sequence, see figure 6.5 c).

6.3.4 Design of a pulse-sequence

To probe an n-point time-correlation function of the system, a pulse sequence is de-
signed by specifying a series of n transition operators Vi1 , . . . ,Vin and a readout observ-
able Oj . The appropriate pulses are then applied with tunable time delays t1, . . . , tn
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Figure 6.6.: The four diagrams which comprise the single quantum coherence signal. To label
the diagrams, excitations on the ‘ket’ (‘bra’) side are described by capital letters
L (R), while de-excitations are indicated by the respective small letters l (r).
Adapted from (Schlawin et al., 2014).

in between them. The initial density matrix ρ0 = ρ(τ0) hence evolves into

ρ
(n)
i1,...,in

(t1, . . . , tn) =

n∏

k=1

[G(τk, τk−1)Vik(φk)] ρ(τ0), (6.60)

where ti = τi−τi−1. This evolution is probed by measuring the observable Oj , leading
to the signal

S
(n)
i1,...,in;j(t1, . . . , tn) = Tr

{
Ojρ

(n)
i1,...,in

(t1, . . . , tn)
}
. (6.61)

Depending on the choice of excitation and readout pulses, this n-point time-correlation
function of the system can reveal specific properties of the system, such as internal
couplings and transport processes, as well as environmental effects on the dynamics.
We will discuss a series of examples at the end of this chapter.

Let us consider the example of a two-pulse measurement scheme. We extend the
measurement scheme which was discussed in section 6.2.4 by allowing for another time
evolution between the last pulse and the readout. The general single quantum coher-
ence signal is obtained by applying the two pulses with phases φ1 and φ2, respectively,
and extracting only those terms which carry the phase shift φ1−φ2 via phase cycling;
see section 6.2.5 (Gessner et al., 2014c). The corresponding interaction events cre-
ate coherent superpositions and are highlighted in yellow in figure 6.5. Assuming an
observable Oj which measures populations of those modes which are created by the

excitation operators A†ik , the four diagrams depicted in figure 6.6 contribute to the
signal.

If the initial state ρ0 = |0〉〈0| contains no excitations and if the ground state does
not contribute to the signal, 〈0|Oj |0〉 = 0, one can restrict to the left-most diagram,
denoted LR. This can be seen easily using the diagrammatic representation: The two
diagrams rl and rR involve a de-excitation in the first pulse, which causes them to
drop out when the initial state cannot be further de-excited. Moreover, the diagram
Ll is first excited and subsequently de-excited on the ‘ket’ side, while the ‘bra’ side
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does not experience interactions, such that the diagram ends in a population of the
ground state, which does not contribute either.

6.4 Excitation and readout schemes for trapped ions

After introducing the formal principles and constituents of nonlinear measurement
protocols in the previous section (Gessner et al., 2014c), we now turn to the discussion
of the actual physical implementation of these ideas (Schlawin et al., 2014). In this sec-
tion we develop specific methods to realize transitions of the form (6.57) with current
experimental trapped-ion technology. We also discuss possibilities to read out excita-
tions and address both the electronic and vibrational degrees of freedom, equipping
us with a flexible set of tools to probe the dynamics of ion crystals using nonlin-
ear spectroscopy. Trapped-ion experiments were discussed in detail in section 2.2.1.
Even though nonlinear measurement protocols can yield valuable information on the
eigenmode dynamics, in this secion, we make explicit use of the local addressing of in-
dividual ions, which allows us to study non-equilibrium transport processes. Different
methods allow for the addressing of individual sites in an ion chain. We will mostly
consider tightly focussed lasers (Schindler et al., 2013), which may be redirected by
a controllable acousto-optic deflector. Other possibilities include spatially dependent
qubit resonance frequencies induced by the Zeeman effect in a magnetic field gradient
(Mintert and Wunderlich, 2001; Johanning et al., 2009; Ospelkaus et al., 2011), or
by resorting to different ion species which can be distinguished spectrally (Schneider
et al., 2012).

6.4.1 Electronic degree of freedom: Dynamics

Let us briefly recall different models which describe the dynamics of electronic excita-
tions in a Coulomb crystal under appropriate conditions, as was already discussed in
section 2.2.1.7. The large inter-ion separation on the order of ∼ 5µm leads to negli-
gibly small dipole-dipole couplings between the ions. Effective spin-spin interactions
can, however, be mediated using lasers that couple the electronic states to the common
modes of motion. This allows to induce interactions of the form

HMS =
~Ω

2
σ(1)
x ⊗ σ(2)

x (6.62)

by appropriate driving of sideband transitions (Sørensen and Mølmer, 1999). Such
interactions can realize entangling gates which form a basic building block of quantum
algorithms. This can be pushed further to generate spin-spin interactions throughout
the entire chain, described by the long-range spin-chain model which was subject of
chapter 5 (Porras and Cirac, 2004b),

Hsc = −
N∑

i,j=1
(i<j)

J0

|i− j|ασ
(i)
x σ(j)

x −B
N∑

i=1

σ(i)
y . (6.63)
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For further possibilities, details and background on quantum simulations with trapped
ions we refer to references (Schneider et al., 2012; Blatt and Roos, 2012).

6.4.2 Electronic degree of freedom: Excitation and readout

The electronic states of trapped ions are routinely controlled with highest precision
to realize methods from quantum information and quantum computations (Leibfried
et al., 2003a; Häffner et al., 2008; Schindler et al., 2013). As was shown in equa-
tion (2.11), application of a pulse of duration t and phase ϕ on the carrier transition
induces a transition described by the unitary operator

U cϕ(t) = cos

(
Ωt

2

)
I− i sin

(
Ωt

2

)(
eiϕσ+ + e−iϕσ−

)
. (6.64)

A π/2-pulse is characterized by Ωt = π/2, which leads to cos(Ωt/2) = sin(Ωt/2) =
1/
√

2. Assuming that this pulse is applied with a spatially focussed laser onto the ion
at site i, we can cast this transition into the form of equation (6.57) by identifying

φ = ϕ− π/2, Ai = σ
(i)
− , α = β = −γ = 1/

√
2. (6.65)

In the development of the general formalism, we have assumed the impulsive limit,
which requires that the interactions with the external control field happen on faster
time scales than those of the relevant system dynamics. With sufficient laser intensity,
carrier pulses can be applied within less than one microsecond, while typical time scales
of the trapped-ion dynamics are tens to hundreds of microseconds, depending on the
experimental parameters (Häffner et al., 2008; Schneider et al., 2012; Blatt and Roos,
2012). If these do not permit to apply such strong pulses with well-defined durations
this does, however, not limit the possibilities to realize nonlinear spectroscopy exper-
iments: Recall that by phase-cycling we essentially post-select those events in which
the desired sequence of excitations occurs. For pulse schemes as the single quantum
coherence, the yield of processes involving these events is maximized by applying π/2
pulses. In order to ensure that the induced excitations are applied on fast time-scales,
one can employ shorter pulses at the cost of reduced usable signal yield. This also
manifests in the fact that the final signal does not depend on the actual values of the
coefficients α, β and γ, assuming they are nonzero.

Readout of electronic observables is typically implemented using the electron shelv-
ing method (Leibfried et al., 2003a), which provides detection efficiencies close to unity,

and corresponds to measurement of the observable Oj = σ
(j)
z ; see also section 2.2.1.5.

Combination of this fluorescence-based readout scheme with unitary operations of the
form (6.64) allow for the measurement of arbitrary spin observables.

6.4.3 Vibrational degree of freedom: Dynamics

The motional degrees of freedom of linear chains of trapped ions were discussed in
section 2.2.1.3. We describe the common motion in terms of local phonons, using
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equation (2.6) (James, 1998), and include the effect of nonlinear corrections (2.16)
yielding the Hamiltonian (Porras and Cirac, 2004a)

Hph =

N∑

i=1

~ω0
i a
†
iai +

N∑

i,j=1
(i<j)

~tij(a†iaj + a†jai) + U

N∑

i=1

a†2i a
2
i . (6.66)

Microscopic expressions for the local frequencies ω0
i and inter-site couplings tij were

given in equation (2.7). The nonlinear term U may be attributed to higher-order
terms of the trap potential, which become especially relevant when the ratio of axial
and radial trap frequencies β0 = (νz/νx)2 is no longer small. When β0 � 1, one may
induce nonlinear correction terms under well-controlled conditions using a standing
laser wave or a cavity; see section 2.2.1.3.

Throughout the remainder of this section, we will show various theoretical simula-
tions of the dynamics induced by the Hamiltonian Hph, with β0 = 0.1, for different N
and U , employing a python code based on the qutip package (Johansson et al., 2013).

Similarly to our description of the Hamiltonian of atomic vapor, and close in spirit
to quantum chemistry, we label different excitation manifolds by the number of excited
local phonons. In particular, we introduce the single excited states

|ei〉 =

N∑

j=1

cija
†
j |0〉, (6.67)

and the double excited states

|fi〉 =

N∑

j,k=1

dijka
†
ja
†
k|0〉. (6.68)

These are formed by coherent superpositions of states containing one or two local
phonons, respectively, and involve one or two applications of the creation operator on
the ground state |0〉, which contains no phonons.

6.4.4 Vibrational degree of freedom: Excitation

Laser pulses can be used to coherently drive sideband transitions, which couple the
electronic degree of freedom to a resonant common mode of motion. This allows for the
controlled excitation of global phonons in the system. Moreover, individual resolution
of ions, and intense, tightly focussed laser pulses allow for the creation of local non-
stationary vibrational excitations in the system (Harlander et al., 2011; Brown et al.,
2011), which open up new possibilities for studies of energy transport through an ion
chain (Haze et al., 2012; Ramm et al., 2014).

In order to excite a local phonon, a sideband pulse must be realized faster than the
time scale of phonon hopping. We have seen in Eqs. (2.12) and (2.13), or (3.33), that
the time scale of first-order sideband transitions is given by ηΩ, where Ω is determined
by the laser intensity. Furthermore, the time scale of the local phonon dynamics
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Figure 6.7.: a) A coherent displacement operation can be induced using a bichromatic, off-
resonant, stimulated Raman scheme. b) Combinations of sideband and carrier
pulses allow to selectively create or destroy phonons. Adapted from (Schlawin
et al., 2014).

is determined by the parameter β0, see equation (2.7). Thus the creation of local
phonons requires ηΩ� β0νx. The parameter β0 can be adjusted via the ratio of axial
and radial trap frequencies. This can even be realized adiabatically to change the
time- and energy scales within the same experiment (Haze et al., 2012).

The following methods to excite phonons are rather general, and do not depend on
whether one considers a global beam, which excites common excitations of all ions, or
whether the above conditions are satisfied and a single ion is addressed with fast pulses
to create local vibrational excitations. We first discuss a method based on stimulated
Raman pulses, before we proceed to consider combinations of sideband pulses to excite
phonons.

6.4.4.1. Off-resonant stimulated Raman pulses

Experiments with hyperfine qubits routinely employ Raman pulses to manipulate the
qubit state. Such pulses are similar to those employed to probe molecular systems
(Hamm and Zanni, 2011) and can also be applied to induce motional excitations. To
this end, consider a combination of two lasers off-resonantly addressing a short-lived
excited state |ξ〉, such that their frequency difference matches the chosen vibrational
transition, for instance the local phonon frequency of the ion in the laser focus,

ν1 − ν2 = νx, (6.69)

as depicted in figure 6.7 a). The detuning ∆ is chosen sufficiently large, such that
the population of the state |ξ〉 can be neglected and this level can be adiabatically
eliminated (Heinzen and Wineland, 1990; Leibfried et al., 2003a). This leads to an
effective coupling between the two vibrational levels |n〉 and |n+1〉 given by (Leibfried
et al., 2003a)

(~/2)Ωeff = −~Ωn,ξΩn+1,ξ

∆
eiφ, (6.70)
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where Ωn,ξ and Ωn+1,ξ denote the couplings of the ground states (we assume the
electronic degree of freedom to be in the ground state | ↓〉) to the excited state |ξ〉
and the phase shift φ can be controlled through the phases of the two individual laser
pulses. This process generates a displacement operation on the addressed phonon mode
(Monroe et al., 1996). If, for instance, the local phonon mode at site j is addressed,
this is described by

Dj(εe
iφ) = eεe

iφa†j−εe−iφaj . (6.71)

The magnitude ε = ηΩefft of the displacement is controlled by the intensity and dura-
tion of the pulse. In the limit of weak, perturbative pulses, ε� 1, we can expand this
operator to linear order, leading to

Dj(εe
iφ) = I + εeiφa†j − εe−iφaj +O(ε2). (6.72)

This reduces to the general transition operator (6.57) with the parameters α ≈ 1 and
β = −γ = ε� 1 (Schlawin et al., 2014).

6.4.4.2. Resonant sideband pulses

Instead of the off-resonant Raman scheme one may also employ pulses which involve the
electronic degree of freedom. These can also be induced using a bichromatic Raman
transition, when the qubit is encoded in a radiofrequency transition. Alternatively,
optical qubits can be manipulated directly using visible (or near-visible) laser frequen-
cies; see section 2.2.1. In this section, we discuss the controlled, selective excitation or
de-excitation of vibrations based on sideband pulses.

We consider the following protocol to create a vibrational excitation (Schlawin et al.,
2014):

(i) Before the first pulse, the addressed ion is assumed to be in the electronic ground
state, that is, we start in the state | ↓, n〉. The first pulse is applied on the first
blue sideband with duration t1 and phase φ which, according to equation (3.42)
with m = 1, generates the superposition

U
(+1)
φ (t1)| ↓, n〉 = cos

(
Ω

(1)
n t1
2

)
| ↓, n〉+ eiφ sin

(
Ω

(1)
n t1
2

)
| ↑, n+ 1〉. (6.73)

(ii) Next, we apply a pulse on the carrier transition of duration t2 and phase ϕ, as
described by equation (6.64). The combination of the two pulses generates the
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state

U cϕ(t2)U
(+1)
φ (t1)| ↓, n〉 = cos

(
Ω

(1)
n t1
2

)
cos

(
Ωt2
2

)
| ↓, n〉

+ eiφ sin

(
Ω

(1)
n t1
2

)
cos

(
Ωt2
2

)
| ↑, n+ 1〉

− ieiϕ cos

(
Ω

(1)
n t1
2

)
sin

(
Ωt2
2

)
| ↑, n〉

− ie−iϕeiφ sin

(
Ω

(1)
n t1
2

)
sin

(
Ωt2
2

)
| ↓, n+ 1〉. (6.74)

This induced transition is depicted by blue arrows in figure 6.7 b).

This pulse combination creates a phonon, but the ion’s electronic state now contains
a contribution of the excited electronic state | ↑〉. Thus, another pulse of the same
form may de-excite a phonon, instead of inducing another excitation. As a conse-
quence, without further modification this sequence effectively produces a combination
of excitation and de-excitation operators, as in the Raman scheme, equation (6.72).

To selectively excite or de-excite a phonon in a multi-pulse sequence based on the
above pulse combination, the population of | ↑〉 must become invisible for subsequent
pulses on the carrier and sideband transition. We now discuss two alternatives to
achieve this, at the hand of the specific example of the 40Ca+ level scheme, which was
introduced in section 2.2.1.4. Both alternatives involve coherent transitions to other
long-lived electronic levels.4 Recall from figure 2.3 b) that the | ↑〉-state is arbitrarily
chosen as one of the six Zeeman sublevels of the D5/2-state manifold, while the | ↓〉-
state is one of the two S1/2 levels.

The first alternative is to address a different electronic transition, that is, one en-
codes the | ↑〉-state into another electronic level for each of the excitations that are
induced during the nonlinear measurement protocol. This way, given that there are
six different states in the excited D5/2-state manifold, sequences of up to six pulses can
be realized. This is no restriction since the most convenient nonlinear measurements,
to be discussed in section 6.5, only require up to four pulses. One must, however,
be careful to leave some population in the ground state after each of the pulses, and
avoid accidental resonances between the different carrier and sideband transitions, for
example by applying a large magnetic field.

The second alternative allows to use the same electronic transition for all of the
excitations in the measurement protocol, but requires additional pulses to hide the
| ↑〉-state population from subsequent excitations. These pulses coherently transfer
the electronic | ↑〉-state population to another electronic state which is not coupled by

4Note that in (Schlawin et al., 2014), a method based on incoherent optical pumping of the | ↑〉-
state to the | ↓〉-state was suggested. This process, however, is not suitable since it destroys
the coherence of the motional degree of freedom, which is required to realize the phase cycling
protocol.
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the employed electronic transitions of steps (i) and (ii). For each pulse of this form,
the | ↑〉-state population must be hidden in a different level. Hence, this recipe can
be applied to an n-pulse sequence if at least n long-lived levels are available which
do not respond to the carrier | ↓〉 → | ↑〉 transition and the corresponding sideband
transition. In the D5/2-state manifold, figure 2.3 b), we identify four such levels: For
the first three pulses, the population can be hidden in the +1/2,+3/2,+5/2 states
(by going through the S+1/2 ground state), while for the final pulse, it is sufficient to
transfer the population to the S+1/2 ground state. Moreover, if coherent laser access
is provided to the D3/2-state manifold, four additional long-lived electronic levels are
available.

After discarding the excited-state population using either one of the two alternatives,
the state is effectively described by

|Ψf 〉 '| ↓〉 ⊗
(

cos

(
Ω

(1)
n t1
2

)
cos

(
Ωt2
2

)
|n〉

−iei(φ−ϕ) sin

(
Ω

(1)
n t1
2

)
sin

(
Ωt2
2

)
|n+ 1〉

)
. (6.75)

Hence, the desired transition can be identified in a phase cycling scheme by the sig-
nature φ−ϕ. This further allows to keep either one of the two phases fixed, and scan
the other for phase cycling.

We did not specify the pulse durations t1 and t2, considered in the above pulse
scheme. This, again, is not essential, since, after phase-cycling, the signal does not
depend on these parameters. For the same reason we also did not explicitly account for
the loss of electronic population by hiding the | ↑〉-state population from subsequent
pulses. To maximize the usable signal yield, which in the above case corresponds to the
contributions of the phase-dependent coherences, one would employ π/2-pulses on the
sideband and on the carrier. The slowest of the three above processes is the sideband

pulse, step (i), since Ω
(1)
n ≈ η

√
n+ 1Ω, see equation (3.33), where the Lamb-Dicke

factor η, defined in equation (2.9), is typically of the order of 1 %, and Ω determines the
time scale of the carrier transition, step (ii). If one chooses to transfer the excited state
population to another long-lived state (the second alternative discussed above), the
required pulses would also be realized on the same time scale as the carrier transition.
Thus, in order to apply the above sequence of pulses on a local sideband, we need to
comply with the condition 2ηΩ/π � β0νx.

The combination of the three processes can then be approximately described by an
instantaneous transition of the form

V+ = αI + βeiφA†, (6.76)

which has the shape of equation (6.57) with γ = 0, allowing to selectively create an
excitation, without leaving the possibility to de-excite the system with the same pulse.
Such transitions are not available for the studies of molecular or solid-state systems
and demonstrate the high degree of flexibility which is provided by quantum optical
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experiments on artificial, synthetic systems. The operator A† can either describe the
excitation of a local phonon a†j , but may also induce global collective excitations when
the above pulse sequence is applied on slow time scales involving sidebands of the
common motional eigenmodes, such as the center of mass mode A†cm = a†1 + · · ·+ a†N .
In order to selectively annihilate a vibrational excitation, the sequence can be modified
by replacing the blue sideband pulse, step (i), with a pulse on the red sideband, which
induces a transition from | ↓, n〉 to | ↑, n − 1〉, and removes one phonon. This would
yield the effective transition operator

V− = αI + γe−iφA, (6.77)

which selectively de-excites the system. The generated transitions allow to choose
between the excitation or de-excitation mechanisms which correspond to those depicted
in the yellow boxes in figure 6.5. The opportunity to suppress one of the two processes
generates novel possibilities to extend standard methods of nonlinear spectroscopy,
which is a unique feature of controllable quantum systems (Gessner et al., 2014c;
Schlawin et al., 2014).

Combinations of resonant sideband pulses also allow for the generation of a con-
trolled displacement on the selected motional mode. To this end, one drives both
sidebands with equal intensity ηΩ, and opposite phases φr = −φb = φ+π/2. The sce-
nario resembles the one employed to generate the Mølmer-Sørensen interaction, with
the crucial difference that here the sidebands are addressed resonantly, while for the
generation of entangling gates one drives them off-resonantly (Sørensen and Mølmer,
1999). In complete analogy to the Raman scheme discussed in the previous section,
this results in a displacement operation D(εeiφ), with ε = ηΩt/2 (Hayes et al., 2012).

6.4.5 Vibrational degree of freedom: Readout

The vibrational populations can be read out by mapping them onto the electronic de-
grees of freedom, which in turn are easily measured. The relative intensity of red and
blue sidebands allow to directly infer the motional temperature, if the vibrations are
in a thermal state of motion. This will hardly be the case in coherent nonlinear spec-
troscopy experiments considered in this section, which aims to probe non-equilibrium
distributions. In many cases, however, we consider phonon populations close to the
ground state. To measure the population of a low-n phonon Fock state |n〉, we apply
the following scheme (Gessner et al., 2014c; Schlawin et al., 2014); see also (Heinzen
and Wineland, 1990):

Since the red sideband dissapears when n = 0, there is no more notion of a π-pulse
in this limit. To define a related pulse for small but nonzero n, consider the length of

a π-pulse on the blue sideband for a ground-state ion, which is given by t = π/Ω
(1)
0 .

A pulse on the red sideband with this duration is described by

U (−1)(π)| ↓, n〉 = cos

(
Ω

(1)
n−1

Ω
(1)
0

π

2

)
| ↓, n〉+ sin

(
Ω

(1)
n−1

Ω
(1)
0

π

2

)
| ↑, n− 1〉, (6.78)
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where we discard the phase which is irrelevant for the present readout method, see
equation (3.46). The ratio of Rabi frequencies is given by

Ω
(1)
n−1

Ω
(1)
0

=
√
n+O(η2). (6.79)

Therefore, if a ground-state ion in an arbitrary motional state,

ρ =

∞∑

n,m=0

ρnm| ↓, n〉〈↓,m|, (6.80)

is driven with the above pulse, its electronic excited-state population will be given by

〈↑ |TrM{U (−1)(π)ρU (−1)(π)†}| ↑〉 =

∞∑

n=0

ρnn sin2

(√
nπ

2

)
, (6.81)

where TrM denotes the partial trace over the motional degrees of freedom. This quan-
tity is, again, easily measured by electron shelving. Assuming that the individual steps
are carried out sufficiently fast, the above scheme effectively realizes a measurement
of the motional observable

O =

∞∑

n=0

sin2

(√
nπ

2

)
|n〉〈n|, (6.82)

which distinguishes well between low-n Fock states (Heinzen and Wineland, 1990).
This scheme can also be applied on a local sideband transition to read out the phonon
population at a specific site within the ion chain (Gessner et al., 2014c). Yet, this is only
one of many possibilities to measure the vibrational quantum states of a trapped ion.
If time scales permit, appropriate pulse sequences allow for the readout of arbitrary
motional observables (Meekhof et al., 1996; Gardiner et al., 1997).

6.5 Nonlinear signals and applications for trapped-ion systems

We have so far developed a general theoretical framework with a convenient diagram-
matic representation in section 6.3, and specific methods to realize flexible excitation
and readout schemes of electronic and vibrational degrees of freedom of trapped ions
in section 6.4. Before proceeding to discuss nonlinear signals and their interpretation,
we briefly summarize the main differences between nonlinear spectroscopy of artificial,
controllable quantum systems and bulk material, which was discussed in section 2.4
(Gessner et al., 2014c).

• The optical density of bulk material allows for the selection of pathways by phase
matching, which involves adjusting the spatial orientation of the incoming pulses
and the detector. This is only possible because a significant amount of light is
scattered when the material is being excited by external pulses. There is no
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light directly scattered when we apply sideband pulses to a trapped ion, and
hardly any scattering for Raman pulses. This is caused by choosing long-lived,
meta-stable excited levels to encode the two-level system, which, hence, do not
decay within the relevant time scales by emitting a detectable photon. More-
over, if we study the dynamics of phonons, a radiative decay does not happen on
any time scale. To circumvent this, we measure the relevant populations using
well-established fluorescence techniques. To allow for pathway selection, we re-
sort to the phase cycling method, which constitutes an adequate alternative for
phase matching, rendering our experimental approach close to multidimensional
spectroscopy of nuclear spins (Ernst et al., 1987).

• Using externally induced fluorescence to read out the populations provides us
with an additional time interval, which we can tune at will, whereas in bulk ma-
terial induced emission happens immediately after the final pulse, or spontaneous
decay occurs after an uncontrollable time delay.

• Controllable quantum systems provide flexibility for the design of readout and
excitation schemes, by employing well-controlled pulses. These tools are not
available in bulk material. Making efficient use of these possibilities allows us
to distinguish diagrams which otherwise cannot be distinguished, or to read
out different observables other than plain excited-state populations, which may
contain more information.

• Similarly, single-site addressability represents another unique feature of control-
lable quantum systems, which we may harness to extend standard methods from
nonlinear spectroscopy.

• The time scales of the atomic evolution in quantum optical systems are usually
on the order of microseconds, which is experimentally much less challenging to
handle than the femtosecond processes of electronic excitations, for instance in
molecular systems.

• Quantum optical systems can be well-isolated from their environment, which
suppresses natural decay processes, and allows for the controlled design of coher-
ent interactions and quantum simulations. The corresponding coherence times
are often on the orders of milliseconds (Harlander et al., 2011; Brown et al., 2011;
Schindler et al., 2013; Ramm et al., 2014), while, for example, for photosynthetic
complexes one faces coherence decay on the order of picoseconds (Brixner et al.,
2005; Engel et al., 2007).

• Experiments with large ensembles in the bulk yield a directly measureable sig-
nal, reflecting the ensemble average. In quantum optical experiments with few
atoms, expectation values are obtained by many repetitions of the same measure-
ment. Assuming that the shot-to-shot fluctuations are weak – recall, however,
section 4.3.2 – repeated single-system measurements are equivalent to direct
measurements of the ensemble average. Such repeated measurements are also
encountered in single-molecule experiments (Hildner et al., 2011).
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In the remainder of this chapter, we make use of the above advantages to design non-
linear measurement protocols and to theoretically study their application in control-
lable quantum systems. This provides us with non-equilibrium multi-time correlation
functions of interacting many-body quantum systems. We will make use of single-site
addressability to study spatially resolved dynamics, allowing us to probe, for instance,
the role of coherence during phonon transport across an ion chain. The necessity of
developing scalable methods to study long-range coherences is important, not only
for the validation of quantum simulators and the identification of error sources for
quantum computers (Gessner et al., 2014c), but can also help to understand quantum
critical phenomena in the simulated models (Kim et al., 2010).

To be able to explain the visible features of the resulting two-dimensional spectra,
and to identify each of the resonances, we mostly restrict to the theoretical study of
relatively small systems. Notwithstanding, the methods developed in this section are
– in principle – applicable to large systems, where the intuition gained from studying
small sample systems can be applied. The pulse sequences always contain the same
number of steps, that is, excitation and readout pulses, independently of the size of
the system. The number of scanned time steps, however, depends on the desired
frequency resolution, which implies that when the number of energy levels, and their
density increases, the number of time steps must be increased accordingly to maintain
the same ratio of resolution and mean level spacing.

6.5.1 Two-pulse sequence: Single quantum coherence

The single quantum coherence signal is a second-order, two-pulse signal with the phase
signature φ1 − φ2 (Gessner et al., 2014c) and was already discussed in the context
of atomic vapor in section 6.2.4. It was introduced in terms of the formalism for
controllable quantum systems in section 6.3.4, and the relevant diagrams are depicted
in figure 6.6. To see how this signal can be interpreted, we consider the example of
phonon transport.

6.5.1.1. Coherent and incoherent phonon transport

We now combine the general formalism of section 6.3 with the excitation and readout
schemes of section 6.4. We study the phonon dynamics in a chain of trapped ions.
For simplicity, we consider the special case where an ion chain was cooled to the
motional ground state before applying the single quantum coherence pulse sequence.
To probe phonon transport, we employ a local excitation and readout scheme, depicted
in figure 6.8 for the example of a five ion chain. The outer ion (with index 1) is excited
with two local phonon pulses, creating the transition operators

V1(φi) ' I + εeiφia†1 − εe−iφia1, i = 1, 2, (6.83)

which corresponds to the linear expansion of a weak, coherent displacement, as dis-
cussed in section 6.4.4. At the end of the sequence, the population of the center ion
(index 3) is measured employing the motional observable O3, which corresponds to a
local readout of the observable developed in equation (6.82). The time delays between
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Figure 6.8.: a) A string of five ions is excited at one end with a phase-coherent two-pulse
scheme followed by readout of the phonon populations at the center. b) The
signal (6.85) is described by the contributing single quantum coherence diagram.
c) Fully coherent phonon transport does not transfer populations between eigen-
modes of the chain. The left panel shows the signal (6.87) while in the right
panel, both time intervals have been Fourier transformed, as described by (6.90).
The latter reveals all contributing eigenmode frequencies and their couplings. d)
When incoherent local noise is added to the system dynamics, populations from
the unobservable breathing mode are incoherently transferred to the center-off-
mass mode, which can be measured at the center ion. Adapted from (Gessner
et al., 2014c).

the two pulses and before readout are scanned. The induced excitations evolve ac-
cording to the dynamics generated by Hph as defined in equation (6.66), with U = 0;
see also section 2.2.1.3. This Hamiltonian is time-independent and therefore the prop-
agators correspond to unitary time evolution operators which can be expressed, as a
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function of the time delays t1 and t2, as

G(ti)ρ = e−iHphti/~ρeiHphti/~, i = 1, 2. (6.84)

The total signal is then described, according to equation (6.61), as (recall, for example,
from equation (6.58) that the calligraphic letters denote superoperators)

S
(2)
1,1;3(t1, t2) = Tr {O3G(t2)V1(φ2)G(t1)V1(φ1)|0〉〈0|} . (6.85)

From the total signal we extract only those terms with phase signature φ1−φ2 which,
in this case, are described by the diagram depicted in figure 6.8 b). We can describe the
corresponding signal by retaining only the contributing terms from the total transition
operators (6.57) as (Gessner et al., 2014c)

S
(SQC)
1,1;3 (t1, t2) = Tr

{
O3G(t2)

[
G(t1)

[
a†1|0〉〈0|

]
a1

]}
. (6.86)

In general, nonlinear measurement protocols are uniquely defined via their characteris-
tic phase signature, which is extracted by phase cycling – provided that excitation and
readout methods are well defined. The most instructive way to represent a given signal
is by providing the contributing diagrams, which are readily translated into explicit
formulas, such as equation (6.86). To extract the relevant, contributing frequencies, it
is most instructive to Fourier transform with respect to one or both time delays. The
signal

S
(SQC)
1,1;3 (Ω1, t2) =

∫ ∞

0

dt1e
iΩ1t1S

(SQC)
1,1;3 (t1, t2) (6.87)

is displayed in the left panel of figure 6.8 c). On the Ω1 axis, we observe three res-
onances corresponding to the eigenmodes which are excited with the two excitation
pulses, and read out at the end. These are caused by the coherence a†1|0〉〈0| = |11〉〈0|,
which is created by the first pulse, and whose contribution is selected by phase cycling.
Here |ni〉 denotes the n-th Fock state of the vibrationas at ion i. When expressed in
terms of a decomposition of eigenmodes (6.67), characterized by Hph|ei〉 = ~ωi|ei〉,

a†1|0〉〈0| =
∑

j

c∗j1|ej〉〈0|, (6.88)

the coherence evolves as
∑

j

c∗j1G(t1)|ej〉〈0| =
∑

j

c∗j1e
−iωjt|ej〉〈0|, (6.89)

and, thus, reveals the contributing eigenfrequencies in |11〉. We order the frequencies
such that ω1 ≤ ω2 ≤ . . . . Even though all eigenmodes contribute to the decomposi-
tion of |11〉, not all of the five eigenmodes of can be observed in the two-dimensional
spectrum in figure 6.8 c). This is due to the local readout at the center of the chain.
The center ion does not participate in the motion of, for instance, the breathing mode
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with frequency ω4, which is characterized by a displacement of all ions proportional
to their distance to the center (James, 1998), and therefore cannot be read out at the
center of the chain—in contrast to the center-of-mass mode with ω5, where all ions
are displaced equally, see insets in figure 6.8 c).

While during t1, we have observed the time evolution of a coherence between single
excited states and the ground state, during t2, we observe the coherence between two
single excited states. The local readout reflects the coherent hopping of local phonons
between the sites of the chain, and can be observed on the t2 axis. Another Fourier
transform,

S
(SQC)
1,1;3 (Ω1,Ω2) =

∫ ∞

0

dt1

∫ ∞

0

dt2e
iΩ1t1eiΩ2t2S

(SQC)
1,1;3 (t1, t2), (6.90)

reveals the energy differences ωij = ωi − ωj of single excited states along Ω2, which
are directly related to the couplings between the ions and their corresponding tun-
neling rates. To see that the frequencies ωij indeed determine the periods of phonon
tunneling, consider the transition probability from ion a to ion b (Gessner et al., 2014c)

pab(t) = |〈1b|e−iHpht/~|1a〉|2 =
∑

ij

〈1b|ei〉〈ei|1a〉〈1a|ej〉〈ej |1b〉e−iωijt, (6.91)

where, henceforth, we indicate a Fourier-transformed signal by replacing the time
variable ti with the corresponding frequency variable Ωi.

Aside from the naturally present incoherent couplings between neighboring sites,
we can artificially induce incoherent processes in an ion trap which induce couplings
between different eigenmodes. For this theoretical study, we do not consider natural
dephasing processes, because they are usually correlated and do not lead to redistri-
bution of the eigenmode populations. To achieve the latter, we rather assume that the
natural dephasing process is negligible, and instead, a simulated environment, induced
by focussed lasers, creates the dissipative dynamics described by the Lindblad master
equation (2.25) with Li = a†iai and equal rates γi = γ, leading to the time evolution

Lρ(t) = − i
~

[Hph, ρ(t)] + γ

N∑

i=1

(
a†iaiρ(t)a†iai −

1

2
{a†iaia†iai, ρ(t)}

)
. (6.92)

Such dynamics can be induced via appropriately designed laser interaction (Poyatos
et al., 1996; Myatt et al., 2000; Barreiro et al., 2011), combined with local addressing.
The resulting two-dimensional spectrum can be observed in figure 6.8 d). The induced
coupling between the center-of-mass mode to the breathing mode now leads to an
observable signal at ω4, which emerges after some time on the t2 axis has passed. In
the double Fourier-transformed plot, the incoherent nature of this coupling process
manifests via a peak at (Ω1,Ω2) = (ω4, 0), labelled peak a in the figure. The same
phenomenon can be observed for the mode ω2 (peak b). Thus, the local dephasing
process,5 described by equation (6.92), incoherently distributes the initial population

5This dynamics is not directly related to the controlled dephasing process in chapter 3.
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of the breathing mode to other modes, which can be read out at the center ion. There
are, however, also coherent hopping processes which involve the breathing mode, which
without dephasing could not be observed. The slow oscillatory modulation at transient
times, and the resulting side-peaks at (ω4, ω42) and (ω2, ω24), peaks c and d, reveal
these in the single quantum coherence signal in the presence of dephasing. These slow
oscillations and resulting peaks are best seen in the frequency slices on the top of the
figure, detailing the contributions of ω4 and ω5.

The analysis of the single quantum coherence signal can thus be used to identify the
coherent or incoherent nature of couplings in the system. It further allows to monitor
the decay of coherent superpositions, and to assess different transport processes. The
treatment above is easily extended to a more general scenario, and for the interpreta-
tion of the signal one can follow the intuition provided by the above example (Gessner
et al., 2014c; Schlawin et al., 2014).

6.5.1.2. Two-dimensional lineshapes: Distinguishing noise processes

As already mentioned in section 2.4, the lineshapes of two-dimensional resonances
disclose information about the system’s interaction with an environment, which cannot
be read off the linewidth of linear absorption spectra. Identifying such decoherence
processes is particularly relevant for quantum computations, which mostly rely on
purely coherent dynamics. Let us therefore consider the electronic degrees of freedom
(recall sections 6.4.1 and 6.4.2), subject to the phonon-mediated effective interaction
which is induced to generate the Mølmer-Sørensen entangling gate between two spins
(Sørensen and Mølmer, 1999),

HMS =
~Ω

2
σ(1)
x ⊗ σ(2)

x . (6.93)

If this interaction is applied with a duration tg = π/(2Ω), it converts the two-qubit
ground state |00〉 into the maximally entangled Bell state

UMS|00〉 = e−iHMStg/~|00〉 =
1√
2

(|00〉 − i|11〉) . (6.94)

We probe the induced dynamics using the single quantum coherence signal, by applying
the excitation pulses

Vj(φ) = αI + β(eiφσ
(j)
+ − e−iφσ(j)

− ), (6.95)

which can be generated by resonant carrier pulses with α2 + β2 = 1 and a well-
defined phase, as shown in equation (6.64). We assume that these pulses are applied
locally to ion j. Similarly, local readout of the electronic populations is described by

measurement of the expectation value of Oj = σ
(j)
z .

After optical pumping, the two ions are initialized in their electronic ground state
|00〉. In the following, all excitations and the readout are carried out on the same

spin, as described by the signal S
(SQC)
1,1;1 (Ω1,Ω2). Following the interpretation of the

phonon example from before, we can predict four peaks at (Ω1,Ω2) = ±(0,Ω) and
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±(Ω,Ω) (Gessner et al., 2014c). In the phonon example, we studied the evolution of
local excitations by decomposing them into eigenstates of the total system. Also in
the present case, it is most instructive to interpret the resulting signals in terms of
Bell-states {|Ψ±〉, |Φ±〉}, which are eigenstates of HMS with eigenvalues ±~Ω/2. The
first excitation creates the state |10〉 = 1/

√
2(|Ψ+〉 − |Ψ−〉) on the ‘ket’ side, while on

the ‘bra’ side the initial state |00〉 = 1/
√

2(|Φ+〉 + |Φ−〉) remains unperturbed. For
unitary evolution, each eigenstate acquires a phase-shift of the form e±iΩt1/2 during
the interval t1, such that the Fourier transform yields the three frequencies {−Ω, 0,Ω},
depending on the pairing of eigenstates in a coherence.

Let us first focus on the two time-independent coherences |Ψ±〉〈Φ±|, which must lead
to resonances along the Ω1 = 0 axis. The second interaction on the ‘bra’ side creates a
superposition |Ψ±〉(〈Ψ±| − 〈Ψ∓|). The Bell states are maximally mixed in each of the
single spin Hilbert spaces, and, hence, no signal will be observable by local readout of
populations of the form |Ψ±〉〈Ψ±|. Thus, the only signal of this pathway stems from
the coherences |Ψ±〉〈Ψ∓| which oscillate with respective frequencies ±Ω during t2.

Hence, these pathways generate two peaks in S
(SQC)
1,1;1 (Ω1,Ω2), at (Ω1,Ω2) = ±(0,Ω).

We next consider the evolution of the coherences |Ψ±〉〈Φ∓|, which evolve during t1,
with frequencies ±Ω: The second interaction creates the superposition |Ψ±〉(〈Ψ∓| −
〈Ψ±|), where, again, only the terms |Ψ±〉〈Ψ∓| lead to a signal. These oscillate during t2
with frequencies ±Ω, inducing two additional peaks at ±(Ω,Ω). Without dissipation,
all four peaks are delta peaks, yet the coupling to an environment can broaden them
and gives rise to distinct two-dimensional lineshapes.

Figure 6.9 a) shows |S(SQC)
1,1;1 (Ω1,Ω2)| including the effect of a local noise process,

described by the two Lindblad operators L
(j)
ld =

√
γσ

(j)
z , j = 1, 2, while figure 6.9 b)

depicts the influence of correlated dephasing described by Lcd =
√
γσ

(1)
z ⊗ σ(2)

z . The
correlated dephasing process is analogous to the ensemble-averaged dynamics discussed
in section 4.4. However, here it is described in terms of an effective Lindblad master
equation. Local dephasing broadens the resonances equally along both frequency axes,
whereas correlated dephasing only affects the width along Ω1, which is best seen in
the close-up figures c) and d), which zoom in on the peak on (Ω1,Ω2) = (Ω,Ω). This
is due to the fact that the coherences |Ψ±〉〈Ψ∓| are protected by a decoherence-free
subspace during t2 (Lidar et al., 1998); see also section 4.4.4.

For local dephasing, the peak width along Ω1, quantified by the full-width at half-
maximum (FWHM), allows to estimate the error probability of the corresponding gate
UMS, since both quantities depend linearly on the dephasing strength γ, to a good
approximation for perturbative noise processes γ < 0.1Ω, which is shown in figure 6.9
e) (Gessner et al., 2014c). We quantify the error probability 1−F , using the fidelity

F =

√
〈00|U†MSργUMS|00〉, (6.96)

which expresses the overlap between the target state UMS|00〉 and the state

ργ = G
( π

2Ω

)
|00〉〈00|, (6.97)
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which is produced under the influence of the respective noise processes.
Hence, the present example demonstrated that the application of the single quantum

coherence signal (6.85) can be used to identify and quantify relevant decoherence
processes, which is a crucial prerequisite for coherent control of the asymptotic state
and reliable quantum computations.

6.5.1.3. Distribution of couplings and excitations during a quantum phase
transition

The single quantum coherence signal discloses the excitation spectrum of single excited
states, and, if combined with single-site addressability, the tunneling rates in a local site
basis. When a system undergoes a quantum phase transition, based on our intuition
from the analysis in chapter 5, we expect both these quantities to spread over broadly
distributed energy ranges and displaying strong couplings which lead to long-range
coherences. This should become visible in the single quantum coherence signal, even
at relatively small system sizes.

The qubits in an ion chain can be brought to long-range Ising-type interaction of
the type Hsc by application of suitable laser fields (Porras and Cirac, 2004b); see
sections 2.2.1.7 and 6.4.1; as well as chapter 5. To analyze the induced dynamics,
we employ the single quantum coherence signal based on the same excitation and
readout schemes of the previous section. Thus, we excite the system with pulses of the
form (6.95) to probe elementary excitations and populations in the eigenbasis of σz.
We assume the initial state to be the Hamiltonian’s ground state. Since this state is
not generally given by |0 . . . 0〉, it does not necessarily contain zero of these elementary
excitations as the initial states in the preceding sections did. Hence, we can no longer
restrict to only the left-most diagram in figure 6.6, but rather have to take all four
diagrams into account to describe the single quantum coherence signal. This is caused
by the possibility to de-excite the ground state in the σz-basis and a non-vanishing
expectation value of the readout observable σz for the initial state. We must also pay
special attention to the relative sign of the individual diagrams, which depends on the
signs of the coefficients in the transition operator (6.95), see also figure 6.5.

Figure 6.10 a)-c) shows the single quantum coherence signal, |S(SQC)
11;1 (Ω1,Ω2)|2, for a

string of N = 5 spins, where all excitation and readout pulses were applied to the left-
most spin. The spin chain Hamiltonian (6.63) was probed for a ferromagnetic system
(J0 > 0) with intermediate interaction range α = 1, at different values of the external
field. The spectrum, normalized to values between 0 and 1, can be seen in figure 6.10
d), where the red dotted lines indicate those values of B/J0 which correspond to the
data in the subfigures a)-c).

In figure 6.10 a), the external field B/J0 = 0.1 is rather small compared to the
internal ferromagnetic spin-spin coupling. The two-dimensional spectrum shows that
the local pulses mostly populate the group of first excited states which are separated
from the ground state by a considerably large energy gap. Few populations of the
second and third excited state manifolds can be observed, each one being strongly
degenerate and energetically well separated from their neighbors. We can also observe
a tiny spreading of the resonances along the Ω2 axis within the first excited state
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Figure 6.10.: a)-c) The positive-frequency part of the single quantum coherence signal, as
introduced in equation (6.85), of the spin-chain model (6.63), with intermedi-
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11;1 (Ω1,Ω2)|2 to highlight smaller features
on a renormalized color scale. d) The corresponding normalized spectrum can
be used to interpret resonances on the Ω1 axis in the two-dimensional spectra.
Adapted from (Schlawin et al., 2014).

manifold, indicating the hopping of spin excitations with more than one frequency.

This picture is dramatically altered when we tune B/J0 = 1 into the intermediate
range, as shown in figure 6.10 b). The local spin excitations populate the entire energy
spectrum, and we observe long-range couplings and a broad range of contributing
frequencies, which generate intricate, possibly chaotic dynamics; see chapter 5.

Finally, for very large external fields, B/J0 = 30, the ferromagnetic interaction has
only negligible influence on the system, which is now governed by a paramagnetic
structure of equidistant energy bands. The two-dimensional spectrum, figure 6.10
c), shows that only the first two energy bands are populated, whereas the strongest
contribution stems from the first excited states. Both peaks are found along the
same value of Ω2, indicating that the coherent tunneling of spin excitations within the
sites is always determined by the energy difference between neighboring bands, which,
according to equation (5.64), is given by (Ek+1 − Ek)/(Emax − E0) = 1/N = 0.2.

The finite-size precursors of the quantum phase transition thus produce a distinct
signature in the two-dimensional single quantum coherence signals. Furthermore, in
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our approach, we assumed excitation and readout of only one single spin of the entire
chain. Since this spin is subject to (long-range) interactions with the rest of the chain,
we were able to extract spectral information, and coherent coupling terms from local
measurements.

6.5.1.4. Steady-state currents

Continuous Doppler cooling of ions with focussed lasers can effectively generate local
heat baths in a chain of trapped ions. By adjusting the laser parameters, different local
temperatures can be achieved, leading to steady-state heat currents and transport
of phonons across the chain (Bermudez et al., 2013; Ramm et al., 2014); see also
(Asadian et al., 2013). To study the role of coherent and incoherent contributions
to such steady-state currents, we analyze the corresponding signatures in the single
quantum coherence signal.

To this end, we expose both ends of a chain of ions to thermal heat baths of different
temperatures T1 and T2, see figure 6.11 a). The excitation pulses for the single quantum
coherence signal are applied at the ion in the heat bath (red arrows), while the readout
(blue arrow) is carried out in the center of the chain. We simulate the corresponding
signal for both cases—once with both excitation pulses being applied to the left-most
ion, which is submitted to the colder temperature bath, and once with both excitation
pulses on the right-most, higher-temperature ion. Readout is always performed at the
center ion. To simulate the corresponding dynamics, we employ the master equation
(Breuer and Petruccione, 2002)

Lρ(t) = − i
~

[Hph, ρ] + γ
∑

i∈{1,N}
(n̄i + 1)

(
aiρ(t)a†i −

1

2
{a†iai, ρ(t)}

)

+ γ
∑

i∈{1,N}
n̄i

(
a†iρ(t)ai −

1

2
{aia†i , ρ(t)}

)
, (6.98)

where γ represents the coupling strength to the heat baths, whose temperatures are
characterized by the average occupation numbers n̄1, and n̄N , respectively. The
phonon Hamiltonian is described by Hph as defined in equation (6.66), with a small
anharmonic correction term U = −0.025νx, which only makes a relevant contribution
if the heat bath populates excited states beyond the first excited state manifold. To
provide an intuitive interpretation of the signals, let us discuss the simplest non-trivial
case of N = 3, with parameters γ = 0.01νx, n̄1 = 0 and n̄3 = 0.5. Again, since the
initial state is not the absolute ground state, proper simulation of the single quantum
coherence signals requires that all four diagrams of figure 6.6 are taken into account.

The resulting single quantum coherence signals S
(SQC)
11;2 (Ω1,Ω2) and S

(SQC)
33;2 (Ω1,Ω2)

are shown in figure 6.11 b), where the initial state is the steady-state of the dynam-
ics (6.98). In the absence of a temperature gradient, we expect the signals to be exactly
the same, independently of the position where the excitations are injected. The figure,
therefore, also shows the difference between the two signals

∆S(SQC)(Ω1,Ω2) = S
(SQC)
11;2 (Ω1,Ω2)− S(SQC)

33;2 (Ω1,Ω2). (6.99)
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Figure 6.11.: Single quantum coherence signals (6.85) and their difference under the influence
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Figure adapted from (Schlawin et al., 2014).

Within the single excitation subspace, the Hamiltonian (6.66) can be easily expressed
in terms of the couplings tij between the local sites,

H(1) = ~



νx − t12 − t13 t12 t13

t12 νx − 2t12 t12

t13 t12 νx − t12 − t13


 , (6.100)

and diagonalization yields the single excited state frequencies ω1 = νx − 3t12, ω2 =
νx − t12 − 2t13, and ω3 = νx. These identify the resonances along the Ω1 axis in the
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signals in figure 6.11 b), whereas the breathing mode ω2 hardly contributed due to
the local readout at the center. The energy differences ωij = ωi − ωj can be read off
the Ω2 axis and are given by combinations of the coupling terms tij , which can be
inferred from the two-dimensional spectra (Schlawin et al., 2014). Moreover, strong
contributions at Ω2 = 0 indicate the presence of incoherent processes, which here are
caused by the coupling to the temperature baths. From the real and imaginary parts of
the signal, we can identify the characteristic shape of absorptive and dispersive peaks,
respectively, which is typical for complex-valued two-dimensional signals (Hamm and
Zanni, 2011).

The difference signal is entirely attributed to the broken mirror symmetry with
respect to the center of the chain, induced by the nonzero temperature gradient.
The plots in figure 6.11 b) (bottom row) show that a significant contribution to the
asymmetry is actually created by coherent transfer processes which are triggered by a
thermally-induced imbalance of phonon populations across the system. Nevertheless,
we also identify incoherent peaks at Ω2 = 0, indicating energy dissipation and heat
flow. Also the breathing mode at Ω2 = ω2 becomes visible in the difference, even
though it plays a minor role in each of the individual signals. Thus, the incoherently
created populations of this mode are significantly different, depending on the position
of the excitation pulses. Finally, we can observe tiny shifts in the position of the
two-dimensional resonance, which indicate effective corrections to the tunneling rates
along certain directions. In fact the coupling rates are slightly suppressed against
the direction of the heat current and enhanced along the temperature gradient. The
shifted resonances lead to peaks in the two-dimensional system, which are especially
pronounced when they involve the breathing mode (Schlawin et al., 2014).

6.5.2 Four-pulse sequence: Double quantum coherence

The second-order two-pulse sequences of the previous chapter have provided valuable
insight into the dynamics and couplings within the first excited state manifold. Em-
ploying transition operators which create no more than one excitation per interaction,
higher parts of the excitation spectrum can only be resolved with more pulses. After
having discussed various applications of the single quantum coherence signal, we now
turn to higher-order signals. In particular, we start by defining the fluorescence-based
analog of the double quantum coherence signal, which has been employed to reveal elec-
tronic correlations in molecules (Kim et al., 2009) and collective resonances in atomic
vapor (Dai et al., 2012).

In a fluorescence setting, the double quantum coherence signal is given by a four-
pulse sequence with the characteristic phase signature φ1 + φ2 − φ3 − φ4. Given the
initial state contains no excitations, and the observable Oj only yields a nonzero result
when populations beyond the ground state are present, the only relevant diagrams
are those depicted in figure 6.12 a). The first interaction creates a superposition of
single excited states and ground state, which is analogous to what we observed in the
single quantum coherence signal. After the first two interactions, the system evolves
through a coherent superposition of double-excited states and the ground state, which,
during the coherent time evolution t2, reveals the spectrum of double excited states.
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(d). Figure adapted from (Gessner et al., 2014c).

During t3, some of the diagrams contain contributions of coherences between single
excited states and double excited states (DQC2 and DQC3). Comparing the resulting
resonances can reveal the presence of nonlinear couplings which influence the energy of
higher excited states. The effect of the correction term U is only visible in the higher
excited states, as is illustrated in figure 6.12 b), which shows the first two excited state
manifolds of the phonons in a three-ion chain as a function of U , according to the
Hamiltonian given in equation (6.66).

6.5.2.1. Detection of anharmonicities and excitation pathways

The time intervals t2 and t4 can be scanned to observe population decay, which we will
show in the next section. For now, we set t2 = t4 = 0 and scan the time intervals t1 and
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t3. Figure 6.12 displays the double quantum coherence signal S
(DQC)
1111;1 (Ω1,Ω3), where

all excitation pulses are applied to the same ion. For excitation and readout, we follow
the same recipe which was applied in section 6.5.1.1. We denote the eigenfrequencies
of double excited states by ωfi , that is Hph|fi〉 = ~ωfi |fi〉. The ordering is chosen
such that ωf1 ≤ ωf2 ≤ . . . . Along a Fourier-transformed t3 interval, which yields the
Ω3 axis in a two-dimensional spectrum, the diagrams DQC2 and DQC3 thus reveal
the frequency differences ω′ij = ωfi − ωj , whereas from DQC1 we recover the single
excited state frequencies ωi. If the trap potential is perfectly harmonic, U = 0, the
energies of double excited states are given by the sum of single-excited state frequencies,
ωfi = ωj + ωk, which leads to many degeneracies, such as ω′11 = ω′22, which can be
seen in figure 6.12 c). Moreover, we can observe the resonance ωfi = 2ωi only if
the single-excited state ωi was already populated during t1. Only then the second
pulse can promote the system into the double excited state, and, consequently, such
resonances are always found along the Ω1 = ωi axis (Gessner et al., 2014c). This
demonstrates how the two-dimensional spectra express connections between double
and single excited states by revealing their excitation pathways in a two-pulse scheme.
The picture changes when we introduce anharmonic corrections, U = −0.025νx, as in
figure 6.12 d): The degeneracies of double-excited states are lifted and new excitation
pathways are opened up via the induced coupling between double-excited states. This
is expressed by the emergence of a new peak at (ω1, ω

′
31) (Gessner et al., 2014c).

6.5.2.2. Spatially resolved eigenmode analysis

Let us consider the double quantum coherence pulse sequence, but now we set t1 = t3 =
0, while scanning t2 and t4 to reveal the double excited state frequencies and the local
tunneling rates. In a three-ion chain, we first apply all excitation and readout pulses
to the same ion, at the end of the string. This produces a large ensemble of excited
state frequencies, since the outer ions contribute to the motion of all eigenmodes. The
corresponding spectrum is shown in figure 6.13 a). If, additionally, an anharmonic
correction term contributes, the remaining degeneracies within these resonances are
also lifted, leading to small splitting of the peaks into doublets, see figure 6.13 c).
Along Ω4 the frequency differences can be observed, which reveal the coherent phonon
couplings between the individual local sites. The picture is significantly simplified
when the readout is shifted towards the center ion, which does not participate in any
motion which involves the breathing mode. Without anharmonicities, U = 0, only
few degenerate energy levels and coupling terms contribute to the double quantum
coherence signal in figure 6.13 b). These indicate the frequencies of modes that involve
the center ion. Anharmonic corrections, induced by U = −0.01νx, lead to splitting of
the double-excited state frequencies, and consequently, also produce additional local
phonon tunneling frequencies, and open up additional excitation pathways—see, for
instance, the emergence of a peak at (Ω2,Ω4) ≈ (1.75νx,−0.1νx) in figure 6.13 d).
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Figure 6.13.: Double quantum coherence signal (see text) for the phonons in a chain of three
ions, described by (6.66), with and without anharmonic corrections. Signals

a) and c) show |S(DQC)
1111;1 (t1 = 0,Ω2, t3 = 0,Ω4)|, while, in b) and d), local

excitation and readout displays only those frequencies which contribute at the
trap center in the signal |S(DQC)

1122;2 (t1 = 0,Ω2, t3 = 0,Ω4)|. Figure adapted from
(Schlawin et al., 2014).

6.5.3 Four-pulse sequence: Photon echo

In this final subsection, we introduce the fluorescence analog of the photon echo signal.
This four-pulse sequence is often employed for studying coherent and incoherent cou-
plings in complex environments, for instance in molecular aggregates (Brixner et al.,
2005; Engel et al., 2007). It is identified via the phase signature −φ1 + φ2 + φ3 − φ4

and, under the usual assumptions, the four diagrams depicted in figure 6.14 must be
considered. They are labelled ground state bleaching (GSB), excited state emission
(ESE), and excited state absorption (ESA) for historical reasons (Mukamel, 1995),
whereas, in the present fluorescence scenario, there are two pathways that contribute
to the ESA signal.

To follow the population decay of phonons, we monitor the photon echo signal as
a function of the t2 time, while the time intervals t1 and t3 are Fourier transformed
to reveal the contributing eigenmodes. We subject each of the ions in the chain to a
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Figure 6.14.: Four diagrams contribute to the photon echo signal (see text), which is defined
via its characteristic phase signature −φ1 + φ2 + φ3 − φ4. Figure adapted from
(Schlawin et al., 2014).

thermal bath of the same temperature, such that the total dynamics is described by

Lρ(t) = − i
~

[Hph, ρ] + γ(n̄+ 1)

N∑

i=1

(
aiρ(t)a†i −

1

2
{a†iai, ρ(t)}

)

+ γn̄

N∑

i=1

(
a†iρ(t)ai −

1

2
{aia†i , ρ(t)}

)
. (6.101)

For the simulations plotted in figure 6.15, we considered the parameters N = 3, U =
−0.03νx, n̄ = 0.1 and γ = 0.0015νx. The photon echo signal is obtained by applying all
pulses, as well as the readout, to the center ion. During t2, all contributions can decay
to the ground state due to environmental couplings, except for the GSB signal, which
already describes the contribution of the ground state during t2. The coupling to the
thermal bath can in principle also lead to excitations of higher-energy states—but this
process is much less likely to happen due to the small value of n̄. Remember that, in
order to yield a nonzero signal, the pathway must lead to an excited-state population
at the end of the sequence. When the population decays at intermediate times, this
is no longer possible for the ESE and ESAa diagrams. Thus, in the presence of
population decay, the relative weights of the individual diagrams to the total signal
shift as a function of t2.

Let us start by analyzing the signal at t2 = 0, which is shown in figure 6.15 a). Along
Ω1, we observe the contributing single excited state frequencies ωi. These are also seen
along Ω3 from the contribution of the GSB and ESE diagrams, whereas the two ESA
diagrams contribute the frequency differences ωij between double-excited and single-
excited states. These overlap with the frequencies ωi when U = 0; however, the two
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Figure 6.15.: Real part of the photon echo signal S
(PE)
2222;2(Ω1, t2,Ω3, t4 = 0), as introduced

in the text, for a phonon chain of N = 3 ions, coupled to local thermal baths
with n̄ = 0.1, γ = 0.0015νx, U = −0.03νx for different times t2; see equa-
tion (6.101). The off-diagonal resonances A and B indicate the presence of
anharmonic couplings between double-excited states. The relative weights of
individual diagram contributions shifts as t2 increases, due to incoherent popu-
lation decay into the environment. As a consequence, the off-diagonal peaks
diminish, while other resonances (C and D) emerge. Figure adapted from
(Schlawin et al., 2014).

anharmonic peaks A and B (which cannot be found along Ω1) reveal the presence
of anharmonic coupling terms in the Hamiltonian. As t2 increases, these anharmonic
peaks lose intensity, since they are mostly generated by the ESAa diagram, which,
as explained above, is suppressed by population decay. Instead, those peaks which
can be traced back to the ESAb diagram will increase in intensity. This explains
the emergence of two peaks C and D in figure 6.15 c). Note also the broadening of
resonances due to the incoherent coupling to an environment.

To verify the above intuition about the relative contribution of individual diagrams,
we can take advantage of the rather flexible excitation mechanisms available for the
phonons in an ion trap. As was discussed in section 6.4.4.2, by applying strong resonant
pulses on sideband transitions, we can generate selective excitations or de-excitations,
which allows for experimental distinction between the individual diagrams that com-
prise the photon echo signal. In bulk systems, typical interactions include both possi-
bilities simultaneously and must therefore be described in form of transition operators
as in equation (6.83). Consequently, all diagrams interfere and cannot be distinguished.
This is different now, if we make use of selective (de-)excitations in controllable quan-
tum systems. For example, the GSB diagram is distinguished from the other three
diagrams by containing a de-excitation when interacting with the second pulse, see fig-
ure 6.14, while in all other pathways, the second pulse excites the system. Appropriate
sequences of pulses leading to the transitions V+ and V−, as defined in equations (6.76)
and (6.76), respectively, allow to distinguish all four diagrams which build up the total
photon echo signal (Schlawin et al., 2014). Their individual contributions are shown
in figure 6.16. Indeed, we find that, as expected, the GSB and ESE pathways only
contain contributions of single-excited states, whereas the cross-peaks (A and B) are
most pronounced in the GSB pathway. The anharmonic resonances (peaks C and D)
only occur in the two ESA pathways. Note also that the opposing signs of the two



6. Multidimensional nonlinear spectroscopy of controllable quantum systems 223

ESA pathways almost cancel their contributions to the total signal at t2 = 0. Since
the ESAa is suppressed by population decay when t2 increases, a strong signature of
ESAb becomes visible in figure 6.15 c).

6.6 Discussion

In this chapter, we provided the theoretical foundation of phase-coherent multi-pulse
spectroscopy of controllable quantum systems. This provides an elementary set of tools
with which arbitrary nonlinear spectroscopic measurement schemes can be designed.
A combination of specifically designed excitation pulses, followed by readout, is able
to extract multi-time correlation functions, which in turn reveal the energy spectrum,
internal couplings, and dissipative mechanisms induced by external environments. It
is important to realize that the methods presented here do not provide a prescription
for a universal measurement procedure, but instead should be considered a general
toolbox, whose constituents must be combined in an appropriate way to extract the
relevant information from a complex quantum system, depending on the question to
be answered.

The importance of developing scalable methods for the analysis of coherent quantum
dynamics, and relevant noise processes, is underlined by recent experimental achieve-
ments towards quantum simulations of medium-size systems (Häffner et al., 2008;
Schneider et al., 2012; Blatt and Roos, 2012), which soon are expected to become
intractable for classical computers. Artificial quantum systems further enable flexible
modifications of the excitation and readout observables, which may allow us to de-
sign novel four-pulse measurement schemes, beyond the reach of conventional optical
nonlinear spectroscopy. The number of pulses necessary to obtain a certain n-time
correlation function is independent of the system size, and the presented schemes are
therefore expected to be applicable to large-scale systems.

When the number of energy levels and the spectral densities increase, the resolution
must be increased accordingly by adjusting the number of measured time steps, if the
full information about the system’s specific details is still of interest. In this limit,
however, we rather expect that the center position, shape, and width of certain energy
bands will be more relevant than the individual position of each quantum mechanical
energy level, and, therefore, microscopic resolution would no longer be required.



224 6. Multidimensional nonlinear spectroscopy of controllable quantum systems

0.7

0.8

0.9

1.0

1.1

E
x
ci

to
n

F
re

q
u
en

ci
es

⌦
3
/⌫

x

0.85 0.90 0.95 1.00 1.05

Exciton Frequencies ⌦1/⌫x

GSB ESE

0.90 0.95 1.00 1.05

ESAa ESAb

0.7

0.8

0.9

1.0

1.1

A A0

C

B B

D

C

D

Exciton Frequencies ⌦1/⌫x

E
x
ci

to
n

F
re

q
u
en

ci
es

⌦
3
/⌫

x

Figure 6.16.: Real part of the photon echo signal S
(PE)
2222;2(Ω1, t2 = 0,Ω3, t4 = 0), dissected

into the contribution of individual diagrams (see figure 6.14), for a phonon chain
of N = 3 ions, coupled to local thermal baths with n̄ = 0.1, γ = 0.0015νx,
U = −0.03νx; see equation (6.101). The flexibility of excitation methods for
controlled quantum systems allows to monitor these diagrams individually, which
is not possible in bulk material. The GSB and ESE contain only contributions
of single excited states, with pronounced cross-peaks A and B in GSB. The
diagrams ESAa and ESAb are suitable for studying higher excited states and
reveal the anharmonic corrections via the additional peaks at C and D. Figure
adapted from (Schlawin et al., 2014).



7 Open quantum systems of
identical particles

We discuss the description of the reduced dynamics of a subset of interacting bosonic
particles. Partially tracing over the von Neumann equation of an N -particle system
produces a hierarchical expansion for the subdynamics of M particles. In the special
case of a contact interaction potential, truncating this hierarchy to first order with a
pure product state assumption reproduces the mean-field dynamics as generated by the
Gross-Pitaevskii equation. To describe incoherent effects beyond mean-field dynamics,
we discuss possible extensions towards a second-order perturbation theory, analogous
to the standard treatment of distinguishable system and environment.

7.1 Introduction: Identical particles

Throughout this thesis, we have discussed a variety of theoretical and experimental
methods to probe the dynamics of interacting many-body systems, often by restrict-
ing to the local control of only a small subsystem. The theoretical description of
the dynamics of such subsystems is in most cases provided by the theory of open
quantum systems (Breuer and Petruccione, 2002), which was also briefly discussed in
section 2.5.3. The relevant master equations are usually derived in a first quantized
description with well separated Hilbert spaces for system and environment. This is,
however, not always appropriate. Consider for example an ensemble of interacting
bosonic particles, such as cold atoms forming a Bose-Einstein condensate. To predict
the expectation values of single-particle observables, such as the average momentum –
which can be easily measured (Morsch et al., 2001; Meinert et al., 2014) –, there is no
need to know the full many-body density operator. Instead, the reduced single-particle
density operator provides all the necessary information. To describe the dynamics of
single-particle observables, an effective description of the single-particle dynamics is
required. Here, the indistinguishability of the individual particles prevents us from
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using standard derivations of master equations. Instead, the concept of reduced den-
sity operators and the partial trace operation must be adjusted to derive the relevant
properties of an M -particle subspace from a larger N -particle space of identical parti-
cles. Thus, the rather simple experimental access to single-particle observables stands
in severe contrast to the difficulty to theoretically describe the reduced distributions
of indistinguishable, interacting particles.

We first review how the reduced density operator of the M -particle subspace is
defined, and how a partial trace operation connects it to the full N -particle density
operator. To this end, we introduce a general formalism in terms of symmetrized basis
states.

7.1.1 Symmetrized states

A system of identical quantum mechanical particles is described by states in the sym-
metrized or anti-symmetrized subspaces of the total N -particle Hilbert space, de-
pending on whether the particles are bosons or fermions (Cohen-Tannoudji et al.,
1977b). Throughout this section, we will only be concerned with the dynamics of
bosonic particles, which are described by the symmetric subspaces, but the following
construction can be readily extended to obtain a basis of anti-symmetrized states to
describe fermionic systems (Nolting, 2009). We construct a basis of the full symmetric
N -particle space from the eigenbasis {|ϕi〉} of a single-particle observable. The asso-

ciated bosonic creation operator a†i creates one particle in the state |ϕi〉. Thus, if |0〉
is the vacuum state of no particles, we have

a†i |0〉 = |ϕi〉. (7.1)

An N -particle state can be constructed by application of N creation operators to the
vacuum,

|ϕi1 . . . ϕiN 〉 =
1√
N !

a†i1 · · · a
†
iN
|0〉, (7.2)

and these states already satisfy the required symmetry property with respect to per-
mutations of their indices,1 since the a†i satisfy the canonical commutation relations,

[ai, a
†
j ] = δij , [a†i , a

†
j ] = 0, [ai, aj ] = 0, ∀i, j. (7.3)

As we will confirm explicitly later, the factor 1/
√
N ! ensures that the symmetrized

states (7.2) are properly normalized. Note that usual formulations of second quanti-
zation would typically label the state |ϕi1 . . . ϕiN 〉 in terms of the occurrence of each
of the single-particle states, in the commonly employed number state representation
(Nolting, 2009). Here, we choose to represent our observables and states in the above

1We emphasize that the symmetrized states must not be mistaken for the tensor product of the
single-particle states, |ϕi1 . . . ϕiN 〉 6= |ϕi1 〉⊗· · ·⊗|ϕiN 〉, as will become obvious from the equivalent
definition (7.7). In the remainder of this chapter, we reserve the expression |ϕi1 . . . ϕiN 〉 for the
symmetrized tensor product of single-particle states, and indicate the standard tensor product
explicitly by writing out all the ⊗-signs.
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form. One motivation is given by the particularly simple form of the completeness
relation in the N -particle space

∑

i1...iN

|ϕi1 . . . ϕiN 〉〈ϕi1 . . . ϕiN | = I(N), (7.4)

where henceforth the superscript (N) denotes operators on the N -particle space. The

action of creation and annihilation operators a†k and ak on the symmetrized N -particle
states is described by

a†k|ϕi1 . . . ϕiN 〉 =
√
N + 1|ϕkϕi1 . . . ϕiN 〉, (7.5)

which generalizes equation (7.1), and

ak|ϕi1 . . . ϕiN 〉 =
1√
N

N∑

j=1

δkij |ϕi1 . . . ϕij−1
ϕij+1

. . . ϕiN 〉. (7.6)

The symmetrized states can also be directly constructed from artificially symmetrizing
a tensor product of single-particle states (Nolting, 2009),

|ϕi1 . . . ϕiN 〉 =
1

N !

∑

σ∈SN
|ϕiσ(1)〉 ⊗ · · · ⊗ |ϕiσ(N)

〉, (7.7)

in analogy to the symmetrization operation (4.32) which was considered in section 4.4.
Starting from the above formulation, one can, in fact, construct the bosonic cre-
ation operators a†i , and show that these then satisfy the canonical commutation rela-
tions (7.3) (Nolting, 2009). Moreover, the scalar product of two symmetrized states
follows as

〈ϕi1 . . . ϕiN |ϕj1 . . . ϕjN 〉 =
1

N !

∑

σ∈SN
δi1jσ(1) · · · δiN jσ(N)

. (7.8)

We now employ this representation in terms of symmetrized states to describe op-
erators within the single-particle and two-particle subspaces. This way we gain some
intuition for the symmetrized states formalism, and, in particular, for the caveats which
are involved when dealing with many-body systems. In section 7.2 we develop an ab-
stract set of rules which will establish our toolbox for the handling of symmetrized
states, and then apply it in section 7.3 to generalize and formally define the notions
introduced in the present chapter.

7.1.2 The single particle subspace

Any single-particle operator A(1) can be expressed in the symmetrized basis, which for
N = 1 trivially reduces to the single-particle basis from which it was constructed. We
write

A(1) =
∑

ij

|ϕi〉〈ϕi|A(1)|ϕj〉〈ϕj | =
∑

ij

A
(1)
ij |ϕi〉〈ϕj | =

∑

ij

A
(1)
ij a

†
i |0〉〈0|aj , (7.9)
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with

A
(1)
ij = 〈ϕi|A(1)|ϕj〉 = Tr(1){a†j |0〉〈0|aiA(1)}, (7.10)

where the trace over the single-particle space is defined as Tr(1)X =
∑
i〈ϕi|X|ϕi〉. The

projector |0〉〈0| on the vacuum state enters this expression via equation (7.1). In the
formulation (7.9), the single-particle operator A(1) is restricted to the single-particle
subspace, that is, the vacuum projector causes the expectation value of this operator to
vanish, as soon as it is determined for a two- or more-particle state. This is caused by
the emergence of expressions of the form 〈0|aj |ϕi1ϕi2〉, which always yield zero, since,
after removing one particle from the two-particle state |ϕi1ϕi2〉, the resulting single-
particle state has zero overlap with the vacuum state. To determine the two-particle
expectation value of a single-particle operator, we leave out the vacuum projector in
the above formulation to obtain the commonly used form of a single-particle operator

A(1) =
∑

ij

A
(1)
ij a

†
iaj . (7.11)

The step from equation (7.9) to (7.11) can be interpreted as extending the single-
particle operator to an N -particle operator, similarly to the tensor product with the
identify operator on the remaining subspace in a scenario of distinguishable particles.
To present a heuristic argument, the two-particle extension of A(1) can be written in
an artificially symmetrized tensor product form as A(2) = (A(1)⊗ I(1) + I(1)⊗A(1))/2.
This yields, in terms of creation and annihilation operators,

A(2) =
∑

ijkl

|ϕiϕj〉〈ϕiϕj |A(2)|ϕkϕl〉〈ϕkϕl| =
1

2

∑

ijkl

A
(2)
ij;kla

†
ia
†
j |0〉〈0|akal

=
∑

ijk

A
(1)
ij a

†
ia
†
k|0〉〈0|ajak, (7.12)

where in the last step we have used equation (7.7) to obtainA
(2)
ij;kl = 〈ϕiϕj |A(2)|ϕkϕl〉 =

(A
(1)
ik δjl +A

(1)
jl δik)/2. Moreover, we have introduced a semicolon to separate two per-

mutationally invariant sets of indices. We will employ this notation throughout this
chapter. For two-particle states |ϕnϕm〉, the operator

∑
k a
†
ia
†
k|0〉〈0|ajak is indeed

equivalent to a†iaj :

∑

k

a†ia
†
k|0〉〈0|ajak|ϕnϕm〉 =

∑

k

(δknδjm + δkmδjn)|ϕkϕi〉 = δjm|ϕnϕi〉+ δjn|ϕmϕi〉

= a†iaj |ϕnϕm〉 ∀n,m, i, j. (7.13)

Hence, we will generally omit the vacuum projectors in the decomposition ofM -particle
operators, to be able to determine their expectation values in spaces of larger particle
numbers.
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A somewhat distinguished single-particle operator is the statistical operator ρ(1).
The expectation value of the observable A(1) is given by

〈A(1)〉 = Tr(1){A(1)ρ(1)} (7.11)
= Tr(1)




∑

ijkl

A
(1)
ij ρ

(1)
kl a

†
iaja

†
kal





(7.15)
=

∑

ij

A
(1)
ij ρ

(1)
ji .

(7.14)

Here we have used

Tr(1){a†iaja†kal} =
∑

n

〈ϕn|a†iaja†kal|ϕn〉 =
∑

n

δln〈ϕn|a†iaj |ϕk〉

=
∑

n

δlnδjkδni = δliδjk, (7.15)

which in turn follows from equations (7.5) and (7.6). The trace of an N -particle
operator can be computed in any M -particle basis. It is important to know in which
basis the trace is computed. We denote the trace in the M -particle basis by Tr(M). If
we determine the trace (7.15) in a two-particle basis, we obtain

Tr(2){a†iaja†kal} =
∑

mn

〈ϕmϕn|a†iaja†kal|ϕnϕm〉

= δilδjk(2 + d) + δijδlk, (7.16)

where d is the dimension of the single-particle Hilbert space. By making use of the
commutation relation [ai, a

†
j ] = δij , the two-particle trace of the two-particle operator

a†ia
†
jakal can also be expressed in terms of the trace of a†iaja

†
kal. Here it is important

to keep track of the space over which the trace is carried out:

Tr(2){a†ia†jakal} = Tr(2){a†iaka†jal}︸ ︷︷ ︸
δilδjk(2+d)+δikδlj

−δjk Tr(2){a†ial}︸ ︷︷ ︸
(1+d)δil

= δilδjk + δikδlj . (7.17)

7.1.3 N-particle operators

The above treatment of single-particle operators is readily generalized to N -particle
operators and states. Here we have to pay attention to the normalization factors in
equations (7.2) and (7.8), which lead to

A(N) =
1

N !

∑

i1...iN
j1...jN

A
(N)
i1...iN ;j1...jN

a†i1 . . . a
†
iN
aj1 . . . ajN , (7.18)

and

A
(N)
i1...iN ;j1...jN

= 〈ϕi1 . . . ϕiN |A(N)|ϕj1 . . . ϕjN 〉

=
1

N !
Tr(N){ai1 . . . aiNA(N)a†j1 . . . a

†
jN
}. (7.19)
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7.1.4 The single-particle density operator and partial trace

Let us now consider the expectation value of a single-particle observable in an N -
particle system:

Tr(N){A(1)ρ(N)} =
∑

ij

A
(1)
ij Tr(N){a†iajρ(N)}. (7.20)

We find that to determine this expectation value, we need to know the elements
Tr(N){a†iajρ(N)}, which we define as the elements of the single-particle density op-
erator (Löwdin, 1955; Ter Haar, 1960; Ter Haar, 1961; Yang, 1962),

ρ(1) =
1

N

∑

ij

Tr(N){aiρ(N)a†j}a†iaj . (7.21)

With this, the expectation value can be expressed as

Tr(N){A(1)ρ(N)} = N
∑

ij

A
(1)
ij ρ

(1)
ji = NTr(1){A(1)ρ(1)}. (7.22)

Thus, the expectation value of the single-particle operator for a system of N particles
is given by N times the single-particle expectation value. This also defines the partial
trace operation which maps an N -particle state to a reduced operator of the single-
particle subspace

Tr
(N)
N−1{X(N)} :=

1

N

∑

ij

Tr(N){aiX(N)a†j}a†iaj . (7.23)

With this, we can write

ρ(1) = Tr
(N)
N−1{ρ(N)}. (7.24)

7.2 General formalism for symmetrized states

In this section, we extend and generalize the concepts from the previous introductory
section. To be able to handle symmetrized states efficiently, we start by deriving a
series of lemmata. It is convenient to first introduce

Definition 1 (Permutation-invariant Kronecker delta).

δi1...iN ;j1...jN :=
1

N !

∑

σ∈SN

N∏

k=1

δik,jσ(k) . (7.25)

Obviously δi1...iN ;j1...jN = δj1...jN ;i1...iN . If one of the sets {i1 . . . iN} and {j1 . . . jN}
is invariant under all permutations this reduces to the simple product

δi1...iN ;j1...jN =

N∏

k=1

δik,jk . (7.26)
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Lemma 1. Let f(i1 . . . iN ) be a function which is invariant under permutations within
the set of indices i1 . . . iN ,

f(i1 . . . iN ) = f(iσ(1) . . . iσ(N)), (7.27)

for all σ ∈ SN . Then the following holds

∑

i1...iN

f(i1 . . . iN )δi1...iN ;j1...jN = f(j1 . . . jN ). (7.28)

Proof.

∑

i1...iN

f(i1 . . . iN )δi1...iN ;j1...jN =
1

N !

∑

σ∈SN

∑

i1...iN

f(i1 . . . iN )

N∏

l=1

δil,jσ(l)

=
1

N !

∑

σ∈SN
f(jσ(1) . . . jσ(N))

= f(j1 . . . jN ). (7.29)

Since the permutation-invariant Kronecker delta itself fulfills property (7.27), this
implies

∑

k1...kN

δi1...iN ;k1...kN δk1...kN ;j1...jN = δi1...iN ;j1...jN . (7.30)

Lemma 2.

ai1 . . . aiN |ϕj1 . . . ϕjN 〉 = δi1...iN ;j1...jN

√
N !|0〉. (7.31)

Proof. Subsequent application of equation (7.6) leads to

ai1 . . . aiN |ϕj1 . . . ϕjN 〉 = aiN . . . ai1 |ϕj1 . . . ϕjN 〉

=
1√
N !

∑

α1∈I
δi1,jα1

∑

α2∈I\{α1}
δi2,jα2

· · ·
∑

αN∈I\{α1...αN−1}
δiN ,jαN |0〉

=
1√
N !

∑

α1∈I

∑

α2∈I\{α1}
· · ·

∑

αN∈I\{α1...αN−1}

∏

l∈I
δil,jαl |0〉

=
1√
N !

∑

σ∈SN

∏

α∈I
δiα,jσ(α)

|0〉

= δi1...iN ;j1...jN

√
N !|0〉, (7.32)

with I = {1, . . . , N}.
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This is compatible with the reformulation of equation (7.8)

〈ϕi1 . . . ϕiN |ϕj1 . . . ϕjN 〉 =
1√
N !
〈0|ai1 . . . aiN |ϕj1 . . . ϕjN 〉

=
1

N !

∑

σ∈SN

N∏

k=1

δikjσ(k)

= δi1...iN ;j1...jN . (7.33)

For M ≤ N , this can be generalized to

Lemma 3.

ai1 . . . aiM |ϕj1 . . . ϕjN 〉

=

√
(N −M)!

N !
M !

∑

1≤α1<···<αM≤N
δi1...iM ;jα1

...jαM
|ϕ{j1...jN}\{jα1

...jαM }〉, (7.34)

where we have introduced the shorthand notation |ϕ{j1...jN}〉 = |ϕj1 . . . ϕjN 〉, which
contains the vacuum state as |ϕ{}〉 = |0〉.

Proof. We make use of the symmetry of this expression under permutations within
the set {i1 . . . iM}:

ai1 . . . aiM |ϕj1 . . . ϕjN 〉

=
1√
N !

aiM . . . ai1a
†
j1
. . . a†jN |0〉

=
1√
N !

∑

α1∈I
· · ·

∑

αM∈I\{α1...αM−1}
δi1jα1

. . . δiM jαM

∏

l∈I\{α1...αM}
a†jl |0〉

=
M !√
N !

∑

1≤α1<···<αM≤N
δi1...iM ;jα1

...jαM

∏

l∈I\{α1...αM}
a†jl |0〉

=

√
(N −M)!

N !
M !

∑

1≤α1<···<αM≤N
δi1...iM ;jα1

...jαM
|ϕ{j1...jN}\{jα1

...jαM }〉. (7.35)

The special case for M = 1 was already noted in equation (7.6). Similarly, we can
generalize equation (7.5) to

a†i1 . . . a
†
iM
|ϕj1 . . . ϕjN 〉 =

√
(N +M)!

N !
|ϕi1 . . . ϕiMϕj1 . . . ϕjN 〉, (7.36)

which leads us to
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Lemma 4.
∑

i1...iM

a†i1 . . . a
†
iM
ai1 . . . aiM |ϕj1 . . . ϕjN 〉 =

N !

(N −M)!
|ϕj1 . . . ϕjN 〉. (7.37)

Proof.
∑

i1...iM

a†i1 . . . a
†
iM
ai1 . . . aiM |ϕj1 . . . ϕjN 〉

=

√
(N −M)!

N !
M !

∑

1≤α1<···<αM≤N

∑

i1...iM

δi1...iM ;jα1
...jαM

a†i1 . . . a
†
iM
|ϕ{j1...jN}\{jα1

...jαM }〉

=

√
(N −M)!

N !
M !

∑

1≤α1<···<αM≤N
a†jα1

. . . a†jαM
|ϕ{j1...jN}\{jα1

...jαM }〉

=

√
(N −M)!

N !

√
N !

(N −M)!
M !

∑

1≤α1<···<αM≤N
|ϕj1 . . . ϕjN 〉

= M !

(
N

M

)
|ϕj1 . . . ϕjN 〉

=
N !

(N −M)!
|ϕj1 . . . ϕjN 〉. (7.38)

Another immediate conclusion from Lemma 3 is

Lemma 5.

〈ϕi1 . . . ϕiN |a†k1 . . . a
†
kM
al1 . . . alM |ϕj1 . . . ϕjN 〉

=
(N −M)!

N !
M !2

∑

1≤α1<···<αM≤N
1≤β1<···<βM≤N

δk1...kM ;iα1
...iαM

δl1...lM ;jβ1 ...jβM

× δ{i1...iN}\{iα1
...iαM };{j1...jN}\{jβ1 ...jβM }. (7.39)

Lemma 6.

Tr(N){a†i1 . . . a
†
iN
aj1 . . . ajN } = N !δi1...iN ;j1...jN . (7.40)

Proof.

Tr(N){a†i1 . . . a
†
iN
aj1 . . . ajN } =

∑

k1...kN

〈ϕk1 . . . ϕkN |a†i1 . . . a
†
iN
aj1 . . . ajN |ϕk1 . . . ϕkN 〉

= N !
∑

k1...kN

δk1...kN ;i1...iN δj1...jN ;k1...kN

= N !δi1...iN ;j1...jN . (7.41)
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Lemma 7. Let X be an arbitrary operator.

Tr(N){ai1 . . . aiNa†j1 . . . a
†
jN
X} = N !δi1...iN ;j1...jN 〈0|X|0〉. (7.42)

Proof. We use Lemmata 1 and 2:

∑

α1...αN

〈ϕα1
. . . ϕαN |a†j1 . . . a

†
jN
Xai1 . . . aiN |ϕα1

. . . ϕαN 〉

= N !
∑

α1...αN

δα1...αN ;j1...jN δi1...iN ;α1...αN 〈0|X|0〉

= N !δi1...iN ;j1...jN 〈0|X|0〉. (7.43)

Lemma 8. Let X be an arbitrary operator.

Tr(N){a†j1 . . . a
†
jN
ai1 . . . aiNX} = N !〈ϕi1 . . . ϕiN |X|ϕj1 . . . ϕjN 〉. (7.44)

Proof.

∑

α1...αN

〈ϕα1
. . . ϕαN |Xa†j1 . . . a

†
jN
ai1 . . . aiN |ϕα1

. . . ϕαN 〉

= N !
∑

α1...αN

〈ϕα1
. . . ϕαN |X|ϕj1 . . . ϕjN 〉δi1...iN ;α1...αN

= N !〈ϕi1 . . . ϕiN |X|ϕj1 . . . ϕjN 〉. (7.45)

7.3 Density matrices and expectation values

Based on the tools developed in the previous section, we establish some elementary
facts about N -particle operators, which we use to formally introduce full N -particle
and reduced M -particle density operators.

7.3.1 N-particle density operator

We introduce the N -particle density matrix ρ(N) as an N -particle operator, which was
already introduced in section 7.1.3. The expectation value of an N -particle operator
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A(N) is given in matrix elements as

Tr(N){ρ(N)A(N)} =
1

N !2

∑

i1...iN
j1...jN

∑

n1...nN
m1...mN

ρ
(N)
i1...iN ;j1...jN

A(N)
n1...nN ;m1...mN

× Tr(N){a†i1 . . . a
†
iN
aj1 . . . ajNa

†
n1
. . . a†nNam1

. . . amN }

=
1

N !

∑

i1...iN
j1...jN

∑

n1...nN
m1...mN

ρ
(N)
i1...iN ;j1...jN

A(N)
n1...nN ;m1...mN

× δm1...mN ;i1...iN δj1...jN ;n1...nN

=
1

N !

∑

i1...iN

∑

n1...nN

ρ
(N)
i1...iN ;n1...nN

A
(N)
n1...nN ;i1...iN

, (7.46)

where we have used equation (7.33) and Lemma 7. This generalizes equation (7.14) to
a multi-particle scenario.

The normalization condition Tr(N){ρ(N)} = 1 for

ρ(N) =
1

N !

∑

i1...iN
j1...jN

ρ
(N)
i1...iN ;j1...jN

a†i1 . . . a
†
iN
aj1 . . . ajN (7.47)

is fulfilled, according to Lemma 6, if

∑

i1...iN

ρ
(N)
i1...iN ;i1...iN

= 1. (7.48)

7.3.2 Matrix elements and traces in a larger Hilbert space

When describing subsystems of M ≤ N particles, we often have to evaluate the matrix
elements and traces of M -particle operators in a larger N -particle Hilbert space.

We first determine the matrix elements

〈ϕi1 . . . ϕiN |A(M)|ϕj1 . . . ϕjN 〉. (7.49)

Using equation (7.19) and, subsequently, Lemma 3 we get

〈ϕi1 . . . ϕiN |A(M)|ϕj1 . . . ϕjN 〉 (7.50)

=
1

M !

∑

k1...kM
l1...lM

A
(M)
k1...kM ;l1...lM

〈ϕi1 . . . ϕiN |a†k1 . . . a
†
kM
al1 . . . alM |ϕj1 . . . ϕjN 〉

=

(
N

M

)−1 ∑

1≤α1<···<αM≤N
1≤β1<···<βM≤N

A
(M)
iα1

...iαM ;jβ1 ...jβM
δ{i1...iN}\{iα1

...iαM };{j1...jN}\{jβ1 ...jβM }.

The tupels {α1 . . . αM} and {β1 . . . βM} are taken away from the sets {i1 . . . iN} and
{j1 . . . jN} respectively, which results in the sets of indices {i1 . . . iN}\{iα1

. . . iαM }
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and {j1 . . . jN}\{jβ1
. . . jβM }. These appear as arguments of the permutation-invariant

delta function (7.25). There exist
(
N
M

)
such tuples {α1 . . . αM} and {β1 . . . βM}, re-

spectively.
For the N -particle trace of M -particle operators we get, using Lemma 3:

Tr(N){a†n1
. . . a†nMam1

. . . amMX}
=
∑

i1...iN

〈ϕi1 . . . ϕiN |a†n1
. . . a†nMam1

. . . amMX|ϕi1 . . . ϕiN 〉

= M !
∑

i1...iN

∑

1≤α1<···<αM≤N
δiα1

...iαM ;n1...nM

× 〈ϕ{i1...iN}\{iα1
...iαM }∪{m1...mM}|X|ϕi1 . . . ϕiN 〉

=

(
N

M

)
M !

∑

iM+1...iN

〈ϕm1 . . . ϕmMϕiM+1
. . . ϕiN |X|ϕi1 . . . ϕnMϕiM+1

. . . ϕiN 〉

=
N !

(N −M)!

∑

iM+1...iN

〈ϕm1
. . . ϕmMϕiM+1

. . . ϕiN |X|ϕn1
. . . ϕnMϕiM+1

. . . ϕiN 〉 (7.51)

where in the fourth step we renamed the indices i1 . . . iN which leads to
(
N
M

)
equal

terms. In the second step, the set {i1 . . . iN}\{iα1
. . . iαM } ∪ {m1 . . .mM} appeared,

which is obtained from the set {i1 . . . iN} by replacing the elements {iα1
. . . iαM } with

{m1 . . .mM}.

7.3.3 M-particle reduced density operator

To introduce the reduced density operator, we consider the expectation value of an
M -particle operator in an N -particle system:

Tr(N){A(M)ρ(N)} =
1

M !

∑

n1...nM
m1...mM

A(M)
n1...nM ;m1...mMTr(N){a†n1

. . . a†nMam1 . . . amMρ
(N)}

=

(
N

M

) ∑

n1...nM
m1...mM

A(M)
n1...nM ;m1...mMρ

(M)
m1...mM ;n1...nM

=
N !

(N −M)!
Tr(M){A(M)ρ(M)}, (7.52)

where we used equation (7.46). We have introduced the definition of the M -particle
reduced density operator of an N -particle system (Löwdin, 1955; Ter Haar, 1961; Yang,
1962; Bogoliubov, 1967a),

ρ
(M)
i1...iM ;j1...jM

=
(N −M)!

N !
Tr(N){a†j1 . . . a

†
jM
ai1 . . . aiMρ

(N)} (7.53)

=
∑

nM+1...nN

〈ϕi1 . . . ϕiMϕnM+1
. . . ϕnN |ρ(N)|ϕj1 . . . ϕjMϕnM+1

. . . ϕnM 〉,
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where in the last step we used equation (7.51). By convention, we chose the normaliza-
tion constant such that all reduced density matrices are normalized to one (Ter Haar,
1960). This leads to a definition of the corresponding partial trace operation as

ρ(M) = Tr
(N)
N−M{ρ(N)} (7.54)

:=
(N −M)!

N !M !

∑

n1...nM
m1...mM

Tr(N){a†n1
. . . a†nMam1

. . . amMρ
(N)}a†m1

. . . a†mMan1
. . . anM .

The normalization of ρ(M) is then given by application of Lemma 4,

Tr(M){ρ(M)} =
(N −M)!

N !

∑

i1...iN
j1...jN
n1...nM

ρ
(N)
i1...iN ;j1...jN

× 〈ϕj1 . . . ϕjN |a†n1
. . . a†nMan1

. . . anM |ϕi1 . . . ϕiN 〉

=
(N −M)!

N !

N !

(N −M)!

∑

i1...iN

ρ
(N)
i1...iN ;i1...iN

︸ ︷︷ ︸
1

= 1. (7.55)

Alternatively, we may also project an N -particle operator onto the subspace spanned
by M -particle states. For the density matrix, this yields

I(M)ρ(N)I(M) =
∑

n1...nM
m1...mM

|ϕn1
. . . ϕnM 〉〈ϕn1

. . . ϕnM |ρ(N)|ϕm1
. . . ϕmM 〉〈ϕm1

. . . ϕmM |

=
∑

n1...nM
m1...mM

∑

l1...lM
k1...kN

|ϕn1
. . . ϕnM 〉〈ϕn1

. . . ϕnM |ϕk1 . . . ϕkN 〉

× 〈ϕk1 . . . ϕkN |ρ(N)|ϕl1 . . . ϕlN 〉〈ϕl1 . . . ϕlN |ϕm1
. . . ϕmM 〉〈ϕm1

. . . ϕmM |

=
1

M !

∑

n1...nM
m1...mM

∑

l1...lM
k1...kN

〈ϕl1 . . . ϕlN |ϕm1
. . . ϕmM 〉〈ϕn1

. . . ϕnM |ϕk1 . . . ϕkN 〉

× 〈ϕk1 . . . ϕkN |ρ(N)|ϕl1 . . . ϕlN 〉a†n1
. . . a†nMam1 . . . amM

=
1

M !2

∑

n1...nM
m1...mM

Tr(N)
{
a†m1

. . . a†mMan1 . . . anMρ
(N)
}

× a†n1
. . . a†nMam1

. . . amM

=
N !

(N −M)!M !2

∑

n1...nM
m1...mM

ρ(M)
n1...nM ;m1...mMa

†
n1
. . . a†nMam1

. . . amM

=

(
N

M

)
ρ(M), (7.56)

which leads to an equivalent definition of reduced M -particle density operators.
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We apply this to the special case M = 1 to evaluate the elements of the single-
particle density matrix explicitly as a function of the full N -particle density operator
for arbitrary N . Using equation (7.53), we obtain

ρ(1) = Tr
(N)
N−1{ρ(N)} =

1

N

∑

nm

Tr(N){amρ(N)a†n}a†man

=
1

N ·N !

∑

mn

∑

i1...iN
j1...jN

ρ
(N)
i1...iN ;j1...jN

Tr(N){a†nama†i1 . . . a
†
iN
aj1 . . . ajN }a†man

=
∑

mn

∑

i2...iN

ρ
(N)
mi2...iN ;ni2...iN

a†man. (7.57)

Here, placing the indices n and m at the first position is an arbitrary choice, since the
entire set of indices m, i2, . . . , iN and n, i2, . . . , iN are permutationally invariant.

7.3.4 Many-body Hamiltonian

The Hamiltonian is another special case of an M -particle operator. In most models,
one only considers pairwise particle-particle interactions, which also reflects the pair-
wise nature of fundamental forces, but effective three- or more-body interactions are
sometimes useful to describe collisions or chemical reactions in dense media (Mahan,
2000; Pitaevskii and Stringari, 2003). Here we restrict to second-quantized Hamilto-
nians containing a single-particle energy term and a two-particle interaction,

H = H(1) +H(2) =
∑

ij

H
(1)
ij a

†
iaj +

1

2

∑

ijkl

H
(2)
ij;kla

†
ia
†
jakal. (7.58)

For such Hamiltonians, the energy expectation value is completely determined on the
basis of the reduced two-particle density operator ρ(2), which becomes apparent from
equation (7.52), with M = 2. Special cases of systems which are described by Hamil-
tonians of this form have been discussed in this thesis in the context of the quantized
motion of trapped ions, which resembles the Bose-Hubbard Hamiltonian (2.17), see
section 6.4.3.

7.3.5 Bosonic product states

An important question for the description of a composite many-body system in terms
of its individual constituents is: Under which conditions does the single-particle quan-
tum state uniquely determine the full many-particle quantum state? This relates to
the more general question: Which M -particle states can be obtained by performing
the partial trace over N − M particles of an N -particle density operator, which is
particularly hard to answer for fermionic systems (Coleman, 1963; Kummer, 1967;
Kummer, 1970; Radzki, 2010). The complexity of this problem is entirely caused by
quantum statistics, which requires the (anti-)symmetrization of many-body states.
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For example, when dealing with distinguishable particles, we can readily express
any uncorrelated N -particle state by the tensor product of N single-particle density
operators. In the simple case of N = 2, this yields a two-particle product operator

ρ
(2)
P = ρ(1) ⊗ ρ(1). (7.59)

Using the symmetrized basis, for instance in the form of equation (7.7), we can use

this form of ρ
(2)
P to compute the matrix elements of the two-particle density matrix,

〈ϕiϕj |ρ(1) ⊗ ρ(1)|ϕkϕl〉 =
1

2

(
ρ

(1)
ik ρ

(1)
jl + ρ

(1)
il ρ

(1)
jk

)
, (7.60)

expressed in terms of the elements ρij = 〈ϕi|ρ|ϕj〉 of the single-particle density ma-
trix. By containing the sum over all permutations (in this case of only two elements)
this expression respects the required symmetry constraints and represents the correct
version of a bosonic product state; see, for example (Radzki, 2010). Alternatively, we
may express this operator with a second-quantized expression

ρ
(2)
P =

1

2
: ρ(1)ρ(1) :=

1

2

∑

ijkl

ρ
(1)
ij ρ

(1)
kl a

†
ia
†
kajal (7.61)

where the double dots denote normal ordering. We have achieved to express a two-
particle state in terms of single-particle states. The arising complexity in the presence
of identical particles becomes apparent when we try to return to the single-particle
state by tracing over one of two particles: When performing the partial trace operation,
as in equation (7.54), we do not recover the single-particle state ρ(1). This is easily
seen for the two-particle case:

〈n|Tr
(2)
1 {ρ

(2)
P }|m〉 =

1

2

∑

j

(
ρ(1)
nmρ

(1)
jj + ρ

(1)
nj ρ

(1)
jm

)

=
1

2

(
ρ(1)
nmTr(1)ρ(1) + 〈n|(ρ(1))2|m〉

)
, (7.62)

or

Tr
(2)
1 {ρ

(2)
P } =

1

2

(
ρ(1)Tr(1)ρ(1) + (ρ(1))2

)
, (7.63)

which in general does not correspond to the single-particle density matrix ρ(1). This
can be generalized for arbitrary N and M in terms of a recurrence formula, see The-
orem 3.1 in (Radzki, 2010). Assuming proper normalization of the single-particle

density matrix, Tr(1)ρ(1) = 1, we recover the single-particle density operator ρ(1) when
(ρ(1))2 = ρ(1), that is, when ρ(1) is a projector describing a pure state |Φ〉. In this

case, we have ρ
(1)
ij = 〈ϕi|Φ〉〈Φ|ϕj〉 and

〈ϕiϕj |ρ(2)
P |ϕkϕl〉 = 〈ϕi|Φ〉〈ϕi|Φ〉〈Φ|ϕk〉〈Φ|ϕl〉. (7.64)
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Introducing a†Φ|0〉 = |Φ〉, we obtain ρ(1) = a†ΦaΦ, which we can use to define a general
bosonic pure product state as

ρ
(N)
P =

1

N !
: (ρ(1))N :=

1

N !
a†Φ . . . a

†
Φ︸ ︷︷ ︸

N times

aΦ . . . aΦ︸ ︷︷ ︸
N times

. (7.65)

Its matrix elements in a basis of symmetrized states read

〈ϕi1 . . . ϕiN |ρ(N)
P |ϕj1 . . . ϕjN 〉 = ci1 · · · ciN c∗j1 · · · c∗jN , (7.66)

with ci = 〈ϕi|Φ〉. The many-body system is described by such a pure product state
when a particular single-particle state is macroscopically occupied, that is, when the
system of bosons describes a perfect Bose-Einstein condensate. This, again, can be
interpreted as a mean-field ansatz, where all individual particles are described by the
same quantum state. As we will discuss in more detail in section 7.4.2, the macro-
scopic occupation of the single-particle state (for large N) further allows to replace
the associated field operator (to be introduced in the next section) by a complex num-
ber, leading to an equation of motion for an effective classical field; recall also the
discussions in sections 2.5.1 and 5.4.1.

7.3.6 Field operator representation

So far in this chapter, we have formulated all operators and quantum states in terms of
symmetrized states. A common description of second-quantized many-body systems
is based on field operators, which we introduce and put into context with symmetrized
states in this section.

All of the preceding calculations were carried out in an abstract representation of
an arbitrary complete basis, spanned by the eigenstates {|ϕi〉} of some single-particle
observable. We have not specified whether the spectrum of this observable is discrete or
continuous. While in our notation we employed summations, which indicate a discrete
spectrum, we could have replaced these sums by integrals to describe a continuous
spectrum. One example of a single-particle operator with a continuous spectrum is
given by the position operator x̂, with the eigenvalue equation

x̂|x〉 = x|x〉. (7.67)

This continuous basis of states can be related to the possibly discrete set of basis states
|ϕi〉 via the completeness relation,

|x〉 =
∑

i

|ϕi〉〈ϕi|x〉 =
∑

i

ϕ∗i (x)|ϕi〉. (7.68)

We thus introduce the field operator

Ψ̂†(x) =
∑

i

ϕ∗i (x)a†i , (7.69)
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which creates a particle at position x, that is, Ψ̂†(x)|0〉 = |x〉. Conversely we obtain
for the corresponding destruction operator

Ψ̂(x) =
∑

i

ϕi(x)ai. (7.70)

These operators satisfy the canonical commutation relations for bosons,

[Ψ̂(x), Ψ̂†(x′)] = δ(x− x′), [Ψ̂(x), Ψ̂(x′)] = 0. (7.71)

Furthermore, completeness of the position basis yields

|ϕi〉 =

∫
dx|x〉〈x|ϕi〉 =

∫
dxϕi(x)|x〉, (7.72)

which leads to

a†i =

∫
dxϕi(x)Ψ̂†(x), and ai =

∫
dxϕ∗i (x)Ψ̂(x). (7.73)

We can use this to represent the matrix elements of an arbitrary N -particle operator,
starting from equation (7.19):

A
(N)
i1...iN ;j1...jN

= 〈ϕi1 . . . ϕiN |A(N)|ϕj1 . . . ϕjN 〉

=

∫
dx1 . . .

∫
dxN

∫
dx′1 . . .

∫
dx′N 〈ϕi1 . . . ϕiN |x1 . . .xN 〉

× 〈x1 . . .xN |A(N)|x′1 . . .x′N 〉〈x′1 . . .x′N |ϕj1 . . . ϕjN 〉

=

∫
dx1 . . .

∫
dxN

∫
dx′1 . . .

∫
dx′Nϕ

∗
i1(x1) . . . ϕ∗iN (xN )

×A(N)(x1 . . .xN ; x′1 . . .x
′
N )ϕj1(x′1) . . . ϕjN (x′N ), (7.74)

with

A(N)(x1 . . .xN ; x′1 . . .x
′
N ) = 〈x1 . . .xN |A(N)|x′1 . . .x′N 〉. (7.75)

We have made use of the symmetry of the sets ϕ1, . . . , ϕN and x1, . . . ,xN , respectively.
Using equations (7.18) and (7.73), any N -particle operator can be represented through
field operators,

A(N) =
1

N !

∑

i1...iN
j1...jN

A
(N)
i1...iN ;j1...jN

a†i1 . . . a
†
iN
aj1 . . . ajN

=
1

N !

∫
dx1 . . .

∫
dxN

∫
dx′1 . . .

∫
dx′N

×A(N)(x1 . . .xN ; x′1 . . .x
′
N )Ψ̂†(x1) . . . Ψ̂†(xN )Ψ̂(x′1) . . . Ψ̂(x′N ). (7.76)
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In the position representation one can always represent Hamilton operators with local
potentials in a pseudo-diagonal form as (Cohen-Tannoudji et al., 1977a)

〈x|H(1)|x′〉 = 〈x|x′〉
(
− ~2

2m
∇2

x + V0(x)

)
= δ(x− x′)H0(x),

〈x1x2|H(2)|x′1x′2〉 = 〈x1x2|x′1x′2〉V (x1,x2). (7.77)

This allow us to substitute

〈x|H(1)|ϕi〉 = H0(x)ϕi(x),

〈x1x2|H(2)|ϕiϕj〉 = V (x1,x2)〈x1x2|ϕiϕj〉, (7.78)

which leads to the common form of the Hamilton operator in field operator represen-
tation:

H = H(1) +H(2) =

∫
dxΨ̂†(x)

(
− ~2

2m
∇2

x + V0(x)

)
Ψ̂(x)

+
1

2

∫
dx1

∫
dx2Ψ̂†(x1)Ψ̂†(x2)V (x1,x2)Ψ̂(x1)Ψ̂(x2). (7.79)

If the single-particle operator

ρ(1) =

∫
dx1

∫
dx2Ψ̂†(x1)ρ(1)(x1; x2)Ψ̂(x2) (7.80)

describes a pure state |Φ(t)〉, we obtain for its matrix elements

ρ(1)(x1; x2) = 〈x1|Φ〉〈Φ|x2〉 = Φ(x1)Φ∗(x2). (7.81)

The elements of the corresponding pure product state of N particles read

ρ(N)(x1 . . .xN ; x′1 . . .x
′
N ) = Φ(x1) . . .Φ(xN )Φ∗(x′1) . . .Φ∗(x′N ). (7.82)

7.4 Coherent dynamics of a subgroup of interacting bosons

Describing the dynamics of interacting many-body systems is generally a very compli-
cated task. Under specific assumptions, effective equations of motion can be derived,
which are considerably less complex than the full many-body problem. One such ex-
ample is given by the mean-field evolution of a weakly interacting system of ultracold
bosons, as described by the Gross-Pitaevskii equation. In this section, we first review
the standard derivation of the Gross-Pitaevskii equation. Then, we apply the formal-
ism which was developed in the previous section, to derive a hierarchical equation of
motion for the reduced M -particle density operator, related to the quantum version
of the BBGKY-hierarchy. We will then see that a first-order truncation of this hier-
archical set of equations reproduces the dynamics described by the Gross-Pitaevskii
equation, in the special case of weak interactions.
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7.4.1 Time evolution of many-body quantum systems

We describe the dynamics of the full N -particle quantum state ρ(N)(t) in the Schrö-
dinger picture (Bogoliubov, 1967a)

∂

∂t
ρ(N)(t) = − i

~

[
H, ρ(N)(t)

]
, (7.83)

where H = H(1) + H(2), as defined in equation (7.58), contains a single-particle part
H(1) and a two-particle interaction term H(2).

It is important to realize that the equation of motion (7.83) does not fully restrict
to the contribution of N -particle states: The right-hand side contains contributions
of N + 1 and N + 2-particle operators,2 which are not accounted for by imposing,
on the left-hand side of the equation, that the density operator contains exactly N
particles. By writing equation (7.83), we only consider the contribution of the N -
particle density matrix (ρ(N)-term appearing on the right-hand side) for the evolution
of the N -particle density matrix (left-hand side). This is an approximation, since
we make this assumption not for the solution ρ(N)(t) of the above equation, but for
the equation itself. For the solution itself, this would not be an approximation, since
any Hamiltonian of the form (7.58) commutes with the particle number operator (see
Lemma 4 with M = 1 for its action on an N -particle state)

N (1) =
∑

i

a†iai, (7.84)

and, hence, an initial N -particle state ρ(N) will be mapped to another N -particle state.
A more general description of the many-body dynamics could be obtained by replacing
ρ(N)(t) with ρ(t) =

∑N
i=1 ρ

(i)(t) on both sides of equation (7.83). In the context of the
present dissertation we restrict to the above assumption of a closed evolution within
the N -particle subspace.

Instead of working in the Schrödinger picture, we can transform to the interaction
picture with U1(t) = exp(−iH(1)t/~). We get

∂

∂t
ρ

(N)
I (t) = − i

~
[H

(2)
I (t), ρ

(N)
I (t)], (7.85)

with ρ
(N)
I (t) = U†1 (t)ρ(N)(t)U1(t) and H

(2)
I (t) = U†1 (t)H(2)U1(t). Typically, the single-

particle part can be solved, if not analytically, it at least allows for a numerical diago-
nalization, while the two-particle interaction term defies efficient numerical approaches,
since it requires consideration of all particles, which renders it a many-body problem.
We can, for instance, choose a representation such that a†i creates an eigenstate of H(1),

that is, H
(1)
ij = εiδij . This special choice makes the determination of the interaction

picture Hamitonian particularly simple:

H
(2)
I (t) =

1

2

∑

ijkl

ei(εi+εj−εk−εl)t/~H(2)
ij;kla

†
ia
†
jakal. (7.86)

2In the commutator, the highest-order terms (here, N + 2), drop out. This is caused by the com-
mutativity of the annihilation operators ai among themselves; see equation (7.3).
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Finally, a commonly employed method to describe the dynamics of many-body sys-
tems which avoids the problems that emerge by restricting to N -particle subspaces,
as discussed above, is achieved by solving for the dynamics of individual annihilation
operators in the Heisenberg picture. From equations (7.18) and (7.76), we see that
any N -particle operator can be expressed in terms of the bosonic operators ai or Ψ̂(x).
The Heisenberg-picture field operator is given by

Ψ̂(t,x) = eiHt/~Ψ̂(x)e−iHt/~. (7.87)

We can use it to express the Hamilton operator (7.79) as

H = eiHt/~He−iHt/~

=

∫
dxΨ̂†(t,x)

(
− ~2

2m
∇2

x + V0(x)

)
Ψ̂(t,x)

+
1

2

∫
dx1

∫
dx2Ψ̂†(t,x1)Ψ̂†(t,x2)V (x1,x2)Ψ̂(t,x1)Ψ̂(t,x2). (7.88)

The time evolution of the field operator is given by the Heisenberg equation

i~
∂

∂t
Ψ̂(t,x) = [Ψ̂(t,x), H] (7.89)

=

∫
dx′
(
− ~2

2m
∇2

x′ + V0(x′)

)[
Ψ̂(t,x), Ψ̂†(t,x′)Ψ̂(t,x′)

]

+
1

2

∫
dx1

∫
dx2V (x1,x2)

[
Ψ̂(t,x), Ψ̂†(t,x1)Ψ̂†(t,x2)Ψ̂(t,x1)Ψ̂(t,x2)

]
.

Using the canonical commutation relations, equation (7.71), we obtain

[
Ψ̂(t,x), Ψ̂†(t,x′)Ψ̂(t,x′)

]
= δ(x− x′)Ψ̂(t,x) (7.90)

and
[
Ψ̂(t,x), Ψ̂†(t,x1)Ψ̂†(t,x2)Ψ̂(t,x1)Ψ̂(t,x2)

]
= δ(x− x1)Ψ̂†(t,x2)Ψ̂(t,x2)Ψ̂(t,x1)

+ δ(x− x2)Ψ̂†(t,x1)Ψ̂(t,x1)Ψ̂(t,x2).
(7.91)

Since the interaction potential of identical particles does not distinguish between the
particles, that is, V (x1,x2) = V (x2,x1), this leads to the exact equation

i~
∂

∂t
Ψ̂(t,x) =

∫
dx′
(
− ~2

2m
∇2

x′ + V0(x′)

)
δ(x− x′)Ψ̂(t,x)

+

∫
dx1

∫
dx2V (x1,x2)δ(x− x1)Ψ̂†(t,x2)Ψ̂(t,x2)Ψ̂(t,x1)

=

(
− ~2

2m
∇2

x + V0(x) +

∫
dx′V (x,x′)Ψ̂†(t,x′)Ψ̂(t,x′)

)
Ψ̂(t,x). (7.92)
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7.4.2 The Gross-Pitaevskii equation

To describe a dilute Bose-Einstein condensate, we start from equation (7.92) and em-
ploy the Bogoliubov approximation (Bogoliubov, 1947). This means that we describe
the macroscopic occupation of a single-particle quantum state with a classical field
Ψ0(t,x), and consider quantum corrections δΨ̂(t,x) to it as weak

Ψ̂(t,x) = Ψ0(t,x) + δΨ̂(t,x). (7.93)

More precisely, the classical field, Ψ0(t,x), is given by

Ψ0(t,x) =
√
N0ϕ0(t,x), (7.94)

where ϕ0(t,x) denotes the single-particle wavefunction of the N0−fold (N0 ≈ N � 1)
occupied state.3 The prefactor is required to satisfy the normalization condition

N0 =

∫
dxTr(N)

{
Ψ̂†(t,x)Ψ̂(t,x)ρ(N)

}
, (7.95)

which corresponds to the quantum mechanical expectation value of the number oper-
ator. We now consider a weakly interacting, dilute Bose-Einstein condensate, which
means we employ the following approximations: We

• ignore the quantum corrections δΨ̂,

• assume that the interaction be of short range and replace

V (x1,x2) = gδ(x1 − x2). (7.96)

The interaction coupling constant can be expressed in terms of the s-wave scattering
length a as4

g =
4π~2a

m
. (7.97)

Under these assumptions, the dynamics implied by (7.92) for the classical field Ψ0(t,x)
takes a form known as the Gross-Pitaevskii equation (Gross, 1961; Pitaevskii, 1961;
Pitaevskii and Stringari, 2003)

i~
∂

∂t
Ψ0(t,x) =

(
− ~2

2m
∇2

x + V0(x) + g|Ψ0(t,x)|2
)

Ψ0(t,x). (7.98)

3This macroscopically occupied single-particle state should not be called the ground state since
the ground state of the full many-body Hamiltonian is not a single-particle state (Pitaevskii and
Stringari, 2003).

4The s-wave scattering length a determines the low-energy limit of the s-wave scattering amplitude
(zero angular momentum contribution of the partial wave expansion of the scattering amplitude)
in a central potential, and, in the same limit, determines the total cross section σtot as σtot = 4πa2

(Reed and Simon, 1979).
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Using equation (7.94) we obtain the dynamics of the single-particle wavefunction

i~
∂

∂t
ϕ0(t,x) =

(
− ~2

2m
∇2

x + V0(x) + gN0|ϕ0(t,x)|2
)
ϕ0(t,x). (7.99)

If we assume the total system of N particles to be described by a pure product state
at all times t, the corresponding mean-field N -particle state is given by

ρ(N)(t,x1 . . .xN ; x′1 . . .x
′
N ) = ϕ0(t,x1) . . . ϕ0(t,xN )ϕ∗0(t,x′1) . . . ϕ∗0(t,x′N ). (7.100)

In the context of a Bose-Einstein condensate, the pure product state assumption is well
justified for the condensate part, which is characterized by macroscopic occupation of
a single-particle state (Pitaevskii and Stringari, 2003), when external noise sources can
be neglected.

7.4.3 Hierarchical expansion of the reduced bosonic dynamics

In this section, we finally employ the formalism of symmetrized states, which was
introduced in the previous two sections, to derive the equations of motion for an M -
particle subsystem of N interacting bosons. To describe the dynamics of the reduced
M -particle density operator, we perform the partial trace operation, as defined in
equation (7.54), on both sides of the von Neumann equation (7.83). On the left-hand
side this immediately yields the reduced M -particle density operator. We obtain

i~
∂

∂t
ρ(M)(t) = Tr

(N)
N−M{i~

∂

∂t
ρ(N)(t)}

= Tr
(N)
N−M

{[
H(1) +H(2), ρ(N)(t)

]}
(7.101)

Again, note that, by construction, we project both sides of the above equation to the
M -particle subspace, even though there are nonzero contributions of the right-hand
side to subspaces of more than M particles. To evaluate the above expression, we
split the right-hand side into two terms and begin with the single-particle term. Using
equation (7.54) and Lemma 3, we obtain

Tr
(N)
N−M

{[
H(1), ρ(N)(t)

]}

=
(N −M)!

N !M !

×
∑

n1...nM
m1...mM
k1...kN
l1...lN

[
〈ϕl1 . . . ϕlN |a†n1

. . . a†nMam1
. . . amMH

(1)|ϕk1 . . . ϕkN 〉ρ(N)
k1...kN ;l1...lN

(t)

−〈ϕl1 . . . ϕlN |H(1)a†n1
. . . a†nMam1 . . . amM |ϕk1 . . . ϕkN 〉ρ(N)

k1...kN ;l1...lN
(t)
]

× a†m1
. . . a†mMan1

. . . anM .
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=
(N −M)!

N !M !

(
N

M

)
M !

∑

n1...nM
m1...mM

×




∑

k1...kN
lM+1...lN

〈ϕm1 . . . ϕmMϕlM+1
. . . ϕlN |H(1)|ϕk1 . . . ϕkN 〉ρ(N)

k1...kN ;n1...nM lM+1...lN
(t)

−
∑

k1...kM+1

l1...lN

〈ϕl1 . . . ϕlN |H(1)|ϕn1
. . . ϕnMϕkM+1

. . . ϕkN 〉ρ(N)
m1...mMkM+1...kN ;l1...lN

(t)




× a†m1
. . . a†mMan1 . . . anM . (7.102)

At this point, we need to determine the N -particle matrix elements of a single-particle
operator. This was done for a general M -particle operator in equation (7.50). Here,
we have to distinguish two cases, depending on the set of indices with which H(1)

contracts. Obviously, there are M possibilities for 1 < α < N to be found within
the subset 1, . . . ,M , in which case one index of H(1) is directly contracted with either
the creation or the annihilation operators a†m1

, . . . , a†mM and an1 , . . . , anM . In the

remaining N −M cases, both indices of H(1) are contracted with ρ(N). We obtain

Tr
(N)
N−M

{[
H(1), ρ(N)(t)

]}

=
(N −M)!

N !M !

(
N

M

)
M !

∑

n1...nM
m1...mM

×
[
M

(∑

k1

H
(1)
m1k1

ρ
(M)
k1m2...mM ;n1...nM

(t)−
∑

l1

H
(1)
l1n1

ρ
(M)
m1...mM ;n2...nM l1

(t)

)

+ (N −M)


 ∑

lM+1k1

H
(1)
lM+1k1

ρ
(M+1)
k1m1...mM ;n1...nM lM+1

(t)

−
∑

l1kM+1

H
(1)
l1kM+1

ρ
(M+1)
m1...mMkM+1;l1n1...nM

(t)






× a†m1
. . . a†mMan1 . . . anM (7.103)

Using the invariance under permutations of the indices of ρ(M+1), we find, after ap-
propriate relabelling of the indices, that the terms containing ρ(M+1) cancel, and we
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obtain

Tr
(N)
N−M

{[
H(1), ρ(N)(t)

]}

=
M

M !

∑

n1...nM
m1...mM

k1

[
H

(1)
m1k1

ρ
(M)
k1m2...mM ;n1...nM

(t)−H(1)
k1n1

ρ
(M)
m1...mM ;n2...nMk1

(t)
]

× a†m1
. . . a†mMan1 . . . anM

= [H(1), ρ(M)(t)], (7.104)

where the factor M , accounts for the fact that we express elements of the single-particle
operator H(1) in an M -particle basis. To see this, let us consider the general case of
an arbitrary S-particle operator J (S) in the following expressions:

〈ϕn1 . . . ϕnM |J (S)ρ(M)|ϕm1 . . . ϕmM 〉

=

(
M

S

) ∑

i1...iS

J
(S)
n1...nS ;i1...iS

ρ
(M)
i1...iSnS+1...nM ;m1...mM

, (7.105)

and

〈ϕn1
. . . ϕnM |ρ(M)J (S)|ϕm1

. . . ϕmM 〉

=

(
M

S

) ∑

i1...iS

ρ
(M)
n1...nM ;i1...iSmS+1...mM

J
(S)
i1...iS ;m1...mS

. (7.106)

Indeed, in the special case S = 1, we obtain the prefactor M which was observed
in (7.104).

As expected, when neglecting the interactions H(2) by restricting to the single-
particle Hamiltonian H(1), the only remaining term, equation (7.104), describes the
free evolution of M ≤ N particles. Now we turn to the two-particle interaction term,
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which for M ≥ 2 yields, again using equation (7.54), and subsequently (7.50),

Tr
(N)
N−M

{[
H(2), ρ(N)(t)

]}

=
1

M !

∑

n1...nM
m1...mM
k1...kN


 ∑

nM+1...nN

〈ϕn1
. . . ϕnN |H(2)|ϕk1 . . . ϕkN 〉ρ(N)

k1...kN ;m1...mMnM+1...nN
(t)

−
∑

mM+1...mN

ρ
(N)
n1...nMmM+1...mN ;k1...kN

(t)〈ϕk1 . . . ϕkN |H(2)|ϕm1
. . . ϕmN 〉




× a†n1
. . . a†nMam1 . . . amM

=
1

M !

∑

n1...nM
m1...mM
k1...kN

 ∑

nM+1...nN

∑

1≤α1<α2≤N
H

(2)
nα1nα2 ;k1k2

ρ
(N)
k1k2{n1...nN}\{nα1

nα2
};m1...mMnM+1...nN

(t)

−
∑

mM+1...mN

∑

1≤β1<β2≤N
ρ

(N)
n1...nMmM+1...mN ;k1k2{m1...mN}\{mβ1mβ2}

(t)H
(2)
k1k2;mβ1mβ2




× a†n1
. . . a†nMam1

. . . amM . (7.107)

Again, we need to sort out which of the indices are contracted. In order to distinguish
the possibilities for the different choices of α1, α2, as well as of β1 and β2, we use the
following

Lemma 9. The following possibilities exist for 1 ≤ α1 < α2 ≤ r and s ≤ r:

1. Both α1 and α2 ≤ s. There are
(
s
2

)
possibilities to achieve this.

2. α1 ≤ s and α2 > s. There are s(r − s) possibilities to achieve this.

3. Both α1 and α2 > s. There are
(
r−s

2

)
possibilities to achieve this.
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Using this for r = N and s = M , we obtain

Tr
(N)
N−M

{[
H(2), ρ(N)(t)

]}
(7.108)

=
1

M !

∑

n1...nM
m1...mM
k1k2

[(
M

2

)
H

(2)
n1n2;k1k2

ρ
(M)
k1k2n3...nN ;m1...mM

(t)

+M(N −M)
∑

nM+1

H
(2)
n1nM+1;k1k2

ρ
(M+1)
k1k2n2...nM ;m1...mMnM+1

(t)

+

(
N −M

2

) ∑

nM+1nM+2

H
(2)
nM+1nM+2;k1k2

ρ
(M+2)
k1k2n1...nM ;m1...mMnM+1nM+2

(t)

−
(
M

2

)
ρ

(M)
n1...nM ;k1k2m3...mM

(t)H
(2)
k1k2;m1m2

−M(N −M)
∑

mM+1

ρ
(M+1)
n1...nMmM+1;k1k2m2...mM

(t)H
(2)
k1k2;m1mM+1

−
(
N −M

2

) ∑

mM+1mM+2

ρ
(M+2)
n1...nMmM+1mM+2;k1k2m1...mM

(t)H
(2)
k1k2;mM+1mM+2




× a†n1
. . . a†nMam1

. . . amM

=
[
H(2), ρ(M)(t)

]

+
M(N −M)

M !

∑

n1,...,nM
m1,...,mM
k1,k2


 ∑

nM+1

H
(2)
n1nM+1;k1k2

ρ
(M+1)
k1k2n2...nM ;m1...mMnM+1

(t)

−
∑

mM+1

ρ
(M+1)
n1...nMmM+1;k1k2m2...mM

(t)H
(2)
k1k2;m1mM+1


 a†n1

. . . a†nMam1 . . . amM .

The M -particle terms can be identified with the commutator, whereas the prefac-
tor is caused, according to equations (7.105) and (7.106), by representing the two-
particle Hamiltonian in the M -particle basis. We stress again that the equality sign
in equation (7.108) holds as long as the right-hand side is restricted to M -particle
contributions, for instance by projection onto I(M); recall the discussion following
equation (7.83).

We abbreviate the second term (the last two lines in the expression above) by in-
troducing the symbol L(M)(H(2), ρ(M+1)(t)), leading to

Tr
(N)
N−M

{[
H(2), ρ(N)(t)

]}
=
[
H(2), ρ(M)(t)

]
+
M(N −M)

M !
L(M)(H(2), ρ(M+1)(t)).

(7.109)

The right-hand side contains, beyond the commutator involving the M -particle density
matrix, also contributions of the (M + 1)-particle density matrix. Including also the
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single-particle Hamiltonian, equation (7.104), we obtain for M = 1

i~
∂

∂t
ρ(1)(t) =

[
H(1), ρ(1)(t)

]

+ (N − 1)
∑

nm
k1k2l

[
H

(2)
nl;k1k2

ρ
(2)
k1k2;ml(t)− ρ

(2)
nl;k1k2

(t)H
(2)
k1k2;ml

]
a†nam

=
[
H(1), ρ(1)(t)

]
+ (N − 1)Tr

(2)
1

{[
H(2), ρ(2)(t)

]}
(7.110)

For general M ≥ 2, however, the (M + 1)-particle contribution, L(M)(H(2), ρ(M+1)(t))
in equation (7.109), does not reduce to tracing over one more particle, but will also
yield contributions to the commutator. We see this easily by inserting N = M + 1,
with M ≥ 2 into equation (7.109),

Tr
(M+1)
1

{[
H(2), ρ(M+1)(t)

]}
=
[
H(2), ρ(M)(t)

]
+
M

M !
L(M)(H(2), ρ(M+1)(t)). (7.111)

This allows us to replace the term

L(M)(H(2), ρ(M+1)(t)) =
M !

M

(
Tr

(M+1)
1

{[
H(2), ρ(M+1)(t)

]}
−
[
H(2), ρ(M)(t)

])

(7.112)

in equation (7.109) for arbitrary N , leading to

Tr
(N)
N−M

{[
H(2), ρ(N)(t)

]}

=
[
H(2), ρ(M)(t)

]
+ (N −M)

(
Tr

(M+1)
1

{[
H(2), ρ(M+1)(t)

]}
−
[
H(2), ρ(M)(t)

])

=
[
(1− (N −M))H(2), ρ(M)(t)

]
+ (N −M)Tr

(M+1)
1

{[
H(2), ρ(M+1)(t)

]}
. (7.113)

Together with the single-particle term (7.104), this transforms (7.101) into a hierar-
chical expansion of the reduced dynamics,

i~
∂

∂t
ρ(M)(t) =

[
H(1) + (1− (N −M))H(2), ρ(M)(t)

]

+ (N −M)Tr
(M+1)
1

{[
H(2), ρ(M+1)(t)

]}
, (7.114)

which depends on ρ(M) and ρ(M+1). The dynamics of the latter, in turn, depends on
ρ(M+2) and so on. A hierarchal expansion of this type was first derived to describe
the statistical physics of classical systems (Yvon, 1935; Bogoliubov, 1946; Born and
Green, 1946; Kirkwood, 1946) and is known as the BBGKY hierarchy. It was later
generalized to quantum systems (Bogoliubov and Gurov, 1947); see also (Bogoliubov,
1967a; Röpke, 2013). To obtain a closed expression for the dynamics of ρ(M)(t), the
higher-order terms have to be expressed in terms of ρ(M)(t) which involves some type
of approximation that truncates this hierarchy. Different methods to achieve this are
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discussed in (Bogoliubov, 1967a; Bogoliubov, 1967b; Röpke, 2013). To this end, we will
later employ the pure product state assumption, which was introduced in section 7.3.5.

Note also that, whenever single-particle dynamics is considered (M = 1), the two-
particle Hamiltonian part drops out, since, as discussed before, in this case both sides
of the equation refer only to single-particle operators. Moreover, if no particle is
traced out, that is when N = M , the evolution (7.114) reduces to the unperturbed
von Neumann equation (7.83) for the M -particle density operator.

7.4.3.1. Coherent mean-field evolution

Making the pure product state assumption (7.65), we can truncate the hierarchical
family of dynamical equations (7.114), since it allows us to rewrite all ρ(M+1)-terms
as a function of ρ(M)-terms and ρ(1)-terms, as follows,

ρ
(M+1)
k1k2n2...nM ;m1...mMnM+1

(t) = ρ
(1)
k1nM+1

(t)ρ
(M)
k2n2...nM ;m1...mM

(t). (7.115)

Making this replacement allows us to write the right-hand side of the hierarchy (7.114)
in terms of ρ(M), which can be seen explicitly, for example, by employing the above
decomposition in the last two lines of equation (7.108). In fact, all of the indices can
be split up, and since the states are pure, also ‘ket’ and ‘bra’ side can be treated
separately—see equation (7.66). We retain the density matrix notation, keeping in
mind that the state is pure. Under the pure product state assumption we can write
the reduced dynamics as

i~
∂

∂t
ρ(M)(t) =

[
H(1) +H(2) + (N −M)C(1)(t), ρ(M)(t)

]
, (7.116)

where C(1)(t) is defined as

C(1)(t) =
∑

ijmn

H
(2)
nj;imρ

(1)
ij (t)a†nam. (7.117)

This equation still has the form of the von Neumann equation, describing coherent
dynamics where the mean-field potential term C(1)(t) is added to the unperturbed
Hamiltonian. However, since C(1)(t) itself depends on ρ(1)(t), this is a nonlinear
equation.

For M = 1, we insert a pure state,

ρ(1)(t) = |Φ(t)〉〈Φ(t)|, (7.118)

into equation (7.116). In this case the equation is equivalent to a nonlinear Schrödinger
equation

i~
∂

∂t
|Φ(t)〉 = H

(1)
eff |Φ(t)〉, (7.119)

with the effective Hamiltonian,

H
(1)
eff = H(1) + (N − 1)C(1)(t), (7.120)
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where, again, C(1)(t) is a nonlinear term containing the contribution of |Φ(t)〉.
For completeness, we note that a similar calculation in the interaction picture yields

i~
∂

∂t
ρ

(M)
I (t) = Tr

(N)
N−M

{[
H

(2)
I (t), ρ

(N)
I (t)

]}

=
[
H

(2)
I (t) + (N −M)C(1)(t, t), ρ

(M)
I (t)

]
, (7.121)

where

C(1)(t1, t2) =
∑

ijnm

H
(2)
nj;im(t1)ρ

(1)
ij (t2)a†nam, (7.122)

is the corresponding mean-field term (7.117) in the interaction-picture, expressed as

a function of the matrix elements of ρ
(1)
I (t) and H

(2)
I (t). In general, when dealing

with higher-order expansions of the interaction potential, we may encounter situations
where t1 6= t2. Such situations will be discussed in section 7.5.

The dynamical equation (7.114) describes the dynamics of bosonic subsystems, with-
out assumptions, and generates a BBGKY-type hierarchy. The formulation in terms of
arbitrary second-quantized Hamilton operators allows for direct application to specific
systems. The fact that the dynamics of the reduced M -particle system depends on
the quantum state of M + 1 particles is caused by the two-particle interaction term
H(2): To determine the evolution of the single-particle density matrix in the presence
of pairwise interactions, we need to know the density matrix describing two particles,
whose evolution, in turn, requires knowledge of the three-particle density matrix, and
so on.

The truncated, pure-state equation (7.119) describes the coherent mean-field evo-
lution for arbitrary potentials. The mean-field product state approximation allows us
to express the many-body quantum state as a function of the single-particle quantum
state. This single-particle state then also alters the effective potential in which each
particle evolves, and thereby accounts for the effect of particle-particle interactions.
In the form (7.119), we have not specified the Hamiltonian yet, thus, this equation
is more general than the well-known Gross-Pitaevskii equation, which describes the
evolution of a dilute Bose-Einstein condensate. In the next section we derive the Gross-
Pitaevskii equation as a special case of the mean-field equation (7.119) for a contact
interaction potential.

7.4.4 From the hierarchical expansion to Gross-Pitaevskii

We now employ the truncated pure-state equation (7.116), to describe a weakly in-
teracting Bose-Einstein condensate. We assume short-range interactions V (x1,x2) =
gδ(x2−x1), which in field operator representation (7.79) yields the interaction Hamil-
tonian,

H(2) =
g

2

∫
dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x). (7.123)
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Hence, the effective mean-field term (7.117), reads

C(1)(t)

= g
∑

ijnm

∫
dx

∫
dx1

∫
dx′1ϕ

∗
n(x)ϕ∗j (x)ϕi(x)ϕm(x)ϕ∗i (x1)ρ(1)(t; x1; x′1)ϕj(x

′
1)a†nam

= g

∫
dxΨ̂†(x)Ψ̂(x)ρ(1)(t; x; x), (7.124)

where we have used (7.69), as well as the completeness relation (7.4) for N = 1, which
leads to

∑

i

ϕi(x1)ϕ∗i (x2) =
∑

i

〈x1|ϕi〉〈ϕi|x2〉 = 〈x1|x2〉 = δ(x1 − x2). (7.125)

Since equation (7.124) holds for pure states |Φ(t)〉 we insert a pure single-particle
density matrix (7.118) which yields

C(1)(t) = g

∫
dxΨ̂†(x)Ψ̂(x)|Φ(t,x)|2. (7.126)

Then, the nonlinear Schrödinger equation (7.119) predicts the following time evolution
of the single-particle wavefunction

i~
∂

∂t
Φ(t,x) = 〈x|H(1)

eff |Φ(t)〉

=

[
− ~2

2m
∇2

x + V0(x) + g(N − 1)|Φ(t,x)|2
]

Φ(t,x). (7.127)

This coincides with the single-particle dynamics obtained via the Gross-Pitaevskii
equation (7.99), when Φ(t,x) = ϕ0(t,x) describes the macroscopically occupied single-
particle state with N ≈ N0 � 1.

7.5 Second-order master equation for identical particles: Incoherent
effects

In the previous section, we have performed the partial trace operation (7.54) on the
many-body von Neumann equation (7.83), which lead us to a description of the sub-
dynamics in form of a hierarchical commutator structure (7.114). The commutator
structure of the von Neumann equation is maintained through all steps of the deriva-
tion, which effectively yields a description of the reduced dynamics according to a von
Neumann type evolution. Such an equation is equivalent to the Schrödinger equation,
which cannot describe incoherent, dissipative effects on the subdynamics. For large
interacting systems, such effects are, however, expected to become visible for single-
particle observables. An example is given by the Bloch oscillations which describe
the evolution of the average single-particle momentum in a periodic potential. The
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dynamics of this single-particle observable is strongly affected by particle-particle in-
teractions, which induces decoherence of Bloch oscillations (Buchleitner and Kolovsky,
2003; Meinert et al., 2014), which are not expected to be accountable by any coherent
mean-field theory.

To extend our treatment to a description of incoherent effects, we take inspira-
tion from the microscopic derivation of weak-coupling Lindblad-type master equa-
tions, which is based on a second-order perturbative expansion in terms of the inter-
action Hamiltonian (Breuer and Petruccione, 2002). Regarding identical particles, the
particle-particle interaction takes on the role of the interaction between system and
an external reservoir. The second-order expansion leads to a characteristic double-
commutator structure, which already foreshadows the resulting Lindblad structure of
the effective master equation. In conventional system-environment scenarios, trac-
ing over the environmental degrees of freedom then leads to the Lindblad-type master
equations, which, in fact, describe incoherent effects and allow for a clear interpretation
of the contributing dissipative, and dephasing processes. In the case of indistinguish-
able particles, we, again, need to replace the tensorial partial trace operation (2.20)
with the appropriate second-quantized partial trace operation (7.54).

7.5.1 Single-particle subdynamics of a two-particle bosonic system

We first consider the simplest case of two interacting identical particles. Before tracing
over the two-particle subspace to obtain an effective description of the single-particle
dynamics, we expand the full dynamics to second order employing a perturbative series
in terms of the interaction Hamiltonian H(2). This is most conveniently realized in
the interaction picture. Integrating equation (7.85) yields for N = 2,

ρ
(2)
I (t) = ρ

(2)
I (0)− i

~

∫ t

0

ds[H
(2)
I (s), ρ

(2)
I (s)]. (7.128)

Inserting this back into equation (7.85), we obtain a second-order expression in H
(2)
I (t)

for the dynamics of ρ
(2)
I (t), which, so far, is still exact. The dynamics of the single-

particle density matrix is given by partially tracing over the two-particle space, ac-
cording to equation (7.23),

∂

∂t
ρ

(1)
I (t) = Tr

(2)
1 {

∂

∂t
ρ

(2)
I (t)} =

1

2

∑

ij

Tr(2){ai
∂

∂t
ρ

(2)
I (t)a†j}a†iaj . (7.129)

For the second-order expression, obtained with (7.128) in (7.85), this yields

∂

∂t
ρ

(1)
I (t) =

(
− i
~

)2 ∫ t

0

dsTr
(2)
1 [H

(2)
I (t), [H

(2)
I (s), ρ

(2)
I (s)]], (7.130)

assuming that Tr
(2)
1 [H

(2)
I (t), ρ

(2)
I (0)] = 0. The Markov approximation now consists

in replacing ρ
(2)
I (s) by ρ

(2)
I (t), such that the future evolution does not depend on

the state at previous times (Breuer and Petruccione, 2002). This means we truncate
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the perturbation expansion after the second order. Hence, we obtain a Redfield-type
equation (Redfield, 1957)

∂

∂t
ρ

(1)
I (t) = − 1

~2

∫ t

0

dsTr
(2)
1 [H

(2)
I (t), [H

(2)
I (s), ρ

(2)
I (t)]] (7.131)

=
1

~2

∫ t

0

dsTr
(2)
1 {H

(2)
I (s)ρ

(2)
I (t)H

(2)
I (t)−H(2)

I (t)H
(2)
I (s)ρ

(2)
I (t)}+ H.c.

Note, however, that, even for a conventional system-environment approach, this ap-
proximation alone usually does not produce a Markovian master equation (Breuer and
Petruccione, 2002), and for this reason is often combined with a secular or rotating-
wave approximation (Cohen-Tannoudji et al., 1992; Breuer and Petruccione, 2002;
Clos and Breuer, 2012).

The right-hand side of this equation still depends on the full two-particle state.
To derive a closed expression for the single-particle density matrix, we employ the
pure product state assumption, see equation (7.64), which can be interpreted as the
analog of the Born approximation of standard open systems. In both cases, we neglect
correlations between the two subsystems, and replace the full quantum state with a
uncorrelated product state. Here, however, we cannot replace the state of one of the
two particles with a time-invariant state to employ a coarse-grained timescale which
does not resolve excitations of the ‘bath’ since the concepts of ‘system’ and ‘bath’ are
not applicable to a situation where both constituents cannot be distinguished. In the
pure product state assumption both particles are described by the same single particle
state at all times. As was discussed in section 7.3.5, the symmetry requirements of
many-body systems prevents us to express the total state as a product of mixed states,
which is unfortunate, since the restriction to pure states, in principle, does not allow
for a description of incoherent effects. We now derive the general form of the resulting
truncated master equation under the pure product state assumption. Future studies
might then be able to tell under which conditions the resulting equations can be applied
to describe the dynamics of mixed states.

We thus replace the elements of the interaction-picture two-particle density matrix as

ρ
(2)
ij;kl(t) = ρ

(1)
ik (t)ρ

(1)
jl (t), where, in principle, we could further decompose the elements

of the pure-state density matrices according to equation (7.66). The first term of the
integral (7.131) can then be rewritten as

∫ t

0

dsTr
(2)
1 {H

(2)
I (s)ρ

(2)
I (t)H

(2)
I (t)}

=

∫ t

0

ds
1

2

∑

ijkl

ρ
(1)
ik (t)ρ

(1)
jl (t)Tr

(2)
1 {H

(2)
I (s)a†ia

†
jakalH

(2)
I (t)}

=

∫ t

0

ds
1

4

∑

ijklmn

ρ
(1)
ik (t)ρ

(1)
jl (t)Tr(2){a†manH(2)

I (s)a†ia
†
jakalH

(2)
I (t)}a†nam, (7.132)

where in the final step we have used the definition of the second-quantized partial trace
operation (7.54). We reformulate the term containing the two-particle trace, using the
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invariance under cyclic permutations, and equation (7.19),

1

2
Tr(2){a†manH(2)

I (s)a†ia
†
jakalH

(2)
I (t)} =

1

2
Tr(2){akalH(2)

I (t)a†manH
(2)
I (s)a†ia

†
j}

= 〈ϕkϕl|H(2)
I (t)a†manH

(2)
I (s)|ϕiϕj〉. (7.133)

To simplify this expression, we derive an expression for the matrix element of the
two-particle operator 〈ϕiϕj |X(2)a†manY

(2)|ϕkϕl〉 in terms of the matrix elements of X
and Y . Using the two-particle representation of the operators X(2) and Y (2) given in
equation (7.18), we obtain

〈ϕiϕj |X(2)a†manY
(2)|ϕkϕl〉

=
1

2 · 22

∑

p,q,r,s
α,β,γ,δ

X(2)
pq;rsY

(2)
αβ;γδTr(2){aiaja†pa†qarasa†mana†αa†βaγaδa

†
ka
†
l }

=
∑

r,s,α,β

X
(2)
ij;rsY

(2)
αβ;kl〈ϕrϕs|a†man|ϕαϕβ〉, (7.134)

where we have used Lemmata 1, 2 and 7. This can be further simplified to

〈ϕiϕj |X(2)a†manY
(2)|ϕkϕl〉 =

∑

r,s,α,β

X
(2)
ij;rsY

(2)
αβ;kl 〈ϕrϕs|a†man|ϕαϕβ〉︸ ︷︷ ︸

δnαδrs;mβ+δnβδrs;mα

=


∑

β

X
(2)
ij;mβY

(2)
nβ;kl +

∑

α

X
(2)
ij;mαY

(2)
αn;kl




= 2
∑

β

X
(2)
ij;mβY

(2)
nβ;kl. (7.135)

Inserting this into equation (7.132), with X(2) = H
(2)
I (t) and Y (2) = H

(2)
I (s), yields

∫ t

0

dsTr
(2)
1 {H

(2)
I (s)ρ

(2)
I (t)H

(2)
I (t)}

=

∫ t

0

ds
∑

ijklmnp

ρ
(1)
ik (t)ρ

(1)
jl (t)H

(2)
kl;mp(t)H

(2)
pn;ij(s)a

†
nam

=
∑

αβ

A
(1)
αβ(t)ρ

(1)
I (t)B

(1)
βα(t), (7.136)

with single-particle operators A
(1)
αβ(t) and B

(1)
βα(t) whose elements are defined as

(
A

(1)
αβ(s, t)

)
ij

:=
∑

k

H
(2)
iα;jk(s)ρ

(1)
kβ (t) (7.137)

and
(
B

(1)
βα(t)

)
ij

= H
(2)
iβ;jα(t). (7.138)
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The operators B
(1)
αβ exhibit the property

(
B

(1)†
αβ

)
ij

=
(
B

(1)
αβ

)∗
ji

= H
(2)∗
jα;iβ = H

(2)
iβ;jα =

(
B

(1)
βα

)
ij
, (7.139)

and, hence,

B
(1)†
αβ = B

(1)
βα . (7.140)

The above derivation can be performed analogously for the second term of the inte-
gral (7.131), leading to

∫ t

0

dsTr
(2)
1 {H

(2)
I (t)H

(2)
I (s)ρ

(2)
I (t)} =

∫ t

0

ds
∑

αβ

B
(1)
βα(t)A

(1)
αβ(s, t)ρ

(1)
I (t). (7.141)

Inserting (7.136) and (7.141) into equation (7.131) leads to

∂

∂t
ρ

(1)
I (t) =

1

~2

∫ t

0

ds
∑

αβ

(
A

(1)
αβ(s, t)ρ

(1)
I (t)B

(1)
βα(t)−B(1)

βα(t)A
(1)
αβ(s, t)ρ

(1)
I (t)

)
+ H.c.

=
1

~2

∫ t

0

ds
∑

αβijkl

(A
(1)
αβ(s, t))ij(B

(1)
βα(t))kl

×
(
a†iajρ

(1)
I (t)a†kal − a

†
kala

†
iajρ

(1)
I (t)

)
+ H.c.

=
1

~2

∑

ijkl

Γijkl(t)
(
a†iajρ

(1)
I (t)a†kal − a

†
kala

†
iajρ

(1)
I (t)

)
+ H.c., (7.142)

where we have defined

Γijkl(t) =

∫ t

0

ds
∑

αβ

(A
(1)
αβ(s, t))ij(B

(1)
βα(t))kl

=

∫ t

0

ds
∑

αβm

H
(2)
iα;jm(s)ρ

(1)
mβ(t)H

(2)
kβ;lα(t)

=

∫ t

0

ds
∑

αβm

H
(2)
iα;jm(t− s)ρ(1)

mβ(t)H
(2)
kβ;lα(t)

=

∫ t

0

ds
∑

αβm

(B
(1)
ij (t− s))αmρ(1)

mβ(t)(B
(1)
kl (t))βα

=

∫ t

0

dsTr(1){B(1)
ij (t− s)ρ(1)

I (t)B
(1)
kl (t)}. (7.143)

Note that changing the time argument in the third line above is valid since

∫ t

0

dsf(s) = −
∫ 0

t

dsf(t− s) =

∫ t

0

dsf(t− s). (7.144)
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Introducing (Breuer and Petruccione, 2002)

Γijkl(t) =
1

2
γijkl(t) + iSijkl(t) (7.145)

allows us to substitute

γijkl(t) = Γijkl(t) + Γ∗lkji(t), (7.146)

Sijkl(t) =
1

2i

(
Γijkl(t)− Γ∗lkji(t)

)
. (7.147)

We finally obtain the interaction-picture master equation

∂

∂t
ρ

(1)
I (t) =− i

~

[
H

(1)
LS(t), ρ

(1)
I (t)

]

+
1

~2

∑

ijkl

γijkl(t)

(
a†iajρ

(1)
I (t)a†kal −

1

2

{
a†kala

†
iaj , ρ

(1)
I (t)

})
, (7.148)

with the Lamb-Shift Hamiltonian

H
(1)
LS(t) =

1

~
∑

ijkl

Sijkl(t)a
†
kala

†
iaj . (7.149)

This equation has the characteristic Lindblad structure of a time-local master equa-
tion (2.26) and, thus, is able to describe dissipative effects. Our approach was pre-
destined to end up in a Lindblad-type structure, since we started our microscopic
derivation by a second-order expansion of the von Neumann equation, which already
yields a double-commutator structure (7.131). As we have already seen in the case
of coherent mean-field evolutions, the partial trace operation preserves this structure
to the level of the reduced master equation. The γijkl(t) can be interpreted as the
time-dependent decay rates of the different decay channels, which are represented by
the specific form of the contributing operators. These decay channels do not describe
particle loss or gain, since, by construction, we derived an effective description of the
single-particle reduced density matrix, which always accounts for exactly one particle.
Before specifying the Hamiltonian H of the system, and, in particular, the interaction
term H(2), the role and physical interpretation of the decay channels is not determined.
The functions γijkl(t) and Sijkl(t) are single-particle autocorrelation functions, which

in turn depend on the state ρ
(1)
I (t)—the argument of the equation of motion (7.148).

The autocorrelation functions further contain the interaction-picture representation of
the two-particle Hamiltonian H(2), as can be seen from equation (7.143). The role of
these functions is closely related to the bath-autocorrelation functions which appear
in the treatment of standard open systems (Breuer and Petruccione, 2002). In our
present case, we observe a formal correspondence, with the crucial difference that the
state of the ‘bath’ coincides – at all times – with the state of the system. Eventually,
we obtain a nonlinear equation of motion, which is expected, given the mean-field
ansatz that is implicit in the pure product state assumption.
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To establish direct comparison to the previous mean-field equations, we have to
transform (7.148) back into the Schrödinger picture, which here is complicated by
the fact that the argument of the time-correlation functions Γijkl(t), defined in equa-
tion (7.143), is also given in the interaction picture. Thus, the back-transformation
involves more than just adding the commutator term with the single-particle Hamilto-
nian. Note also that a commonly employed expansion in terms of eigen-operators of the
superoperator H(X(1)) = [H(1), X(1)], where H(1) is the single-particle Hamiltonian,
does not yield the straight-forward result of a Fourier transformed time-autocorrelation
function, since the interaction-picture transformation of H(2) involves the transforma-
tion of a two-particle operator, while the back-transformation, which involves B(1),
only affects the single-particle contributions, and therefore does not end up in the
original Schrödinger-picture expression. Further details on the transformation proper-
ties will be discussed in appendix C.

7.5.2 General ansatz: M-particle subdynamics of an N-particle bosonic system

Now we generalize the previous approach to describe the perturbative second-order
evolution of arbitrary M -particle subsystems of an interacting N -particle bosonic sys-
tem. As in the previous section, our initial point is the second-order expansion in the
interaction picture,

∂

∂t
ρ

(M)
I (t) (7.150)

= Tr
(N)
N−M

{
− i
~

[
H

(2)
I (t), ρ

(N)
I (0)

]}

− 1

~2

∫ t

0

dsTr
(N)
N−M [H

(2)
I (t), [H

(2)
I (s), ρ

(N)
I (s)]]

= Tr
(N)
N−M

{
− i
~

[
H

(2)
I (t), ρ

(N)
I (0)

]}

+
1

~2

∫ t

0

ds
(

Tr
(N)
N−M{H

(2)
I (s)ρ

(N)
I (s)H

(2)
I (t)−H(2)

I (t)H
(2)
I (s)ρ

(N)
I (s)}+ H.c.

)
,

which describes a direct generalization of equation (7.131). Before replacing the time

argument of ρ
(N)
I (s) in the integral with t, this is an exact expression. The term con-

taining the initial condition, Tr
(N)
N−M{[H

(2)
I (t), ρ

(N)
I (0)]}, can be evaluated as a function

of the matrix elements using equation (7.108). We further need to determine the two
terms that occur in the double commutator. The symmetrization requirements of
bosonic operators and states render this an elaborate task. We therefore shift the
intermediate steps of the following derivation to the appendix A.

As detailed in the appendix, equation (7.150) is equivalent to the following expan-
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sion:

∂

∂t
ρ(M)(t) = − i

~

[
H

(2)
I (t), ρ

(M)
I (0)

]
− 1

~2

∫ t

0

ds[H
(2)
I (t), [H

(2)
I (s), ρ

(M)
I (s)]]

+ (N −M)D1(t, ρ
(M+1)
I )

+ (N −M)(N −M − 1)D2(t, ρ
(M+2)
I )

+ (N −M)(N −M − 1)(N −M − 2)D3(t, ρ
(M+3)
I ). (7.151)

The coherent part of the evolution reproduces exactly the dynamics of the M -particle
density matrix according to the interaction-picture von Neumann equation (7.85). For
N = M only this term remains, which was expected, since, so far, we have not realized
any approximation, and when no part of the Hilbert space is traced out, the evolution
must be fully coherent, similarly to equation (7.114). The decoherent parts of the
evolution are now encoded in three different dissipator terms, which we express in

terms of their matrix elements. The dissipator D1(t, ρ
(M+1)
I ) involves the state of one

additional particle, and contains the initial term. We have

D1(t, ρ
(M+1)
I )

= − i
~

∫ t

0

ds
∑

n1...nM
m1...mM

∑

i1i2

∑

k1

M
1

M !
a†n1

. . . a†nMam1
. . . amM

×
(
H

(2)
n1k1;i1i2

(t)ρ
(M+1)
i1i2n2...nM ;m1...mMk1

(0)− ρ(M+1)
n1...nMk1;i1i2m2...mM

(0)H
(2)
i1i2;m1k1

(t)
)

(7.152)

+
1

~2

∫ t

0

ds
∑

n1...nM
m1...mM

∑

i1i2
j1j2

∑

k1

M
1

M !
a†n1

. . . a†nMam1 . . . amM (7.153)

×
[

1

2
(M − 1)Mρ

(M+1)
i1i2n2...nM ;j1j2m3...mMk1

(s)H
(2)
n1k1;i1i2

(s)H
(2)
j1j2;m1m2

(t) (7.154)

+
1

2
(M − 1)Mρ

(M+1)
i1i2n3...nMk1;j1j2m2...mM

(s)H
(2)
n1n2;i1i2

(s)H
(2)
j1j2;m1k1

(t) (7.155)

+Mρ
(M+1)
i1i2n2...nM ;j1j2m2...mM

(s)H
(2)
n1k1;i1i2

(s)H
(2)
j1j2;m1k1

(t) (7.156)

− ρ(M+1)
i1i2n2...nM ;m1...mMk1

(s)H
(2)
n1k1;j1j2

(t)H
(2)
j1j2;i1i2

(s) (7.157)

− (M − 1)ρ
(M+1)
i1i2j2n3...nM ;m1...mMk1

(s)H
(2)
n1n2;j1j2

(t)H
(2)
j1k1;i1i2

(s) (7.158)

− 1

2
(M − 1)(M − 2)ρ

(M+1)
i1i2j1j2n4...nM ;m1...mMk1

(s)H
(2)
n1n2;j1j2

(t)H
(2)
n3k1;i1i2

(s)

(7.159)

− 2(M − 1)ρ
(M+1)
i1i2j3n3...nM ;m1...mMk1

(s)H
(2)
n1k1;j1j3

(t)H
(2)
j1n2;i1i2

(s) (7.160)

− 1

2
(M − 1)(M − 2)ρ

(M+1)
i1i2j1j2n4...nM ;m1...mMk1

(s)H
(2)
n1k1;j1j2

(t)H
(2)
n2n3;i1i2

(s)

]
+ H.c.

(7.161)
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The (M + 2)-particle contributions are contained in D2(t, ρ
(M+2)
I ), which reads

D2(t, ρ
(M+2)
I )

=
1

~2

∫ t

0

ds
∑

n1...nM
m1...mM

∑

i1i2
j1j2

∑

k1k2

M
1

M !
a†n1

. . . a†nMam1 . . . amM (7.162)

×
[

1

4
(M − 1)ρ

(M+2)
i1i2n1...nM ;j1j2m3...mMk1k2

(s)H
(2)
k1k2;i1i2

(s)H
(2)
j1j2;m1m2

(t) (7.163)

+Mρ
(M+2)
i1i2n2...nMk2;j1j2m2...mMk1

(s)H
(2)
n1k1;i1i2

(s)H
(2)
j1j2;m1k2

(t) (7.164)

+ ρ
(M+2)
i1i2n1...nM ;j1j2m2...mMk2

(s)H
(2)
k1k2;i1i2

(s)H
(2)
j1j2;m1k1

(t) (7.165)

− 1

4
(M − 1)ρ

(M+2)
i1i2j1j2n3...nM ;m1...mMk1k2

(s)H
(2)
n1n2;j1j2

(t)H
(2)
k1k2;i1i2

(s) (7.166)

− 2ρ
(M+2)
i1i2j2n2...nM ;m1...mMk1k2

(s)H
(2)
n1k1;j1j2

(t)H
(2)
j1k2;i1i2

(s) (7.167)

−(M − 1)ρ
(M+2)
i1i2j1j2n3...nM ;m1...mMk1k2

(s)H
(2)
n1k1;j1j2

(t)H
(2)
n2k2;i1i2

(s)
]

+ H.c.

(7.168)

Finally, there are two terms containing (M + 3)-particle contributions, which are con-
densed in

D3(t, ρ
(M+3)
I )

=
1

~2

∫ t

0

ds
∑

n1...nM
m1...mM

∑

i1i2
j1j2

∑

k1k2k3

M
1

M !
a†n1

. . . a†nMam1 . . . amM (7.169)

× 1

2

[
ρ

(M+3)
i1i2n1...nMk3;j1j2m2...mMk1k2

(s)H
(2)
k1k2;i1i2

(s)H
(2)
j1j2;m1k3

(t) (7.170)

−ρ(M+3)
i1i2j1j2n2...nM ;m1...mMk1k2k3

(s)H
(2)
k1k2;j1j2

(t)H
(2)
n1k3;i1i2

(s)
]

+ H.c. (7.171)

These rather lengthy expressions determine the evolution of the M -particle reduced
density matrix, as a function of terms with higher particle numbers. This is therefore
not yet a closed ‘open-system’ description of the reduced subsystem dynamics. The
reason for that is the lack of assumptions made, in particular about the initial state.

The expression (7.151) is valid for completely general N -particle density matrices,
which may contain strong particle-particle correlations. Without assuming some type
of statistical independence between the observable degrees of freedom and the remain-
ing system, it is generally very hard, if not impossible, to derive a closed-form master
equation. This issue manifests in standard open quantum systems via the necessity to
assume factorizing initial conditions to derive a well-defined master equation (Breuer
and Petruccione, 2002); see also (Gessner, 2011).

For bosonic systems, we have already realized that the only straight-forward way
to achieve an unambiguous representation of the N -particle state in terms of single-
particle states is to perform the pure product state assumption. This comes with the
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significant drawback that pure states cannot directly account for decoherence and dis-
sipation in a master-equation approach, unless when combined with stochastic Monte-
Carlo approaches (Dalibard et al., 1992; Gardiner and Zoller, 2004) which we do not
consider here. Hence, at this point we are forced to resort to the pure product state
assumption to truncate this hierarchy and to derive a closed expression for the subsys-
tem dynamics. At the moment, it remains unclear whether the developed approach is
applicable to mixed states in its present form, or, otherwise, if an appropriate gener-
alization can be achieved.

7.5.3 Operator structures within the pure product state approximation

The dissipator terms in (7.151) depend on reduced distributions of higher particle
numbers and generate a complicated hierarchy. Similarly to the case of coherent mean-
field evolutions, we can easily truncate this hierarchy by making the pure product state
assumption (7.65), since it allows us to rewrite, for instance,

ρ
(M+1)
i1i2n2...nM ;j1j2m2...mM

(s) = ρ
(1)
i1j1

(s)ρ
(M)
i2n2...nM ;j2m2...mM

(s), (7.172)

which we can use to effectively express the dependence on additional particles via
single-particle states. We remark again that, under the pure product state assump-

tion, ρ
(N)
I can be arbitrarily decomposed into individual single-particle pure-state con-

stituents. For now, we retain the density matrix expressions for ease of notation.

We will see in the following sections, that the dissipator terms that appear in the
general expression (7.151) can be expressed in a rather compact form, when imposing
the pure product state assumption.

7.5.3.1. Terms involving M + 1 particles

We first consider the dissipator D1(t, ρ
(M+1)
I ). We expect that, by construction,

double-commutator structures must emerge in the reduced dynamics. This was al-
ready observed explicitly for the special case of N = 2 particles in section 7.5.1. In the

rather complex expressionD1(t, ρ
(M+1)
I ) these structures may be hidden, and especially

hard to identify, since these commutators are expressed in a basis of M -particle states.
The emerging pre-factors that arise [as was derived, for instance, in equation (7.50)]
then depend on the particle number S of the operator that is being represented in a
basis of larger particle number M > S. In appendix B, we explicitly show how the
relevant terms of double-commutators can be identified when represented in a basis of
larger particle numbers.

For instance, expression (B.3), together with equation (B.2) in the special case
S = S′ = 1, is able identify structures of double commutators with single-particle op-

erators. We also recall the single-particle operators A
(1)
αβ(t1, t2) and B

(1)
βα(t) introduced

in equations (7.137) and (7.138). Taken together, and using equation (B.1), we can
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indeed identify the term

− 1

~2

∫ t

0

ds
∑

αβ

[B
(1)
βα(t), [A

(1)
αβ(s, s), ρ

(M)
I (s)]] (7.173)

from (7.156), (7.157), and (7.160), whereas the latter is only accounted for with a
factor 1/2, and we also add the respective Hermitian conjugate parts to these terms.

To identify the next set of terms, we need to consider combinations of one- and two-
particle operators, which are given in equations (B.4) and (B.5). Using these results,
together with the single-particle operators (7.122)

C(1)(t1, t2) =
∑

nm

Tr(1){B(1)
nm(t1)ρ

(1)
I (t2)}a†nam =

∑

ijnm

H
(2)
nj;im(t1)ρ

(1)
ij (t2)a†nam,

(7.174)

we can identify the term

− 1

~2

∫ t

0

ds[H
(2)
I (t), [C(1)(s, s), ρ

(M)
I (s)]] (7.175)

with (7.154), (7.158) and (7.159), and

− 1

~2

∫ t

0

ds[C(1)(t, s), [H
(2)
I (s), ρ

(M)
I (s)]] (7.176)

with (7.155), (7.161), and the remaining half of (7.160); that is, again, multiplied with
a factor 1/2. Note also that

C(1)(t1, t2)† =
∑

ijnm

Tr(1){B(1)
mn(t1)ρ

(1)
I (t2)}∗a†nam

=
∑

ijnm

Tr(1){ρ(1)
I (t2)†B(1)

mn(t1)†}a†nam

=
∑

ijnm

Tr(1){B(1)
nm(t1)ρ

(1)
I (t2)}a†nam

= C(1)(t1, t2), (7.177)

where we used equation (7.139). Based on equation (7.121), the initial condition (7.152)
can be written as

− i
~

[C(1)(t, 0), ρ
(M)
I (0)]. (7.178)

Thus, we have successfully identified all of the terms depending on ρ
(M+1)
I .
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7.5.3.2. Terms involving M + 2 particles

Now, we turn to the discussion of the terms which contribute to D2(t, ρ
(M+2)
I ). Using

equation (B.2) for S = S′ = 1 and (B.3), we can identify the term

− 1

~2

∫ t

0

ds[C(1)(t, s), [C(1)(s, s), ρ
(M)
I (s)]] (7.179)

with (7.164), (7.168) and one half of (7.167). Moreover, using equations (7.105) and
(7.106), we can identify the terms

− 1

~2

∫ t

0

ds

[
1

2
H

(2)
I (t)ρ

(2)
I (s)H

(2)
I (s), ρ

(M)
I (s)

]
+ H.c. (7.180)

with (7.163) and (7.166). Furthermore, introducing

D(1)(t1, t2, t3) =
∑

ij

Tr(1){B(1)
ij (t1)Tr

(2)
1 {H

(2)
I (t2)ρ

(2)
I (t3)}}a†iaj (7.181)

allows us to rewrite (7.165) and the remaining half of (7.167) as

− 1

~2

∫ t

0

ds[D(1)(t, s, s), ρ
(M)
I (s)] + H.c., (7.182)

where we find the following property

D(1)(t1, t2, t3)† =
∑

ij

Tr(1){Tr
(2)
1 {H

(2)
I (t2)ρ

(2)
I (t3)}†B(1)

ji (t1)†}a†iaj

=
∑

ij

Tr(1){B(1)
ij (t1)Tr

(2)
1 {ρ

(2)
I (t3)H

(2)
I (t2)}}a†iaj . (7.183)

This identifies all terms depending on ρ
(M+2)
I .

7.5.3.3. Terms involving M + 3 particles

Finally, the remaining terms in (7.151) are those of D3(t, ρ
(M+3)
I ). The only contribu-

tions, (7.170) and (7.171), contain the term

E(1)(t1, t2, t3) =
1

2

∑

i1i2j1j2
k1k2
nm

H
(2)
nk1;i1i2

(t1)ρ
(3)
i1i2k2;j1j2k1

(t2)H
(2)
j1j2;k2m

(t3)a†nam

=
1

2

∑

i1i2j1j2
k1k2
nm

H
(2)
nk1;i1i2

(t1)ρ
(1)
i1k1

(t2)ρ
(1)
i2j1

(t2)H
(2)
j1j2;k2m

(t3)ρ
(1)
k2j2

(t2)a†nam

=
1

2

∑

i2j1
nm

C
(1)
ni2

(t1, t2)ρ
(1)
i2j1

(t2)C
(1)
j1m

(t3, t2)a†nam

=
1

2
C(1)(t1, t2)ρ

(1)
I (t2)C(1)(t3, t2), (7.184)
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and can be written as

− 1

~2

∫ t

0

ds[E(1)(s, s, t), ρ(M)(s)] + H.c. (7.185)

To simplify these expressions further, note that, for ρ = ρ†,

[L, ρ] + H.c. = Lρ− ρL+ ρL† − L†ρ = [L− L†, ρ]. (7.186)

Furthermore, we find that for H̃ = i(L− L†),

H̃† = [i(L− L†)]† = −i(L† − L) = H̃, (7.187)

which expresses the fact that H̃ represents a Hermitian operator. Let us first simplify
the term (7.182):

− 1

~2

∫ t

0

ds[D(1)(t, s, s), ρ
(M)
I (s)] + H.c.

=− i

~

∫ t

0

ds[− i
~

(D(1)(t, s, s)−D(1)(t, s, s)†), ρ(M)
I (s)]. (7.188)

Using equation (7.183) yields the effective, single-particle shift Hamiltonian

H
(1)
D (t, s, s) = − i

~
(D(1)(t, s, s)−D(1)(t, s, s)†)

=
∑

ij

Tr(1){B(1)
ij (t)Tr

(2)
1

{
− i
~

[H
(2)
I (s), ρ

(2)
I (s)]

}
}a†iaj . (7.189)

We can also identify Hermitian operators in each of the other two commutator terms,
namely (7.180) and (7.185). We start with (7.180):

− 1

~2

∫ t

0

ds[
1

2
H

(2)
I (t)ρ

(2)
I (s)H

(2)
I (s), ρ

(M)
I (s)] + H.c.

= − i

~

∫ t

0

ds[− i
~

1

2

(
H

(2)
I (t)ρ

(2)
I (s)H

(2)
I (s)−H(2)

I (s)ρ
(2)
I (s)H

(2)
I (t)

)
, ρ

(M)
I (s)],

which leads to the two-particle shift Hamiltonian

H
(2)
S (t, s, s) = − i

~
1

2

(
H

(2)
I (t)ρ

(2)
I (s)H

(2)
I (s)−H(2)

I (s)ρ
(2)
I (s)H

(2)
I (t)

)
. (7.190)

Finally, (7.185) leads to

− 1

~2

∫ t

0

ds[E(1)(s, s, t), ρ
(M)
I (s)] + H.c.

=− i

~

∫ t

0

ds[− i
~

(E(1)(s, s, t)− E(1)(s, s, t)†), ρ(M)
I (s)]
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with the effective single-particle shift Hamiltonian, which we express, using equa-
tion (7.184), as

H
(1)
E (s, s, t) = − i

~
(E(1)(s, s, t)− E(1)(s, s, t)†)

= − i
~

1

2

(
C(1)(s, s)ρ

(1)
I (s)C(1)(t, s)− C(1)(t, s)ρ

(1)
I (s)C(1)(s, s)

)
. (7.191)

7.5.4 General bosonic master equation under the pure product state assumption

Substituting these expressions into the total reduced time evolution (7.151) yields,
after collecting all terms, the following equation, which is exact, except for the pure
product state assumption:

∂

∂t
ρ

(M)
I (t)

= − i
~

[
H

(2)
I (t), ρ

(M)
I (0)

]
− 1

~2

∫ t

0

ds
[
H

(2)
I (t),

[
H

(2)
I (s), ρ

(M)
I (s)

]]
(7.192)

− (N −M)
i

~
[C(1)(t, 0), ρ

(M)
I (0)] (7.193)

− (N −M)
1

~2

∫ t

0

ds
∑

αβ

[B
(1)
βα(t), [A

(1)
αβ(s, s), ρ

(M)
I (s)]] (7.194)

− (N −M)
1

~2

∫ t

0

ds[H
(2)
I (t), [C(1)(s, s), ρ

(M)
I (s)]] (7.195)

− (N −M)
1

~2

∫ t

0

ds[C(1)(t, s), [H
(2)
I (s), ρ

(M)
I (s)]] (7.196)

− (N −M)(N −M − 1)
1

~2

∫ t

0

ds[C(1)(t, s), [C(1)(s, s), ρ
(M)
I (s)]] (7.197)

− (N −M)(N −M − 1)
i

~

∫ t

0

ds[H
(1)
D (t, s, s), ρ

(M)
I (s)] (7.198)

− (N −M)(N −M − 1)
i

~

∫ t

0

ds[H
(2)
S (t, s, s), ρ

(M)
I (s)] (7.199)

− (N −M)(N −M − 1)(N −M − 2)
i

~

∫ t

0

ds[H
(1)
E (s, s, t), ρ

(M)
I (s)]. (7.200)

Each of these terms allows for an abstract interpretation of their formal role in the
dynamical equation. As was already discussed, (7.192) contributes the coherent part

to the reduced dynamics, with the unshifted Hamilton operator H
(2)
I . Consequently,

this is the only term which remains when N = M , that is, when nothing is traced out.
The next term (7.193) represents the initial condition.

The following three terms (7.194), (7.195), and (7.196) all contain decoherence op-

erators, where, in total, one single contribution of ρ
(1)
I is contained—recall from their

respective definitions (7.137) and (7.174) that both A
(1)
αβ and C(1) contain one single
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contribution of ρ(1), while, for example Bβα, defined in (7.138), and H
(2)
I do not de-

pend on ρ(1) at all. This implies that there must be at least one additional particle
in the system, which is traced out when considering only the subsystem evolution.
All three terms appear in a double-commutator structure, which can be mapped to a
Lindblad-type form, as we have seen in equation (7.142). In particular (7.194) only

contains single-particle decoherence operators, namely A
(1)
αβ and B

(1)
βα , and therefore

contributes even if M = 1. In contrast, (7.195) and (7.196) each contain a two-particle

decoherence operator, H
(2)
I , and, thus, only appear when M > 1.

The next set of terms (7.197), (7.198), and (7.199) depend on the quantum state

of two additional particles. One contribution of ρ
(1)
I is contained in each of the two

occurrences of C(1), and the effective Hamiltonians H
(1)
D and H

(2)
S , defined in (7.189)

and (7.190), depend on ρ
(2)
I . Therefore these terms can only contribute when one traces

over at least two particles. Consequently, the common prefactor vanishes if N = M+1.
Here, only the first term, (7.197), appears as a double-commutator, while the other two
terms are commutators which lead to environment-induced shifts of the local Hamil-
tonian, similar to the Lamb-shift in a standard system-environment scenario (Breuer
and Petruccione, 2002). This is also the case for the very last term (7.200), which is
the only term containing a three-particle state, as becomes apparent from (7.191), and
therefore vanishes if M ≥ N − 2.

Regrouping terms in the full master equation (7.192)–(7.200) can further simplify
the general expression for the bosonic pure product state time evolution:

∂

∂t
ρ

(M)
I (t)

= − i
~

[
H

(2)
I (t) + (N −M)C(1)(t, 0), ρ

(M)
I (0)

]

− 1

~2

∫ t

0

ds
[
H

(2)
I (t),

[
H

(2)
I (s) + (N −M)C(1)(s, s), ρ

(M)
I (s)

]]

− 1

~2

∫ t

0

ds
[
(N −M)C(1)(t, s),

[
H

(2)
I (s) + (N −M − 1)C(1)(s, s), ρ

(M)
I (s)

]]

− (N −M)
1

~2

∫ t

0

ds
∑

αβ

[B
(1)
βα(t), [A

(1)
αβ(s, s), ρ

(M)
I (s)]]

− (N −M)(N −M − 1)
i

~

∫ t

0

ds[H
(1)
D (t, s, s), ρ

(M)
I (s)]

− (N −M)(N −M − 1)
i

~

∫ t

0

ds[H
(2)
S (t, s, s), ρ

(M)
I (s)]

− (N −M)(N −M − 1)(N −M − 2)
i

~

∫ t

0

ds[H
(1)
E (s, s, t), ρ

(M)
I (s)]. (7.201)
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7.5.5 Single-particle dynamics

The general expression (7.192)–(7.200) simplifies significantly when we consider special
choices of N and M . Let us first consider the general single-particle dynamics, M = 1.
In this case, there can be no two-particle operators on the right-hand side of the
dynamical equation, since, as we already discussed, the equality signs are valid only
after projection onto the respective subspace of fixed particle number. We obtain

∂

∂t
ρ

(1)
I (t) = − (N − 1)

i

~
[C(1)(t, 0), ρ

(1)
I (0)]

− (N − 1)
1

~2

∫ t

0

ds
∑

αβ

[B
(1)
βα(t), [A

(1)
αβ(s, s), ρ

(1)
I (s)]]

− (N − 1)(N − 2)
1

~2

∫ t

0

ds[C(1)(t, s), [C(1)(s, s), ρ
(1)
I (s)]]

− (N − 1)(N − 2)
i

~

∫ t

0

ds[H
(1)
D (t, s, s), ρ

(1)
I (s)]

− (N − 1)(N − 2)(N − 3)
i

~

∫ t

0

ds[H
(1)
E (s, s, t), ρ

(1)
I (s)]. (7.202)

If, in addition, we have only two particles in the total system, that is N = 2, we recover
the result derived in equation (7.142),

∂

∂t
ρ

(1)
I (t) = − i

~
[C(1)(t, 0), ρ

(1)
I (0)]− 1

~2

∫ t

0

ds
∑

αβ

[B
(1)
βα(t), [A

(1)
αβ(s, s), ρ

(1)
I (s)]].

(7.203)

Here, however, we retain the term depending on the initial condition, which in sec-
tion 7.5.1 was assumed to be zero.

7.5.6 Nonlinear Redfield-type equation

Replacing ρ
(M)
I (s) with ρ

(M)
I (t) in the integrands on the right-hand side of ∂tρ

(M)
I (t), as

given in equation (7.201), yields a second-order local-in-time master equation, similarly
to the Redfield equation. However, here we deal with a nonlinear master equation,
since some of the operators depend on the state at time t as well. Hence, those time
arguments of the operators A(1), C(1), E(1), D(1) that are implicitly time arguments of
ρI , must also be adjusted from s to t. Consider the example of C(1)(t1, t2): Recalling
its definition (7.174), we realize that t1 describes the time argument of the interaction-
picture Hamiltonian H(2)(t1) while t2 determines the evolution of the density matrix
ρ(1)(t2). In the third line of equation (7.202), we thus truncate the expansion via the
replacement C(1)(s, s) → C(1)(s, t). The same rule applies for the shift Hamiltonians
that are constructed as functions of these operators. Additionally, we may substitute
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the integrand s by t− s, as in section 7.5.1. This yields

∂

∂t
ρ

(M)
I (t)

= − i
~

[
H(2)(t) + (N −M)C(1)(t, 0), ρ

(M)
I (0)

]

− 1

~2

∫ t

0

ds[H
(2)
I (t), [H

(2)
I (t− s) + (N −M)C(1)(t− s, t), ρ(M)

I (t)]]

− 1

~2

∫ t

0

ds[(N −M)C(1)(t, t), [H
(2)
I (t− s) + (N −M − 1)C(1)(t− s, t), ρ(M)

I (t)]]

− (N −M)
1

~2

∫ t

0

ds
∑

αβ

[B
(1)
βα(t), [A

(1)
αβ(t− s, t), ρ(M)

I (t)]]

− (N −M)(N −M − 1)
i

~

∫ t

0

ds[H
(1)
D (t, t− s, t), ρ(M)

I (t)]

− (N −M)(N −M − 1)
i

~

∫ t

0

ds[H
(2)
S (t, t, t− s), ρ(M)

I (t)]

− (N −M)(N −M − 1)(N −M − 2)
i

~

∫ t

0

ds[H
(1)
E (t− s, t, t), ρ(M)

I (t)]. (7.204)

Another approximate step towards a tractable master equation would be shifting the
integration limit to∞. It is, however, questionable how such an approximation can be
justified in a system of identical particles, where the timescales of ‘system’ and ‘envi-
ronment’ are not intrinsically separated. Moreover, we find that, for arbitrarily large
systems, the system size only affects the couplings and not the time-autocorrelation
functions itself. These are still determined on the basis of the quantum state of few ad-
ditional particles, with numbers ranging between one and three. Due to the mean-field
ansatz, these particles’ state is at the same time also the argument of the nonlinear
kinetic equation.

7.5.7 Mean-field approximation

Instead of employing the above approximations, we recall equation (7.201), which so
far only contained the product state assumption. Before truncating the second-order
expansion, we focus on the first set of terms: the double commutators in the first
three lines. We can find a striking structure, resembling a second-order expansion of
a fully coherent evolution, which allows us to identify a well-known mean-field term.
To formally establish this, on top of the pure product state assumption, we need to
establish one more mean-field approximation, which consists in

• N −M � 1, that is we assume the total sample to be large compared to the
observable subspace, which allows us to replace N −M − 1 ≈ N −M , and

• C(1)(t, s) → C(1)(t, t), and C(1)(t, 0) → C(1)(t, t), where the term C(1) is de-
fined in the interaction picture in equation (7.174). We thus assume that the
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time dependence of the single-particle state which occurs in the terms C(1),
equation (7.174), is synchronized with the Hamiltonian part, which effectively
assumes that it becomes part of a time-dependent effective mean-field potential.

To see this, we employ these approximations to rewrite the first terms as follows,

− i

~

[
H

(2)
I (t) + (N −M)C(1)(t, t), ρ

(M)
I (0)

]
(7.205)

− 1

~2

∫ t

0

ds
[
H

(2)
I (t),

[
H

(2)
I (s) + (N −M)C(1)(s, s), ρ

(M)
I (s)

]]

− 1

~2

∫ t

0

ds
[
(N −M)C(1)(t, t),

[
H

(2)
I (s) + (N −M)C(1)(s, s), ρ

(M)
I (s)

]]

= − i

~

[
H

(2)
I (t) + (N −M)C(1)(t, t),

ρ
(M)
I (0)− i

~

∫ t

0

ds
[
H

(2)
I (s) + (N −M)C(1)(s, s), ρ

(M)
I (s)

]]

≈ − i

~

[
H

(2)
I (t) + (N −M)C(1)(t, t), ρ

(M)
I (t)

]
.

In the last step, we have neglected contributions of the other elements of the complete
master equation to carry out the integration explicitly.

7.5.7.1. Dissipative mean-field master equation for dilute gases

Let us finally, after implementing the above mean-field approximation, carry out one
more approximation, by assuming that the particle density % = N/V , where V denotes
the volume to which the particles are confined,5 is sufficiently low, such that we can
neglect terms of the order of %2.

Assuming N �M , the resulting factors ∝ NS preceding the commutator terms al-
ways occur in combination with ρ(S); recall, for instance the discussion in section 7.5.4.
The S-particle density matrix ρ(S), in turn, can be considered a quantity of the order
of 1/V S (Bogoliubov, 1967a). Hence, these factors will turn into powers of the parti-
cle density %, and for dilute gases, their contribution can be considered as small when
S > 1. This allows us to ignore those contributions that involve the effective potential
of two or more additional particles, as represented by the effective Hamiltonians in
last three lines of equation (7.201). After using (7.205) in equation (7.201), followed
by a truncation of the expansion as in section 7.5.6 by appropriate substitution of the
time arguments, we finally obtain the dissipative mean-field master-equation for dilute
gases

∂

∂t
ρ

(M)
I (t) = − i

~

[
H

(2)
I (t) + (N −M)C(1)(t, t), ρ

(M)
I (t)

]
(7.206)

− (N −M)
1

~2

∫ t

0

ds
∑

αβ

[B
(1)
βα(t), [A

(1)
αβ(t− s, t), ρ(M)

I (t)]].

5Not to be confused with the interaction potential V (x1,x2), which always carries the particles’
coordinates as argument.
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In this form, the first line is given by a commutator term containing the nonlinear,
effective mean-field potential, which we already encountered when deriving the hierar-
chical commutator expansion for ρ(M). In fact, this commutator term exactly coincides
with the mean-field truncated hierarchy expression (7.121) in the interaction picture.
As was shown in section 7.4.4, in the case of a weakly interacting Bose-Einstein con-
densate, this mean-field term is responsible for the characteristic nonlinear term in
the effective single-particle potential. The incoherent correction, the second line, is
given by the term which was previously studied in the two-particle case; see equa-
tion (7.142). We already encountered this contribution in the special case studied in
section 7.5.1, since it describes the time-autocorrelation functions of only one addi-
tional particle. The second term in equation (7.206), thus, contains the dissipative,
second-order correction to the first-order mean-field evolution, which was shown to
reproduce the Gross-Pitaevskii equation (7.127) in the special case of a contact inter-
action potential in section 7.4.4.

We, however, need to stress that the approximations employed in this last section
are rather hand-wavy than mathematically rigorous. In fact, the three approxima-
tions (mean-field, low-density, and truncation by replacement of time arguments) do
not commute with each other. Moreover, since the pure product state assumption
essentially decomposes the M -particle state into single-particle states, it is unclear,
whether the above expression, in its present form, can lead to physical insight into
the M -particle dynamics (M > 1) beyond what is already contained in the single-
particle dynamics. One may further be interested to transform the equation back into
the Schrödinger picture, for example, to facilitate direct comparison with the trun-
cated mean-field hierarchy equation (7.116). The necessary transformation rules are
summarized in appendix C.

7.6 Discussion

In this chapter, we have developed a general formalism to deal with quantum many-
particle systems, by employing a basis of symmetrized states to account for the parti-
cles’ quantum statistics. This was applied to establish analogs of the reduced density
matrix and of the partial trace operation for systems of identical bosonic particles,
where the reduced observables of an N -particle system are operators which depend on
a smaller number of M particles. Next, we carried out the partial trace over the von
Neumann equation to determine the time evolution of the reduced M -particle density
operator in the presence of particle-particle interactions. This led to a hierarchical
expansion, in terms of the dynamics of the (M + 1)-particle density matrix. This
hierarchy can be truncated by the pure product state assumption, which implies that
all N particles are characterized – at all times – by the same pure single-particle state.
Then, the resulting coherent mean-field evolution is described by a nonlinear effective
potential, and application to the case of a weakly interacting Bose-Einstein condensate
reproduces the Gross-Pitaevskii equation.

The coherent mean-field evolution has the drawback that it is incapable of describing
incoherent, dissipative effects, which manifest on the level of observables on a subset of
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particles, in the presence of particle-particle interactions. To overcome this limitation,
we expanded the von Neumann equation to second order in the interaction term before
performing the partial trace operation, analogous to the microscopic treatment of
standard open systems which couple to an environment. Yet, the indistinguishability
of bosons complicates the description of the entire many-particle system on the basis of
the reduced state of one or few particles. This forces us to treat the incoherent master
equation within a pure-state mean-field approach to obtain a closed description of the
time evolution. We obtain an incoherent mean-field master equation, which contains
dissipation operators in the general Lindblad shape of a time-local master equation,
on top of a coherent part which is familiar from the previous (first-order) ansatz,
and amended by further shift Hamiltonians, which, in turn, involve more than one
additional particle in the environment.

While the first-order results which generate the hierarchical expansion have a rather
clear physical interpretation, and reduce to well-known results in certain special cases,
the second-order expansion, outlined in section 7.5, must be considered as work in
progress. At the present stage of this work, the exact interpretation of the decay terms,
besides the intuition given by their Lindblad structure, and of the effective nonlinear
Hamiltonians, remains unclear. Being forced to employ the pure product state as-
sumption also limits the applicability of the result to the description of decoherence:
Despite achieving an effective description in from of a Lindblad-type master equation,
we are formally limited to the application to pure states, and, at this point, it remains
unclear how a generalization to mixed states may be achieved or motivated. Possible
solutions could be stochastic Monte-Carlo methods, which are able to describe deco-
herence using pure states. Another more sophisticated approach to the microscopic
derivation of a master equation could be the adaption of projection-operator tech-
niques to the identical-particle scenario (Breuer and Petruccione, 2002). Further work
is also required for the development of reasonable, well-controlled approximations, as
well as for numerical studies of example systems. The application to Bloch-oscillations
in a tilted Bose-Hubbard model, with an interaction-induced, incoherent decay, would
represent a key example for which the present formalism could be beneficial. Studies
of a wide range of examples are expected to be possible since the results of the present
section were derived for the most general many-body Hamiltonian of a single bosonic
species with pairwise interactions.

We expect that a significant generalization of the present ansatz can be achieved
by abandoning the restriction to any M -particle subspace, and, instead, allow for
contributions of reduced density matrices of different particle numbers. This could be
achieved via an ansatz of the form ρ =

∑N
i=1 ρ

(i). Such a generalized description is not
only formally more appealing, it is also expected to better exploit the full potential
of the formalism of second quantization, by including processes that map between
subspaces of different particle numbers. This would further allow for the microscopic
description of incoherent particle loss or gain (Hunn et al., 2013), as generated, for
example, by tunneling processes. Alternatively, by working directly in the Heisenberg
picture, it may be possible to describe the evolution of an M -particle observable,
without necessarily distinguishing between different N -particle density matrices.





8 Summary and conclusions

In this dissertation we developed theoretical methods for probing composite quantum
systems with feasible experimental overheads. In some cases, these were complemented
by experimental realizations. Moreover, we have derived descriptions of the dynamics
and spectral features of many-particle open quantum systems, with applications rang-
ing from trapped-ion quantum registers to many-body systems of interacting identical
quantum particles.

In the first part of this dissertation, we developed a method which allows to detect
and to quantify bipartite discord-type correlations with local operations on a single
subsystem, as well as demonstrated experimental realizations thereof with ions and
single photons. Our strategy consisted in restricting to the control of a smaller, low-
dimensional subsystem, which is experimentally feasible, and promises to represent a
scalable approach to the characterization of correlations in the light of the exponential
increase of the Hilbert space dimension with the number of interacting particles. These
correlations are relevant in certain quantum information protocols. To detect them
we make use of the fact that they also significantly influence the local dynamics of the
accessible subsystem. This allows us, for example, to observe the single-spin signatures
of the ground-state quantum correlations in one-dimensional spin-chain models with
a transverse field.

To fully understand the local dynamics, it is often necessary to consider the entire
excitation spectrum of the total system, which for large, complex systems may be hard
to handle theoretically. In the case of the family of spin-chain models, we developed
a semiclassical, multi-configurational mean-field approach to approximate the quan-
tum spectrum, which in certain limiting cases provided exact results. The resulting
semiclassical energy landscapes further provided an intuitive picture about the nature
of the quantum phase transition between different magnetic phases, which applied to
the entire excitation spectrum, instead of only the ground state. An interesting open
question in this context is to which extent similar descriptions apply to other quantum
phase transitions, and whether this observation, which was made for a large class of
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spin-chain models, represents a universal feature. We suspect that in general, quantum
phase transitions do not only represent dramatic changes of the ground-state proper-
ties, but are also generically accompanied by changes of the statistical properties of
the entire excitation spectrum.

To probe spectral and dynamical features of quantum optical systems, we consid-
ered sequences of phase coherent pulses to realize nonlinear spectroscopic measurement
schemes. Single-site addressability provides a unique feature of artificial quantum sys-
tems, which can extend the possibilities of conventional optical nonlinear spectroscopy.
This feature is, however, not a necessary prerequisite to benefit from multidimensional
spectroscopy in a quantum optical scenario. In this dissertation, we have established
a framework which allows to design nonlinear measurement protocols of controllable
quantum systems, and we have discussed elementary steps for an experimental real-
ization with systems of trapped ions. Theoretical studies of examples involving both
the electronic and motional degree of freedom of a chain of ions demonstrated that
energy levels, internal couplings and environmental processes can be identified and
distinguished efficiently with these methods. In the future, the developed set of tools
may be harnessed for the clever design of novel probing methods of controllable quan-
tum systems beyond the possibilities of today’s standard tools, which are mostly based
on two-pulse Ramsey sequences. This is important for the scalable and reliable ex-
perimental characterization of quantum simulators which have escaped the realm of
numerical simulations on classical computers.

An understanding of decoherence processes and environmental influences on the
controllable quantum system is particularly important to ensure coherent quantum
evolutions by avoiding or correcting the errors induced by detrimental noise sources.
For ion-trap quantum computations, fluctuating, spatially homogeneous control fields
produce one of the dominant error sources. We provided an analytical description of
the resulting dynamics on a multipartite system for arbitrary frequency distributions,
and used this to study the impact of the noise on the atomic correlations. This process
was shown to be able to generate strongly correlated quantum states of nonzero discord.
These are beyond the reach of local operations, which was specified by introducing the
correlation rank as a complementary measure of total correlations. Moreover, we
were able to identify sets of states with robust, and even time-invariant entanglement
properties, which, in the multipartite case, so far, are not fully characterized and
understood.

In the case of identical quantum particles, one can no longer put a label on the con-
stituents and perform experiments on only a specific subset of them. Instead, many
experiments effectively measure single-particle observables, reflecting the average of all
the indistinguishable particles in an ensemble. Such observables are fully determined
by suitably defined reduced quantum states. We have also discussed the time evolu-
tion of these few-particle distributions in the presence of interactions. The dynamics
is governed by a hierarchical expansion which can be truncated employing a mean-
field ansatz. In this case, this leads to a nonlinear coherent evolution in an effective
potential, such as the Gross-Pitaevskii equation in the case of a weakly-interacting
Bose-Einstein condensate. We further discussed how the provided ansatz may be able
to describe incoherent effects by means of an evolution which displays the charac-
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teristic Lindblad structure of time-local master equations, which was microscopically
derived. Appropriate extensions thereof may be able to provide an intuitive effective
description of interaction-induced decoherence phenomena, which were observed, for
example, in experiments with cold atoms in tilted optical lattices.

In conclusion, the characterization of increasingly complex quantum optical systems
constitutes an important challenge for both theory and experiment. Based on the re-
sults of chapter 3, the bipartite correlation properties of the underlying quantum states
are, under rather general circumstances, accessible, if only one of two parties can be
measured, which allows to reduce the size of the controllable subsystem to a manage-
able level. There remain few intriguing, unexplained effects, regarding the correlation
properties of quantum states, such as time-invariant multipartite entanglement under
collective dephasing—described in chapter 4. Otherwise, the correlations of quantum
states have been studied extensively for quantum information purposes, and, at least
on a fundamental level, they are rather well understood, despite the lack of analytic
expressions for correlation quantifiers.

To study and characterize complex dynamics, higher-order time- or frequency auto-
correlation functions usually define appropriate observables. These can be measured
by phase-coherent multi-pulse sequences, as detailed in chapter 6. Such pulse schemes
are experimentally within reach for state-of-the-art quantum optical systems, and ef-
ficiently tailored, appropriate measurement protocols are expected to hold great po-
tential for future applications to study more and more complex quantum systems of
trapped ions or cold neutral atoms. Multidimensional spectra are particularly sensitive
to transport properties and particle interactions, and they often carry a clear signa-
ture of the system’s microscopic order (Schlawin et al., 2014; Gessner et al., 2015).
Nonlinear spectroscopy may therefore be useful for the characterization of hitherto
elusive quantum phases which are characterized by the interplay of interactions and
the absence of transport due to disordered potentials (Basko et al., 2006).

These experimentally motivated, dynamical approaches to quantum systems need
to be complemented by progress on the theoretical understanding of interacting quan-
tum many-body systems. The multi-configurational mean-field approach, introduced
in chapter 5, leads to good agreement with the exact quantum spectrum of quan-
tum spin chains, especially in the regime of long-range interactions, and far away
from the critical point (where it becomes exact). In the short-range limit, however,
its applicability is limited. Spin models with short-range interactions, on the other
hand, often allow for exact analytical, or efficient numerical treatments, and thus are
usually already rather well understood. It is presently unclear, whether this ansatz
can be modified to deliver reliable predictions for the quantum phase transition in
the notoriously complicated regime of intermediate-range interactions. The applica-
tion to higher-dimensional lattice geometries is expected to deliver interesting results,
since the number of neighbors is increased, which generally improves the performance
of mean-field approaches, while these models often defy efficient numerical and an-
alytical descriptions. The semiclassical picture implicit to the presented mean-field
ansatz is reminiscent of commonly employed analogies between phase transitions and
double-well potentials—except, here, it involves the entire excitation spectrum. The
connection to level clusterings within the excited states (excited-state quantum phase
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transitions) seems apparent, but also requires further analysis, especially in the limit
of large particle numbers.

While the above-mentioned, static mean-field ansatz can, for certain parameter
ranges, make analytical predictions about the system’s spectral features, its capa-
bilities to predict the dynamics are yet to be explored. Describing dynamical many-
body systems becomes even harder, when we explicitly include the particles’ quantum
statistics. The dynamical mean-field approach, pursued for the dynamics of interacting
bosons in chapter 7 opens up a promising route towards the derivation of the effective
description of the quantum dynamics of interacting many-body systems, which has
been and remains a long-standing challenge of the fields of quantum optics and solid
state physics.



A Derivation of the bosonic
master equation (7.151)

In the following we present the derivation of the second-order expression (7.151), where
we also elucidate the technical details of the relevant intermediate steps. The starting
point of this derivation is the expansion (7.150).

A.1 First term

To simplify the first term under the integral in equation (7.150), we first use equa-
tion (7.51) and then equation (7.50):
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=
1

M !

∑

n1...nN
m1...mN

∑

i1i2j1j2

∑

1≤α1<α2≤N
1≤β1<β2≤N

ρ
(N)
i1i2{n1...nN}\{nα1

,nα2
};j1j2{m1...mN}\{mβ1 ,mβ2}

(s)

×H(2)
nα1

nα2
;i1i2

(s)H
(2)
j1j2;mβ1mβ2

(t)δmM+1...mN ;nM+1...nNa
†
n1
. . . a†nMam1

. . . amM

If we pay close attention to the set {α1, α2}, we realize that there are only three classes
of pairs with different results. These depend on whether α1, α2 are picked from the set
1, . . . ,M or from M +1, . . . , N . The same holds for the set {β1, β2}. We use Lemma 9
to write out all terms, grouping the three contributions generated by the sums over
α1 and α2, according to the respective values of β1 and β2:
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• Terms with β1 ≤M , β2 > M :
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• Terms with β1, β2 > M :
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where we have used equation (7.53) to introduce the elements of the reduced density
matrices whenever it was immediately possible. There remain four terms which cannot
be identified before decomposing the symmetric δ-functions into groups of permuta-
tions. In order to sort out the different permutations we need the following

Lemma 10. The following statements hold for permutations of (1, . . . , r)

a) There are s(r − 1)! permutations of (1, . . . , r) which map the first element onto
one of the first s spots and (r − s)(r − 1)! which do not.

b) There are s(s − 1)(r − 2)! permutations of (1, . . . , r) which map the first two
elements onto the first s spots.

c) There are 2s(r − s)(r − 2)! permutations of (1, . . . , r) which map either the first
or the second element onto one of the first s spots.

d) There are (r− s)(r− s− 1)(r− 2)! permutations of (1, . . . , r) which map neither
one of the first two elements onto the first s spots.

First, we consider the second term in equation (A.4). The expression is invariant
under permutation of the subsets nM+2 . . . nN and mM+2 . . .mN . We have to treat
the permutations within the δ-function which map nM+1 onto mM+1 separately, since,
in this case, the two Hamiltonians are contracted with each other, while in all other
cases, they contract with ρ(N). According to Lemma 10 a) with r = N−M and s = 1,
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we obtain
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Next we deal with the third term in (A.4). Here, we differentiate between the cases
where mM+1 is mapped onto one of the states nM+1, nM+2 or not. We use Lemma 10
a) with r = N −M and s = 2 to obtain
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Now we simplify the second term in (A.5). We have to distinguish the same possibilities
as for the previous term. We obtain
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Finally, for the last term of (A.5), the three classes of permutations which lead to
different results depend on the number of elements out of nM+1 and nM+2 that are
mapped onto mM+1 and mM+2. This can be any number between zero and two. Using
Lemma 10 b), c) and d), with r = N −M and s = 2, we get:
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A.2 Second term

For the second term under the integral in equation (7.150) we obtain, employing the
same techniques as before,
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We again write out all contributing terms according to different classes of permutations
depending on where α1, α2 and β1, β2 are mapped to. As before, the different classes
are characterized by whether α1 and α2 are picked from within 1, . . . ,M or from
M+1, . . . , N . For β1 and β2 we need to distinguish between the sets 1, 2 and 3, . . . , N .
We use Lemma 9 in its general form for the cases of {α1, α2} while for {β1, β2} we
employ the special case of s = 2.
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We obtain
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+
∑

nM+1...nN
j1...jN

(
M

2

)(
N − 2

2

)
ρ

(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)

×H(2)
n1n2;j3j4

(t)H
(2)
j1j2;i1i2

(s)δn3...nN ;j1j2j5...jN (A.12)

• Terms with α1 ≤M , α2 > M :

+
∑

nM+1

j1j2

M(N −M)ρ
(M+1)
i1i2n2...nM ;m1...mMnM+1

(s)H
(2)
n1nM+1;j1j2

(t)H
(2)
j1j2;i1i2

(s)

+
∑

nM+1...nN
j1...jN

2(N − 2)M(N −M)ρ
(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)H
(2)
n1nM+1;j1j3

(t)

×H(2)
j1j2;i1i2

(s)δn2...nMnM+2...nN ;j2j4...jN

+
∑

nM+1...nN
j1...jN

(
N − 2

2

)
M(N −M)ρ

(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)H
(2)
n1nM+1;j3j4

(t)

×H(2)
j1j2;i1i2

(s)δn2...nMnM+2...nN ;j1j2j5...jN (A.13)
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• Terms with α1, α2 > M :

+
∑

nM+1nM+2

j1j2

(
N −M

2

)
ρ

(M+2)
i1i2n1...nM ;m1...mMnM+1nM+2

(s)

×H(2)
nM+1nM+2;j1j2

(t)H
(2)
j1j2;i1i2

(s)

+
∑

nM+1...nN
j1...jN

(
N −M

2

)
2(N − 2)ρ

(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)H
(2)
nM+1nM+2;j1j3

(t)

×H(2)
j1j2;i1i2

(s)δn1...nMnM+3...nN ;j2j4...jN

+
∑

nM+1...nN
j1...jN

(
N −M

2

)(
N − 2

2

)
ρ

(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)

× H
(2)
nM+1nM+2;j3j4

(t)H
(2)
j1j2;i1i2

(s)δn1...nMnM+3...nN ;j1j2j5...jN

]

× a†n1
. . . a†nMam1

. . . amM (A.14)

Now, there are six terms which still have to be decomposed into different permutations
of the symmetric δ-functions. We start with the second term of (A.12). Here the two
different possibilities are given by whether j2 is mapped to an element of n3, . . . , nM
or of nM+1, . . . , nN . The total number of permutations is (N − 2)!, and according to
Lemma 10 a), with r = N −2 and s = M −2, there are (M −2)(N −3)! permutations
which map j2 within n3, . . . , nM and (N −M)(N − 3)! permutations which do not:

∑

nM+1...nN
j1...jN

(
M

2

)
2(N − 2)ρ

(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)

×H(2)
n1n2;j1j3

(t)H
(2)
j1j2;i1i2

(s)δn3...nN ;j2j4...jN

=
∑

j1j3

(
M

2

)
2(N − 2)

(M − 2)(N − 3)!

(N − 2)!︸ ︷︷ ︸
M(M−1)(M−2)

ρ
(M)
i1i2j3n4...nM ;m1...mM

(s)

×H(2)
n1n2;j1j3

(t)H
(2)
j1n3;i1i2

(s)

+
∑

nM+1

j1j3

(
M

2

)
2(N − 2)

(N −M)(N − 3)!

(N − 2)!︸ ︷︷ ︸
M(N−M)(M−1)

ρ
(M+1)
i1i2j3n3...nM ;m1...mMnM+1

(s)

×H(2)
n1n2;j1j3

(t)H
(2)
j1nM+1;i1i2

(s). (A.15)

For the third term of (A.12), using Lemma 10 b) with r = N−2 and s = M−2 we find
that there are (M −2)(M −3)(N −4)! permutations which map both j1 and j2 within
n3, . . . , nM . From Lemma 10 c) we find that 2(M − 2)(N −M)(N − 4)! permutations
map one of the two indices j1 and j2 within n3, . . . , nM , and, finally, from Lemma 10
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d) we obtain (N −M)(N −M − 1)(N − 4)! permutations where neither j1 nor j2 are
mapped onto n3, . . . , nM . We obtain

∑

nM+1...nN
j1...jN

(
M

2

)(
N − 2

2

)
ρ

(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)

×H(2)
n1n2;j3j4

(t)H
(2)
j1j2;i1i2

(s)δn3...nN ;j1j2j5...jN

=
∑

j3j4

(
M

2

)(
N − 2

2

)
(M − 2)(M − 3)(N − 4)!

(N − 2)!︸ ︷︷ ︸
1
4M(M−1)(M−2)(M−3)

ρ
(M)
i1i2j3j4n5...nM ;m1...mM

(s)

×H(2)
n1n2;j3j4

(t)H
(2)
n3n4;i1i2

(s)

+
∑

nM+1

j3j4

(
M

2

)(
N − 2

2

)
2(M − 2)(N −M)(N − 4)!

(N − 2)!︸ ︷︷ ︸
1
2M(M−1)(M−2)(N−M)

ρ
(M+1)
i1i2j3j4n4...nM ;m1...mMnM+1

(s)

×H(2)
n1n2;j3j4

(t)H
(2)
n3nM+1;i1i2

(s)

+
∑

nM+1nM+2

j3j4

(
M

2

)(
N − 2

2

)
(N −M)(N −M − 1)(N − 4)!

(N − 2)!︸ ︷︷ ︸
1
4M(M−1)(N−M)(N−M−1)

× ρ(M+2)
i1i2j3j4n3...nM ;m1...mMnM+1nM+2

(s)H
(2)
n1n2;j3j4

(t)H
(2)
nM+1nM+2;i1i2

(s). (A.16)

For the second term of (A.13) we have j2 either within n2, . . . , nM or nM+2, . . . , nN .
This leads to a total of (N − 2)! permutations and, according to Lemma 10 a), with
r = N − 2 and s = M − 1, there are (M − 1)(N − 3)! cases which correspond to the
first situation, and (N −M − 1)(N − 3)! cases for the second. This yields

∑

nM+1...nN
j1...jN

2(N − 2)M(N −M)ρ
(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)H
(2)
n1nM+1;j1j3

(t)

×H(2)
j1j2;i1i2

(s)δn2...nMnM+2...nN ;j2j4...jN

=
∑

nM+1

j1j3

2(N − 2)M(N −M)
(M − 1)(N − 3)!

(N − 2)!︸ ︷︷ ︸
2M(M−1)(N−M)

ρ
(M+1)
i1i2j3n3...nM ;m1...mMnM+1

(s)

×H(2)
n1nM+1;j1j3

(t)H
(2)
j1n2;i1i2

(s)

+
∑

nM+1
nM+2

j1j3

2(N − 2)M(N −M)
(N −M − 1)(N − 3)!

(N − 2)!︸ ︷︷ ︸
2M(N−M)(N−M−1)

ρ
(M+2)
i1i2j3n2...nM ;m1...mMnM+1nM+2

(s)

×H(2)
n1nM+1;j1j3

(t)H
(2)
j1nM+2;i1i2

(s). (A.17)

The third term of (A.13) has either none, one, or both of the indices j1 and j2 mapped
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onto elements of n2, . . . , nM or of nM+2, . . . , nN . Again we use Lemma 10 with r =
N − 2 and s = M − 1. According to b), c) and d), there are (M − 1)(M − 2)(N − 4)!
possibilities for “both”, 2(M − 1)(N −M − 1)(N − 4)! for “exactly one” and (N −
M − 1)(N −M − 2)(N − 4)! for “none”. We get

∑

nM+1...nN
j1...jN

(
N − 2

2

)
M(N −M)ρ

(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)

×H(2)
n1nM+1;j3j4

(t)H
(2)
j1j2;i1i2

(s)δn2...nMnM+2...nN ;j1j2j5...jN

=
∑

nM+1

j3j4

(
N − 2

2

)
M(N −M)

(M − 1)(M − 2)(N − 4)!

(N − 2)!︸ ︷︷ ︸
1
2M(M−1)(M−2)(N−M)

× ρ(M+1)
i1i2j3j4n4...nM ;m1...mMnM+1

(s)H
(2)
n1nM+1;j3j4

(t)H
(2)
n2n3;i1i2

(s)

+
∑

nM+1
nM+2

j3j4

(
N − 2

2

)
M(N −M)

2(M − 1)(N −M − 1)(N − 4)!

(N − 2)!︸ ︷︷ ︸
M(M−1)(N−M)(N−M−1)

× ρ(M+2)
i1i2j3j4n3...nM ;m1...mMnM+1nM+2

(s)H
(2)
n1nM+1;j3j4

(t)H
(2)
n2nM+2;i1i2

(s)

+
∑

nM+1
nM+2
nM+3

j3j4

(
N − 2

2

)
M(N −M)

(N −M − 1)(N −M − 2)(N − 4)!

(N − 2)!︸ ︷︷ ︸
1
2M(N−M)(N−M−1)(N−M−2)

× ρ(M+3)
i1i2j3j4n2...nM ;m1...mMnM+1nM+2nM+3

(s)

×H(2)
n1nM+1;j3j4

(t)H
(2)
nM+2nM+3;i1i2

(s). (A.18)

In the second term of (A.14), j2 can be picked either from the set n1, . . . , nM or from
nM+3, . . . , nN . According to Lemma 10 a) with r = N − 2, there are M(N − 3)!
possibilities for the first case, and (N −M − 2)(N − 3)! for the second. We obtain

∑

nM+1...nN
j1...jN

(
N −M

2

)
2(N − 2)ρ

(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)H
(2)
nM+1nM+2;j1j3

(t)

×H(2)
j1j2;i1i2

(s)δn1...nMnM+3...nN ;j2j4...jN
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=
∑

nM+1
nM+2

j1j3

(
N −M

2

)
2(N − 2)

M(N − 3)!

(N − 2)!︸ ︷︷ ︸
M(N−M)(N−M−1)

ρ
(M+2)
i1i2j3n2...nM ;m1...mMnM+1nM+2

(s)

×H(2)
nM+1nM+2;j1j3

(t)H
(2)
j1n1;i1i2

(s)

+
∑

nM+1
nM+2
nM+3

j1j3

(
N −M

2

)
2(N − 2)

(N −M − 2)(N − 3)!

(N − 2)!︸ ︷︷ ︸
(N−M)(N−M−1)(N−M−2)

(A.19)

× ρ(M+3)
i1i2j3n1...nM ;m1...mMnM+1nM+2nM+3

(s)H
(2)
nM+1nM+2;j1j3

(t)H
(2)
j1nM+3;i1i2

(s).

Finally, we decompose the third term in (A.14). Using Lemma 10 b), c) and d) with
r = N − 2, we find M(M − 1)(N − 4)! permutations which map j1 and j2 onto
n1, . . . , nM , while there are 2M(N −M − 2)(N − 4)! permutations for which one of
j1 and j2 are mapped within n1, . . . , nM , and (N − M − 2)(N − M − 3)(N − 4)!
permutations where neither j1 nor j2 are mapped onto n1, . . . , nM . Inserting this, we
get:

∑

nM+1...nN
j1...jN

(
N −M

2

)(
N − 2

2

)
ρ

(N)
i1i2j3...jN ;m1...mMnM+1...nN

(s)H
(2)
nM+1nM+2;j3j4

(t)

×H(2)
j1j2;i1i2

(s)δn1...nMnM+3...nN ;j1j2j5...jN

=
∑

nM+1
nM+2

j3j4

(
N −M

2

)(
N − 2

2

)
M(M − 1)(N − 4)!

(N − 2)!︸ ︷︷ ︸
1
4M(M−1)(N−M)(N−M−1)

ρ
(M+2)
i1i2j3j4n3...nM ;m1...mMnM+1nM+2

(s)

×H(2)
nM+1nM+2;j3j4

(t)H
(2)
n1n2;i1i2

(s)

+
∑

nM+1
nM+2
nM+3

j3j4

(
N −M

2

)(
N − 2

2

)
2M(N −M − 2)(N − 4)!

(N − 2)!︸ ︷︷ ︸
1
2M(N−M)(N−M−1)(N−M−2)

× ρ(M+3)
i1i2j3j4n2...nM ;m1...mMnM+1nM+2nM+3

(s)H
(2)
nM+1nM+2;j3j4

(t)H
(2)
n1nM+3;i1i2

(s)

+
∑

nM+1nM+2
nM+3nM+4

j3j4

(
N −M

2

)(
N − 2

2

)
(N −M − 2)(N −M − 3)(N − 4)!

(N − 2)!︸ ︷︷ ︸
1
4 (N−M)(N−M−1)(N−M−2)(N−M−3)

× ρ(M+4)
i1i2j3j4n1...nM ;m1...mMnM+1nM+2nM+3nM+4

(s)

×H(2)
nM+1nM+2;j3j4

(t)H
(2)
nM+3nM+4;i1i2

(s). (A.20)
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A.3 Full expression

Now, we combine all of the contributions to the first and second term under the integral
in equation (7.150), as elaborated in the preceding two sections. We group the terms
according to the number of particles which contribute to the reduced density matrix.
Since the two groups of terms contribute with opposite signs, some of their constituents
cancel. To see this, we first write out the full expression, labeling those terms which
eventually will drop out

Tr
(N)
N−M{H(2)(s)ρ(N)(s)H(2)(t)} − Tr

(N)
N−M{H(2)(t)H(2)(s)ρ(N)(s)} (A.21)

=
1

M !

∑

n1...nM
m1...mM

∑

i1i2
j1j2

[
1

4
M2(M − 1)2ρ

(M)
i1i2n3...nM ;j1j2m3...mM

(s)H
(2)
n1n2;i1i2

(s)H
(2)
j1j2;m1m2

(t)

− 1

2
M(M − 1)ρ

(M)
i1i2n3...nM ;m1...mM

(s)H
(2)
n1n2;j1j2

(t)H
(2)
j1j2;i1i2

(s)

−M(M − 1)(M − 2)ρ
(M)
i1i2j2n4...nM ;m1...mM

(s)H
(2)
n1n2;j1j2

(t)H
(2)
j1n3;i1i2

(s)

− 1

4
M(M − 1)(M − 2)(M − 3)ρ

(M)
i1i2j1j2n5...nM ;m1...mM

(s)H
(2)
n1n2;j1j2

(t)H
(2)
n3n4;i1i2

(s)

+
∑

k1

1

2
(M − 1)M2(N −M)ρ

(M+1)
i1i2n2...nM ;j1j2m3...mMk1

(s)H
(2)
n1k1;i1i2

(s)H
(2)
j1j2;m1m2

(t)

+
∑

k1

1

2
(M − 1)M2(N −M)ρ

(M+1)
i1i2n3...nMk1;j1j2m2...mM

(s)H
(2)
n1n2;i1i2

(s)H
(2)
j1j2;m1k1

(t)

+
∑

k1

M2(N −M)ρ
(M+1)
i1i2n2...nM ;j1j2m2...mM

(s)H
(2)
n1k1;i1i2

(s)H
(2)
j1j2;m1k1

(t)

−
∑

k1

M(N −M)ρ
(M+1)
i1i2n2...nM ;m1...mMk1

(s)H
(2)
n1k1;j1j2

(t)H
(2)
j1j2;i1i2

(s)

−
∑

k1

M(N −M)(M − 1)ρ
(M+1)
i1i2j2n3...nM ;m1...mMk1

(s)H
(2)
n1n2;j1j2

(t)H
(2)
j1k1;i1i2

(s)

−
∑

k1

1

2
M(M − 1)(M − 2)(N −M)ρ

(M+1)
i1i2j1j2n4...nM ;m1...mMk1

(s)

×H(2)
n1n2;j1j2

(t)H
(2)
n3k1;i1i2

(s)

−
∑

k1

2M(M − 1)(N −M)ρ
(M+1)
i1i2j3n3...nM ;m1...mMk1

(s)H
(2)
n1k1;j1j3

(t)H
(2)
j1n2;i1i2

(s)

−
∑

k1

1

2
M(M − 1)(M − 2)(N −M)ρ

(M+1)
i1i2j1j2n4...nM ;m1...mMk1

(s)

×H(2)
n1k1;j1j2

(t)H
(2)
n2n3;i1i2

(s)
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+
∑

k1k2

1

4
(M − 1)M(N −M)(N −M − 1)ρ

(M+2)
i1i2n1...nM ;j1j2m3...mMk1k2

(s)

×H(2)
k1k2;i1i2

(s)H
(2)
j1j2;m1m2

(t)

+
∑

k1k2

1

4
(M − 1)M(N −M)(N −M − 1)ρ

(M+2)
i1i2n3...nMk1k2;j1j2m1...mM

(s)

×H(2)
n1n2;i1i2

(s)H
(2)
j1j2;k1k2

(t) (A.22)

+
∑

k1k2

M2(N −M)(N −M − 1)ρ
(M+2)
i1i2n2...nMk2;j1j2m2...mMk1

(s)

×H(2)
n1k1;i1i2

(s)H
(2)
j1j2;m1k2

(t)

+
∑

k1k2

M(N −M)(N −M − 1)ρ
(M+2)
i1i2n1...nM ;j1j2m2...mMk2

(s)H
(2)
k1k2;i1i2

(s)H
(2)
j1j2;m1k1

(t)

+
∑

k1k2

M(N −M)(N −M − 1)ρ
(M+2)
i1i2n2...nMk2;j1j2m1...mM

(s)H
(2)
n1k1;i1i2

(s)H
(2)
j1j2;k1k2

(t)

(A.23)

+
∑

k1k2

1

2
(N −M)(N −M − 1)ρ

(M+2)
i1i2n1...nM ;j1j2m1...mM

(s)H
(2)
k1k2;i1i2

(s)H
(2)
j1j2;k1k2

(t)

(A.24)

−
∑

k1k2

1

2
(N −M)(N −M − 1)ρ

(M+2)
i1i2n1...nM ;m1...mMk1k2

(s)H
(2)
k1k2;j1j2

(t)H
(2)
j1j2;i1i2

(s)

(A.25)

−
∑

k1k2

1

4
M(M − 1)(N −M)(N −M − 1)ρ

(M+2)
i1i2j1j2n3...nM ;m1...mMk1k2

(s)

×H(2)
n1n2;j1j2

(t)H
(2)
k1k2;i1i2

(s)

−
∑

k1k2

2M(N −M)(N −M − 1)ρ
(M+2)
i1i2j2n2...nM ;m1...mMk1k2

(s)H
(2)
n1k1;j1j2

(t)H
(2)
j1k2;i1i2

(s)

−
∑

k1k2

M(M − 1)(N −M)(N −M − 1)ρ
(M+2)
i1i2j1j2n3...nM ;m1...mMk1k2

(s)

×H(2)
n1k1;j1j2

(t)H
(2)
n2k2;i1i2

(s)

−
∑

k1k2

M(N −M)(N −M − 1)ρ
(M+2)
i1i2j2n2...nM ;m1...mMk1k2

(s)H
(2)
k1k2;j1j2

(t)H
(2)
j1n1;i1i2

(s)

(A.26)

−
∑

k1k2

1

4
M(M − 1)(N −M)(N −M − 1)ρ

(M+2)
i1i2j1j2n3...nM ;m1...mMk1k2

(s)

×H(2)
k1k2;j1j2

(t)H
(2)
n1n2;i1i2

(s) (A.27)
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+
∑

k1k2k3

1

2
M(N −M)(N −M − 1)(N −M − 2)ρ

(M+3)
i1i2n1...nMk3;j1j2m2...mMk1k2

(s)

×H(2)
k1k2;i1i2

(s)H
(2)
j1j2;m1k3

(t)

+
∑

k1k2k3

1

2
M(N −M)(N −M − 1)(N −M − 2)ρ

(M+3)
i1i2n2...nMk2k3;j1j2m1...mMk1

(s)

×H(2)
n1k1;i1i2

(s)H
(2)
j1j2;k2k3

(t) (A.28)

+
∑

k1k2k3

(N −M)(N −M − 1)(N −M − 2)ρ
(M+3)
i1i2n1...nMk3;j1j2m1...mMk2

(s)

×H(2)
k1k2;i1i2

(s)H
(2)
j1j2;k1k3

(t) (A.29)

−
∑

k1k2k3

1

2
M(N −M)(N −M − 1)(N −M − 2)ρ

(M+3)
i1i2j1j2n2...nM ;m1...mMk1k2k3

(s)

×H(2)
n1k1;j1j2

(t)H
(2)
k2k3;i1i2

(s) (A.30)

−
∑

k1k2k3

(N −M)(N −M − 1)(N −M − 2)ρ
(M+3)
i1i2j2n1...nM ;m1...mMk1k2k3

(s)

×H(2)
k1k2;j1j2

(t)H
(2)
j1k3;i1i2

(s) (A.31)

−
∑

k1k2k3

1

2
M(N −M)(N −M − 1)(N −M − 2)ρ

(M+3)
i1i2j1j2n2...nM ;m1...mMk1k2k3

(s)

×H(2)
k1k2;j1j2

(t)H
(2)
n1k3;i1i2

(s)

+
∑

k1k2k3k4

1

4
(N −M)(N −M − 1)(N −M − 2)(N −M − 3)H

(2)
k1k2;i1i2

(s)H
(2)
j1j2;k3k4

(t)

× ρ(M+4)
i1i2n1...nMk3k4;j1j2m1...mMk1k2

(s) (A.32)

−
∑

k1k2k3k4

1

4
(N −M)(N −M − 1)(N −M − 2)(N −M − 3)H

(2)
k1k2;j1j2

(t)H
(2)
k3k4;i1i2

(s)

×ρ(M+4)
i1i2j1j2n1...nM ;m1...mMk1k2k3k4

(s)
]
a†n1

. . . a†nMam1
. . . amM (A.33)

Several terms involving M + 2 and M + 3 states cancel each other, while the M + 4
contribution vanishes completely. In particular, we are able to identify the following
terms (note the opposing signs):

(A.22) + (A.27) = 0,

(A.23) + (A.26) = 0,

(A.24) + (A.25) = 0,

(A.28) + (A.30) = 0,

(A.29) + (A.31) = 0,

(A.32) + (A.33) = 0.
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Moreover, remember that, in the final expression (7.150), the two terms that were
derived in sections A.1 and A.2, respectively, are added to their own Hermitian conju-
gate. Taking this into account, the first four terms below (A.21), that is, all terms that
depend on ρ(M), can be combined into a simple expression involving the concatenated
commutator of the two-particle interaction-picture Hamiltonian and the M -particle
reduced density matrix. To realize this, we need to identify the representation of
products of two-particle operators in a basis of M -particle states. The representation
of these terms is derived in general in appendix B.

Identifying S = S′ = 2, K(2) = H
(2)
I (t), L(2) = H

(2)
I (s) and R(M) = ρ

(M)
I (s) in

equation (B.2) identifies the first term below (A.21) with H
(2)
I (s)ρ

(M)
I (s)H

(2)
I (t) in a

representation of M -particle states. To identify the next three terms we need equa-

tion (B.6). For K(2) = H
(2)
I (t), L(2) = H

(2)
I (s) and R(M) = ρ

(M)
I (s), equation (B.6)

indeed identifies the three following terms – the negative-sign terms that depend on

ρ(M) below (A.21) – with the M -particle matrix elements of H
(2)
I (t)H

(2)
I (s)ρ

(M)
I (s).

Hence, these two results, together with equation (B.1), show that, when adding up the
Hermitian conjugate expression, the first four terms below (A.21) yield the double-
commutator that reflects the coherent part of the time evolution:

1

M !

∑

n1...nM
m1...mM

∑

i1i2
j1j2

[
1

4
M2(M − 1)2ρ

(M)
i1i2n3...nM ;j1j2m3...mM

(s)H
(2)
n1n2;i1i2

(s)H
(2)
j1j2;m1m2

(t)

− 1

2
M(M − 1)ρ

(M)
i1i2n3...nM ;m1...mM

(s)H
(2)
n1n2;j1j2

(t)H
(2)
j1j2;i1i2

(s)

−M(M − 1)(M − 2)ρ
(M)
i1i2j2n4...nM ;m1...mM

(s)H
(2)
n1n2;j1j2

(t)H
(2)
j1n3;i1i2

(s)

−1

4
M(M − 1)(M − 2)(M − 3)ρ

(M)
i1i2j1j2n5...nM ;m1...mM

(s)H
(2)
n1n2;j1j2

(t)H
(2)
n3n4;i1i2

(s)

]

× a†n1
. . . a†nMam1

. . . amM + H.c. (A.34)

= −[H
(2)
I (t), [H

(2)
I (s), ρ

(M)
I (s)]]. (A.35)

To summarize the results obtained so far for the time evolution (7.150), we group
all non-vanishing terms into “coherent” and “incoherent” contributions, depending on
whether they appear with a prefactor (N −M) or not. The terminology is motivated
by the fact that the terms depending on N −M vanish when M = N , that is, when
no particle is traced over. Using equation (7.108), we can also apply this to the initial

Tr
(N)
N−M{[H

(2)
I (t), ρ

(N)
I (0)]}. This finally yields equation (7.151).





B Representation of double-
commutator terms in a
larger basis

The second-order expansion of the interaction term, employed throughout section 7.5,
naturally leads to dissipative terms in the shape of double-commutators, similar to
the characteristic Lindblad dissipator terms of the standard open-system description.
These terms generally have the form

L(S)R(M)K(S′) −K(S′)L(S)R(M) + H.c.

= L(S)R(M)K(S′) −K(S′)L(S)R(M) +K(S′)R(M)L(S) −R(M)L(S)K(S′)

= [L(S)R(M),K(S′)]− [R(M)L(S),K(S′)]

= − [K(S′), [L(S), R(M)]], (B.1)

with arbitrary operators K(S′), L(S) and R(M). In the approach followed in section 7.5,
we project the full equation of motion (7.85) onto the subspace spanned by M -particle
states. The above commutator terms are hard to identify in the resulting expres-
sions, since the contributing operators often contain the contribution of lower particle
numbers than M . This leads to the emergence of additional combinatorial factors, as
predicted by equation (7.50). In this appendix, we explicitly derive the expression of
the commutator terms (B.1) in a basis of lower particle number.
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Let us begin with the first term of equation (B.1) in all generality:

〈ϕn1
. . . ϕnM |L(S)R(M)K(S′)|ϕm1

. . . ϕmM 〉 (B.2)

=
∑

i1...iM
j1...jM

〈ϕn1 . . . ϕnM |L(S)|ϕi1 . . . ϕiM 〉〈ϕj1 . . . ϕjM |K(S′)|ϕm1 . . . ϕmM 〉R(M)
i1...iM ;j1...jM

=

(
M

S

)(
M

S′

) ∑

i1...iS
j1...jS

L
(S)
n1...nS ;i1...iS

K
(S′)
j1...jS′ ;m1...mS′

R
(M)
i1...iSnS+1...nM ;j1...jS′mS′+1...mM

.

The second term is much harder to treat in the most general form. Thus, we restrict
to those cases that are relevant in the context of the present dissertation, that is, one-
and two-particle operators with S, S′ = 1, 2. We begin by considering single-particle
operators of the form:

〈ϕn1
. . . ϕnM |K(1)L(1)ρ(M)|ϕm1 . . . ϕmM 〉

=
∑

i1...iM
j1...jM

〈ϕn1
. . . ϕnM |K(1)|ϕi1 . . . ϕiM 〉〈ϕi1 . . . ϕiM |L(1)|ϕj1 . . . ϕjM 〉ρ(M)

j1...jM ;m1...mM

=M
∑

i1...iM
j1...jM

∑

1≤α≤M
K

(1)
n1i1

δn2...nM ;i2...iML
(1)
iαj1

δ{i1...iM}\iα;j2...jMρ
(M)
j1...jM ;m1...mM

=M
∑

i1...iM
j1...jM

K
(1)
n1i1

L
(1)
i1j1

δn2...nM ;i2...iM δi2...iM ;j2...jMρ
(M)
j1...jM ;m1...mM

+M(M − 1)
∑

i1...iM
j1...jM

K
(1)
n1i1

δn2...nM ;i2...iML
(1)
i2j1

δi1i3...iM ;j2...jMρ
(M)
j1...jM ;m1...mM

=M
∑

i1j1

K
(1)
n1i1

L
(1)
i1j1

ρ
(M)
j1n2...nM ;m1...mM

+M(M − 1)
∑

i1j1

K
(1)
n1i1

L
(1)
n2j1

ρ
(M)
j1i1n3...nM ;m1...mM

. (B.3)

We now turn to combinations of operators acting on one and two particles. Using
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Lemma 10 a), we find

〈ϕn1
. . . ϕnM |K(2)L(1)R(M)|ϕm1

. . . ϕmM 〉
=

∑

i1...iM
j1...jM

〈ϕn1 . . . ϕnM |K(2)|ϕi1 . . . ϕiM 〉〈ϕi1 . . . ϕiM |L(1)|ϕj1 . . . ϕjM 〉R(M)
j1...jM ;m1...mM

=

(
M

2

) ∑

i1...iM
j1...jM

∑

1≤α≤M
K

(2)
n1n2;i1i2

δn3...nM ;i3...iML
(1)
iαj1

δ{i1...iM}\iα;j2...jMR
(M)
j1...jM ;m1...mM

=

(
M

2

)
2(M − 1)!

M !︸ ︷︷ ︸
M−1

∑

i1...iM
j1...jM

K
(2)
n1n2;i1i2

δn3...nM ;i3...iML
(1)
i1j1

δi2...iM ;j2...jMR
(M)
j1...jM ;m1...mM

+

(
M

2

)
(M − 2)(M − 1)!

M !︸ ︷︷ ︸
1
2 (M−1)(M−2)

∑

i1...iM
j1...jM

K
(2)
n1n2;i1i2

δn3...nM ;i3...iML
(1)
i3j1

× δi1i2i4...iM ;j2...jMR
(M)
j1...jM ;m1...mM

= (M − 1)
∑

i1i2j1

K
(2)
n1n2;i1i2

L
(1)
i1j1

R
(M)
j1i2n3...nM ;m1...mM

+
1

2
(M − 1)(M − 2)

∑

i1i2j1

K
(2)
n1n2;i1i2

L
(1)
n3j1

R
(M)
j1i1i2n4...nM ;m1...mM

. (B.4)

Similarly,

〈ϕn1
. . . ϕnM |K(1)L(2)R(M)|ϕm1

. . . ϕmM 〉
= (M − 1)

∑

i1i2j1

K
(1)
n1i1

L
(2)
n2i1;j1j2

R
(M)
j1j2n3...nM ;m1...mM

+
1

2
(M − 1)(M − 2)

∑

i1i2j1

K
(1)
n1i1

L
(2)
n2n3;j1j2

R
(M)
j1j2i1n4...nM ;m1...mM

. (B.5)

Finally, using equation (7.50) and Lemma 9 with r = M and s = 2, we obtain for
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two two-particle operators

〈ϕn1 . . . ϕnM |K(2)L(2)R(M)|ϕm1 . . . ϕmM 〉 (B.6)

=
∑

i1...iM
j1...jM

〈ϕn1
. . . ϕnM |K(2)|ϕi1 . . . ϕiM 〉〈ϕi1 . . . ϕiM |L(2)|ϕj1 . . . ϕjM 〉R(M)

j1...jM ;m1...mM

=

(
M

2

) ∑

i1...iM
j1...jM

∑

1≤α1<α2≤M
K

(2)
n1n2;i1i2

L
(2)
iα1 iα2 ;j1j2

δn3...nM ;i3...iM δ{i1...iM}\{iα1 ,iα2};j3...jM

×R(M)
j1...jM ;m1...mM

=

(
M

2

) ∑

i1...iM
j1j2

K
(2)
n1n2;i1i2

L
(2)
i1i2;j1j2

δn3...nM ;i3...iMR
(M)
j1j2i3...iM ;m1...mM

+

(
M

2

)
2(M − 2)

∑

i1...iM
j1j2

K
(2)
n1n2;i1i2

L
(2)
i1i3;j1j2

δn3...nM ;i3...iMR
(M)
j1j2i2i4...iM ;m1...mM

+

(
M

2

)(
M − 2

2

) ∑

i1...iM
j1j2

K
(2)
n1n2;i1i2

L
(2)
i3i4;j1j2

δn3...nM ;i3...iMR
(M)
j1j2i1i2i5...iM ;m1...mM

=
M(M − 1)

2

∑

i1i2j1j2

K
(2)
n1n2;i1i2

L
(2)
i1i2;j1j2

R
(M)
j1j2n3...nM ;m1...mM

+M(M − 1)(M − 2)
∑

i1i2j1j2

K
(2)
n1n2;i1i2

L
(2)
i1n3;j1j2

R
(M)
j1j2i2n4...nM ;m1...mM

+
M(M − 1)(M − 2)(M − 3)

4

∑

i1i2j1j2

K
(2)
n1n2;i1i2

L
(2)
n3n4;j1j2

R
(M)
j1j2i1i2n5...nM ;m1...mM

.



C Transformation properties
of interaction-picture
operators

This appendix provides the rather abstract, general transformation properties of the
operators that appear throughout section 7.5.

C.1 Back-transformation to the Schrödinger picture: General prop-
erties

Section 7.5 describes the interaction-picture time evolution, based on the von Neumann
equation (7.85). To obtain the corresponding evolution in the Schrödinger picture, we
transform back using

ρ(M)(t) = U1(t)ρ
(M)
I (t)U†1 (t), (C.1)

with U1(t) = exp(−iH(1)t/~). We obtain

i~
∂

∂t
ρ(M)(t) =

[
H(1), ρ(M)(t)

]
+ U1(t)

[
i~
∂

∂t
ρ

(M)
I (t)

]
U†1 (t). (C.2)

Furthermore, we have

U1(t)
[
X, ρ

(M)
I (t)

]
U†1 (t) =

[
U1(t)XU†1 (t), ρ(M)(t)

]
, (C.3)

and

U1(t)
[
X,
[
Y, ρ

(M)
I (t)

]]
U†1 (t) =

[
U1(t)XU†1 (t),

[
U1(t)Y U†1 (t), ρ(M)(t)

]]
. (C.4)
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Moreover, note that changing to a rotating frame commutes with the partial trace
operation:

Tr
(N)
N−M

{
U†1 (t)XU1(t)

}

=
(N −M)!

N !M !

∑

n1...nM
m1...mM

Tr(N)
{
a†n1

. . . a†nMam1
. . . amMU

†
1 (t)XU1(t)

}

× a†m1
. . . a†mMan1

. . . anM

=
(N −M)!

N !M !

∑

n1...nM
m1...mM

Tr(N)
{
b†n1

(t) . . . b†nM (t)bm1(t) . . . bmM (t)X
}

× U†1 (t)b†m1
(t) . . . b†mM (t)bn1

(t) . . . bnM (t)U1(t)

= U†1 (t)Tr
(N)
N−M {X}U1(t), (C.5)

with the rotating basis

bi(t) = U1(t)aiU
†
1 (t). (C.6)

In the field operator representation, the two-particle Hamiltonian in the interaction-
picture can be written as

H
(2)
I (t) = U†1 (t)H(2)U1(t)

=
1

2

∫
dx1

∫
dx2U

†
1 (t)Ψ̂†(x1)Ψ̂†(x2)U1(t)V (x1,x2)U†1 (t)Ψ̂(x1)Ψ̂(x2)U1(t)

=
1

2

∫
dx1

∫
dx2Ψ̂†I(t,x1)Ψ̂†I(t,x2)V (x1,x2)Ψ̂I(t,x1)Ψ̂I(t,x2), (C.7)

where we define

Ψ̂I(t,x) = U†1 (t)Ψ̂(x)U1(t) =
∑

i

ϕi(x)U†1 (t)aiU1(t). (C.8)

We have Ψ̂I(0,x) = Ψ̂(x). These operators also satisfy (using that the vacuum state
does not evolve under the influence of H(1) due to the absence of particles)

Ψ̂†I(t,x)|0〉 = U†1 (t)|x〉, (C.9)

and, thus, we define

ϕi(t,x) = 〈0|Ψ̂I(t,x)|ϕi〉 = 〈x|U1(t)|ϕi〉, (C.10)

allowing us to write

∑

i

ϕ∗i (t,x)a†i |0〉 =
∑

i

|ϕi〉〈ϕi|U†1 (t)|x〉 = U†1 (t)|x〉 = Ψ̂†I(t,x)|0〉. (C.11)



C. Transformation properties of interaction-picture operators 301

Using this, we obtain for the matrix elements of the interaction-picture Hamiltonian
in an arbitrary basis,

H
(2)
ij;kl(t) = 〈ϕiϕj |H(2)

I (t)|ϕkϕl〉

=
1

2

∫
dx1

∫
dx2〈ϕiϕj |Ψ̂†I(t,x1)Ψ̂†I(t,x2)V (x1,x2)Ψ̂I(t,x1)Ψ̂I(t,x2)|ϕkϕl〉

=

∫
dx1

∫
dx2ϕ

∗
i (t,x1)ϕ∗j (t,x2)V (x1,x2)ϕk(t,x1)ϕl(t,x2), (C.12)

where we used V (x1,x2) = V (x2,x1).

C.2 Transformation properties of specific operators

We now use the above rules to transform each of the relevant operators in equa-
tion (7.192)–(7.200) back into the Schrödinger picture.

Obviously, U1(t)H
(2)
I (t)U†1 (t) = H(2).

Next, we have

C(1)(t1, t2) =
∑

ijnm

H
(2)
nj;im(t1)〈ϕi|U†1 (t2)ρ(1)(t2)U1(t2)|ϕj〉a†nam

=
∑

ijnm

∫
dx1

∫
dx2

∫
dx3

∫
dx′3ϕ

∗
n(t1,x1)ϕ∗j (t1,x2)V (x1,x2)ϕi(t1,x1)

× ϕm(t1,x2)ϕ∗i (t2,x3)ρ(1)(t2; x3; x′3)ϕj(t2,x
′
3)a†nam. (C.13)

The completeness of the eigenfunctions |ϕi〉 leads to the following relation

∑

i

ϕ∗i (t1,x1)ϕi(t2,x2) =
∑

i

〈x2|U1(t2)|ϕi〉〈ϕi|U†1 (t1)|x1〉

= 〈x2|U1(t2)U†1 (t1)|x1〉
= Tr(1)

{
Ψ̂†(t1,x1)Ψ̂(t2,x2)

}
. (C.14)

The functions (C.14) play a fundamental role in many areas of physics. For instance,
in condensed-matter theory, such functions are called Green’s functions, where one
typically introduces the S-matrix S(t2, t1) = U1(t2)U†1 (t1). Since the evolution U1(t)
only involves the single-particle Hamiltonian, equation (C.14) is a free Green’s function
(Mahan, 2000). We assume that the single-particle Hamiltonian is time-independent
which leads to the simple expression S(t1, t2) = U1(t2 − t1). In a semi-classical path-
integral description of quantum mechanics, these functions are called propagators. For
t1 = t2, we recover the expression

∑

i

ϕ∗i (t,x1)ϕi(t,x2) = δ(x2 − x1). (C.15)
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For equation (C.13) this leads to

C(1)(t1, t2) =
∑

nm

∫
dx1

∫
dx2

∫
dx3

∫
dx′3ϕ

∗
n(t1,x1)V (x1,x2)ϕm(t1,x2)a†nam

× 〈x1|U(t1 − t2)|x3〉ρ(1)(t2; x3; x′3)〈x′3|U1(t2 − t1)|x2〉. (C.16)

Furthermore, equation (C.11) allows us to write

C(1)(t1, t2) =

∫
dx1

∫
dx2

∫
dx3

∫
dx′3Ψ̂†I(t1,x1)V (x1,x2)Ψ̂I(t1,x2)

× 〈x1|U1(t1 − t2)|x3〉ρ(1)(t2; x3; x′3)〈x′3|U1(t2 − t1)|x2〉

=

∫
dx1

∫
dx2Ψ̂†I(t1,x1)V (x1,x2)Ψ̂I(t1,x2)

× 〈x1|U1(t1 − t2)ρ(1)(t2)U†1 (t1 − t2)|x2〉. (C.17)

The field operators obey the transformation law

U1(t)Ψ̂I(s,x)U†1 (t) =
∑

i

ϕi(x)U1(t)U†1 (s)aiU1(s)U†1 (t) = Ψ̂I(s− t,x). (C.18)

From which we obtain for C(1)(t1, t2) in the Schrödinger picture:

U1(t3)C(1)(t1, t2)U†1 (t3) =

∫
dx1

∫
dx2Ψ̂†I(t1 − t3,x1)V (x1,x2)Ψ̂I(t1 − t3,x2)

× 〈x1|U1(t1 − t2)ρ(1)(t2)U†1 (t1 − t2)|x2〉. (C.19)

In particular, when t3 = t2 = t1 = t, this yields C(1)(t), as defined in equation (7.117).
This assures that the back-transformation of the coherent mean-field part (7.121),
which also coincides with the first term in the dissipative mean-field master equa-
tion (7.206), reduces to the expression which was derived in the Schrödinger picture,
equation (7.116).

Next, we deal with the operators B
(1)
βα(t), introduced in equation (7.138), which, in

terms of field operators, read:

B
(1)
βα(t) =

∑

ij

H
(2)
iβ;jα(t)a†iaj

=
1

2

∑

ij

∫
dx1

∫
dx2ϕ

∗
i (t,x1)ϕ∗β(t,x2)V (x1,x2)ϕj(t,x1)ϕα(t,x2)a†iaj

+
1

2

∑

ij

∫
dx1

∫
dx2ϕ

∗
i (t,x2)ϕ∗β(t,x1)V (x1,x2)ϕj(t,x1)ϕα(t,x2)a†iaj

=
1

2

∫
dx1

∫
dx2Ψ̂†I(t,x1)ϕ∗β(t,x2)V (x1,x2)ϕα(t,x2)Ψ̂I(t,x1)

+
1

2

∫
dx1

∫
dx2Ψ̂†I(t,x2)ϕ∗β(t,x1)V (x1,x2)ϕα(t,x2)Ψ̂I(t,x1). (C.20)
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Transformation to the Schrödinger picture yields

U1(t2)B
(1)
βα(t1)U†1 (t2) (C.21)

=
1

2

∫
dx1

∫
dx2Ψ̂†I(t1 − t2,x1)ϕ∗β(t1,x2)V (x1,x2)ϕα(t1,x2)Ψ̂I(t1 − t2,x1)

+
1

2

∫
dx1

∫
dx2Ψ̂†I(t1 − t2,x2)ϕ∗β(t1,x1)V (x1,x2)ϕα(t1,x2)Ψ̂I(t1 − t2,x1).

Similarly, Aαβ(t1, t2), introduced in equation (7.137), read in terms of field operators:

A
(1)
αβ(t1, t2) =

∑

ijk

H
(2)
iα;jk(t1)ρ

(1)
kβ (t2)a†iaj

=
∑

ijk

∫
dx1

∫
dx2

1

2
[ϕ∗i (t1,x1)ϕ∗α(t1,x2) + ϕ∗i (t1,x2)ϕ∗α(t1,x1)]

× V (x1,x2)ϕj(t1,x1)ϕk(t1,x2)〈ϕk|U†1 (t2)ρ(1)(t2)U1(t2)|ϕβ〉a†iaj

=
1

2

∫
dx1

∫
dx2Ψ̂†I(t1,x1)V (x1,x2)Ψ̂I(t1,x1)

× 〈ϕα|Ψ̂†I(t1,x2)Ψ̂I(t1,x2)U†1 (t2)ρ(1)(t2)U1(t2)|ϕβ〉

+
1

2

∫
dx1

∫
dx2Ψ̂†I(t1,x2)V (x1,x2)Ψ̂I(t1,x1)

× 〈ϕα|Ψ̂†I(t1,x1)Ψ̂I(t1,x2)U†1 (t2)ρ(1)(t2)U1(t2)|ϕβ〉, (C.22)

and transforms to

U1(t3)A
(1)
αβ(t1, t2)U†1 (t3) =

1

2

∫
dx1

∫
dx2Ψ̂†I(t1 − t3,x1)V (x1,x2)Ψ̂I(t1 − t3,x1)

× 〈ϕα|Ψ̂†I(t1,x2)Ψ̂I(t1,x2)U†1 (t2)ρ(1)(t2)U1(t2)|ϕβ〉

+
1

2

∫
dx1

∫
dx2Ψ̂†I(t1 − t3,x2)V (x1,x2)Ψ̂I(t1 − t3,x1)

× 〈ϕα|Ψ̂†I(t1,x1)Ψ̂I(t1,x2)U†1 (t2)ρ(1)(t2)U1(t2)|ϕβ〉.
(C.23)

To transform the effective Hamiltonian H
(1)
D (t1, t2, t3), see equation (7.189), back to



304 C. Transformation properties of interaction-picture operators

the Schrödinger picture, we rewrite (C.14) as

D(1)(t1, t2, t3) =
∑

ijklmpq

H
(2)
ik;jl(t1)H

(2)
ml;pq(t2)ρ

(2)
pq;km(t3)a†iaj

=
1

2

∫
dx1 . . .

∫
dx4Ψ̂†I(t1,x1)V (x1,x2)V (x3,x4)〈x2|U1(t1 − t2)|x4〉

× 〈x4|U1(t2 − t3)ρ(1)(t3)U†1 (t2 − t3)|x3〉
× 〈x3|U1(t2 − t3)ρ(1)(t3)U†1 (t1 − t3)|x2〉Ψ̂I(t1,x1)

+
1

2

∫
dx1 . . .

∫
dx4Ψ̂†I(t1,x1)V (x1,x2)V (x3,x4)〈x1|U1(t1 − t2)|x4〉

× 〈x4|U1(t2 − t3)ρ(1)(t3)U†1 (t2 − t3)|x3〉
× 〈x3|U1(t2 − t3)ρ(1)(t3)U†1 (t1 − t3)|x2〉Ψ̂I(t1,x2). (C.24)

Finally, as above, a transformation with U1(t4)D(1)(t1, t2, t3)U†1 (t4) shifts the time
arguments of the interaction-picture field operators. This can be used to transform

H
(1)
D (t1, t2, t3) on the basis of equation (7.189). Moreover, the transformation proper-

ties of the other two remaining Hamiltonians H
(2)
S (t1, t2, t3) and H

(1)
E (t1, t2, t3), defined

in equations (7.190) and (7.191), respectively, are fully determined by the properties

of H
(2)
I (t) and C(1)(t1, t2), which we derived above.

C.3 Results for the delta-shaped interaction potential

In this section, we apply the general transformation properties, as obtained in the
preceding section, to the special case of a delta-shaped contact interaction potential,
V (x1,x2) = gδ(x1 − x2). We further consider the time arguments that appear in
equation (7.204). We obtain

U1(t)C(1)(t, t)U†1 (t) = g

∫
dxΨ̂†(x)Ψ̂(x)〈x|ρ(1)(t)|x〉 = C(1)(t). (C.25)

Furthermore,

U1(t)B
(1)
βα(t)U†1 (t) = g

∫
dxΨ̂†(x)ϕ∗β(t,x)ϕα(t,x)Ψ̂(x), (C.26)

and, using equations (C.11) and (7.73) in (C.23), we obtain

U1(t)A
(1)
αβ(t− s, t)U†1 (t)

= g

∫
dxΨ̂†I(−s,x)Ψ̂I(−s,x)〈ϕα|Ψ̂†I(t− s,x)Ψ̂I(t− s,x)U†1 (t)ρ(1)(t)U1(t)|ϕβ〉

= g

∫
dx

∫
dx1

∫
dx2Ψ̂†(x1)Ψ̂(x2)〈ϕα|U†1 (t)U1(s)|x〉〈x|U†1 (s)|x2〉

× 〈x1|U1(s)|x〉〈x|U†1 (s)ρ(1)(t)U1(t)|ϕβ〉. (C.27)
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From

U1(t)D(1)(t, t− s, t)U†1 (t)

= g2

∫
dx1

∫
dx2Ψ̂†(x1)〈x1|U1(s)|x2〉

× 〈x2|U1(−s)ρ(1)(t)U†1 (−s)|x2〉〈x2|U1(−s)ρ(1)(t)|x1〉Ψ̂(x1) (C.28)

we obtain—recall the definition of H
(1)
D in equation (7.189) via D(1),

U1(t)H
(1)
D (t, t− s, t)U†1 (t)

= g2

∫
dx1

∫
dx2Ψ̂†(x1)〈x2|U†1 (s)ρ(1)(t)U1(s)|x2〉

× 〈x1|
(
− i
~

)[
U1(s)|x2〉〈x2|U†1 (s), ρ(1)(t)

]
|x1〉Ψ̂(x1). (C.29)

Finally, we find

U1(t)H
(2)
I (t)ρ

(2)
I (t)H

(2)
I (t− s)U†1 (t) = H(2)ρ(2)(t)U1(t)H

(2)
I (t− s)U†1 (t), (C.30)

leading to

U1(t)H
(2)
S (t, t, t− s)U†1 (t) (C.31)

= − i
~

1

2

(
H(2)ρ(2)(t)U1(t)H

(2)
I (t− s)U†1 (t)− U1(t)H

(2)
I (t− s)U†1 (t)ρ(2)(t)H(2)

)
,

and

U1(t)C(1)(t− s, t)ρ(1)
I (t)C(1)(t, t)U†1 (t)

= U1(t)C(1)(t− s, t)U†1 (t)ρ(1)(t)C(1)(t). (C.32)

From this last result, we obtain with equation (7.191)

H
(1)
E (t− s, t, t) (C.33)

= − i
~

1

2

(
U1(t)C(1)(t− s, t)U†1 (t)ρ(1)(t)C(1)(t)

−C(1)(t)ρ(1)(t)U1(t)C(1)(t− s, t)U†1 (t)
)

= − i
~
g2

2

∫
dx1

∫
dx2〈x1|U†1 (s)ρ(1)(t)U1(s)|x1〉〈x2|ρ(1)(t)|x2〉

×
(
U1(s)|x1〉〈x1|U†1 (s)ρ(1)(t)|x2〉〈x2| − |x2〉〈x2|ρ(1)(t)U1(s)|x1〉〈x1|U†1 (s)

)
.

Thus, we find that even for the simple case of a contact-interaction potential, this
back-transformation does not immediately reduce to an easily interpretable master
equation. Without writing out the full expression, we remark that, when all these
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terms are inserted back into the respective equations (7.204) or (7.206), the dependence
on the single-particle time-evolution operator can be lumped into expressions of the
form

Λt(X) =

∫ t

0

ds

∫
dxU1(s)|x〉〈x|U†1 (s)XU1(s)|x〉〈x|U†1 (s), (C.34)

which represent complete dephasing in a basis of states U(s)|x〉—remember, for ex-
ample, the shape and interpretation of the controlled dephasing operation (3.3). We
expect that the derivation of approximate expressions for such terms will require some
sort of rotating-wave approximation, which might be implemented on the basis of an
expansion in terms of eigen-operators of the superoperator generated by the commu-
tator with the single-particle Hamiltonian. The explicit derivation thereof is left open
for future work.

Let us finally discuss an alternative, explicit, approximate expression for equa-
tion (C.34), for a special case. If within some form of Markovian approximation the
upper time integration limit can be shifted to infinity, and if the single-particle Hamil-
tonian describes an ergodic system, such that the time-average corresponds to the
unitary average according to the Haar measure dµ(U) on the unitary group (Gessner
and Breuer, 2013b), we can explicitly evaluate the integral to obtain

Λ(X) = lim
t→∞

Λt(X) ≈
∫
dµ(U)

∫
dxU |x〉〈x|U†XU |x〉〈x|U†. (C.35)

We denote the volume of the state space spanned by the position eigenstates |x〉 with
V . This means we assume the particles to move in a confined volume. Then, the
integral above can be evaluated explicitly and yields (Gessner and Breuer, 2013a)

Λ(X) ≈ V − 1

V 2 − 1
(X + (TrX)I) ≈ 1

V
(X + (TrX)I) . (C.36)

Note, however, that this is unlikely to represent a generally applicable approach, since
most model systems do not contain generic and ergodic single-particle Hamiltonians.
When inserted in equation (7.206), we obtain, making the above approximations, the
nonlinear single-particle master equation in the the Schrödinger picture:

∂

∂t
ρ(1)(t) = − i

~

[
H(1) + (N − 1)C(1)(t), ρ(1)(t)

]
(C.37)

− (N − 1)
g2

V ~2

∫
dx
[
Ψ̂†(x)Ψ̂(x),

[
ρ(1)(t)Ψ̂†(x)Ψ̂(x), ρ(1)(t)

]]
.
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Schollwöck, U. The density-matrix renormalization group. Reviews of Modern Physics
77, 259–315 (2005).

Schrödinger, E. Are there quantum jumps? British Journal for the Philosophy of
Science 3, 233 (1952).

Schröter, M., Ivanov, S.D., Schulze, J., Polyutov, S.P., Yan, Y., Pullerits, T., and
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