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 This document presents the summary of the Wearable Computing 
Systems Seminar held in the summer term 2015 at the Albert-
Ludwigs-University Freiburg. The seminal papers created by the 
participating students summarize the topics of each group.

 An important issue for wearable computing systems is their input 
modality. The first topic therefore treats possible sensors for Human 
Activity Recognition, looking at their measurement principles, as 
well as their wearability and how these can be objectively evaluated. 
Processing the acquired sensor values with different feature set was 
the next topic, which was found to be very application-specific and a 
number of applications are accordingly presented. The detection of 
Human Activities can be enhanced when additional model knowledge 
is brought into the system. Another topic treats different ways of 
creating computable human body models to achieve this.

 The fundamentals of wearable computing systems was another topic 
for this seminar. Most influential papers from the last twenty years 
for wearable computing were summarized. The application of 
computing systems as support tools in wetlabs was selected as one 
topic, since it presents an application area with stringent 
requirements. Wearable Computing Systems can also stretch into 
computing system for animals, which is why two groups looked into 
the application of monitoring birds in the field.

 We would like to thank all the participanting students for their 
highly motivated work during the seminar course, and we are proud 
of the generated results.
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- The Editors, 15. Oct 2015
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Abstract—Human Activity Recognition (HAR) describes the
automatic recognition of gestures, movements and activities of a
human with an embedded or non-embedded computer system.
Research in this area started in the middle of the 1990’s with
the introduction of MEMS sensors which made it possible to
directly equip a human body with the needed sensor-system. The
sensors can be seen as the main interface between the human body
and wearable computers and are therefore the first stage in the
Human Activity Recognition flow. The selection of the appropriate
sensors directly influence the accuracy of the whole system as
well as its size, obtrusiveness and energy-consumption. Due to
this importance, this paper mainly focuses on the advantages
and disadvantages of different sensors used in HAR, how they
evolve over time and what needs to be considered to implement
a practical HAR system in a wearable context. The most used
sensors and their working principles are briefly explained in the
context of HAR-systems. The evolution of sensors in HAR-systems
from the first simple and self-made sensors-system to modern
smartphones with high accurate sensors is discussed as well as the
wearability of a sensor- or HAR-system. Appropriate measures
for obtrusiveness are presented and the latest topic of social
wearability is discussed. Different body positions to place sensors
are closely related to obtrusiveness and social wearability. Even if
it is not possibly to find a single perfectly matching body position
different results of current research work is shown. Another
very common but not well defined term with respect to sensors
and HAR-systems is modality. Therefore the most reasonable
definition and a corresponding work in which a gyroscope is
replaced by a magnetometer is presented. Finally different sensor
sampling rates and signal resolutions are analysed due to their
influence on the recognition accuracy and an optimal value for
each parameter is proposed. With the given content the paper
provides an introduction in the field of sensors so the fellow
reader will be able to choose the appropriate sensors for a given
application.

I. INTRODUCTION

The recognition of human activities has become a task
of high interest especially for medical-, military-, security-
or sport applications. For example people with dementia or
diabetes need to follow a predefined daily routine to get used
to their medical condition. Consequently recognizing activities
like sitting, walking or sleeping can give useful feedback about
the person’s behaviour by spotting abnormal activities.

The activity recognition process can be performed either
with external or wearable sensing [1]. External sensing was
state of the art in the middle of the 1990’s. One example
for such an external sensor platform is a smart house that
is capable of recognizing a lot of complex activities with
external sensors like visual cameras or proximity sensors.
The drawbacks of external sensors are that they are usually
expensive and require a lot of maintenance. Furthermore the

recognition is restricted to the area where the sensor is attached
and thus require the user to stay in this area to recognize
his or her activities. Wearable sensing was mainly initiated
by the improvements of MEMS (Micro-Electrical-Mechanical-
System) sensors at the end of the 1990’s. These small sensors
made it possible to turn the task of activity recognition into a
wearable computing problem by equipping the human body
with a sensor system. Figure 1 shows the flow traversed
to recognize an activity with a wearable sensing platform.
At first raw data needs to be collected from the available
sensors. Relevant information is highlighted in the raw data set
and extracted into a feature set. This feature set is evaluated
online or offline in a classification algorithm that was trained
supervised or semi-supervised. The classification algorithm
finally generates a label representing the currently performed
activity.

Figure 1 shows the importance of sensors for the task of
activity recognition since data collection is the initial stage
in the recognition flow. The selection and placement of the
sensors influence many important parameters like the quality
and quantity of the collected data, the prediction accuracy,
the energy consumption and finally the cost and wearability
of the whole system. To pick up this problem, three key
questions were previously defined and are addressed in this
paper. Which sensor is suitable for a given application? What
are the drawbacks of a given sensor and how to handle
them? Up to which limit are already available sensors (e.g.
in smartphones) sufficient?

To address these questions a lot of research was done
by looking at many different papers concerning the general
definition of human activity recognition. Since only a few
papers focus solely on the topic “sensors”, a lot of papers
where reviewed in parts and selected papers were examined for
interesting fields. As a starting point [1] was selected because
it provides a good overview of the whole topic. From the
citations in this work other suitable works were selected and
discovered afterwards. The search-keyword “activity recogni-
tion” was used and combined with specific key words like
“sampling rate”. The conference International Symposium on
Wearable Computers was mainly used as a paper-source but
other conferences were also included if matching papers were
found. From the large amount of information the above stated
key questions are answered by the following structure: An
overview of sensors that are already used in HAR-systems
is given together with their working principle in Section II.
Section III explains how sensors and their application changed
in the field of activity recognition during the past two decades.
Afterwards in Section IV the term obtrusiveness is defined
and its importance for a practical HAR-system is discussed.



Fig. 1. Overview of the Human Activity Recognition (HAR) Flow, reprinted
from [1].

Section V deals with different possibilities to measure the same
physical quantity. The influence of different sampling rates
and signal resolutions on the recognition accuracy is finally
discussed in Section VI followed by a conclusion and summary
of the work.

II. ATTRIBUTE GROUPS AND SENSORS IN HAR-SYSTEMS

There is a wide range of different sensors which are used
in Human Activity Recognition Systems. A few examples are
accelerometers, photodiodes, pressure-sensors, GPS-receiver
and heart rate sensors. All these sensors measure different
physical effects, but with respect to HAR they could be
combined into groups, which describe a certain measured
attribute that is used for the recognition. Different suggestions
for the definition of these groups exist but in general these
attribute groups could be defined as follows (cf. [1]): inertial
sensors, environmental attributes, location and physiological
signals. In the following the four groups are explained in detail
and the most important sensors of each group are introduced.

A. Inertial sensors

The first and most relevant attribute group are inertial
sensors which describe movements, twists and turns of the
human body. The most used sensors in this attribute group
are the accelerometers. They are used in nearly every HAR-
system and the measured acceleration is usually the key-data
for the recognition. Examples can be found in [2], [3] and [4].
Reasons for this high popularity are the low price, the relative
low energy consumption compared to other sensors and the
already high availability for instance in modern smartphones
[1].

Figure 2 shows the working principle of a general ac-
celerometer. The sensor consists of a seismic mass m (red)
which is hold at its neutral position e.g. with springs. During an
external acceleration the mass is deflected from its neutral posi-
tion. The amount of deflection can be determined for example
capacitively and is proportional to the force F. Finally the
acceleration can be calculated using the equivalence principle:

F = m · a

To determine the true acceleration of the sensor, the earth
acceleration has to be considered or removed in the result.
However in HAR-systems this is often omitted, since the earth
acceleration can be used to get information about the sensor
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Fig. 2. Working principle of an accelerometer.
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Fig. 3. Working principle of a gyroscope.

position, which is one of the key-data for the recognition pro-
cedure. Today’s accelerometers are usually produced in MEMS
technology and offer three sensitive axis and a digital output.
Beside the already mentioned advantages accelerometers are
small and have a simple working principle which make them
very reliable. The main disadvantage is that the sensor has to
be calibrated to its local area since the earth acceleration is
not homogeneous and can change with the global location.

An accelerometer is often combined with a gyroscope,
which represents the second most used sensor of the inertial
sensors attribute group. [3]. Gyroscopes measure the angular
velocity of the local coordinate system. Angular velocities hold
much information about the currently performed activity.

Figure 3 shows the working principle of a gyroscope. It
measures the deflection of an oscillating seismic mass due to
the Coriolis force. These sensors are typically build in MEMS
technology and the deflection is often measured capacitively.
The precision of the MEMS process leads to small form factors
and sensors that measure the angular velocity with a precision
of one tenth of a degree [5]. A drawback of gyroscopes is,
that they only detect angular changes and must be calibrated
with a reference point. To avoid drift, they also needs to be
constantly corrected or recalibrated.

A third sensor-type which fits in the inertial sensors at-
tribute group is the magnetometer. Magnetometers are used in
HAR-Systems to support other sensors e.g. accelerometers [3]
or to replace other sensors completely [6].

A magnetometer measures vector components of the mag-
netic field in its surrounding. The working principle is shown
in Figure 4. The deflection of a beam due to the Lorenz force
is usually measured piezoresistive or capacitive. Magnetometer



FPGA

Arduino  
+ Wifi Shield 

Lorenz-
force F

current
I

magnetic 
field B

piezoresistive
sensors

induced current
deflection

Fig. 4. Working principle of a magnetometer.

Fig. 5. Working principle of a photodiode.

can be used to measure the earth magnetic field and thus to
obtain the current azimuth heading. The azimuth heading is
absolute in the earth coordinate system and thus could be used
as a reference for other sensors. Unfortunately magnetometers
are prone to environmental magnetic fields and need to be
calibrated to the local magnetic field.

B. Environmental attributes

The second attribute group describes information about the
surrounding of a person. These information are typically com-
bined with acceleration data to further distinguish activities.
If the surrounding is for example dark and the accelerometer
indicate no movement, the person could be sleeping. If the
surrounding is bright and no movement is detected, the person
could also rest in the park.

To get the mentioned information about the brightness of
the surrounding, light sensors can be used which exist in differ-
ent types like photodiodes, photoresistors, phototransistors or
solar cells. One system that includes a light sensor can e.g. be
found in [4]. The working principle of a photodiode is shown
in Figure 5. Incoming photons create electron-hole pairs in
the depletion zone of the diode due to the photoelectric effect.
These pairs are instantly separated because of the charged areas
which cause a flowing current. Although light sensors are small
and inexpensive, they can easily produce misleading data if
they are covered.

A second example for environmental sensors are pressure
sensors which can be used to get relative altitude information.
Figure 6 shows the working principle of a piezoresistive air-
pressure sensor. Strain in the membrane, which is related to
the pressure difference of the current air-pressure and the
pressure p0 inside the cavity, is measured either piezoresis-
tive, piezoelectric or capacitive. This simple concept has the
drawback that only large changes in height (more than 1m)
can be measured. However this information is often enough to
recognize ascending, descending or elevator movements [4].
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Fig. 6. Working principle of a pressure sensor.

position

Fig. 7. Working principle of the Global Positioning Sytem.

C. Location

The third attribute group gives information about the loca-
tion of the person. Location data can also support the activity
recognition process since it is for example unlikely for a person
to brush his teeth on the street. Travel distances and speed can
be calculated as well if multiple location data with timestamps
are available.

The most prominent sensors in this group are GPS re-
ceivers, which provide the global position. Therefore GPS
satellites consistently send their positions and the current time.
If the GPS receiver receives at least data of three different
satellites, it can calculate the absolute distances to each of
the satellites with a technique called Time Of Arrival (TOA).
Triangulation as shown in Figure 7 is finally used to calculate
the global position of the GPS receiver. The calculated position
data is absolute and could be used as reference for other
sensors. The major drawbacks of GPS devices are their energy
consumption, the high price and that they only work outdoor.

D. Physiological signals

The last of the four attribute groups describes the vital
and body parameters of a human. They are also often used to
support other sensors and to improve the recognition accuracy.
One example for vital parameters is a persons heart rate. If the
person is moving a lot with a high heart rate the probability
that the person is doing sports is very high. If on the opposite
the heart rate is low while another sensor senses much motion
the person could be for example standing on a boat.

The working principle of a heart rate sensor could be
seen in Figure 8. The sensor employs the so called elec-
trocardiography. Small electrical changes on the skin, which
are produced by the heart muscle, are measured with special
electrodes. Afterwards the current heart rate is derived from
these electrical changes. The biggest advantage of this method
is, that it results raw body data which is very accurate.



Fig. 8. Working principle of a heart rate sensor.

However the heart rate is only slowly adjusting to the currently
performed activity. This means that it can for example still
be high even if the person is not doing sports any more.
Nevertheless heart rate sensors are used in some works like
[7] and [8].

The above explained sensors are the most relevant ones in
each group. A lot of research in Human Activity Recognition
also focus on other sensor types or even self-made sensors.
To mention only a few: vibration sensors are used in [9],
microphones are used in [10] and force sensors are used in
[11].

III. EVOLUTION OF SENSORS IN HAR-SYSTEMS

First works in the research area of Human Activity Recog-
nition came up in the middle of the 1980’s. Since there were
no small MEMS sensors available in the first years, HAR-
systems often consist of stationary, non-wearable components
like cameras or motion capture systems that only cover a
certain area. Examples for such systems are the tennis action
recognition done in [12] or the activity recognition done in
[13].

The introduction of small MEMS accelerometers and gy-
roscopes (like shown in Figure 9) in middle of the 1990’s
made it possible to directly equip a human body with different
sensors and thus to build wearable HAR-systems. Because of
this new opportunity and its many advantages, the research area
of HAR had a first hype during this time period. Many new
HAR-systems were introduced, which were at this time often
self-build and consisted of early MEMS accelerometers and
gyroscopes with only one sensing axis and an analogue output.
Examples for such systems could be found in [14] and [15]. As
time elapsed the development of sensors continued along with
HAR-systems. While accelerometers and gyroscopes were
often equipped with two sensing axis and analogue outputs
in the middle of the 2000’s, nearly every system since 2010
uses sensors with at least three sensing axis, a digital output
and high accuracy.

Considering the whole research area of HAR some change
over time could also be observed. From the beginning of
the hype in the middle/end of the 1990’s until around 2004
many works focus around newly, completely self-build HAR-
systems. After 2004 the number of this works decreases.
Research focused more and more on the feature extraction and
classifiers. To test the results of this works already existing
sensors-platforms or primarily recorded data-sets were often

Fig. 9. On the left: MEMS-Accelerometer Analog Devices ADXL202 [16].
On the right: MEMS-Gyroscope Murata ENC-03-J [17].

used. An example for such an of-the-shelf sensor-platform
is the XSens [5] which consists among other sensor of an
accelerometer, a gyroscope and a magnetometer. One example
where this platform is successfully used is [18]. In this work
the authors attached respectively six XSens modules on eight
different test persons and tried to recognize 19 different
activities. With this setup and a Naive Bayes Classifier a
recognition accuracy of around 99.2% was achieved. Since the
year 2010 the HAR research area had a second big hype. This
was caused by the starting currency of modern smartphones
which are already equipped with accelerometers and often
many other sensors. The fact that no extra and often obtrusive
hardware must be carried to get data for HAR caused the
development of many new systems which use smartphones as
their primary sensors. One example is [19]. Here the authors
tried to recognize exercise activities with a smartphone worn in
an armholster on the upper arm. In a person independent clas-
sification with a k-Nearest-Neighbour Classifier they achieved
an accuracy up to 93.6%, which clearly shows that there is
much potential with this new technology. Underlying this trend
also many new interesting topics arose like the development
of systems which don’t require the smartphone to be worn at
a specific position on the body. Research in this topic is still
ongoing and new technologies like smartwatches bring new
possibilities and problems to solve.

IV. OBTRUSIVENESS

While the recognition accuracy of HAR-Systems gets more
and more improved with time, further research is also going
towards the feasibility of HAR-Systems. A feasible HAR-
System should not require its user to wear many uncom-
fortable sensors, nor should it require to interact too often
with the system [1]. If these aspects are not fulfilled it is
not or only hardly possible to make people use the system
outside a lab-environment. The term “obtrusiveness” combines
the different dimensions of discomfort and invasiveness with
respect to a wearable HAR-system. The miniaturisation caused
by technical progress has a huge impact on the invasiveness
of HAR-systems. For instance, in the beginning of the 21st
century people had to carry huge notebooks in backpacks to
have enough mobile computational power for the recognition
process ([14], [3], [20]). With the invention of smartphones and
smartwatches backpacks could be replaced by trouser pockets
[21] or armholster [19] resulting in more practicable HAR-
systems that are less invasive.



Fig. 10. The scale which is used to determine the exertion via the Borg
Relative Perceived Exertion method [22].

A. Obtrusiveness measures

To compare different HAR-systems also in terms of ob-
trusiveness a standardized measure would be useful. Unfortu-
nately there is not much research on this topic. One reason
for this is probably that the perceived obtrusiveness is always
very subjective and defining an objective measure is difficult.
However the authors in [22] tried to come up with such a
measure. They state three main effects which influence the
obtrusiveness: The physiological effects which describe the
energy that is needed to e.g. carry the HAR-system on the
body, the biomechanical effects which describes the direct
influence on body like musculoskeletal loading and the comfort
effects which describe the feeling of well-being while using a
HAR-system. Each of this effect could be measured precisely
with complex and expensive methods but instead of using
these, the authors introduced very cheap and simple, still
standardized methods. This was done to provide a measure that
could be used in field without much effort. The physiological
effect could be for example simply measured with a method
called Borg Relative Perceived Exertion (RPE). In this method
test persons wearing the HAR-system rate their exertion ac-
cording to a standardized scale shown in Figure 10. Similar
scale-methods are introduced to measure the biomechanical-
and comfort-effects, whereas the biomechanical effects are
further divided into “posture and movement” and “muscu-
loskeletal loading”. With the received score for each effect
and a provided table, a so called “Level of Effect” could be
obtained. This could afterwards be translated into an level of
obtrusiveness with a second table. A first field test of the
authors on an existing wearable HAR-systems showed good
results for measure.

B. Dimensions of obtrusiveness

Like already mentioned above the term of obtrusiveness
does not only describe the level of discomfort of a HAR-
systems. Instead it has many different dimensions which are
summarized in [23] and shown in figure 11. The physical
dimension of obtrusiveness describes the physical discomfort
due to its size, weight, form or noiselevel. The usability
dimension depict the user-friendliness and the additional time
effort needed to handle the system. An increasingly important
point is the privacy dimension which describes how personal
information is handled. The functional dimension describes
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Fig. 11. The different dimensions of obtrusiveness in our society, reprinted
from [23].

the accuracy of a system and how faultless it behaves. The
dimensions shown in the lower part of Figure 11 can be pooled
to the term “social wearability”, which is further described in
the next section.

C. Social Wearability

According to [24] Maslow’s hierarchy of human needs can
be applied to the context of wearable devices. “If basic needs
are met, attention shifts to higher order needs” [25]. Basic
needs are summarized in the upper part of Figure 11 while
higher order needs involve the social acceptance of a device
or the self-actualisation by wearing the device. The social
wearability of a device is represented by it’s “expressive”
(color, texture, form), “referential” (brand, trend, social role)
and “interacting” (passive or active gestures) characteristic
[24]. According to a case study, most people are concerned by
negative visual properties while wearing or interacting with
devices that are attached on the body. The preferred body
position is the wrist or the forearm, whereas the torso and
hip are considered as awkward and sexual suggestive. For
interacting with clothing, garment features or edges afford
interactions and support “natural gestures”. A body-map of
such interactions is displayed in Figure 12 separately for men
and woman. Lines show garment features or edges while light
gray fields indicate body positions that provide easy access.
Dark gray fields highlight social problematic locations which
differ in gender and depending on the cultural and locational
affiliation.

D. Body Positions

Since obtrusiveness is closely related to the body position
where the device is attached, one may ask if the body position
impair the recognition accuracy of a HAR-System. As stated
in [21] the recognition of basic activities like sitting, standing,
walking or running is not affected by the body position of
the sensor. Furthermore a social acceptable location like the
wrist performed best in an experiment where six different
body locations were compared with the associated recognition
accuracy. However according to [1] there are many works
which all came to different result for the perfect body positions
for sensors. To conclude this topic no clear statement could be
made.



Fig. 12. A body map for possible locations to interact with clothing [24].

V. MODALITIES

The term “modalities” is very interesting with respect to
sensors in Human Activity Recognition, but different defini-
tions exist. In general modalities describe different ways to
measure the same physical quantity. One example would be
to replace an accelerometer by another sensor but keeping
the acceleration as the sensor-output. Unfortunately the word
modalities is often used to describe the use of another physical
quantity to solve the same problem with for instance a new
sensor. Even if it would be possible to measure the same
physical effect with the new sensing method, the data is not
transformed to the previously used quantity. Instead the new
data is used independently and a classifier is trained directly
on this data.

But some works exists that fit in the general definition.
The authors in [6] tried to replace a gyroscope in a HAR-
system with a magnetic-field-sensor, while keeping the angular
velocity as the measured quantity. One motivation for this is to
replace a gyroscope completely by an already existing magne-
tometer which can save cost, space and energy. As the result
the authors came up with a formula to calculate the 3D angular
velocity from data of the 3D magnetic field sensor. Since
magnetometers could be highly disturbed by environmental
magnetic fields or ferromagnetic material the authors also
investigate the sources of error for their method. Fortunately
the disturbance of the sensor output is not that critical in this
context because the derivation is considered in the formula.
Only high inconsistent fields or magnetic fields with strong
curvature in its field lines disturb the calculation of the angular
velocity. To test the influence of this possible error-sources
the authors also did some evaluation. Therefore primarily
recorded HAR-data-sets were used that include magnetometer
and gyroscope data. By using the provided formula they tried
to reconstruct the angular velocities measured by the gyroscope
with the magnetometer data. From the results which are shown
in Table I it can be concluded that the accuracy depends much
on the body position where the sensor is placed. The authors
claimed that sensors worn on the wrist or leg are more often
in contact with a disturbing magnetic field than for example a
sensor that is attached on the head. Because the accuracy was

TABLE I. ACCURACY OF REPRODUCED ANGULAR VELOCITY DATA
(FROM [6]).

Placement Mean Error Median Error Stand. Dev.
Head 17% 11% 90%
Torso 21.1% 12.5% 110%
Back 23.5% 19.5% 150%
Wrist 53.2% 44.2% 214%

Lower leg 34% 23.4% 162%
Upper arm 32.0% 25% 173%

not good in general, the authors did a second evaluation where
they used their method directly in a HAR-system. But the
previously accomplished results, especially for sensors worn
the arm, were justified. The recognition accuracy was always
worse when the calculated angular velocity was used compared
to the use of the direct output from the gyroscope. So even if
the authors came to the conclusion that it is possible to replace
a gyroscope with a magnetometer by using their method one
may conclude that this is not yet possible. But using the
proposed method magnetometers could be used to compensate
e.g. shift of other sensors employing the same techniques as
developed for gyroscopes.

VI. SAMPLING FREQUENCY AND SIGNAL RESOLUTION

In each digital HAR-system a appropriate sampling fre-
quency and signal resolution must be chosen for each sensor.
The signal resolution as well as the sampling frequency should
thereby be as small as possible to save e.g. energy but it
should not affect the recognition in a negative sense on the
other side. Many research works focus on the influence of
these parameters on the accuracy of the whole HAR-systems.
One of this works is [26]. Here the authors equipped test-
persons with 3D accelerometers and recorded acceleration data
while the persons performed different activities. The sampling
frequency at which the data was recorded was 100Hz and the
resolution was 16Bit. Afterwards the authors downsampled
and quantized the data-sets onto different quality-levels and
fed each set into three different classifiers (Decision-Tree, k-
Nearest-Neighbour and Naive Bayes). Since the results are
nearly the same for each classifier only the outcome of the
Decision-Tree is shown in Figure 13. One may see, that
if the sampling frequency is above or equal 20Hz and the
signal resolution is above or equal 2Bit, the recognition
accuracy stays constant and the parameters are thus optimal.
Fortunately other works came to the same result as well like
e.g. [21]. Furthermore they showed that the optimal value for
the sampling frequency of 20Hz even holds for light sensors.

VII. CONCLUSION

This paper highlights the importance of sensors in HAR-
systems as they provide the core data for the recognition
process and mainly influence the recognition accuracy, cost
and wearability of any HAR-system. While taking a look
back on the key-questions stated in Section I all of them
were answered in this work. By introducing different relevant
sensors groups with their most prominent sensors a good
overview was given to choose a sensor for a specific appli-
cation. The shown advantages and drawbacks for each sensor
are also a first part of the answer to the second question, which
covers the handling of such drawbacks. This question was
further investigated in the section dealing with obtrusiveness



Fig. 13. The recognition accuracy of a Decision-Tree classifier in dependence
of the sampling rate and the signal resolution [26].

where the importance of an unobtrusive system in HAR was
highlighted. Many aspects for building such a system were
given beside a standardized measure of obtrusiveness. The
third question which asks for a limit up to which already
available sensors are sufficient was mainly answered in the
last two parts. In the section covering modalities, an adequate
definition of the term with respect to the question was given
and one example was presented in which the authors tried to
replace a gyroscope with a magnetometer. Unfortunately this
was not really a success and is representing one limitation
of sensors (in this case for magnetometers). In the last part
a second obvious limit for sensors was given by identifying
the optimal sampling frequency for sensor with 20Hz and the
optimal signal resolution with 2Bit. Since nearly all modern
sensors fulfill this limit they are appropriate for a use in HAR-
systems in general. This assumption was further proven in
Section evolution of HAR-system. In this section one work
was introduced which used an of-the-shelf sensors platform
and compared to another work which used an smartphone
placed somewhere on the upper arm. In both cases the system
achieved a recognition accuracy of more than 90%, which
shows that sensors in smartphones are totally suitable for the
application of Human Activity Recognition as well.

Through the research for this work we learned the fun-
damentals of Human Activity Recognition and discovered the
steps needed to set up a HAR-system from scratch. We think
that more accurate and smaller sensors could help to improve
the recognition accuracy of existing HAR-systems. In addition
we see a lot of research going in the direction of activity
recognition with already available devices like smartphones or
smartwatches. The variety of sensors inside these devices and
their social acceptance will establish practicable HAR-systems.
The fact that these devices are available to nearly everyone
supports the ongoing research which will further improve the
recognition accuracy and the simplicity in usage.
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Abstract—During the wearable and network embedded systems
seminar, students discussed current topics in the fields of wearable
tech, sensor networks, embedded systems and activity recognition.
In the course of the semester, each group gives a number of talks
to present their intermediary results, concluding in a survey paper
reporting their final findings for the topic.
In this report we summarize and review recent advancements in
HAR by specifically looking at the development of feature sets
used in research. Features are essential in reducing the large data
sets that are generally used in HAR to their characteristic traits,
which then train classifiers to recognize the activities labeled in
the training data sets.

I. INTRODUCTION

Human activity recognition is a relatively new field of
study, with some early works of research dating back to
the 1990’s. Since then numerous advances in the fields of
machine learning, computer vision, but also sensor technology
and general processing power have continually driven HAR
to a point of relative certainty in recognition of basic human
movement. Recent research papers report accuracy rates of
90% and more on activities like walking, running, sitting,
ascending and descending stairs.

In the summer semester of 2015 the embedded systems
group of the faculty of engineering at the University of
Freiburg offered the wearable and network embedded systems
seminar, during which 7 groups of students researched the
topics Feature Sets for AR, Habitat Monitoring, Fundamentals,
Sensors, Body Models, and Wetlab Support. All groups report
on their preliminary findings in five presentations during the
course, and write a survey paper summarizing their respective
topics as well as their research techniques.

In this paper we report on the seminar topic of Feature
Sets for Activity Recognition. We selected 46 papers and two
Ph.D. theses for review and pay regard to types and number of
features selected by researchers, activities that are classified,
influence of the classification scope on feature selection, sen-
sors that are used to collect data, and the classification accuracy
achieved by the respective systems. Since one of the goals of
the seminar is to teach students to extract knowledge from
a large number of research papers, we also summarize the
methodology we applied during the seminar.

In Sec. II, we give a brief overview of the topic of human
activity recognition and outline the general recognition pipeline

Fig. 1. Activity recognition pipeline [1]: Data flow in human activity
recognition systems, with training and test data based on wearable sensors.

applied in most of the relevant research work. Sec. III lists
different types of features and feature sets, and discusses their
relevance for activity recognition. In our exploration of the
topic at hand, we came upon several cases of use of compa-
rably unconventional sensors utilized for the task of activity
recognition. In Sec. IV we describe some of these systems and
their sometimes special use of features. Furthermore, Sec. V
describes the effect of sensor displacement on AR systems
and the features used in them. In Sec. VI we summarize the
methodology we applied during our research and give some
simple statistics on the papers we studied. Finally, Sec. VII
concludes our research.

II. ACTIVITY RECOGNITION OVERVIEW

In general, most activity recognition systems follow a
specific sequence of processes to identify the activities per-
formed by humans. In principle (see also Fig. 1), first the
relevant data is collected by a sensor system, usually worn by
test subjects. The data might then be segmented, after which
features are selected and extracted for an accurate and efficient
representation of the data. In the last step, these features are
used to train a classifier, which is then able to detemine
activities from non-training test data.



The following descriptions of the consecutive steps in the
activity recognition chain are based on the ’Tutorial on Human
Activity Recognition’ by Bulling et al. [2]:

Data Collection

The first step in any HAR system is always data acquisition.
Test subjects timeframes to label the data. In standard research,
acceleration data is widely used in a multitude of systems, and
is generally accepted as the most efficient form of motion data
in human activity recognition. However, there are many other
types of sensors that can be used, ranging from standard IMU
data like gyroscope and magnetometer data, to more exotic
types like EEG signals, sound or GPS coordinates. Relevant
for data collection is also the sampling rate, which typically is
in the range of 5Hz to 100Hz, depending on intended accuracy
and sensor system architecture limitations.

Data Segmentation

After collecting the raw data, it is often segmented into
the relevant portions containing the activities. The raw data
oftentimes has long stretches of useless data, e.g. when the
person is standing still or just generally not performing any
actions. These portions are usually not interesting for the
application and can be discarded for less computation time.
There are several approaches to segmentation: The sliding
window, that consecutively extracts a fixed-size portion of the
data for processing. Energy-based approaches segment the data
according to the intensity of the movement. Finally, additional
sensors may be used to gather information about the current
activity. For example, GPS data might be used to segment IMU
data to specific locations.

Feature Extraction

To be able to properly separate activities, features are
selected and extracted from the data. These describe the
activities in the data as effectively as possible and discrimate
between the different activities. All features that are extracted
form the feature space, in which feature points close together
should correspond to the same activities. There are several
types of features (see also Sec. III): Signal-based features are
statistical time or frequency domain features and the most
common found in research. Body model features are based on
a 3D representation of the human body and describe properties
like trajectories. Finally, event-based features, e.g. for eye
movements or muscle activity. In general, features lessen the
computational load on the recognition system, so selecting the
minimum best set of features is an important part in the activity
recognition chain. Features can either be selected manually, or
automatically via ranking algorithms. These methods identify
the most important features, lower training times in the next
step, and generalize the feature set. They can be grouped
into filter methods, which individually score single features,
wrapper methods, which apply search algorithms, and hybrid
approaches which use machine learning techniques to select
features.

Training and Classification

In the last step of the activity recognition chain, machine
learning algorithms are used to classify activities in non-
labeled test data. Beforehand, they are trained with the features

previously extracted and the labels noted by researchers. Pop-
ular methods include dynamic time warping, hidden Markov
models, support vector machines, and C4.5 decision trees.

III. FEATURE TYPES

The choice of appropriate features is an important task to
achieve a high classification accuracy. There are several feature
types and methods which can be recognized to facilitate this
procedere. In addition to the commonly used statistical features
(Bao and Intille [3]), Zhang and Sawchuk [4] introduced phys-
ical features, which are optimized for human movements in
activity recognition. The feature selection depends on several
factors: The activities to be recognized, which types of sensors
are used, and how much of them. Is it possible to wear them on
different body parts? A straightforward approach would be to
use all features and thereby improve the accuracy. But several
studies have shown, that the feature space should be as small as
possible. One reason is the reduction of the computational cost,
especially with regard to wearable devices. Furthermore there
are features which can falsify the results and the classification
will get unclear.

In this section we introduce features for activity recognition
with accelerometers, gyroscopes and inertial sensors since
these are the most widely used sensor types in this field.

A. Statistical Features

Statistical features are basic features, which are used
in most activity recognition procedures. These features are
extracted from each sensor axis individually. Tab. I shows
statistical features commonly used for AR with accelerometers
and gyroscopes.

Feature Description

mean DC component of the signal over the window

median median signal value over the window

standard deviation variation of the signal over the window

variance square of standard deviation

root mean square quadratic mean value of the signal over the window

averaged derivatives mean value of the first order derivatives of the signal over
the window

pairwise correlation correlation between two axes

spectral entropy distribution of frequency components

TABLE I. COMMON STATISTICAL FEATURES AND BRIEF
DESCRIPTIONS [4]

By taking the mean acceleration it is possible to recog-
nize poses without movement like sitting, standing still and
lying. The variance distinguishes activities by the different
acceleration values e.g. walking from jogging. The correlation
can differentiate activities that involve translation in single or
multi-dimension, such as walking from stair climbing. These
correlation features can also recognize activities that involve
several body parts. By means of the frequency domain entropy,
activities with similar energy values can be distinguished. For
instance, the discrete FFT hip acceleration while biking only
shows one component at 1Hz. Running result in a complex
hip acceleration and many frequency components.



B. Physical Features

Physical features are extracted from multiple sensor chan-
nels, with sensor location and orientation known a priori.

Movement Intensity:
Euclidean norm of the total acceleration vector,
for which the mean and the variance over the
window is computed.
This measures the immediate intensity of human
movements.

Normalized Signal Magnitude Area:
Acceleration magnitude summed over three axes
and normalized by the window length.
This feature is an indirect estimation of energy
expenditure.

Eigenvalues of Dominant Directions:
Covariance matrix of the acceleration data along
the axis in each window. The eigenvectors corre-
spond to the dominant directions, the eigenvalues
to the corresponding relative motion magnitude.
This computes the acceleration along the axis, e. g.
for jumping or running forward.

Correlation between Acceleration along Gravity and
Heading Directions:

Euclidean norm of the total acceleration vector
along the heading direction. Then calculate corre-
lation coefficient between heading direction and
gravity.

Averaged Velocity along Heading and Gravity:
Euclidean norm of the averaged velocities along
y and z axes over the window.

Dominant Frequency:
Maximum of the squared discrete FFT component
magnitude from each axis.

Energy:
Normalized sum of the squared discrete FFT
component magnitudes from each axis.

IV. UNCONVENTIONAL SENSORS

During our research, we found that the majority of au-
thors use traditional sensors and means to record data, like
accelerometer readings over a few hours. However, in some
papers more unconventional sensors were used to classify
activities diverging from the usual movements, like reading,
swallowing, finger taps on skin, etc. In this chapter we present
some of these papers and the special features used in recog-
nizing some of these activities.

A. Wearable Acoustics

In [5] acoustic sensors are introduced to record and classify
sounds which are produced in the mouth and throat area.

For the prototype a microphone is embedded into a blue-
tooth headset and covered with a chestpiece of a stethoscope.
A microphone in the earpiece of a headset is very sensitive to
sounds emerging in the mouth region, e.g. caused by eating,
drinking, speaking, whispering, whistling, laughing, sighing,
coughing.

To recognize the activities a sample length of 5 s and a
sampling rate of 22 050Hz were chosen. The three relevant

domain features are time, frequency and cepstral. To calculate
the frequency and cepstral features, the data was pre-processed
with FFT. The average and standard deviation was calculated
across all frames for each feature.

Time-domain feature Zero-crossing rate: rate of sign changes along a
signal

Frequency-domain features Total spectrum power: logarithm of summed spec-
trum power

Subband Powers: Frequency spectrum divided into
logarithmic subbands

Brightness: frequency centroid

Spectral rolloff: frequency below which 93% of the
distribution is concentrated

Specral flux: average variation value of spectrum
between to adjacent frames

Cepstral feature Mel-frequency cepstral coefficients

TABLE II. SUMMARY OF THE DOMAIN FEATURES AND BRIEF
DESCRIPTIONS

For training and testing two protocols are used: Leave-
one-participant-out and Leave-one-sample-per-participant-
out. The results of the laboratory evaluation show that it is
possible to achieve an average accuracy of 49% over all activi-
ties by using the classification with the Leave-one-participant-
out protocol. With the Leave-one-sample-per-participant-out
protocol the accuracy was improved by 30%. Activities like
taking a deep breath, drinking and sighing are most difficult to
detect, while whistling and speaking achieve high accuracies.

B. Eye Movement

Eye-based activity recognition (EAR) is used to detect
human activity by analyzing the eye movements like saccades,
blinks and eye movement patterns. In [6] electrooculography is
applied to detect the signals produced by the eye movements to
recognize activities like copying a text, reading a printed paper,
taking handwritten notes, watching a video and browsing the
web.

Fig. 2. Electrooculography (EOG): Electrode placement for detecting the eye
movements [6]

Electrooculography enables to model the eye as a dipole by
placing electrodes around the eye. If the eye moves from center
position toward one of the two electrodes, this electrode ”sees”
the positive side of the retina while the opposite electrode
”sees” the negative side of the retina. Consequently, a potential
difference occurs between the electrodes. Assuming that the
resting potential is constant, the recorded potential is a measure
of the eye’s position.



The feature selection is based on the different movements
like saccades, fixations, blinks and the wordbook of eye
movement patterns. Eye movement patterns are strings of a
certain length of eye movement sequences. The movements
are differentiated by the direction the person is looking at.

Movement Features

Saccade (S) mean (mean), variance (var), maximum (max) of the

EOG signal amplitudes (Amp), rates (rate) of

small (S), large (L), positive (P), negative (N) saccades in

horizontal (Hor), vertical (Ver) direction

Fixation (F) mean (mean), variance (var) of the

horizontal (Hor), vertical (Ver)

EOG signal amplitudes (Amp) within or

duration (Dur) of fixation or rate of fixation

Blinks (B) mean (mean), variance (var) of the

blink duration or blink rate (rate)

Wordbook (W) wordbook size (size), maximum (max)

difference (diff) between maximum and minimum

mean (mean), variance (var) of all occurrence counts (Count)

in the wordbook of length (-lx)

TABLE III. SUMMARY OF THE USED FEATURES [6]

For classification and feature selection the Leave-one-
person-out scheme was used. In the following the top three
features are listed which were selected by the mRMR algo-
rithm.

read: W-maxCount-l2, W-meanCount-l4, W-varCount-l2
browse: S-rateSPHor, W-varCount-l4, W-varCount-l3
write: W-carCount-l4, F-meanVarVertAmp, F-varDuration
video: F-meanVarVertAmp, F-meanVarHorAmp, B-rate
copy: S-varAmp, S-meanAmpSNHor, S-meanAmpLPHor

The experiments reached an accuracy of more then 62%
to detect the activities.

C. Wearable Face Recognition System

A wearable system based on Google Glass is presented
by Mandal et al. [7]. The system includes several levels like
face detection, eye localization, face recognition and a user
interface to display the information. The challenge is to handle
different lighting conditions, various face poses and faces of
various scaling.

In the first step the system detects a face in a FPV image
by using the OpenCV face detector. OpenCV is only adequate
for frontal views, so additionaly an algorithm based on Haar
features and an Adaboost classifier is used to detect non-frontal
view faces. OpenCV is also applied to localize the eyes. In this
case it performs well for front-view faces, even with closed
eyes. For oblique view and faces with various scale the ISG
eye detector algortihm is used. The next step normalizes the
image by the following steps: integer to float conversion, ge-
ometric normalization, masking, histogram equalization, pixel
normalization and scaling all on the same picture size. To be
able to recognize a person’s face and provide the related per-
sonal informations, eigenfeature regularization and extraction
is performed.

In the training stage the normalized and preprocessed
images are clustered into subclasses where each person is
one class. Then the within-subclass scatter matrix is computed
and the eigenfeature regularization scheme is applied to get
the regularized features. In the next step the total-subclass
and between-subclass scatter matrices are computed and the
features are chosen for which the corresponding eigenvalues
are largest.

In the recognition stage every incoming image vector
is transformed into a feature vector by using the feature
regularization and extraction matrix and after this a classifier
can be applied.

In the experiments for the eye localization an accuracy of
70% for non-frontal view faces and of 90% for frontal view
faces is achieved. For the face recognition, the system achieves
over 90% accuracy rate when using the PCA method and more
than 100 features.

D. Worn Capacitive

Cheng et al. [8] present a system of capacitive sensors
made from conductive textile electrodes to observe changes of
capacitance in several places of the human body. They design
front-end boards with attached conductive textile material cut
into shape to record data from several locations: Placement
on the chest, wrist and neck (Fig. 3) provide the ability to
recognize activities like breathing, head motions, speaking,
swallowing, heartbeat, etc.

For data analysis, 45 different features are extracted from
1.5 s sliding windows, including signal mean, variance, and
maximum. The recorded data sets include activities performed
while sitting and walking, among them swallowing, nodding,
speaking, and head movements. A linear discriminant classifier
is employed and shows an accuracy of detecting the activities
while walking and sitting, and only while sitting, of 69% and
77% respectively.

Additionally, the detection of swallowing and the amount
swallowed, and the detection of respiration rate is analyzed. To
detect swallowing, a feature similarity search is applied to the
features previously mentioned, with a resulting performance
of 80% recall and 60% precision. The amount is recognized
using a linear discriminant classification using the features
variance, minimum, and maximum, with the results being
”comparable [...] to previous investigations using audio and
Electromyography [9]”. To find the rate of breathing of a test
person, data from the neck sensor is filtered and subjected to
a hill-climbing peak detection algorithm. The method shows
a detection rate of 80% to 90%, however the authors note
that it may fail when breathing is irregular, in which case the
heartbeat could be picked up by the sensor.

The researchers conclude that the method ”is a viable and
highly interesting new sensing concept for wearable monitor-
ing.” They furthermore note its use in biomedical and health-
care investigation, and pose that ”further work should address
the integration and optimization for individual applications”.

E. Muscle Activity

With their wearable muscle activity sensing system, Amft
et al. [10] show the validity of force sensitive resistors in mon-
itoring individual muscle activity. They conduct experiments



Fig. 3. Placement of capacitive sensors [8]: The textile based sensors are placed on the chest, wrist, and neck, with integration in a pullover collar.

with test subjects performing four distinct arm movements and
recording the signals from the FSR and an additional fabric
stretch sensor, both attached to the subjects lower arm. The
recorded data from both devices is thresholded and indicates
that both methods can be used to detect arm movements.
However, only the FSR method can discriminate between
single muscles, whereas the FSS reacts to any change in arm
circumference, thus the arm motions are indistinguishable.

Lukowicz et al. [11] use force sensitive resistors attached to
the upper leg to interpret muscle activity to recognize modes
of locomotion. A sensor is attached on the upper leg of a
test subject and fastened with an elastic band. The subject
performs a number of walking actions and the data is recorded
an labeled. Some physiological facts are used to formulate
features that best describe the modes of locomotion:

1. No signals during any leg swing phase.
2. For normal walking, the front and back leg muscles alter-

nate their activity phases between pushing off and putting
down the feet.

3. An increase in muscle activity and a decrease in delays
between peaks indicates faster walking.

4. For both walking downstairs and upstairs, the front leg
muscle is dominant, however during the former activity,
all leg muscles are active, while during the latter the back
muscles are mostly inactive.

From these, the swing phase, the ratio and the delay between
front and back muscle activity can be derived as features. In
Fig. 4, the feature space for one experiment clearly shows the
separability of the four considered modes of locomotion. The
paper does not include classification of the activities, however
mentions it as possible future work.

F. Bio Acoustics

The Hambone system developed by Deyle et al. [12] uses
two piezoelectric sensors to record acoustic data transmitted
via bone to the wrist-attached sensor platform. Whenever the
subjects hand pose changes or certain gestures are performed,
acoustic waves are generated by the skin, which are transmitted
on the surface of the skin or through the bone. Piezoelectric
sensors can observe these waves while not being affected by
other external sound waves. From the recorded data, a hidden
Markov gesture model is generated by the HMM classifier
implemented in the Georgia Tech Gesture Toolkit [13]. Addi-
tionally, the same method can be applied to the feet, with the
sensor device attached to the ankles. The experiments include
seven distinct hand and foot gestures (see also Fig. 5).

Fig. 4. Muscle activity features [11]: The four modes of locomotion can
be separated using the described features.

(a) (b)

Fig. 5. Hand gestures with data [12]: Two example hand gestures with
start and end positions, and the recorded two second data window.

The models, trained with 20 sample data windows for each
gesture, have an overall correctness of 81%, 82%, and 100%
with data from one wrist sensor, one ankle sensor, and two
wrist sensors respectively. Additionally, the models are tested
across different users, which results in accuracies of 63% and
69% for wrist and ankle sensors respectively. The authors
conclude that the system ”is a viable approach to mobile device
interaction.”

Harrison et al. [14] proposed the Skinput system, another
device that uses acoustic signals to recognize fingertaps and
their locations on a users arm. Devices like these are often
applied to UI problems and can even be combined with some
kind of projection on the skin to make it more convenient to
use.



V. SENSOR DISPLACEMENT

In real-life applications it is not possible to have an exact
fixed position for the sensors which have to record the data. For
AR often the sensors implemented in smartphones are used and
for this several positions are conceivable, like for example the
trouser pocket, the bag or grasped in the hand. These positions
affect the sensor signal in different ways and thus make it more
difficult to get a clear signal which is neccessary to characterize
the different activities.

Sensor displacement can be decomposed into the follow-
ing sub-problems: On-body placement, sensor oriention, and
displacement within a body part [15].

On-body placement describes the different possible body
locations where the device can be carried. Some options can
be the trouser pocket, jacket pocket, bag, at the belt or in a
holster at the shoulder. There are some approaches to handle
these placement variations like methods to recognize the body
part location where the sensor is. For this we analyze the
body constraints and how body parts behave, e.g. a sensor
at the shoulder has a different movement characteristic than
at the wrist. Another approach is to train your classifier for
different body locations. This is realizable if there are not so
many activities and different body locations, otherwise the state
space is getting very large. The recognition of the body part can
also be reached by taking more than one sensor into account
or to choose features which are placement-invariant, but there
are only a few activities which can be recognized in this way.

The sensor orientation is important for detection of ac-
tivities which involve translation in different dimensions, like
taking a stairway, climbing or jumping. This problem could be
solved if the subject performs some easy calibration gestures.
It is also conceivable to measure the acceleration over all axes
to recognize the gravity.

Even at a fixed body position a displacement within this
body part can be possible, like e.g. shifting around while
jogging or movement on a belt. To focus on this displace-
ment occurence, comprehension of the human movements is
required. One approximation is to assume a rigid body model.
By means of this idealization we can describe all movements
through translation and rotation and derive the appropriate
features. During translation all points of the model have the
same speed and thus the accelerometer is location invariant
while the gyroscopes produce no signals. During rotation the
signal of the gyroscope is the same at all points, while the
acceleration differs and is placement dependent. If the motions
are dominated by translations or changes in orientation, the
acceleration features have to be chosen. If they are dominated
by rotation or rotation and translation, the gyroscope provides
stable features.

VI. RESEARCH SUMMARY

Researching the given topic, finding papers, analyzing and
distilling them are significant parts of the wearables seminar.
In this chapter, we give a brief overview of our methodology,
and present some statistics extracted from the papers we read.

A. Methodology

The seminars key point is teaching students to research a
certain topic, find scientific papers on it, and compile them

into a survey. To help with structuring the process, each group
gives biweekly short presentations on their progress. We chose
the following structure for our presentations:

1. Topic Overview: We explain the general activity recog-
nition pipeline and pose some key questions we feel are
important for our remaining research.

2. Feature Types: After briefly touching on features in the
first part, we now give an in-depth look at certain types
and selection methods.

3. Unconventional Sensors: We have noticed a lot of re-
searchers applying IMUs in their work, so we specifically
try to find papers that don’t.

4. Specialization Part 1: To adress some of our previously
posed key questions, we analyze sensor displacement as a
problem, and present a thesis on motif discovery.

5. Part 2 + Summary: We take a look at wearable face
recognition and present some statistics and a short summary
of all talks.

To find relevant papers, we primarily use https://scholar.google.
de/ and http://ieeexplore.ieee.org/. Keywords like human activ-
ity recognition, features, and wearable are enough to yield a
relevant set of papers. For more specialized topics, additional
terms like e.g. sensor displacement and face recognition help
with filtering. In general, we saved all papers we analyzed for
later use. A bibliography database was kept using JabRef [16].

Some key questions we posed during our research:

• Which features are selected for specific activities?
• Which classifiers are selected for a recognition task? (con-

sidered as off-topic later on)
• How precise is recognition of everyday activities?
• Which challenges are addressed by specific features?
• Are there feature sets for specific sensing modalities?

B. Statistics

In the course of the seminar, we analyzed 50 works of
research, of which 46 were scientific papers, two dissertations
and two books. For the purpose of this statistics summary, we
only regard the scientific papers, with the oldest one published
in 1995 (second oldest in 2002).

31 papers presented extractable data, with the points of
interest being types and number of features, types and number
of activities classified, sensor types used and their position, and
any notes on the overall accuracy of the presented recognition
system. Some key points from the data:

• 20 researchers chose an accelerometer or IMU as their main
source of activity data.

• 23 systems use one or more statistical features in time
domain.

• The average number of features used is 127, with 7 feature
sets larger than 100.

• The average number of activities recognized is 7.5, overall
ranging from 1 to 20.

• 19 papers report an overall accuracy of at least one part of
their system of greater than 90%.

Overall, from the data we gathered we can conclude that the
number of features used is increasing, which seems to have an
effect of increased classification accuracy.

https://scholar.google.de/
https://scholar.google.de/
http://ieeexplore.ieee.org/
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Fig. 6. Word clouds: (a) The activities classified by the various recognition system; (b) The sensors used for recording data; (c) The body positions the sensors
are attached to or are positioned at in general.

We summarized parts of the extracted statistics into word
clouds (Fig. 6), clearly showing some of the preferences in
state of the art research in the field. Almost all researchers used
some form of IMU, either attached on the arm, or positioned at
the hip, indicating the use of a smartphone or similar device.
Among the most popular activities that are classified by the
systems are different modes of locomotion, as well as more
recently various household activities.

VII. CONCLUSION

Our research showed that ever since human activity recog-
nition became a field of study, statistical and FFT features are
very prevalent in recognition systems. They constitute most
of the feature sets used when an IMU or similar device is
the main source of activity data and seem to produce the best
results even today. Recently, mobile phones have only added to
this. They are very accessible, integrate all the sensors needed,
and have become powerful enough to even do online feature
extraction and classification in some cases.
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Abstract—This review describes different systems for captur-
ing and modeling the human body posture and body motion. We
present different papers on retrieving body model data from both,
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Additionally some recently developed approaches are discussed.
For the image based methods the HumanEVA data set as a
standardized comparison method is discussed.
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I. INTRODUCTION

Reconstructing the human body from body data has many
applications in science, professional use and consumer oriented
products. These applications include a variety of fields such
as gesture recognition in human machine interaction, motion
capturing for games and movie productions, smart environ-
ments, sport motion analysis and therapy, surveillance and
automotive actions in the context of machine learning [1]. To
be able to reconstruct a body model data has to be captured,
evaluated and translated in a mathematical model of the human
body. In this review we will introduce both image and body-
worn approaches and the underlying mathematical models. We
discuss both full body as well as partial body models, which
focus on specific parts of the body. In chapter X we will
show some recent approaches by Google [2] [3] and Microsoft
Research [4] using radar technology and the Doppler effect
respectively.

A. Rigid Body

Most models introduced and discussed in this review use
an idealization of the human body in terms of a simplified
mathematical construct consisting of rigid body parts with
joints with different degrees of freedom to connect the parts.
By attaching sensor to those body parts or by extracting infor-
mation from image data it is possible to construct mathematical
representations of the human body. As part of this work several
different approaches are introduced and discussed (Figure 1).

II. BODY WORN SYSTEMS

In this chapter we describe systems which utilize inertial
measurement units (IMUs) or similar sensor based approaches
to retrieve spatial information of the human posture. An IMU
is an electronic device consisting of three accelerometers, three
gyroscopes and in some cases three additional magnetometers
and is used to calculate changes in the six degrees of freedom
(translation and rotation in the three dimensions). X-Sense [6]

is a system using a bodysuit with attached sensors is used to
capture the body motion and can be seen as a state-of-the-art
system for capturing body movements and the conversion to a
3D model of the body. The ability to use the sensor data for
modeling the body depends on a calibration step, which often
consists of predefined poses and gestures, allowing the systems
to adjust lengths and distances of different body parts. X-Sense
provides a robust infrastructure for capturing and processing
sensor data and is was the starting point for further research
on systems relying on sensor data.

A. Digits - Wrist-worn gloveless sensor [7]

Our hands and fingers provide a sophisticated interface
for interactions with the physical world. For interactions with
computer systems we mostly still rely on physical contact
when dealing with inputs or instructions towards computer
systems. Digits provides a system, which could reduce the
necessity of physical contact and improve the way people
interact with computer systems. Digits is a wrist-worn system
that senses the full 3D hand pose without off-body sensors or
full instrumentation of the hand. In contrast to data gloves,
which cover the hands completely, Digits does not restrict
natural movement.

1) Hardware setup and data acquisition : The device is
attached to the wrist and is a self contained system with
different sensors providing the needed information (Figure 2).
The infrared laser line projector projects a thin line across
the hand which intersects with the fingers as they are moved,
providing 3D information about the finger position. In addition
to the laser line data an array of infrared LEDs is used to

Fig. 1. [5] Simple body model retrieved from five body worn sensors.



Fig. 2. [7] Digits - system overview

Fig. 3. [7] Background subtraction. A) Active illumination off. B) IR laser and
background IR. C) IR LEDs and background IR. D) Background subtracted
IR LEDs. E) Background subtracted IR laser. F) Finger separation.

illuminate the user’s hand and retrieve the positions of the
fingertips by subtracting the background from the images
from the infrared camera (Figure 3). To increase the accuracy
an IMU is added to the setup and provides additional data for
possible gesture and motion recognition.

2) Kinematic model: As described in the previous section,
Digits has two main sensor systems: laser line infrared sensing
and an array of infrared LEDs. Both system allow separate
models to be constructed. The laser line method utilizes a
forward kinematic model, where the three joints of each finger
are measured and combined with additional information about
the natural constraints of finger movements (Figure 4).

By using the images from the infrared camera Digits is
capable to perform fingertip detection by extracting depth
information from the 2D images. The researchers described
both methods as separate approaches and finally combined the
information from those methods to a new inverse kinematic
model, by building the model from the fingertips.

With a combination of the two methods to a new model the
researchers were able to increase the overall accuracy of the
system and create a more stable and failure proof solution
compared to the systems used in a separate manner. The main
advantage of the whole system is the cost efficiency and a
low algorithmic complexity. Some limitations of the system
occur due to being an mostly image based system (although it
relies on body-worn sensors). Since images can only retrieve
2D information, some gestures could be misinterpreted when
the fingers are crossed or the hand is holding an object which
covers parts of palm and fingers.

B. Wrist contour sensor [8]

One of the main problems in recognition of large body
movements is, that they are not good in recognition of small
body movements (e.g. hand motion). So they developed a wrist
worn device [8] which enable to realize some applications

Fig. 4. [7] Illustration of index finger joints and bones.

Fig. 5. [8] Measurement band with 185mm area, 2.5mm pitch and 75 photo
reflectors. The fixing band assists the attachment of the device.

like remote control of some devices (e.g. home electronics).

1) Components: The device is separated in two parts: the
wrist-watch-type measurement part, and the battery and control
part.

• measurement band (Figure 5)
◦ measurement area: 185mm
◦ measurement pitch: 2.5mm
◦ distance resolution: 0.1mm (3.5mm range)
◦ sampling rate: 10Hz

• photo reflectors (infrared-light distance sensor)
◦ 75 photo reflectors

• wireless module (communication with PC)

• battery

2) Hand recognition process: The measurement band is
divided in two arrays. Each array has 75 photo reflectors. With
the help of the photo reflectors the measurement band can
measure the distance between the band and the surface of the
wrist. Therefore the measurement band measure the changes
of muscle and tendon of the human hand.
Because of small differences among the raw data of hand
classes, feature extraction is essential. So we need two po-
tential feature types: Normalized contour data, because each
muscle and tendon is different in thickness and each sensor
element has different variation range of distance. The feature
process samples the maximum and minimum distance and
normalized distance data to 0 to 1 (Figure 6).
Contour statistics, are the statistics from the data, such as sum
of distances, maximum distance and so on. With the calibration
data the statistics are normalized to overcome slippage or
personal differences.



Fig. 6. [8] An example of normalized data

For the classification the k-Nearest Neighbor method and
AdaBoost method are used.

C. Electromyography

Electromyography is able to measure the potential that
is generated when muscles are activated electrically or
neurotically.
Whilst EMG was used for quite some years in medicine to
analyse disabilities and to track rehab progress, researches
found more ways to integrate EMG. Another UI interface
control Thalmics Myo [9] is based on EMG Measurements.
But for a broader use we will look at EMGs for exoskeletons.
Since muscle structures differ from muscle to muscle and
muscles themselves differ from human to human TU-Berlin
[10] researches focused on building a leg orthosis by just using
EMG on a few muscles in combination with accelerometers
and hall-effect sensors.
A complete model of the knee torque would have had involved
an interplay of 13 muscles, and even more for the complete
leg. For a start researchers picked the two most important
muscles for flexing and extending the knee.

1) Working Principle: EMG measurements are made
by a small linux machine and are being transformed using
EMG-to-force functions, inverse and forward dynamics into
a knee model that is then passed to a motion controller that
moves the actuator accordingly (Figure 7).
The system is even capable to detect intended motion i.e.. a
person might not be able to move his leg on his own, but
unless he is paraplegic, his muscles will still try to move the
leg. This signal can be picked up, boosted and passed. The
actuator will then be able to do, what the leg cant do by its
own.

2) Limitations: The body model created by this procedure
contains legs with feet, shanks, tights and the torso. However

Fig. 7. [10] Electromyography - System overview

body mass, dimension and determination of the measurement
point require input for each individual. Additionally each
orthosis needs to be calibrated for a user.
There is a shift in time for motions, that could be disturbing.

3) Accuracy: The paper does mention an accuracy rate or
4.9 (with an standard-deviation of 5.9 and a maximum error
of 15.4).
However KIT researchers [11] were able to increase the
accuracy of the detection in general by using arrays of EMG
electrodes and Hidden Markov Models. Additionally they were
able to achieve session- and person-independence. EMG stan-
dalone recognition was improved by +25% to 33% accuracy
and EMG measurements combined with IMUs were improved
to 97.8%.

D. Pedalvatar

For a more realistic motion of human action Pedalvatar
[12] is a human skeleton representation with a foot-rooted
kinematic model using IMU sensors.

1) Kinematic model: For the reconstruction of the human
pose they used a forward kinematic model in the tree structure.
The condition to build up a kinematic model is, that at least
one foot must be static. Therefore three cases exists to build
up the model (left foot, right foot or both) (Figure 8).
With the help of orientation matrices, which are given from
the IMU sensors, the model can build up step by step. The
procedure is to consider a component as a parent of another
component of body parts, starting with the foot as the first
parent.

2) State Machine - dynamic root switch: However with this
representation there exists one important problem. While the
human body is in motion the static foot is always changing.
Using the angular velocity of the right / left foot (with the help
of the IMU sensors) the state machine compare the value with
a given threshold and can decide which foot is currently the
root foot of the kinematic model (Figure 9).

E. Limitations of sensor based systems

Sensor based systems provide a variety of methods to
retrieve spatial information about the human body and parts
of it. Since the measured data is almost always tied to specific
parts of the body, the discussed methods fail to provide infor-
mation about the position of the examined body in space. One



Fig. 8. [12] Forward kinematic trees rooted at different feet

Fig. 9. [12] Four cases to decide which foot is the static foot of the model.

limitation is the absence of information about the clearance of
the feet and whether the body has contact with the ground.
In addition, body worn systems can limit the moving ability
of the body (or parts of it) leading to compromised data.
Since sensors and systems build with sensors get smaller with
technical improvements, this factor becomes smaller over time.

III. IMAGE BASED SYSTEMS

In contrast to the sensor based approaches this chapter will
cover image based systems. We will show a generic approach
for generating human body models from image data, both static
images as well as image sequences.
Additionally we will discuss two papers focusing on data sets
for the usage in gesture and activity recognition.

1) Generic Pose Estimation: When creating body models
from images most approaches use a variety of the generic
approach which we will cover in this section.
For image based reconstruction there are different sources
which can be used for construction a model. The data is
either 2D, which is the most common approach, as well as
3D data (added depth information). Furthermore this data can
consist of single (discrete) images for reconstructing a single
body configuration, but also can be a sequence of images with
a fixed or variable frame rate (typically around 30 frames
per second for a off-the-shelf camera). Depending on the
usage of the system, it can either directly extract configuration
information as discussed in the next section, or it can use
given information to predict possible subsequent positions
using stochastic methods, as described later in this chapter.

Fig. 10. [13] The generic approach for reconstructing a body configuration
from image data.

Fig. 11. [13] A set of different body models

The generic approach in Figure 10 uses 2D or 3D vision
data and combines this information with a kinematic body
model, resulting in a 3D pose or motion. It is necessary
to reconstruct voxel data from the images. One possibility
is a shape-from-silhouette reconstruction. To achieve good
results a multi camera setup in combination with background
subtraction could be used. Of course, this proposed method can
be exchanged by any method returning similar results. After
the image data is processed, we need to map the voxel data
and the kinematic model to the body model configuration. This
can be described by the following formula:

M : (Y,C)→ Θ (1)

Y is the voxel data, C the cinematic constraints and Theta the
resulting body configuration.

There are several different body models, displayed in
Figure 11. The top left models are based on a Kinematically
Constrained Gaussian Mixture Model with 27 degrees of
freedom (DOF) for the hand model and 19 DOF for the
body model [14]. To achieve good results, the researchers use
a probabilistic approach using the Expectationmaximization
algorithm [15].
The top right picture [16] shows a body model using Gaussian
clusters to represent the body parts. A skeletal model with
Gaussian Blobs attached to the bones with additional color



information is used to break down complex movements into
basic motion, enabling a real time rendering of the model.
The method is limited to specified set of trained movement
sequences.
The models on the bottom of Figure 11 show a probabilistic
approach using the laplatian eigenspace to perform an estima-
tion of the skeletal and superqaudric parameters. [17]

A. 2D Human Pose Estimation

In the last years the progress of human pose estimation
increased, but current data sets are limited. So the researchers
created a novel benchmark MPII Human Pose [18] and
analysed three approaches for human pose estimation.

1) Data collection: For a wider pallet of challenges they
collected images of human activities with a wider range of
viewpoints (human poses, clothing types, interactions with
various objects, etc).
Also consider YouTube as a data source and collect frames
of human pose in videos. In the data sets are annotated body
joints, 3D viewpoint of head and torso and the position of
eye and nose.

2) Evaluation metrics: After the data collection they used
some common evaluation metrics like the PCP metric, the
self modified PCPm metric and PCKh metric for the state of
art. In combination with the benchmark and the evaluation
metrics they analysed the state of art of four human pose
estimation. For the analysis are two full body approaches and
two upper body approaches considered.

3) Goal: The performance of the human pose approaches
are divided in sub-performance like body pose performance,
activity performance, viewpoint performance, etc. The goal in
this paper was to evaluate the robustness of the four approaches
and get the existing limitations.

B. Real Time 3D Body tracking using VLMMs

Variable Length Markov Models are used to predict and
/ or detect body configurations in frames where body parts
are hidden or not detectable e.g. because of a fast movements,
whilst even saving storage in contrast to traditional Markov
Models. That saving allows the system to operate in real time.

1) Working Principle: The algorithm is based on learned
configurations that are extended by newly recognised features
over time to enhance the detection rate. Once a frame with
a complete body configuration is found, next configuration
candidates (so called motion prior) are predicted and tested
against the next received frame. This configuration will be
learned the algorithm will continue to loop (Figure 12).
Motion prior detection is being accelerated by breaking
down complex movements into elementary motions that are
detected individually. Additionally, applying joint constraints
on rotations can help.

Fig. 12. [16] Visualisation of motion prior candidates

Fig. 13. [19] Human actions as curved in Lie group

2) Results: Although the paper did not mention an accu-
racy rate, it did state that occasional failures could be detected
and be recovered from. A single 2 GHz computer was able to
provide up to 10 fps with a pool of 1000 particles. The body
model was represented by a 25 dimensional vector containing
information about 14 body segments.

C. 3D Skeleton Representation with Lie Groups

For the past several decades human action recognition
has been an important area for application like video games,
robotics, etc. In this paper they developed a representation
with the help of Lie groups [19].

1) Lie group: The new representation models the 3D
geometric relationships between various body parts. For the
modelling of the parts we need rotations and translations in
3D space. These motions are members of the special Euclidean
group SE(3), therefore the representation lies in the Lie group
SE(3) x x SE(3), a curved manifold. Human actions can be
modeled as curves in this Lie group (Figure 13).

2) Skeleton representation: The representation of the hu-
man body is image based by using depth sensor. These sensors
provide 3D depth data of the scene, which offers useful
information to recover 3D human skeletons.
For the representation of the skeleton as a kinematic model we
need the relative 3D geometry between different body parts.
The relative geometry can obtained by using the rotation and
translation of one body part to the position of the other.



Mathematically the rotation and translation in a 3D space are
member of the special Euclidean group SE(3), which is a
matrix Lie group. So we can model each human action as
curves in the Lie group.
A Lie group is a curved manifold because of this property its
difficult to classify curves, which is necessary for the action
recognition. To overcome this situation we map the action
curves of the Lie group to Lie algebra and build up the
kinematic models of the human pose.

D. Evaluation and Comparison

When comparing different pose estimation and tracking
methods, we need a method to evaluate the results and
compare the outcomes. One solution could be a projection of
the estimated 3D body pose to the original image, comparing
the result manually. For motion tracking and motion capturing
methods, it is possible to apply the body model to a virtual
character model and see if the movements appear to be
natural. The problem with those solutions is the lack of direct
comparison to other approaches.
Every methods is evaluated by the researchers using different
types of error measures, e.g. average RMS angular error
on joint angles, normalized error in joint angles, silhouette
overlap to compare the overall accuracy and many more.
The problem with those evaluation measures is the fact that
most of the data is not made public or is very specific to the
method and its application.

1) Human Eva I / II: For this specific set of problems the
Human Eva [20] evaluation system was created. Human Eva
consists of different data sets containing image sequences
from predefined actions in an idealized environment. Human
Eva includes three different sets: training, validation and test,
consisting of different types of actions performed by different
people. It also includes a set of error measures and a base-line
algorithm for comparing algorithms. This common data set
is used to determine which system or method provides the
best results and helps researchers to find better solutions
without the necessity to build complex testing scenarios by
themselves. The captured activities are available as raw image
data as well as motion capturing data.

The setup of Human Eva uses four human subjects in a
defined area with a 4 (Human Eva II) or 7 (Human Eva I)
camera setup (Figure 14). The actions performed by subject
include walking, jogging, throwing, catching, a simple gesture,
a boxing gesture and a combination of all those activities. All
in all, the data set contains 80000 frames and 15 on body data
points. The main focus is to have natural appearance in the
motions, as well as having a fully clothed subject, in contrast to
other evaluations, where an idealized body with tight clothing
is preferred.
The difference between the Human Eva I and II is a simplified
setup with less cameras and a simplified set of actions. The
Human Eva data sets can be used for a variety of evaluations
between different systems and is freely available.

Fig. 14. [20] Human Eva II setup

Fig. 15. [21] Usage of Soli to control volume

IV. RECENT DEVELOPMENTS

A. Google ATAP Project Soli

Google ATAP [2][3][21] has revealed a hand tracking
system based on radar waves on Google I/O 2015. Since
there are no papers or technical documents on Google Soli,
all information is taken from Googles keynote and press
statements. This information might be different by now
(Figure 15).

1) Working principle: A small (smaller than 1cm2, incl.
antennas) System-on-Chip (SoC) emits 60 GHz radar waves
which are then reflected from the user’s hand and registered by
that same SoC. Using machine learning a hand model is being
calculated and passed to any third party connected via IO pins.
In particular Soli uses Doppler images, IQs and spectrograms
to recognise movement, velocity and distance.
Soli speed ranges somewhere between 2000 - 16000 measure-
ments per second. The accuracy is so high, that even the natural
hand shaking that every human does, is registered.



Fig. 16. [4] (a) emitted tone (b) measured frequency shift

2) Usage: Since Soli wants to be understand as a virtual
context control, Google has only revealed information about
gestures that can be detected. These are: dragging, rotating or
clicking a virtual surface, but it is also capable of recognis-
ing hovering, finger crossing, fists and more gestures which
traditional systems typically weren’t able to detect. It is also
notable that Soli can sense through certain materials and thus
could even be placed inside a smartwatch or smartphone.

B. Microsoft Research Soundwave

Microsoft Research [4] has shown a system that is able
to detect in-air gestures using nothing else than a simple
notebook or PC with speakers and a microphone. Although
it is not really able to reconstruct a body model, it can
be used to detecting user presence and small gestures.
Microsoft recommends to combine it with image recognition
to maximise usefulness.

1) Working Principle: The system makes use of the
Doppler effect to detect whether an object (in this case a
human or a hand) is moving towards or away from the PC.
Since the frequency in front of a moving object is higher than
the frequency behind it, the PC is able to detect a frequency
shift. This is done by periodically emitting a high frequency
tone that is reflected on the moving object and received by the
microphone (Figure 16).
Afterwards the software creates a spectrogram by comparing
the emitted tone to the received one. A movement away
from the PC will cause a shift in lower frequencies, whilst a
movement towards it will cause a shift in higher frequencies.
No frequency shift should be measured when no motion is
present.

Combining multiple measurements allows the system to
recognise small gestures like: Two Handed Pull/Push, Pull
Back, Flicks, Quick Taps, Slow Taps.

2) Limitations: The frequency shift would be bigger the
higher the emitted tone is - however, since Microsoft wants
to use normal notebooks, they have to pick a frequency of
18 - 22 kHz to support as many devices as possible. This
frequency is high and infrasonic for most adults, however
children and pets might still be able to hear and be disturbed
by the emitted tone. The system needs a 500ms setup, that
calibrates the emitted tone frequency. The effective range is
limited to approx. 1m.
Using the Doppler recognition while typing might disturb
it and deliver false positives. So the system should be shut

down, while a user is interacting with a keyboard or touchpad.

3) Accuracy: A three user test in two sessions - at home
(approx. 45 dB SPL) and in a cafe (approx. 72 dB SPL) -
with a total of 600 performed gestures, showed a average of
86 - 100% correctly detected gestures. False-positives were not
included in that measurement and ranged between 2.5 to 6 per
minute.

V. CONCLUSION

We discussed different systems and methods to retrieve
body models and body configurations from both sensor and
image data. Both types enable us to capture human postures,
gestures and activities performed by subjects. The more recent
developments show that activity and gesture recognition can
simplify our methods when interacting with computers.
One common problem is the discrepancy between the ideal
environment used by the researchers and the real world. Also
the latency between the action of the subject and their output of
method is a limiting factor for some approaches, since some
applications require low latency. For systems with no such
restrictions, such as sports analysis and motion capturing for
games and films, higher latencies can be tolerated.
With faster and better algorithms, increasing computational
power in embedded devices and new mathematical models,
the human machine interaction can be improved and also lead
to new input paradigms aside from classical hardware such as
keyboards, mice and (touch-)screens.
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Abstract—This paper examines the most influential papers in
the field of wearables and ubiquitous computing of the last 18
years. It discusses the question how this can be measured, and
shows some possible methods to find influential papers in this
field. Furthermore the progresses in this fields are reported.
Mainly discussed papers are focused on privacy, security, context
and context awareness, activity recognition and location detec-
tion.

I. INTRODUCTION

The seminar wearables of the new professorial chair
embedded systems at the university of Freiburg tries to
give an deeper knowledge in the areas of wearables and
ubiquitous computing. Therefore the papers of the main
conferences in this field shall be searched for interesting
papers in different areas. This paper is the final report
of two participants, Martin Dold and Tobias Paxian, of
the seminar. It is the summary due to the investigation in
the progress of the most influential papers of the last 18 years.

In the section II it is discussed how to find a good mea-
surement for influential papers. What are common indices for
papers having an impact to the field of wearable computing
and what can be used due to time limits. The subsection
II-A gives an overview how commonalities of all the selected
papers can be found. To show the progress in the field, the
following four sections are divided into smaller time periods.
Each of this time periods presents papers of two influential
themes at that time. The last section VII gives a conclusion to
all the seen fields.
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II. SELECTION CRITERIA

The authors main task is to analyze the progress in wearable
computing of the time frame 1998 until now by looking at the
following conferences:

1) The International Symposium on Wearable Computers
(ISWC)

2) Ubiquitous Computing (UbiComp)
3) International Conference on Pervasive Computing
4) IEEE International Conference on Pervasive Computing

and Communications (PerCom)

The first three conferences are predefined by project speci-
fication, whereas the last one is added because of interesting
papers found during research.

It is hard to give an exact number of published papers
of all these conferences during the last 18 years, but there
are roughly 1700 papers published during that time frame.
Because of this huge paper flood we are looking for metrics
to select the most influential papers over time.

Here fore, we consider the following metrics at the very
beginning:

1) Best Paper Awards (by ISWC, UbiComp and PerCom):
Elected by a committee of the conference between 2004
and 2014.

2) 10-years impact award (by UbiComp):
Elected by a committee of the conference in 2012 and
2014 taking into account the papers of past 10 years.

3) Citation count of several search engines:
Used as indicator as it tells how many other researchers
referenced to the authors work.

a) Google Scholar
b) CiteSeerX
c) Microsoft Academic Search
d) ACM
e) Web of Knowledge

4) h-index:
Common used metric to rate authors.

5) Impact Factor:
Common used metrics to rate journals.

6) Published by Prof. Dr. Laerhoven:
As founder of the wearable systems seminar this author
very likely writes interesting papers.

7) Own Interests:
With respect to our personal opinions and interests we
add some key words to the search.

Finally, the h-index and the impact factor are excluded from
the selection criteria metrics as these do not fit well into our
topic. As the h-index is calculated per author it is not possible
for us to search for the full list of authors. On the other hand
the impact factor is intended to rate journals, but not papers.

Additionally, the two authors choose an additional theme
as part of personal interest “Security and Privacy” and tries to
follow its evolution over time within this paper. Applying all



these criteria leads to a list of 74 papers to be considered as
influential.

As a summary on this chapter, the following figure 1
provides a graphical overview of the selection criteria.

Fig. 1. Graphical overview of the selection criteria

A. Detecting commonalities

Once the papers are selected, the question arises of how to
detect commonalities between the papers. The authors attempt
to answer this question is stated in the following chapter.

Initially, due to the structure of the course this paper is
attended to and to handle the large number of 74 papers, the
time frame from 1998 to 2014 is divided into four smaller
time periods:

1) year 1998 to 2003
2) year 2004 to 2006
3) year 2007 to 2011
4) year 2012 to 2014
The time periods are chosen such that each of them includes

roughly 18 papers to be considered and to read. Within each
time frame, the abstracts and conclusion chapters of the papers
are read and summarized by key words. On the one hand, the
key words given by the authors themselves are chosen, on the
other hand further key words are added by the authors of this
paper. As a result, each time period is covered by a list of
summarizing key words. Counting the appearance of specific
key words then enables us to give an estimation on what major
topics and technologies discussed in the papers of each period.
Based on this knowledge and aligned with the authors personal
interests, two to four papers of each period are chosen to be
read completely and be presented in more detail.

Accordingly, this paper is divided into the four time frames
too and each of the following chapters covers one time frame.
Analogously to the course, the papers presented in the weekly
sessions are described in more detail in this paper.

III. TIME FRAME 1998 UNTIL 2003

Within this chapter the time period from 1998 to 2003 is
analysed for the topics of context-awareness and privacy. It
is shown that two fundamental papers are published that try
to provide defintions and their general position in the field of
ubiquitous computing for both topics.

It can be seen that at this time frame ubiquitous computing
became more and more popular. In one popular paper aug-
mented reality came in discussion. Additionally it becomes
obvious that the papers are yet 12-17 years old. The papers are
about mobile phones, PDAs and Handheld computers. Nothing
yet about smartphones.

A. Context and Context Awareness

The paper with the most citations, within all time frames is
published at this time period. “Towards a better Understanding
of Context and Context-Awareness” [1] has a total of 4116
citations at the Google Scholar search engine. This paper
claims about the quantity of definitions of context and context-
awareness. To get a better basement and a better comparability
of papers using this terms, the authors give an overview of
what context meant till that time and give a fundamental
definition of context and context-awareness for future papers.

Previous definitions of context were done by enumeration of
examples or by choosing synonyms for context. At that paper
they do it descriptionally:

Definition: context Context is any information that
can be used to characterize the situation of an
entity. An entity is a person, place or object that
is considered relevant to the interaction between
a user and an application, including the user and
applications themselves. [1]

There are four primary categories of context:
• where - location
• who - identity
• what - activity
• when - time

All others are secondary, e.g. phone number or wheather
forecast.

Definition: context-awareness A system is context
aware if it uses context to provide relevant infor-
mation and/or services to the user, where relevancy
depends on the users task.

The authors categorized context-aware applications into
three categories.

• Presentation of information and services to a user.
• Automatic execution of a service.
• Tagging of context to information for later retrieval.
These definitions were the basis for many other papers

writing about context and context-aware applications.

B. Principles of Privacy-Aware Ubiquitous Systems

In the very first time period examined within this paper
there were two papers published by Langheinrich, M. that
are considered to be key milestones in the topics of security
and privacy of ubiquitous computing. This consideration is
acknowledged by the facts that the first one published in 2001
[2] has one of the highest citation counts (744 at Google
Scholar) within the given time frame. Furthermore, it was
awarded with the 10-years impact award by UbiComp in 2011.



The paper “tries to serve as an introductory reading for the in-
terested computer science researcher, especially in the field of
ubiquitous computing. It gives a brief background on privacy
- its history and the issues surrounding it, touches on various
legal implications, and tries to develop a comprehensive set
of guidelines for designing privacy-aware ubiquitous systems”
[2].

With regard to the history of privacy in legislation, the
author identifies the US privacy act of 1974 as one of the
most influential pieces of early privacy legislation by creating
“the notion of fair information practices, a significant policy
development that influenced privacy policies worldwide” [2].
According to the author, a similar influential law was in-
troduced in Europe in 1995 by “Directive 95/46/EC on the
protection of individuals with regard to the processing of
personal data and on the free movement of such data”.

“Following the fair information practices and their recent
enhancements through the enactment of the European Di-
rective, we can identify seven main areas of innovation and
system design that future research in ubiquitous computing
will need to focus on” [2]. In order to discuss approaches of
the privacy principles over time from 1998 to 2014, but to not
mislead the reader, the following paragraph lists the principles
that are discovered, improved or implemented in further papers
only.

The first principle that is named Notice technically deals
with the system of announcement and therefore tries to answer
the questions of what data is collected and for which use case.

In the second section the principle of Anonymity and
Pseudonymity is described. The authors notice that the task of
anonymity is not always feasible in ubiquitous computing with
existing technologies, e.g. the uniqueness of MAC addresses
allows identification of devices through wireless and wired
networks. Furthermore, anonymity (wherever feasible) restricts
applications in some way, e.g. as no authentication is possible.
For such situations, the principle of Pseudonymity is claimed
to be a key concept.

The next principle is summarized as Adequate security
whereas the meaning of “adequate” is most important key
word here. According to the author we must be looking for
secure and authenticated communication channels in general,
but must be aware of situations where this goal is limited
by technical constraints. This applies true in case of small
embedded devices that are typically limited in computation
and battery power. In the time frame of 2004 to 2006 this
topic is recaptured in a later chapter within this paper.

In his second paper [3] published in 2002, Mr. Langheinrich
introduces a proposal to a privacy aware system that underlines
and implements the principles and guidelines presented in
the first paper. One key element in this architecture is the
Personal Privacy Proxy (PPP) that is a cloud application
storing the user defined privacy profile. This profile holds
information about which ubiquitous services a user would
like to enable if offered by a ubiquitous environment. As a
counter-part, a ubiquitous environment holds privacy proxies

for each provided service. In case a user enters the ubiquitous
environment, RFID tags announce Privacy Beacons (PB) that
are received by the users Privacy Assistant (PA), e.g. a PDA.
The PA uses the information given in the PB and triggers
the PPP to automatically negotiate the terms of service in the
background. As a final result, a user may use the ubiquitous
printer offered by the environment, but a ubiquitous camera
or display service is disabled due to profile of the users PPP.

As the principles and guidelines of [2] and [3] are con-
sidered to be fundamental steps in the field of privacy and
security, the authors try to follow their history over the time
period from 1998 to 2014 within the following chapters of this
paper.

IV. TIME FRAME 2004 UNTIL 2006

This chapter discusses the papers published in the time
frame of 2004 to 2006 and thereby provides a closer look
on the aspects of activity recognition and privacy.

At this period it becomes visible that the hardware foorprint
decreases over time. Now the body worn sensors are discussed
as well as the activity recognition which is only possible
because of increasing CPU-speed.

A. Activity Recognition

At this time period activity recognition is mentioned most
often. The paper “Activity recognition from user-annotated
acceleration data” [4] is with its 1679 citations in Google
Scholar the most cited paper at that time frame. Additionally
it won the 10-years impact award in 2014 at the UbiComp
conference.

At this paper it is tried to recognize activities under
semi-naturalistic conditions. Only semi-naturalistic because
20 everyday activities are given in different categories but
the recognition weren’t supervised and not in a laboratory.
Furthermore it is not asked directly like use the web to find out
what the world’s largest city in terms of population is instead
of work on a computer. To finally know which activities were
done at which time frame, the algorithms are trained only by
user labeled data.

Till that paper, the most approaches to recognize activities
were done in a laboratory. Normally supervised and done with
a very small activity set.

The collected data is based on acceleration data, collected
with five biaxial accelerometers. The 120g sensor boards
are attached to hip, wrist, arm ankle and tight. With 20 test
persons and two 90 minute training sessions they used three
different protocols. The first one trained the algorithm only
on the first session data and tested the algorithm with the
second session of the same person. Here the overall results
were about 74% accuracy. The second one was trained with
all subjects except one and tested at the one person left. Here
the overall accuracy was about 85%. In addition to that they
tried out which sensor-positions are the most important ones.
There they showed that only with the two sensors tigh and
wrist recognition rates 3.3% less than with all sensors are



possible.

A totally different approach in recognizing activities
presents: Activity Recognition in the Home using simple
and ubiquitous sensors [5]. It is 910 times cited at Google
Scholar and won the 10-years impact award at the UbiComp
conference 2014 as well.

In that paper the authors try to recognize activities due to
devices used at home. For example using the dish washer
means that probably before someone has eaten something and
is now cleaning the kitchen. Or by flushing the toilet it is
obvious that someone has used it before.

B. Security and privacy aspects of RFID and embedded in-
ternet

Two technologies supporting the ubiquitous computing are
analysed and improved regarding security concerns within
this time frame.

Firstly, the paper “Security and Privacy Aspects of Low-
Cost Radio Frequency Identification Systems” [6] analyses
the RFID technology for technical, economical and security-
relevant aspects. Being cited by 1588 other papers (according
to Google Scholar), it has the second highest citation count
within this time period.

At the time of publication in 2004, RFID tag costs are
in the US0.50 − US1.00 range [6]. “To achieve significant
consumer market penetration RF tags will need to be priced
in the US0.05 − US0.10 range [. . . ]. At this price range,
providing strong cryptographic primitives is currently not a
realistic option.” [6]. This argument is underlined by the
fact, that “Hardware implementations of symmetric encryption
algorithms like AES typically have on the order of 20,000-
30,000 gates” [6] whereas “a practical US$0.05 design [. . . ]
may be limited to hundreds of bits of storage, roughly 500-
5,000 gates” [6].

The authors try to overcome this economical gap by
introducing more lightweight cryptographic solutions that
fit to RFID with regard to the wireless technology as such
and to hardware footprint as well. The proposed solution is
a basic security scheme based on one-way hash functions.
Furthermore, two enhancements on the basic algorithm are
provided, whereas one of them even serves as improved
anti-collision scheme. From a technological point of view,
this paper enhances the proposed privacy-aware solution [3]
of using RFID tags for the principle of Notice. Furthermore,
it addresses the principle of Adequate security by showing
the technological upper bound of 2004, but also fulfilling it
by combining feasible algorithms.

Secondly, the paper “Sizzle: A standards-based end-to-end
security architecture for the embedded Internet” [7] published
in 2005 presents a technological milestone in the field of
embedded internet in security aspects. The committee of
UbiComp shared the same understanding as it was awarded
with Mark Weiser Best Paper Award in in the same year.

The researchers from MIT successfully ported a fully-
featured secure webserver on embedded platforms like the
Berkeley/Crossbow family (e.g. Mica2dot, Mica2 and MicaZ)
that include Atmel 8-bit micrcontrollers with down to 4 MHz
processing power. The key leading achievement is that the
webserver implements the TLSv1.0 protocol and thus offers
HTTPS service. Therefore, this paper proofs the feasibility of
embedding strong cryptographic algorithms and protocols on
hardware and processing power limited platforms, e.g. with
less than 50 kByte of flash memory and 4 kByte of RAM.
This opens a new perspective in the field of embedded internet
as it will allow further ubiquitous services running even on
tiny microcontrollers but still allowing strong encryption and
authentication methods. With respect to Mr. Langheinrichs
principles of privacy [2], this paper addresses the principle
of Adequate security such that it enlarges the set of feasible
security algorithms for ubiquitous devices.

V. TIME FRAME 2007 UNTIL 2011

This chapter summarizes the influential papers published
within the time frame of 2007 to 2011 whereas the topics of
event recognition and privacy are emphasized.

A. Electrical Event Detection

How to sense through an existing infrastructure in a home.
“At the flick of a switch: Detecting and classifying unique elec-
trical events on the residential power line” [8] tries to answer
this question. It has a high Google Scholar citation count for
this time period of 295. Prior works tried to use the plumbing
infrastructure to infer basic activities via microphones. Others
tried to localize subjects indoor via the residential power
line. This work not only tries to localize persons indoor, but
also tries to sense which electrical powerline device is used
actually.

Applications for this can be seen in the section of energy
monitoring, by logging which devices are switched on for
how long. Other applications could be home automation, if
someone switches the light on in a room, the settings of the
room can be adjusted, such as music or temperature. Even
healthcare for elder people can be a point, by studying the
everyday activities of a person. This can be used to recognize
variation in the activities and could be a good indicator for
diseases like Alzheimer.

For sensing through existing infrastructure, for each home
only one single powerline plug-in-sensor is needed. The sensor
consists of an custom powerline interface, an USB Data
Acquisition Oscilloscope and a Laptop to record and evaluate
all the events. The Dual Input Oscilloscope is bandpass filtered
and has a sampling rate of 100 million samples per second.

The task then was to classify electrical noise. It can be
differentiated between resistive loads and inductive laods.
Resistive loads are a transient noise pulse when for example
a light is turned on or off. Inductive loads on the other hand
are from either mechanical switching like from a motor which
produces continuous noise signal until it is turned off, or from
solid state switching like from a power supply for Personal



Computers. It is extremely difficult to predict the transient
noise - therefore the algorithm is trained with about 80 events
in each of the six homes.

The overall results show that between 85% and 95% of
all events can be classified correctly. But it is important to
train the algorithm several times during the testing period of
several weeks. Several limits for the event detection are finally
discussed. Firstly it is difficult to detect all events in industrial
sizes. If the building becomes too big, more precisely if the
power line length becomes to long, the signals are too weak
to detect them all with only one sensor. On the other hand
compounded events are difficult to learn and similar events
which are close to each other in the sense of same power line
length are difficult to differentiate as well.

B. Inference attacks on GPS location tracks

With regards to the topics of security and privacy an
interesting and influencing paper [9] was published by Krumm,
J. in 2007 called ”Inference attacks on location tracks”. At the
time of writing this paper its citation count at Google Scholar
search engine is 331 and is thereby the highest citation count
within the given time frame from 2007 to 2011. Target of
the paper was to quantify the risk of such attacks based on
measured GPS data points. In order to do so, the authors did a
user study including 172 individuals that provided their home
location and identity at start up to compare the later results.
GPS receivers were installed in the cars of the volunteers,
recording GPS data points in a median interval of 6 seconds
and 64.4 meters. After two weeks of recording the authors then
analysed the data set using different techniques in a stepwise
approach. Furthermore, an investigation on countermeasures
to the inference attacks is done and several countermeasures
are analysed too.
The first task of the stepwise approach was determining the
home location out of the timestamped GPS data traces. Four
different inference algorithms were used on the data set where
each of them returns a single GPS coordinate as a guess of
the subjects home. These are namely:

1) Last destination: This algorithm is based on the heuristic
that the last destination of the day is often a subjects
home.

2) Weighted median: Here, it is assumed that the subject
spends more time at home than at any other location and
therefore each coordinate in the survey is weighted by
the dwell time at that point.

3) Largest cluster: This heuristic assumes that most of a
subjects coordinates will be at home.

4) Best time: It learns a distribution over time giving the
probability that the subject is at home.

As an intermediate result, the authors showed that the first
three algorithms guess roughly 11 percent of the subjects
homes correctly, whereas only 3.5 percent of the returned data
by the Best time algorithm is correct.

In a second step, the home locations (returned as GPS data
points in the first step) are passed to the Windows Live Search
engine in order to identify the volunteers name and address.

As an overall result of both steps, a total of roughly 5
percent of the subjects identities are analysed correctly using
the Last destination, Weighted median and Largest cluster
algorithm in the first step. In case of Best time algorithm a total
percentage of only 1,2 percent of the subjects are identified
correctly.

The authors analyse three key problems as reason for the
comparably small number of correct results. Firstly, the data
given by the GPS receivers are claimed to be inaccurate such
that the inference algorithms would perform better in case of
more data sets with higher resolution. Secondly, the database
that is used in the second step of reverse geocoding might
be outdated and/or inaccurate as well. The third argument is
the behaviour of the subjects itself as the parking locations of
the cars distant from home locations. This argument becomes
even stronger in case a car is parked to multiunit buildings
that enlarges the set of possible identities living in this area.

Based on the experience gained in the observation, the
following three countermeasures are presented:

1) Spatial cloaking: A circle of radius r is chosen around
the subjects home location and all GPS data points
within this circle are deleted.

2) Noise: Adding Gaussian noise with 50 meter standard
deviation.

3) Rounding: Each point is snapped to nearest point on a
50x50 meter grid.

The authors “are trying to find how much we have to corrupt
the GPS data for the three countermeasures to significantly
reduce the number of correct address inferences” [9]. As a
final result it is shown that the radius r of the Spatial cloaking
must be chosen to 2000m in order to drop the number of
correct addresses to zero. For the Noise and the Rounding, a
standard deviation and a discretization of 5000m is required
to get the same result.

Linking this paper to the principles of privacy [2] it can be
seen as a further improvement and field study regarding the
principle of Anonymity and Pseudonymity.

VI. TIME FRAME 20012 UNTIL 2014

This section analyses the last time period of 2012 to 2014. It
is shown that the topic of security is still of note by presenting
a solution on secure bootstrapping of ubiquitous displays. On
the other hand, a hardware and prototyping relevant papers is
shown that discusses the new research field of circuit printing.

A. Instant Inkjet Circuits

2013 UbiComp honours the paper “Instant Inkjet Circuits:
Lab-based Inkjet Printing to Support Rapid Prototyping of
UbiComp Devices” [10] with a best paper award. It was 42
times cited according to Google Scholar, which is quite high
for a paper less than two years old. For that time frame it was
additionally the second highest citation count within that time
frame. The paper shows a cheap way to print circuits with a
cheap inkjet printer. The same professorship even opened an



actual kick-starter project1 which is funded with more than
80.000$ yet.

Until that approach inkjet circuit printing was only possible
with expensive printers priced several tens of thousands of
dollars. Furthermore a sintering process at more than 150
degrees for several hours is necessary. Another way to get a
circuit relatively fast and convenient are Printed Circuit Boards
(PCB) milling machines. They need about one hour, but
have a noisy and messy production process. Milling flexible
substrates was quite difficult. Vinyl cutting machines are a
third possibility. They have a cheap initial investment of round
about 200$ plus 10$ per meter for the film. But it is relatively
time consuming and thin traces can easily break.

The scientists used an printer manufactured by Brother Co
because they have nozzles which eject higher volumes of ink
and leave therefore a greater amount of conductive ink on
the paper. They used the printer Brother DCP-J140w, for 77$,
because it was the least expensive model available on amazon
at that time. In addition they bought empty cartridges for 9$
and silver nanoparticles ink. The nanoparticles were smaller
than 0.1 micrometer, throughout experimentation they found
out that the Mitsubishi Paper Mill ink were the best for their
purposes. It costs 50$ per m2, or 5 Cent per meter for a 1mm
wide trace.

The circuits are printed best to chemically coated paper to
absorb ink effectively and prevent smearing. The surface has to
be rough to establish nano-scale conductive structures. Glossy
photo paper worked fine for that. Transparent or white PET
(polyester) film from Mitsubishi Paper Mill is used as well. To
get the most possible ink on the surface the ink is loaded in all
of the CMYK cartridge positions. Printer settings are adjusted
to best print quality, color mode vivid and color density is set
to +2. Line thickness down to 0.25 mm are still evaluate good
results with these settings.

Connecting components with a soldering process is unsat-
isfactory due to temperature. Due to that two solutions are
presented. Conductive tapes allow interconnection between
substrates through the adhesive thickness (z-axis). It is strong
enough for most prototyping issues, but if a stronger connec-
tion is needed, the use of silver epoxy is suggested.

It looks very promising for developers to print their own
circuits at home easy, cheap and fast. To get this work even
more easy the Kickstarter project were launched.

B. Secure Bootstrap of Ubiquitous displays

In the last time period from 2012 to 2014 the field of
security is addressed by the paper “Secure Bootstrapping of
Cloud-Managed Ubiquitous Displays” published by Sethi, M.
et al. published in 2014 [11]. At the time of writing this
paper, the citation count at Google Scholar was still 0, but the
potential influence is shown by the Best Paper Award given
in 2014. The paper can be grouped into four different items
that are stated in the following section.

1https://www.kickstarter.com/projects/1597902824/agic-print-printing-
circuit-boards-with-home-print

Firstly, the authors provide an analysis of the current tech-
nological status on the initial setup of an ubiquitous display
and thereby define the key problems to deal with. In particular,
the problem is described as a two-phase configuration of the
device: In a first step, the device must be configured to access
a network that provides access to the internet. E.g. in case
of Wireless-LAN (that is expected to be one of the most
common used networks) the device must be configured to join
a specific WLAN SSID and the matching password must be
entered. In a second step, once access to the internet is granted,
authentication to a cloud service is required that is typically
done by some user name and password as well. Generally
speaking, an user input is required whereas an user may be
any technician or non-technician that shall power up the device
for the very first time. The problem here results in the fact
that many of the displays have very limited or even no input
capabilities. Furthermore, when considering the large number
of expected ubiquitous displays, it appears reasonable to look
for a fast bootstrap solution that requires less user-interaction.

Therefore, the authors offer a solution architecture on secure
bootstrapping that requires no input capabilities on the devices
at all. Key element of the proposed solution is to display a QR-
code on the device screen after power up, that can be scanned
by the user. The QR holds default information about the device
e.g. a (manufacturer) specific ID, an URL to automatically
connect to and a random number that is generated new after
each power up. From a security point of view, a standard
Diffie-Hellmann key exchange between the cloud service and
the device is performed whereas the random number is used
as out-of-band channel authentication within this process. The
authors successfully managed to combine different state-of-
the-art technologies into their solution such as WPA-EAP and
RADIUS with respect to security and HTML5/CSS3 to bring
any content to the display.

In a third step, the authors setup a prototype of their
proposed solution and even include a user study using this
prototype. Main output of this study is that the users (a
mix of technicians and non-technicians/inexperienced) felt like
they actually did “nothing” to securely boot up the device.
One may follow from this fact, that the proposed solution is
somewhat bullet-proof as even unexperienced user can handle
it. Moreover, the authors emphasize that the solution is even
working for other devices like printers, RFID-tags, speakers
etc. Generally speaking, it works for any device type that can
display the content of the QR code to the user.

Mapping this paper to any principle of privacy-aware sys-
tems [2] appears to be impossible as it addresses a topic that is
actually not covered by [2] or [3]. Nevertheless, it can be seen
as an approach in supporting the migration of large ubiquitous
systems that is not considered by Mr. Langheinrich yet.

VII. CONCLUSION

Target of this paper is to examine the most influential papers
in wearable and ubiquitous computing over the last 18 years
from 1998 up to now. To do so, we evaluated different types
of metrics on quantifying the potential influence of papers.



Additionally, a reasonable set of selection criteria was chosen
to handle the paper flood of roughly 1700 papers published
within the past years. With respect to the personal interests,
privacy and security was added to the key words of the
selection criteria.

In the research field of privacy and security, it is shown
that the papers of Mr. Langheinrich ([2] and [3]) defined
principles and guidelines of privacy aware systems for the first
time. Therefore, the influence of the papers to this research
area is considered very high. Apparently, this understanding
is not only true for the authors of this paper, but also for
the committee of UbiComp conference, that recognized Mr.
Langheinrichs studies with the 10-years impact award. In the
following, the authors study and present further papers of
the privacy topic. Each of these papers is mapped to the
privacy principles and their improvement for the specific field
is determined. In detail, it is shown that major steps are
done in 2004 ([6]) and in 2005 ([7]) to improve the meaning
of Adequate security principle and to lift the upper bound
limits of security implementations in hardware and software.
In 2007, [9] analyzed and showed the danger of inference
attacks on GPS location tracks and provides countermeasures
to protect the users identity and thereby its privacy. In the last
time period, the paper [11] even goes beyond the scope of the
privacy principles by presenting a fast and secure bootstrap
mechanism that improves the migration process such that
migrating a large number ubiquitous devices appears to be
realizable.

The terms “context” and “context awareness” needed a
general definition other papers could use. That’s the reason
why “Towards a better Understanding of Context and Context-
Awareness” [1] got the highest citation count at all.

Other topics like activity recognition became more relevant
due to decreased hardware footprint around the year 2004.
Furthermore “Activity recognition from user-annotated accel-
eration data” [4] tried out a new approach how to record data
in circumstances as naturalistic as possible.

A new idea how to detect events was reported in 2007.
“At the flick of a switch: Detecting and classifying unique
electrical events on the residential power line” [8] tried out
to detect events using the yet implemented infrastructure of a
house.

“Instant Inkjet Circuits: Lab-based Inkjet Printing to
Support Rapid Prototyping of UbiComp Devices” [10] won a
best paper award with a cheap approach to print circuits.

In general it can be said, papers with new ideas are cited
most. If they are the first ones to write down the approach in
an “easy to read” paper. Let’s be curious where the research
field will develop in the next decades.

REFERENCES

[1] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of
Context and Context-Awareness,” Computing Systems, vol. 40, no. 3,
pp. 304–307, 1999.

[2] M. Langheinrich, “Privacy by designprinciples of privacy-aware ubiq-
uitous systems,” Ubicomp 2001: Ubiquitous Computing, pp. 273–291,
2001. [Online]. Available: http://link.springer.com/chapter/10.1007/3-
540-45427-6 23

[3] ——, “A privacy awareness system for ubiquitous computing environ-
ments,” UbiComp 2002: Ubiquitous Computing, pp. 237–245, 2002.

[4] L. Bao and S. S. Intille, “Activity Recognition from User-Annotated
Acceleration Data,” Pervasive Computing, pp. 1 – 17, 2004. [Online].
Available: http://www.springerlink.com/content/9aqflyk4f47khyjd

[5] E. M. Tapia, S. S. Intille, and K. Larson, “Activity Recognition in the
Home Using Simple and Ubiquitous Sensors,” Pervasive Computing,
vol. 3001, pp. 158–175, 2004.

[6] S. Weis, S. Sarma, and R. Rivest, “Security and privacy aspects
of low-cost radio frequency identification systems,” Security in
pervasive computing, pp. 201–212, 2004. [Online]. Available:
http://www.springerlink.com/index/YVMFPKWC9NQ6HQDW.pdf

[7] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle,
and S. Chang Shantz, “Sizzle: A standards-based end-to-end security
architecture for the embedded Internet,” in Pervasive and Mobile Com-
puting, vol. 1, no. 4, 2005, pp. 425–445.

[8] S. N. Patel, T. Robertson, J. A. Kientz, M. S. Reynolds, and G. D.
Abowd, “At the Flick of a Switch : Detecting and Classifying Unique
Electrical Events on the Residential Power Line,” UbiComp, pp. 271–
288, 2007.

[9] J. Krumm, “Inference Attacks on Location Tracks,” Pervasive
Computing, vol. 10, no. Pervasive, pp. 127–143, 2007. [Online].
Available: http://www.springerlink.com/index/TG64551RW2716103.pdf
http://research.microsoft.com/en-us/um/people/jckrumm/publications
2007/inference attack refined02 distribute.pdf

[10] Y. Kawahara, S. Hodges, B. S. Cook, C. Zhang, G. D. Abowd, and
G. D. A. Yoshihiro Kawahara, Steve Hodges , Benjamin S. Cook ,
Cheng Zhang, “Instant Inkjet Circuits: Lab-based Inkjet Printing to
Support,” Proceedings of the ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pp. 363–372, 2013. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2493432.2493486

[11] M. Sethi, E. Oat, M. D. Francesco, and T. Aura, “Secure Bootstrapping
of Cloud-Managed Ubiquitous Displays,” 2014.



Wetlab Support Systems
Florian Wolling

Faculty of Engineering
University of Freiburg

Georges-Köhler-Allee 101
79110 Freiburg, Germany

wollingf@tf.uni-freiburg.de

Jan Donath
Faculty of Engineering
University of Freiburg

Georges-Köhler-Allee 101
79110 Freiburg, Germany

donathj@informatik.uni-freiburg.de

Johannes Güttler
Faculty of Engineering
University of Freiburg

Georges-Köhler-Allee 101
79110 Freiburg, Germany

guettlerj@informatik.uni-freiburg.de

Abstract—Wetlabs in general are not known to be a place of using
supportive systems so far. Having a look at a wetlab environment
may reveal that most of the work is done the same way for
years. Using notebooks to document every step by hand, taking
materials to evaluate them later and so on.
This report shows how we found papers dealing with different
stages of experiments in wetlabs and whole laboratory setups.
Furthermore we have a closer look to what a wetlab environment
consists of, what kind of supportive systems have been developed
within the last years, why they are used or why not and which
general problems occur.
To evaluate this topic we used the most common search engines
that are addressed to fields where wetlabs are established.
We present sample implementations of supportive systems devel-
oped for the use in wetlabs and biological laboratories, state their
advantages and disadvantages and how the users accept them.
Index Terms—Wetlab support, biology, laboratory, bench, hard-
ware, preparation, documentation, collaboration, automation

INTRODUCTION

Initially, no member of our group had any or only few
experience of working in a wetlab environment. We had a
rough idea of how wearable and embedded devices could be of
use within this setting. So our first step was to inform ourselves
about what wetlabs exactly are. This research included what
materials are used, the workflow of experiments and which
problems may be caused by using devices and especially
computers with user interfaces in a laboratory environment.
Here we sketched our first questions what problems and
conditions have to be considered.
Afterwards we had another closer look on the initially sug-
gested papers about the eLabBench [1] and the Labscape [2]
where two exemplary environments where presented. We
also recognized that these papers reference papers describing
fundamentals of wetlab work and additional information. So
we decided to have a look on the references whether they could
be of use to get information about more supportive systems.

RESEARCH

Finding work about supportive systems to be used and being
tested in a wetlab environment was a challenge. The first
source for our research was Google Scholar [3]. The main
reason for this choice was the amount of available papers in the
database and the availability of not only one certain category.
So we were able to collect papers from chemical conferences
as well as from those specialized in wearable computing.

We also considered search engines bound to a certain field
where wetlabs or wearable devices are likely to be used. Those
engines consisted of:

• IEEE Xplore [4]
• PubMed / NCBI [5]
• ScienceDirect [6]
• Berkeley OskiCat [7]

But searching for work using the keyword ’wetlab’ mostly
presented results about work that has been done within wetlabs
or descriptions about new approaches on how to do a certain
experiment. Even the number of hits when searching for
wetlabs was way too high to be a use for further research.
Google Scholar had a result count of about 15,000. And even
with a refinement using keywords like ’smart’ and ’support’
the number of hits only decreased down to about 9,000.
Also referencing other engines gave us a big amount of hits but
with different emphases. So we checked different papers from
all the engines but recognized that topics concerning wetlab
supportive systems were not common.
But after all, this gave us a broad view about all the different
sections concerning work in wetlabs. This resulted in a clas-
sification of subtopics where we thought it might be a benefit
to have a closer look onto small areas instead of wetlab setups
as a whole. We identified the following items within a wetlab:

• Preparation
• Hardware
• Analysis
• Documentation
• Collaboration

Using a separation like this resulted in more specific results
with a manageable amount of papers per topic. Including all
items we started with a selection of 19 papers from various
conferences. Here, the topics about whole setups and hardware
were the ones with the highest count of matching papers.
Finding papers about documentation and analysis was a way
more complicated because most of the papers we found
dealed with documentation or analysis in general and were
not referenced to the use especially in wetlabs.
The most difficult parts to find any sources for were collabora-
tion and preparation. The main reason is that these topics are
seen as standalone systems not directly referenced to wetlab
usage or being part of a whole setup.



Figure 1. Example of existing support system: Pipettor robot ’Andrew’ [8].

HARDWARE

There are many suggestions for supporting hardware in wet-
labs. Mostly it is part of a bigger support system. This chapter
deals with existing and commonly used supportive systems as
well as with approaches using stationary, portable or wearable
devices.

Existing Hardware

Big labs often use general support systems like conveyor
belts which we will not describe here because they were
not designed for this purpose. Other systems for big labs
are decappers, centrifuges with automated loading, analysers,
pipettors and so on.
A very common system for biology and medical labs is an
automated PCR (polymerase-chain-reaction) which is used to
duplicate gene-fragments. The System is very simple to use
and saves the laboratory worker from losing a lot of time by
doing the PCR manually. Other important devices are real-
time-analysers, for example for blood-gas analysis, which are
not only used in labs but also in operation rooms.

Portable and Wearable Devices

The will to document research during the work in laboratories
in contrast to doing all the documentation afterwards in the
office leads to using not only lab-notebooks but also laptops
and tablets if applicable. The big disadvantage of these devices
is that one not only could contaminate the device and take the
contamination out of the lab. But as the device often does not
stay in the lab, it might bring contamination into the lab and
messes up the experiment [1]. Thus all portable devices should
never leave the laboratory.
To reduce physical interaction with devices it might be reason-
able to use wearables for tasks where the user does not want
to use non-stationary device [9]. In [10] the use of Google
Glass in biological laboratories is studied, setting focus on

Figure 2. Laboratory setup of the eLabBench [1].

the support for novice researchers. The new scientists could
display experiment instructions and partially use hands-free
interaction with Glass. Nevertheless for some tasks touch-
input is necessary which reduces the field of application
for these features to low-risk laboratories. A combination of
wearable devices is suggested in [9]. Here the authors present
a combination of a head mounted display, a Smart Watch to
measure the acceleration and a RFID reader worn under a
glove to support not only the documentation process but also
to enable the researcher to access previously recorded data.

Stationary Devices
We found two main approaches to support laboratory workers
with stationary systems. One is to rarely modify the working
environment and to coexist beside the existing workflow. The
other one is to integrate the whole workflow into the system.
An example for the first is the Labscape environment [2]. In
the described setting a workplace of a researcher is equipped
with a touchscreen along with a mouse and a keyboard.
For some tasks it could be useful to have a barcode- or
RFID-scanner. Because the work often takes place in different
places within the lab, several workstations are distributed
over the whole possible working area.
Another approach for a stationary system is the
eLabBench [1], a big touch-display replacing the labbench
and supplying some features to the user. Running a Microsoft
Windows system, the user can use all kinds of Windows
applications besides the eLabBench software. For the input
it is equipped with a pen for the touch-screen besides the
common mouse and keyboard-input. In this way the user
has the possibility to scribble notes directly on the screen.
Another feature of the system is a camera targeting the
bench’s surface. A big photocapture button allows the user to
use the camera hands-free if necessary.

DOCUMENTATION

Every experiment, no matter if it has a biological topic or
not, is in vain without a proper documentation. The effort to



produce meaningful results is for nothing if the documentation
can not show the consequential aspects and the reviewers can
not follow and reproduce the experiment.
In a classic experimental workflow, documentation is the
final stage after the actual experiment which is introduced
by a preparation. A traditional documentation is manually
written in natural language. This leads to a high influence of
subjectivity and uncertainties. Usually the final documentation
is transcribed from a bunch of working documents and notes
to a lab book several days after the actual experiment took
place. To publish the argumentation, these documents are
extracted again. Thereby in every stage details are omitted
according to the transcribing process and the repeatability and
confirmability gets worse. [2, p. 18-19]
According to a "shift from an analytical natural science to
a design or engineering science" [1, p. 1], biological science
now handles with projects that mainly consist of a loop
where a product is improved until it meets the predefined
requirements. In each round of such a loop and also in each
similar type of experiment, standard procedures are executed
that do not differ and do not need to be described repeatedly
in every documentation. Only the differences between the
common standard and the chosen way need to be described.
In some cases scientists also tend to produce too much text
and overhead for only small improvement which would simply
require an annotation. Thus a reduction of information helps
to focus on the important adjustments.
In all mentioned cases a supported workflow in combination
with a supported, formalized documentation can help to ex-
tract, to manage and to provide the essential information.

Supported Workflow

The principle of a supported workflow integrates the documen-
tation into the preparation and execution stages of a traditional
workflow. It intends to lower the barrier between office and
laboratory area and to make the documentation process more
incidental and parallel to procedural work.
Therefore the laboratory needs to be equipped and upgraded,
as stated in the previous section. The experimental procedures
and the documentation as well need to be at least partly
automated so that the scientist is not distracted of the scientific
process and is allowed to concentrate on scheduling and the
information management. While the automation of standard
procedures is already common, even in smaller laboratories,
an appropriately automated documentation needs libraries of
definitions and documentation fragments. On the one hand
these information can be provided by the manufacturer of a
device. The hardware then represents a closed procedure with
certain parameters. On the other hand modified, self-developed
or manual procedures can be documented and shared by
scientists in a social network. These networks are one kind
of collaboration that is stated later on.

Formalized Documentation

For formalized documentation standard interchange languages
and data formats are used to archive information. It is not

Figure 3. From textual protocols to COW formalized documentation [11].

needed to manually code, the files are automatically generated
by appropriate devices that are connected in a network.
The documentation consists of two levels. The first level
contains all collected information, even procedural data like
ambient temperature, in a form that allows machines to
automatically process it or just to repeat the experiment.
These information are not of direct use for scientists but
allow e.g. to reconstruct the ambient conditions and to find
causes of failures. The second level above packs the directly
relevant information in a human-readable form and is used for
reviewing and as a source of inspiration for further research.
If possible the information is illustrated in diagrams, graphics
or photos but if this is not possible or reasonable it bases on
written language, comparable to natural text. Nevertheless it
reduces the overhead compared to manually written reports.
There are two types of work that are formalized using two
different strategies. On the one hand there are individual
operations, called entities, that are defined in an ontology.
On the other hand there are manual or automated procedures
that are combined in a workflow. A third and new approach
combines these strategies to design formal protocols, called
Combining Ontologies with Workflows (COW). [11]

Ontology Strategy

Ontologies describe single entities, individual operations. They
are hierarchically set up and based on actions that lead to
defined goals. Their simplified structure automatically reduces
ambiguity and redundancy of human-written reports and al-
lows computers to detect structural or logical errors and also
allows automated reasoning. [11]

Workflow Strategy

Workflows are a flows of instructions in a receipe style. They
contain a set of activities that are combined by an execu-
tion controller. The controller allows sequences, parallelism,
choices and synchronization of its entities. [11]

Combining Ontologies with Workflows

Figure 3 shows an illustration of how the combination of
ontology and workflow strategy (COW) works. A textual
protocol is filled with connecting words that do not contain
any important information but allow a fluently reading by



Figure 4. Human-mounted hardware for User-Expert Collaboration [12].

humans. Ontologies break these connections up and just define
objects, quantities and relations or actions that lead to a certain
goal. COW then uses the resulting ontologies as entities of a
workflow to provide a step-by-step schedule.
COW is a logical consequence regarding to both strategies
in global and not only each one out of its point of view.
It allows the reuse of ontologies or even workflow bricks
or templates that can be shared over social media and other
collaborative networks. This minimizes the preparation and
reduces the time to start with the actual experiments. The
formalization and additional highlighting of critical steps helps
the user to focus on important information and helps to
avoid reinventions by just automatically checking equalities
of projects. But to develope the ontologies for a futur use in
workflows is labour intensive and together with an upgrade
of the laboratory equipment it is expensive. The generated
reports are uninspiring and beside a high page amount they
contain a lot of white space. Especially loops or more complex
constructs are not readable by humans anymore. [11]

COLLABORATION

Finding references to collaboration tools or hardware was
not that successful. It is common to use systems like Skype,
Dropbox or versioning systems to communicate and share files
with each other.
But also these approaches have some withdraws. Talk to each
other, getting help or guidance while doing an experiment is
not that comfortable.
Using laptops to be guided or to demonstrate is circuitous
because it may be rearranged when changing the view or the
working place.

User-Expert Collaboration

That is a circumstance which Kurata, Takeshi, et al. wanted
to improve by introducing their shoulder-worn active cam-
era/laser [12]. It is worn on the body and project the view of
the experimentalist to another person. The setup consists of a
camera, a freely rotatable laser mounted to the shoulder of the
user in the lab, a microphone and headphone to communicate
with each other. The remote person is able to rotate the laser
and use it to point to things or places. Even the camera is

rotatable so that the remote user is able even to look elsewhere
than the experimentalist.
Another implementation to antagonize the lack of collabo-
ration within a laboratory environment consists of a head-
mounted display, camera, microphone and headphones. Even
here the remote person is able to get the view of the experi-
mentalist and both are able to speak to each other. The display
is used to show images to the experimentalist. These can be
images captured by the camera and anotated by the remote
person or images showing additional information or sketches.
Both implementations are meant to be used productively in
lab environments. But both need time to get used to it or are
extinguished as too uncomfortable.
By introducing new hardware or processes they should be
established without additional effort towards the users.

Group Collaboration

Another kind of collaboration we found is the sharing of
information and data with a larger amount of people. Formerly
it was usual to inform yourself about new methods and results
by reading the published papers of others. But these only
contain the final results and data and is written to understand
the principle behind the work but not the exact process. It is
also hard to reconstruct the results because the raw data is not
freely available.
Therefore it is necessary to establish a system to document
every single step that was made, saving all data and having
the property to share certain or all details with others.
This is not only useful for others to reconstruct but also for
the publisher to get additional ideas and feedback.
One system having these abilities is called Prism [13]. Un-
likely other systems where people implement something think-
ing someone could use it somehow, the authors of Prism first
run several studies to have an idea what elements could be
useful and are necessary.
After observing biologists at work they started implementing
an online environment which allows to link different streams to
each other. These streams contain e.g. online content, personal
notes, emails, binary files or calendars.
While developing this environment it was desired that the
users send feedback actively and all the time. During the main

Figure 5. Sample view of the Prism environment [13].



developing phase all interactions were logged and evaluated
to improve the system with respect to the users’ wishes.
This concept emphasizes the whole project because the envi-
ronment was build around the users’ workflow. This allowed
to establish the system without additional introduction.
But not only people using this system benefited from it. Using
standards also others are able to access the shared contents.
This allowed other groups and researchers to retrace every step
at every point of time, to get the state of the processed data
after every step and to use data to do their own researches or
just to repeat and to review the results.

CONCLUSION

After examining several approaches withing the different
subcategories it figures out one basic problem: Comfort. All
solutions need time to get used to it, are unintuitive, too
complex or just obtrusive. But a benefit for a scientist is
a system that does not consum additional time and money
without a quick success.
Solutions for a whole laboratory setup, e.g. Labscape or
eLabBench, are stationary and the scientist is always con-
fronted with its presence and can not move it away. However
wearable support devices allow the use but do not interfere
with the daily routine in a laboratory. The main problem of
these devices may be the benefit in a real use case. At the
beginning it might be fun to use it but after a while they are
getting inconvenient.
Another big issue is the documentation of projects. Most
systems seem to be too complex for the use in daily research.
While the supported documentation instead of a laboratory
notebook or even sheets of paper seems to yield benefits, the
automated documentation is not ready for use in real science.
A positive prospective view offers Prism where documen-
tation, information management and social networking are
combined to reduce time-to-publish and time-to-review. The
main difference between the developement approach of Prism
in comparison to others is the study in the background to
discover the real needs of its users, the employees of wetlabs.
Cencepts like Prism will be the next step of collaborative
research and lead to more transparency and repeatability.
With respect to all possible fields withing wetlabs, it can be
said that supporting systems, in whatever kind they appear,
have a high potential to improve this conservative market.
But the benefits have to be high enough to exceed the incon-
veniences that e.g. wearable devices imply. While a wetlab
allows small-field solutions and hinders the one big solution,
there will always be improvement with respect to individual
needs for special cases.
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Abstract—Wireless sensor networks are of great use when
talking about monitoring environmental areas without the need
of a human intervention. Therefore, they are well suited for bird
monitoring, including collecting reliable data directly from the
source while having a long lifetime with low energy consumption.
In this paper we will analyze the important aspects when
considering designing a wireless sensor network for this purpose,
considering problems regarding energy efficiency and harvesting,
and self-healing networks. We will debate about protocols used
in the wireless network, together with data approaches for a
better management in what concerns energy saving. Towards the
end, we will present two well-documented experiments of great
relevance for short and long range communication.

Index Terms—Wireless Sensor Network, bird monitoring, en-
ergy efficiency, energy harvesting, self-healing.

I. INTRODUCTION

Biologists and scientists are interested in obtaining reliable
data about environment with high fidelity. The usage of
traditional data loggers for habitat monitoring proved to be
too intrusive and affect the wildlife in a bad manner. Scientists
showed that even a 15 minutes visit to a bird colony can cause
up to 20% mortality among eggs and chicks in a breeding
year. Therefore a new way of studying the wildlife was
required. The need of an inconspicuous sensing method of the
environment that can provide real-time data was fulfilled by
WSNs (Wireless Sensor Networks). Wireless sensor networks
could work unattended for long periods of time (up to years),
being able to self-organize, self-heal and harvest their energy
from the environment. Another advantage is the small size
of the nodes, making them suitable to be attached directly
to the birds without affecting their normal activities, offering
therefore great tracking possibilities in the case of migrations.

II. ENERGY EFFICIENCY IN WIRELESS SENSOR
NETWORKS

Most of the time the WSNs used for habitat monitoring are
long term networks that should work unattended from a few
months up to several years. For covering the energy restrictions
of a long term WSN, in this paper we will present two main
approaches that can help save energy: duty-cycling and data-
driven approach.

A. Duty-cycling

In order to make a better distinguish of how one can
control the energy consumption, one can divide the duty-
cycling approach in two complementary methods: Topology
Control and Power Management. The first one tries to exploit
the nodes’ redundancy, making sure that just a minimal subset
of nodes, that can fulfill connectivity, is active at the same
time. The rest of the nodes is put in a sleeping state, waking
them up in order to replace an active node that will run out
of power or die from external causes. The second approach,
the power management, relies on the fact that an active node
does not need to keep its radio up all the time, and since the
radio module is the most energy consuming element (Figure
2), switching it off when there is no network activity will
considerably increase the WSN’s lifetime.

1) Power Management: A radio module from a WSN
node has four states: reception, transmission, idle and sleep.
The problem is that not only in transmission and reception
mode there is high power consumption, but it also consumes
a lot of energy in idle mode, energy that is wasted since the
network is actually not communicating. Therefore, in order
to prolong the life of the WSN one can put the radio in a
sleep state, a much lower power consuming state. Alternating
these sleep and wake-up modes is known as duty cycling
and it can be implemented on top of the MAC(Medium
Access Control) layer, on application or network layer,
or implemented directly in the MAC layer. Therefore, the
Power Management approach can be further divided in two
subcategories: Sleep/Wakeup protocols and MAC protocols.

a) Sleep/Wakeup protocols: The advantage of
Sleep/Wakeup protocols is that they are flexible and can be
written depending on the application’s needs, in principle,
on any preexisting MAC protocol. Further we will classify
these protocols into three categories: on-demand protocols,
rendezvous protocols and asynchronous schemes.

On-demand protocols rely on the idea that a node will
wake up only when another one wants to communicate with it.
The problem is in how to acknowledge the node that someone
wants to send data to. To solve this, beside the main radio
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Fig. 1. Energy saving approaches

Fig. 2. Current consumption of different modules [6]

module that is used for data transfer, another low consumption
radio is used just to receive the request for communication start
up. In this way the power hungry radio used for data transfer
stays most of the time in sleep mode and only the low power
consumption radio stays idle waiting for signals.

Rendezvous protocols are based on the idea that all the
nodes from a neighborhood wake up simultaneously, at a
given time, and communicate with each other for a short time
interval. After this, they all go back into sleep mode. The
advantage of this method is that the broadcast from a node is
guaranteed to reach all its neighbors. On the downside, having
all the nodes communicating at the same time will cause a high
number of collisions, and thus energy waste due to the need
of retransmitting the packages. Also, there might be problems
with synchronizing the clocks of all nodes.

Asynchronous schemes implies that a node can wake
up whenever it has any data to be sent, transmit it and
then go back to sleep. Considering that the receiving node
must be also awake and ready for communication, one
can say that this method can very well be used in single
hop networks, were a gateway that is up all the time is present.

b) MAC protocols: The second approach for having
a good power management regarding the communication

is with the help of MAC protocols with low duty cycle
such as TDMA(Time Division Multiple Access) based
protocols. TDMA protocols provide unique time slots for
each node for receiving/transmitting data, removing therefore
the interference among nodes. Even though the energy
efficiency is very good, there are problems when it comes up
to scalability and flexibility of this method.

B. Data Driven

Data driven approach refers to reducing the amount
of collected data from the nodes, without modifying the
performance and accuracy of the intended application. Data
driven approaches could save up even more energy by two
means that will be further discussed.

1) Unneeded samples: When collecting information for
a long period of time, there is no need to communicate all
the data. It is know that a sudden change in the environment
cannot occur instantly, but it will require intermediary
states (e.g. the temperature cannot jump with 10C in one
second). Keeping the spatial-temporal correlation in mind, the
redundant information will not be sent to the sink, causing
more energy saving on the sensing subsystem due to less
communication [5].

2) Data reduction: In essence, this technique also aims at
reducing the amount of transmissions or the length of the
transmitted data packets by three different approaches.

In-network processing: data aggregation. This mecha-
nism’s main idea is to reduce the number of bytes sent and
received by using compression and computation techniques.
The wireless network implies a large amount of data, and
sometimes could be aggregated at various levels in order to
save energy for a transmission action. The information is
collected from more nodes (e.g. from nodes that are very close
to each other, as the data collected might be very similar). The
idea is to perform data aggregation at the nodes between the
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sink and the source (e.g. compute the average value), but this
may lead to an application specific problem.

Data compression involves encoding the data at the nodes
and decoding it at the sinks. Information will be compressed
before sending, therefore the size of the data will be reduced
and energy will be saved. The decompression will be made at
the base station, after the data will be acknowledged.

Data prediction consists in building an abstraction of a
sensed phenomenon as a model describing the data evolution.
This model can predict the values sensed by sensor nodes
within certain error bounds and reside both at the sensors and
at the sink [5]. Sometimes, the queries could be answered
using the model and not the sensed data, since computing a
new value is much less energy consuming. This model can
be self-reconfigurable and adapt to new exception values. The
model found at the sources ensures the paradigm’s correctness
by comparing the acquired data with the predicted value
from the model; the one at the sink answers queries without
requiring access to any data from the sensor. Different types
of data prediction have been tackled. One can begin using the
probabilities or the statistical properties of the event to build
up a probabilistic model (e.g. can obtain a probability density
function after a training phase). Another solution can use time
series forecasting: prediction is made using historical values
by periodical sampling; this explicitly considers the internal
structure of the data, in comparison to the statistical approach.
This model can generally be consisted as made of a classic
pattern and a random error (e.g. auto-regressive models).

Energy efficient data acquisition. Sometimes, the
reduced number of times the nodes communicate may not
be enough. The nodes could have power hungry transducers,
A/D converters or active sensors, which cannot be directly
controlled. Also, depending on the device or application,
acquisition of data may take a lot of time. Therefore, the
number of data samples given by the sensors must also be
reduced. One first solution could be an adaptive sampling
approach. As said before [5], the idea behind is that data
may slowly change in space and time and that the subsequent
samples do not differ so much from one another. This can
be exploited to reduce the number of pieces of information.
Secondly, the hierarchical sampling idea represents a trade-off
between accuracy and energy conservation and it is based on
the idea that a node has more types of sensors, and that not
all the sensors must be active in the same time.

III. ENERGY HARVESTING

Even though a WSN could use some smart way of saving
energy, like presented in chapter 2, the lifetime of the nodes
will still be limited to the capacity of its battery. This is
the greatest problem a WSN will face, especially in habitat
monitoring, where changing the battery of a mote is sometimes
impossible due to the interaction with wildlife, interaction
unwanted by scientists. Therefore to improve even more the
duration that a WSN can operate, a way to provide power
to the nodes is needed. One can do this with the help of

energy harvesting, converting ambient energy into electrical
energy. Most common sources of harnessing power, which
can be used in habitat monitoring WSNs, are: solar power,
mechanical energy (piezoelectric or vibrations) and thermal
energy (body heat).

Here we can distinguish two kinds of architecture: Harvest-
Use and Harvest-Store-Use. The difference between the two
models is the presence of the battery. The first architecture,
Harvest-Use, relies just on the energy that the node can
harvest at the moment, having no ways to store it for further
usage. In this case the node needs continuously harvested
energy above the operating point, otherwise the mote will shut
down. On the other side, the Harvest-Store-Use architecture
is equipped with a battery, making it able to work in an
environment with abrupt variances in harvesting, due to the
stored energy.

A. WSN-HEAP

A particular type of WSN that uses harvested energy is the
WSN- HEAP (Wireless Sensor Networks Powered by Ambient
Energy) [2]. The main characteristic of those networks is
that they rely solely on the harvested energy stored in super-
capacitors. Beside the disadvantage of a limited amount of
charge/deplete cycles that batteries present, they also are not
environmentally friendly since they are prone to leakage. With
the usage of super-capacitors, the WSN-HEAP takes care of
both of the problems, providing a suitable solution for long
term deployment of habitat monitoring networks.

A problem that occurs in WSN-HEAP is that one cannot
foresee when a node will harvest enough energy to send its
data to the gateway. Therefore implementing any TDMA pro-
tocols for communication is difficult, asynchronous schemes
being more suitable. Also multi-hop networks are hard to
implement since we can have no neighbors awake to route
the package further. In the following graph we present a
comparison between a WSN-HEAP and a battery based WSN.

Fig. 3. Types of energy storing over time [2]
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IV. SELF-HEALING

A successful application based on a wireless sensor network
should be, in essence, reliable, especially the ones placed in a
natural environment, such as the ones for monitoring wildlife.
In ordinary laboratory research, when a node fails, that node
is discarded and the network is reorganized. But this may
cause, besides the trouble of reorganizing the network or
replacing the node, unexpected maintenance costs and also
could decrease the function of the WSN. In order to guarantee
a reliable, robust and a low cost operating WSN, the concept
of self-healing has been introduced. This implies using a
system with reconfigurable hardware and in the following, we
will present two main paradigms that use FPAAs and FPGAs
[3]. The main concept for both paradigms is based on the fact
that if part of a node fails, the whole node is not abandoned,
but it will reconfigure itself in order to continue working.

A. Redundancy-based self-healing

In this paradigm, in the circuit built with the help of FPGA
or FPAA redundant modules of important circuits are built;
they are connected with the FPGA/FPAA in order to form
self-healing modules. Besides this, fault diagnostic circuits
are also built, and with their help, when a part fails and they
detect the fault, the FPGA/FPAA dynamically reconfigures
such as it disconnects the failed part and switches to the
redundant part of the module. Therefore, the faulty part is
abandoned and the node continues to work normally. The
downside is that this requires complicated hardware design,
bigger node dimension, so it gets more expensive.

Fig. 4. Redundancy-based self-healing WSN node paradigm [3]

B. FPGA/FPAA-based self-healing

Here, the FPGA/FPAA’s internal modules substitute the
main analog or digital circuits of the system. When a failure
is encountered, the FPGA/FPAA dynamically reconfigures in
order to use one of its own internal module to replace the
defected part. The advantage is that there is no need for extra
redundant modules and this simplifies the design and cost of
the system. On the negative side, the FPGA/FPAA cannot

reproduce a sensor’s accuracy perfectly, hence this solution
is not applicable for high precision tasks.

The results from the experiments made in [3] show that the
recovery speed of the FPGA/FPAA based was faster due to
the fact that the circuit switching speed between the internal
modules of the FPGA/FPAA is faster. Also, it was shown that
when using a redundancy base plan, the energy consumption
was higher because it costs more energy when redundancy
modules are adopted.

Fig. 5. FPGA/FPAA-based self-healing node paradigm [3]

V. COMMUNICATION

In the following chapter we will present two different ways
of communication inside a WSN, providing advantages and
disadvantages for each and also examples of how each were
used in field experiments. We will distinguish between short
ranged radio communication used for nest monitoring and
cellular based communication best used for tracking birds
during their migrations.

A. Short range radio communication

Short range radio communication is a low cost, low power
method to send data between motes in a WSN. For stationary
bird monitoring, like nest monitoring, this is one of the best
ways to establish a connection between the nodes. Since the
breeding areas are usually relatively small, nodes placed on
birds or nests are close to each other, making them able to
route the packets towards the gateway via a multi-hop system,
or even send the data directly to a gateway if they are in its
range. This is the case of the next experiment we will present
which took place on Great Duck Island in Canada and had the
goal of studying Storm Petrels during their breeding period.

In order to obtain reliable data about the microclimate the
birds prefer for their incubation and hatching, motes were
developed small enough not to interfere with the daily life
of the birds, when placed inside the nests. Since the nests
were actually underground burrows, another node was placed
above the burrow, at the ground surface, so the scientists
could examine the differences between inside and outside the
burrow. The nodes were based on a Mica board developed
by UC Berkeley, and equipped with sensors for temperature,
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humidity, light, pressure and infrared radiation(used to see if
the burrow is populated or not).

Fig. 6. The architecture of the system [1]

As shown in Figure 6 the sensors were organized in patches
(clusters), each cluster equipped with a gateway that was
receiving the reading from the nests and forwarding them via
a transit network to the base station. Afterwards the data is
uploaded in a database over internet where scientists have
access to it via user interfaces. In order to save energy, the
nodes were in sleep mode primarily, waking up every 70
seconds to send data as 36 byte data packages. The gateway
on the other hand is working at 100% duty-cycle being able
to coordinate the activity inside the patch and help with
additional computations and storage. For this, the gateway is
equipped with additional solar panels to harvest energy and a
rechargeable battery.

B. Cellular based communication

As birds come in different size and shapes, the wireless
sensor network that monitors their activity must adapt to
that specifically type of bird. For migratory birds that travel
hundreds of kilometers per day though continents, a classic
wireless sensor network is not suitable. For this large scale
connectivity network, a cellular based communication has
been chosen [4]. Cellular technology has the benefit that it
already covers high areas due to the preexisting coverage of
cellular networks, but the drawback is the network’s holes in
the wildlife: only the populated areas have GSM coverage.
This disadvantage can be overcome by adding a small memory
module to keep the data until the birds reach an area with GSM
coverage.

The CraneTracker experiment [4] monitors the endangered
species of Whooping Cranes that do an annual migration of
4000km between Texas and Canada, travelling up to 950km
every day. The challenges faced were to cover this huge
area, but to keep as shorter delays as possible (less than 24
hours) to establish eventual cause of disconnection from the
network, which may show cause of death of the cranes. The
intended network lifetime should be around 5 to 7 years and

the weight of the system that what attached to the bird as a
backpack should be less than 110g (which represents 2% of
the bird’s body weight). Besides the classical modules (GPS,
temperature sensor, compass, radio module), the crane tracker
mounted on the birds was equipped with a very low-weight
GSM module GE865 from Telit, which supported UART
communication for easily interfacing with the microcontroller;
the module is working on international bands, meaning it can
be deployed in many places around the world and with its help,
a coarse localization using cellular tower information could
be made. The tracker also holds a lithium-polymer battery,
a flexible solar panel from PowerFilm for energy harvesting
and a 512kB memory for storing the information when out
of GSM coverage. Beside the moving tracker, the backend
component gathered the information from the gateways and
used a web service to give the results to the user. Once the
birds were reaching the breeding area, the network would
switch on short range radio communication since the nests
were in fixed locations relatively close to each other (Fig. 7).

Fig. 7. The architecture of the system [4]

Due to the endangerment of the species, some incremental
deployments have been made, starting with field experiments
in enclosures on wild turkeys to deploying the tracker on five
wild sandhill cranes; this last part of the experiment is the one
most close to its intended purpose, as the sandhill cranes have
been monitored for over a year migrating along the American
continent. The results show that two of the five subjects
completed the migration to south, and the other three’s
tracker either fell off the bird or failed to recharge. During
the migration, they recorded around 330 GPS locations, the
flying periods of the birds, the speed and the altitude. Also
different charge/recharge cycles have been recorded due to
the difference of location; most of the time, they stay in the
breeding grounds, more under the vegetation, while in the
air, they are in direct sunlight. The overall results of the
experiment confirmed the viability of the cellular network in
these extreme geographic distances, giving enough insight of
the cranes’ habits.
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VI. CONCLUSION

The paper showed why wireless sensor networks represent
a suitable solution for bird monitoring. We discussed some
important aspects of a WSN providing advantages and disad-
vantages as well as where the different solutions should be
used. An important characteristic of these networks is the low
energy consumption, and for this to be achieved we presented
multiple approaches both from communication point of view
as well as from data management part. For prolonging even
more the lifetime of a WSN, one can use energy harvesting
methods like solar panels or mechanical energy from birds
movement. Since the contact between humans and the wildlife
should be as little as possible, if we want unaltered data,
we pointed out how one can equip a WSN with self-healing
attributes. In the end we discussed two experiments that
showed how we can adapt a WSN for our needs, proving we
can use WSNs for monitoring birds both in a small area (like
nesting zones), or a large migration path over more countries.
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Abstract—The behavior of birds is astonishing and many
scientists are hoping to find out more about how birds
can do extraordinary things such as flying for multiple
days in a row. There are many challenges when it
comes to bird monitoring, and many of them are more
and more conquered by modern technology. Wireless
sensor networks can be used to listen for bird sounds
and thereby identify certain species. Another application
for wireless sensor networks is monitoring of nesting
behaviour by placing sensors directly in or close to bird
nests. These application present interesting challenges
for computer scientists and biologists and necessitate
collaboration between these fields. Habitat monitoring
has been a practiced for many years and was continuesly
improved with additional sensors and features like sound
detection or images. Wearable sensors for birds are
especially challenging due to the fact, that a bird’s
flight behavior is influenced if the carried sensors are
heavier than 3% of the bird’s body weight. Renowned
researchers all around the world are pushing the limits
of technology to create smaller and lighter tracking
devices, that eventually will make the recapturing of
birds obsolete.

Index Terms—bird monitoring, habitat monitoring, nest
observation, wireless sensor networks, song recognition,
bird backpack, lab-on-a-bird.

1. Introduction

The continuously advancing technology reg-
ularly allows for new ways of bird monitoring.

In this paper we give an overview about various
approaches. We will start with wireless sensor
networks in general as they form the foundation
for the systems specific to bird monitoring. The
core issues we focus on are error handling and
reprogrammability. From there on we will take a
look at various approaches to bird monitoring. We
will go over simple nodes with sensors, to image
based monitoring and detecting the birds via their
songs.

Thereafter we take a look at systems that are
partly attached to the bird and finally reach the
point where the whole nodes are attached to the
birds. The research and information was gained
from papers which stated how modern technology
is used in the different types of fields.
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2. Paper selection criteria

Papers were collected by using the search
terms: “sensor networks”, “habitat monitoring”,
and “bird sound detection”. When reading papers,
related articles on Google Scholar and alike were
taken into consideration as well. Articles from the
conferences IWSC, UbiComp, Sensys, and EWSN
each with high citation counts were preferred in
the selection process. Papers which were hardly



related to the keywords or had a very low citation
count in relation to their age were rejected. The
same applies for work with a publication date
older than 10-15 years or when the corresponding
references were inexplicable.

3. Wireless sensor networks

A Wireless sensor network (WSN) is a collec-
tion of microcontroller-based sensor nodes (also
referred to as “motes”) that communicate via some
wireless network technology. This approach is
useful because such small nodes only have a small
impact on the monitored animals and advances
in technology have made the hardware relatively
cheap.

Especially in animal monitoring, the size of
the node package is usually constrained and this,
together with the requirement for long time op-
eration, makes power supply – and thus power
consumption of the nodes – the main challenge
for designing the nodes. This problem can be
approached from different directions, including
node design, network layout, and software.

3.1. Network layout

The types of network layout can generally
be divided in singlehop and multihop networks.
In singlehop networks, the nodes do not perform
any routing and network packets are transmitted
directly from source to destination. In multihop
networks, packets can be routed from source to
destination via intermediate nodes. Multihop net-
works can span a larger area without having to
increase transmission power but routing also has
an impact on power consumption for the interme-
diate nodes.

A typical network layout for animal monitor-
ing usually consist of multiple sensor nodes in a
singlehop or multihop structure and a gateway that
is connected (sometimes over the internet) to com-
puters that permanently store the collected data
or issue commands to the network. The network
layout has to be chosen carefully to avoid inequal

load and consequential node failures. Network
simulation software and smaller scale test runs can
help mitigating these issues.

3.2. Handling node failures

Even in a carefully crafted network with very
sturdy nodes, software bugs and unforeseeable
environmental factors make it next to impossible
to avoid node failures completely. Wireless sensor
networks should be designed in a way that allows
recovery from such failures, or at the very least
detection of failures, to allow timely human inter-
vention. An easy way to detect and predict node
failures are regular health reports from all nodes,
containing information on the state of the power
source and network routing graph.

Detecting and handling failures of multiple
nodes presents a special challenge [1]. If a part
of the network gets cut off from the gateway
it is impossible to tell the difference between
just the intermediate nodes failing and the whole
part of the network that is no longer reporting
failing, requiring manual intervention. This can be
avoided to some degree by ensuring there always
exist at least a certain number of alternative routes
between nodes.

3.3. Reprogrammability

Due to changing requirements for the WSN,
changing environmental conditions, or node fail-
ures it is useful to have a way of reprogramming
some or all nodes of a network. The goal is
transmitting the required data power efficiently but
as quickly as possible.

Maté [2] is a bytecode interpreter built on top
of TinyOS which aims to make programs using
a common set of operations smaller. It provides
abstractions for many complex tasks that can be
invoked with small 1-byte instructions. Programs
are split up into capsules of 24 such instructions
each. Maté provides a routing algorithm and ev-
erything required for capsules to forward them-
selves to other nodes with a single instruction.



3.3.1. Data dissemination. Due to the memory,
processing power, and electric power constraints,
specialized techniques for propagation of data in
wireless sensor networks in a fast, yet resource-
efficient way were developed. In the following we
take a closer look at two of them.

Deluge [3] is an epidemic protocol for dis-
seminating large data objects such as full binary
images for node operating systems. It splits the
object to be disseminated into pages which are
split into packets for network transmission. The
node maintains an object description with the age
of the stored pages and utilizes 16 bit CRC for in-
tegrity checks. The protocol describes three states
a node can be in: In MAINTAIN state, a node ad-
vertises its version of the object’s pages to neigh-
bouring nodes (if there are not too many other
nodes broadcasting at the same time), switches to
RX state when receiving an advertisement for a
newer page or switches to TX when receiving a
request for one of the advertised pages. In RX
mode, the node requests a page advertised by an
other node and then receives the page’s packets. In
TX mode, the node transmits the requested page’s
packets. The authors claim that Deluge achieves
a transmission rate of 90 bytes/second under real-
world conditions.

Wireless sensor networks usually operate at
very low duty cycles (frequently under 1%). This
results in traditional flooding algorithms being
rather inefficient because most of the time only
very few neighbours are awake at the same time to
receive a transmission. Opportunistic flooding [4]
seeks to reduce redundancy in transmissions while
also achieving fast data dissemination. To achieve
this, the protocol determines the routing tree with
the lowest power consumption and the expected
transmission delay. The expected delay is shared
with previous-hop nodes which can then, based
on this information, decide to transfer outside the
energy-optimal tree if this is likely to result in
a significantly earlier arrival of a packet for the
following node. This structure is updated dynam-
ically and decisions are made for each packet
individually. Collisions are handled by delaying

transmission of packets depending on link qual-
ity and only sending when the channel is clear.
Opportunistic flooding achieves a significant im-
provement when compared to traditional flooding
methods and achieves flooding delay and energy
cost values close to the optimal case.

4. Bird nest monitoring

In “An analysis of a large scale habitat mon-
itoring application” [5] the authors describe an
experiment run over the course of a few months
in 2003. They deployed wireless sensor networks
to monitor nesting behaviour of birds on Great
Duck Island, Maine. The applied network layouts
include singlehop and multihop networks and two
different kinds of nodes for monitoring weather
conditions and bird nests respectively.

The key challenges identified in the paper are
node lifetime, obtrusiveness, reliability, and ease
of deployment. The system used in the experiment
achieved satisfactory results with respect to most
of these requirements. Most nodes lasted multiple
months and provided useful data. Nodes in the
multihop network exhausted their power supply
earlier than nodes in the singlehop network but the
multihop network covered a significantly larger
area. Ease of deployment and diagnostic tools
were identified as areas with room for improve-
ment in later projects.

4.1. Sound based monitoring

This method has the great advantage that one
doesn’t need to reach the nests, which can be
a challenge in difficult terrain like rain forests.
Biologists are very interested in a system that
monitors when each bird species sings because
this would allow them to learn a lot about bird
communication.

To construct such a system, the nodes need an
unidirectional microphone to listen in every direc-
tion and a mechanism to start and stop recording.
The mechanism to record can’t just be activated
through noise due to the high background noise



in the birds habitat. But luckily most birds sing
in a frequency that differs from the background
noise so one can set a range of frequencies that
will activate the recording. Analyzing the recorded
sounds is still difficult due to the high noise to
signal ratio.

The next step is it to match the recorded
song to a certain species or even individual. Many
classifiers and learning algorithms like neural net-
works or Bayesian models come to mind for this
task but so far the research is dominated by hidden
Markov models (HMM) and Gaussian mixture
models.

Hidden Markov models (HMM) are a great
fit for bird song recognition for multiple reasons.
Many recordings of bird songs miss the beginning
or end of the song. For HMM this doesn’t matter.
They are also easy to implement and don’t require
much memory or processing power. Trifa et al
had great success with this approach which they
detailed in their paper “Automated species recog-
nition of antbirds in a Mexican rainforest using
hidden Markov models” [6]. They mention that
going forward, it would be important to increase
the signal to noise ratio due to the fact that HMM
are susceptible to noise. They reached an accuracy
of 99.5% with clean signals but only 90% in a
realistic setting.

Gaussian mixture models are already widely
used for human speech recognition, which allows
reusing a lot of that research for bird song recogni-
tion. Another advantage is that not many learning
samples, which are usually hard to acquire, are re-
quired for satisfying results. Like hidden Markov
models, this approach is susceptible to noise.

This setup uses more power than the previous
one, where only simple nodes were used. To deal
with this, one can decide to add an external energy
source, like solar power, to the node or design it
in such a way that changing the battery is a quick
an easy process.

4.2. Image based monitoring

A system which sends images of bird nests
to a central server would be great for biologists.
It would spare them a lot of time currently spent
on checking the nests for any changes and would
capture important events which could easily be
missed with the classic approach. This system
would of course create some new challenges. It
needs to send a lot of data through the network
which results in high power consumption which,
in combination with the camera, would definitely
require a power source.

Sending large amounts of data through a net-
work requires a lot of energy compared to doing
some local processing on the node. This means
that it can be advantageous to compress images
before sending them. Conventional compression
algorithms like JPEG aren’t a good choice because
they need more computing power and memory
than usually available. Paek and his fellow re-
searchers decided to use an algorithm called Pack-
Bits which was originally developed by Apple [7].
The advantages of PackBits include that it is a
simple algorithm and works with limited memory
as it doesn’t need to buffer the full image. The al-
gorithm works on gray scale images. When it runs
it checks how many consecutive values are within
a certain threshold of each other. These values are
then averaged and compressed to [length][average
value]. An example of how the algorithm works
taken from the paper by Paek [7]:

If the threshold is 10 and the original
image data are 1, 2, 1, 3, 2, 3, 2, 2,
15, 20, 15, 20, 100, 110, 105, 105, 100,
110, then this image is compressed into
[8][2],[4][18],[6][105] and will later be
decompressed to image data 2, 2, 2, 2,
2, 2, 2, 2, 18, 18, 18, 18, 105, 105, 105,
105, 105, 105.

As one can easily see, choosing a high threshold
results in high compression but also causes a
higher loss of information.

One downside of this algorithm is that the
compressed image requires 100% reliable data



recovery which in turn means that data would
sometimes have to be sent multiple times. In the
paper by Paek [7] the full image recovery was
especially crucial because the server ran automatic
checks on the images to see if a bird is on it.
Another issue identified in the experiment is that
the compression ratio isn’t as good as anticipated
when tuned for acceptable image quality.

4.3. RFID

With the help of Radio Frequency Identifi-
cation one can monitor when the bird leaves or
enters its burrow. In the paper “Wireless Sensor
Network for habitat monitoring on Skomer Is-
land.” [8] the authors combined this approach with
a weighing scale at the burrow entrance to mon-
itor the weight of birds entering or leaving. With
this information, they wanted to draw conclusions
about how much food the birds bring back home
for their offspring and how frequently such events
occur. To set this up they had to catch the birds
first to put and RFID chip on them.

It is easy to add sensors in and near the nest
to get more information like the temperature and
humidity which then can be transmitted when
birds enter or leave. With this information one
can look for interesting patterns, for example how
hunting times are influenced by time, weather and
other factors. The multihop network for such an
experiment doesn’t need to be very complex due
the fact that the collected information is very small
data-wise.

An interesting addition to this project would
be to combine it with a camera in the nest because
the information already gathered would facilitate
taking pictures at the right moment.

5. Wearable bird monitoring

When it comes to monitoring individual birds,
the most reliable way is to attach sensors directly
to the bird itself. Unfortunately, this method en-
tails many challenges due to the fact that birds
can only carry about 3% of their own body weight

without changing their flight behavior. That makes
wearable bird monitoring especially difficult for
smaller sized birds.

Bird ringing is one the oldest methods for the
tracking of individual birds. But in order to attach
a ring to a bird it has to be captured. In addition,
the bird has to be recaptured every time so that it
can be identified. Though this method has proven
to be quite effective it only allows limited insight
into the birds movement since it only provides the
bird’s current location once captured.

Instead, many scientists use energy efficient
microcontrollers and small GPS-receivers in order
to store the bird’s location in regular intervals
and, afterwards, retrieve this information by recap-
turing the bird and downloading the information
via USB. A more advanced approach is to utilize
wireless communication so that the recorded in-
formation can be downloaded as the bird flies by
without recapturing it. In order to fulfill the high
energy demands of wireless communication and
the requirement of low weight for the bird to carry,
batteries are often not an option. Alternatively,
energy harvesters, such as solar panels, are used
to generate the energy necessary to power the
device, along with a small backup battery. The
more sensors are in use and the more data is
stored, the higher the energy consumption. There-
fore, the use of a combination of sensors to record
activity, mortality, acceleration, temperature, light
conditions, location, etc. must be thought out.
The bird’s location, for example, doesn’t need
to be saved every second in order to understand
its route. Saving one location every few hours
could be sufficient depending on the application.
Other sensors such as temperature sensors could
be obsolete if the weather conditions in the area
of interest are known ahead of time. Additionally,
the use of accelerometers can also be reduced to
a minimum by only recording a few seconds of
data when trying to recognize the bird’s activities
such as flying or sitting.

This approach is described in more detail in
the paper: “A flexible GPS tracking system for
studying bird behavior at multiple scales” [9]. In



the paper, a device with the dimensions 62x30x12
mm, a weight of about 12 g, a microprocessor, a
built in storage, a GPS receiver, an accelerometer,
a radio transceiver, a solar panel, and a small
backup battery with a capacity of 65 mAh, are
used to monitor bird movements without the need
of recapturing them by receiving recorded data
wirelessly at a breeding area.

The use of solar energy is very effective, but at
the same time, with birds living in areas without
abundant sunshine one cannot rely on solar power.
The amount of energy needed to bridge between
solar charges can be too large to be fulfilled by
enlarging the battery size. Therefore, alternative
energy harvesters such as piezo electric energy
harvesters, that harvest energy from the birds
movements, are being tested in order to become
independent of such restrictions. In theory, the
amount of energy that can be harvested from a
flying bird is about 0.01-10 mW which can be
enough to power an electric circuit like the one
mentioned above. At Cornell University in New
York there has been a lot of interesting research
in this field and also a paper called “Testing of
Vibrational Energy Harvesting on Flying Birds”
[10].

Birds are capable of astonishing things and
biologists are burning to learn more about various
aspects of bird behavior. The perfect bird monitor-
ing system has yet to be built, but an ideal wear-
able bird monitoring device would enable insights
that, so far, were never possible. A combination
of multiple energy harvesters and a small battery
could create a self-sustaining power supply. By
using ARGOS, which allows to send information
directly to a satellite, the recapturing or proximity
of the bird for downloading data is no longer nec-
essary. The use of an inertial measuring unit can
tell which state the bird is currently in, coordinates
are updated multiple times per second, spherical
images from the birds surroundings are streamed
live and a on-chip lab continuously monitors the
birds metabolism. But until then, researchers keep
fighting the 10 g barrier to monitor small birds
with as many sensors as possible.

6. Conclusion

The main challenge identified in the papers
we reviewed was supplying the systems with suf-
ficient power for long time operation. This prob-
lem can be approached from different directions,
namely making the nodes use less power or sup-
plying them with more power via different forms
of energy harvesting. For ground based projects,
solar energy is a useful power source and for on-
bird systems piezoelectric energy harvesters may
be used. Ideally a combination of power efficiency
and energy harvesting is employed to ensure re-
liable operation over a long period of time. The
strict power constraints play into most areas of
system design, from design of the node hardware
over software implentation to network layout.

Other challenges that are frequently mentioned
in the papers are obtrusiveness (animal behaviour
should not be influenced by the monitoring tech-
nology) and usablity. Tackling these issues re-
quired careful design of the nodes and collabo-
ration with the scientists that are going to use the
system in the field. The system should be small,
easy to deploy, have some form of reprogramma-
bility or reconfigurability, and be as long-lived as
possible.

In addition to these general challenges, each
project presents its own unique problems. While
ground based applications monitoring by sound
detection or imagery require a lot of processing
power but transmit data only over a short distance,
air based approaches require a way to store data
and potentionally transmit the collected data over
a longer distance.
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