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Preface

The aim of this dissertation is to describe more realistic models for financial assets based on
generalized hyperbolic (GH) distributions and their subclasses.

Generalized hyperbolic distributions were introduced by Barndorff-Nielsen (1977), and
stochastic processes based on these distributions were first applied by Eberlein and Keller
(1995) in Finance. Being a normal variance-mean mixture, GH distributions possess semi-
heavy tails and allow for a natural definiton of volatility models by replacing the mixing
generalized inverse Gaussian (GIG) distribution by appropriate volatility processes.

In the first Chapter we introduce univariate GH distributions, construct an estimation
algorithm and examine statistically the fit of generalized hyperbolic distributions to log-
return distributions of financial assets. We extend the hyperbolic model for the pricing of
derivatives to generalized hyperbolic Lévy motions and discuss the calculation of prices by
fast Fourier methods and saddle-point approximations.

Chapter 2 contains on the one hand a general recipe for the evaluation of option pricing
models; on the other hand the derivative pricing based on GH Lévy motions is studied from
various points of view: The accordance with observed asset price processes is investigated
statistically, and by simulation studies the sensitivity to relevant variables; finally, theoretical
prices are compared with quoted option prices. Furthermore, we examine two approaches to
martingale modelling and discuss alternative ways to test option pricing models.

Barndorff-Nielsen (1998) proposed a refinement of the GH Lévy model by replacing the
mixing GIG distribution by a volatility process of the Ornstein-Uhlenbeck type. We investi-
gate this model in Chapter 3 with a view towards derivative pricing. After a review of this
model we derive the minimal martingale measure to compute option prices and investigate
the behaviour of this model thoroughly from a numerical and econometric point of view.

We start in Chapter 4 with a description of some “stylized features” observed in multi-
variate return distributions of financial assets. Then we introduce multivariate GH distribu-
tions and discuss the efficiency of estimation procedures. Finally, the multivariate Esscher
approach to option pricing and, in particular, basket options are examined.

In the final chapter we define more realistic risk measures based on generalized hyperbolic
distributions and evaluate them following the procedure required by the Basel Committee on
Banking Supervision. The proposed risk-measurement methods apply to linear and nonlinear
portfolios; moreover they are computationally not demanding.

Forecasting values of financial assets is not a major objective of this dissertation. However,
the second and the final chapter presents some results on volatility forecasts for option prices
and on tests of risk measures based on distributional forecasts.

The usual procedure will always be to start with the definition of the new model and the
calibration of the model. Then the properties of the model are examined theoretically and by
simulation studies. Finally, we will put the model into practice and compare the performance
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with benchmark models. This procedure yields a complete picture and highlightens features
relevant for practical applications. The final two chapters are self-contained. Therefore, a
reader only interested in multivariate modelling could skip the preceeding three chapters.
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Chapter 1

Generalized Hyperbolic
Lévy Motions

The modelling of financial assets as stochastic processes is determined by distributional as-
sumptions on the increments and the dependence structure. It is well known that the returns
of most financial assets have semi-heavy tails, i.e. the actual kurtosis is higher than the
kurtosis of the normal distribution (Mandelbrot 1963). Generalized hyperbolic distributions
(GH) possess these semi-heavy tails. On the contrary, the use of models with nonexisting
moments, e.g. stable distributions, does not admit the pricing of derivative contracts by mar-
tingale methods where we aim at. Note, that in contrast to stable distributions the density
of generalized hyperbolic distributions is known explicitly.

Ole E. Barndorff-Nielsen (1977) introduced the generalized hyperbolic distributions and
at first applied them to model grain size distributions of wind blown sands. An important
aspect is, that GH distributions embrace many special cases, respectively limiting distribu-
tions, of hyperbolic, normal inverse Gaussian (NIG), Student-t, variance-gamma and normal
distributions. All of them have been used to model financial returns. The mathematical prop-
erties of these univariate distributions are well-known (Barndorff-Nielsen and Blæsild 1981;
Blæsild 1999). Recently, generalized hyperbolic distributions resp. their subclasses have been
proposed as a model for the distribution of increments of financial price processes (Eberlein
and Keller 1995; Rydberg 1997a; Barndorff-Nielsen 1998; Eberlein, Keller, and Prause 1998)
and as limit distributions of diffusions (Bibby and Sørensen 1997). Jaschke (1997) remarked
that one could also find a stationary generalized hyperbolic distribution as a weak limit of a
process with stochastic volatility, which is modelled by a GARCH(1,1) time series.

In this chapter we present new estimation results for German stock, US stock index and
high-frequency data, and investigate the goodness of fit. In particular, we look at the tails
of the distributions. In the final sections we extend the option pricing approach based on
the Esscher transform, proposed by Eberlein and Keller (1995), Keller (1997) to generalized
hyperbolic distributions and discuss the numerical problems.
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1.1 Generalized Hyperbolic Distributions

We start with an exposition of the univariate generalized hyperbolic distributions and the
subclasses which are relevant for applications.

Definition and Parametrizations

Definition 1.1. The one-dimensional generalized hyperbolic (GH) distribution is defined by
the following Lebesgue density

gh(x;λ, α, β, δ, µ) = a(λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ− 1
2

)/2

×Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
exp(β(x− µ))

a(λ, α, β, δ) =
(α2 − β2)λ/2√

2π αλ−1/2 δλ Kλ

(
δ
√
α2 − β2

)
where Kλ is a modified Bessel function and x ∈ IR. The domain of variation of the parameters
is µ ∈ IR and

δ ≥ 0, |β| < α if λ > 0
δ > 0, |β| < α if λ = 0
δ > 0, |β| ≤ α if λ < 0.

Different scale- and location-invariant parametrizations of the generalized hyperbolic dis-
tribution have been proposed in the literature.

2nd parametrization ζ = δ
√
α2 − β2, % = β/α (1.2)

3rd parametrization ξ = (1 + ζ)−1/2, χ = ξ% (1.3)

4th parametrization α = αδ, β = βδ (1.4)

Note, that for symmetric distributions β = β = % = χ = 0 holds. Rewriting the density of
GH distributions in the 4th parametrization, we obtain a representation in which the role of
the parameters δ and µ describing scale and location is more obvious. The density above and
those for the hyperbolic and NIG distributions in the 4th parametrization are presented in
Appendix C. Scale- and location-invariant parameters are given in the following lemma.

Lemma 1.5. The terms λ, α and β are scale- and location-invariant parameters of the uni-
variate generalized hyperbolic distribution. The very same holds for the other parametrizations
(ζ, %) and (ξ, χ) defined in (1.2) and (1.3).

Proof. Blæsild (1981, Theorem I) has proved that a linear transformation Y = aX + b of
X ∼ GH1 is again GH-distributed with parameters λ+ = λ, α+ = α/|a|, β+ = β/|a|,
δ+ = δ|a| and µ+ = aµ+ b. Obviously α+δ+ = αδ and β+δ+ = βδ holds.

The parameters µ and δ describe the location and the scale, whereas β describes the
skewness. Increasing ξ or decreasing ζ or α reflect an increase in the kurtosis. Note, that
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generalized hyperbolic distributions can also be represented as a normal variance-mean mix-
ture

gh(x;λ, α, β, δ, µ) =
∫ ∞

0
N(x;µ+ βw,w) gig(w;λ, δ2, α2 − β2)dw, (1.6)

where N is the normal density function with respect to mean and variance. Furthermore,
gig(x;λ, χ, ψ) denotes the density function of generalized inverse Gaussian distributions.

Definition 1.7. The generalized inverse Gaussian (GIG) distribution is given by the Lebesgue
density

gig(x;λ, χ, ψ) =
(ψ/χ)λ/2

2 Kλ(
√
ψχ )

xλ−1 exp
(
− 1

2
(
χx−1 + ψx

))
, x > 0,

where λ ∈ IR and χ,ψ ∈ IR+.

The standard reference for the GIG distribution is Jørgensen (1982). In Figure 3.2 we
show the GIG distributions implied as mixing distributions in the univariate and multivariate
GH distributions.

Limiting Distributions and Subclasses

Remark 1.8. The normal distribution is obtained as a limiting case of the generalized hyper-
bolic distribution for δ →∞ and δ/α→ σ2 (see also for other limiting distributions Barndorff-
Nielsen 1978).

Using the properties of Bessel functions Kλ, it is possible to simplify the density gh
whenever λ ∈ 1/2 ZZ. For λ = n+ 1/2, n = 0, 1, 2, . . . the Bessel function Kλ may be expressed
as

Kn+1/2
(x) =

√
π

2
x−1/2 e−x

(
1 +

n∑
i=1

(n+ i)!
(n− i)! i! (2x)−i

)
. (1.9)

Since Kλ(x) = K−λ(x), we obtain K−1/2(x) = K1/2(x) =
√
π/2 x−1/2 e−x. In particular, this

equation allows to deduce simpler expressions in the cases λ = −1/2 and λ = 1.

Definition 1.10. For λ = 1 we obtain hyperbolic distributions (HYP)

hyp(x;α, β, δ, µ) =

√
α2 − β2

2δαK1

(
δ
√
α2 − β2

) exp
(
− α

√
δ2 + (x− µ)2 + β(x− µ)

)
,

where x, µ ∈ IR, 0 ≤ δ and |β| < α.

Definition 1.11. For λ = −1/2 we get the normal inverse Gaussian (NIG) distribution with
Lebesgue density

nig(x;α, β, δ, µ) =
αδ

π
exp
(
δ
√
α2 − β2 + β(x− µ)

) K1

(
α
√
δ2 + (x− µ)2

)√
δ2 + (x− µ)2

,

where x, µ ∈ IR, 0 ≤ δ and 0 ≤ |β| ≤ α.
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GH GIG Mixing GIG distribution
Generalized hyperbolic Generalized inverse Gaussian λ χ ψ

General case (Blæsild 1999) General case: (Barndorff-Nielsen and Shephard
1998, 4.6.1)

∈ IR δ2 α2 − β′∆β

Hyperbolic (Eberlein and Keller 1995) Positive Hyperbolic (Barndorff-Nielsen and
Shephard 1998, 4.6.3)

(d+ 1)/2 δ2 α2 − β′∆β

Hyperboloid (d− 1)/2 δ2 α2 − β′∆β
Normal inverse Gaussian (NIG) Inverse Gaussian (IG) −1/2 δ2 α2 − β′∆β
Normal Reciprocal Inverse Gaussian (NRIG) Reciprocal Inverse Gaussian (RIG) 1/2 δ2 α2 − β′∆β
Normal Nd(µ + w0β∆, w0∆) in the case α, δ →
∞ and δ/α → w0 (Barndorff-Nielsen 1978;
Blæsild 1999)

∈ IR →∞ →∞

Variance gamma (σ, ν, ϑ) is GH with λ = σ2/ν,
α =

√
(2/ν) + (ϑ2/σ4), β = ϑ/σ2, δ = 0 and

µ = 0 (Madan, Carr, and Chang 1998)

Gamma distribution Γ(λ,ψ/2) (Wirth 1998;
Barndorff-Nielsen and Shephard 1998, 4.6.5 and
Blæsild 1999; see also Section 3.2)

> 0 0 > 0

Student td(ν, µ), ν ∈ IR+ is GH with with λ =
−ν/2, α = β = 0, δ =

√
ν (Blæsild 1999)

Inverse Gamma (inverse chi-squared) with ν ∈
IR+ degrees of freedom: Γ−1(ν, 1/2), (Barndorff-
Nielsen and Shephard 1998, 4.6.4)

−ν/2 < 0 ν > 0 0

Cauchyd(µ) is GH with λ = −1/2, α = β = 0,
δ = 1 (Blæsild 1999)

−1/2 1 0

GIG(λ, τ, ψ) in the case αδ2 → τ , α − β = ψ/2
and µ = 0 (Blæsild 1999)

∈ IR → 0 const.

Skewed Laplace, λ = (d+1)/2, δ = 0 and ∆ = Id
(Blæsild 1999)

(d+ 1)/2 0 α2 − β′∆β

Table 1.1: Generalized hyperbolic as variance-mean mixtures of generalized inverse Gaussian distributions. Barndorff-Nielsen and
Shephard (1998) use the following notation λ = λ̄, χ = δ2 and ψ = γ2 for the GIG distribution; d denotes the dimensions.
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A detailed description of the NIG distribution is given in Rydberg (1997a) and Barndorff-
Nielsen (1997, 1998). See Barndorff-Nielsen and Prause (1999) for an application of NIG
distributions to high-frequency financial data.

Remark 1.12. The Student-t distribution results from a mixture of normal and inverse
gamma distributions, which are obtained in the case ψ = 0 and λ < 0 from the GIG dis-
tributions. Therefore, we have a Student-t distribution as a limit of GH distributions for
λ < 0 and α = β = µ = 0 (Barndorff-Nielsen 1978).

Table 1.1 contains an overview over subclasses and limiting distributions of GH and the
corresponding mixing GIG distributions. All mentioned distributions are characterized as
variance-mean mixtures with special cases of GIG distributions.

Properties

First we calculate the moment generating function which we also need in the Esscher approach
to option pricing. Moment generating functions are also crucial for the the saddle-point
approximation to compute option prices and quantiles of convolutions.

Lemma 1.13. The moment generating function of the generalized hyperbolic distribution is
given by

M(u) = euµ
(

α2 − β2

α2 − (β + u)2

)λ/2 Kλ

(
δ
√
α2 − (β + u)2

)
Kλ

(
δ
√
α2 − β2

) , |β + u| < α.

The moment generating functions for hyperbolic and NIG distribution are obtained as
special cases for λ = 1 and λ = −1/2 respectively.

Proof. We assume that µ = 0. The norming factor a is given in Definition 1.1. Then we
obtain for |β + u| < α

M(u) =
∫
eux gh(x;λ, α, β, δ, 0)dx

= a(λ, α, β, δ)
∫
eux(δ2 + x2)

1
2

(λ− 1
2

) Kλ− 1
2
(α
√
δ2 + x2 )eβxdx

=
a(λ, α, β, δ)

a(λ, α, β + u, δ)

=
(α2 − β2)λ/2

√
2πδλαλ−

1
2 Kλ(δ

√
α2 − β2 )

√
2πδλαλ−

1
2 Kλ(δ

√
α2 − (β + u)2 )

(α2 − (β + u)2)λ/2

=
(

α2 − β2

α2 − (β + u)2

)λ/2 Kλ(δ
√
α2 − (β + u)2 )

Kλ(δ
√
α2 − β2 )

;

the result follows since µ is the location parameter.

Now we can calulate the mean and variance of the generalized hyperbolic distribution by
differentiating the moment generating function.
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Proposition 1.14 (Mean and Variance). The generalized hyperbolic distribution has the
following mean and variance

EX = µ+
βδ√
α2 − β2

Kλ+1(ζ)
Kλ(ζ)

(1.15)

VarX = δ2

(
Kλ+1(ζ)
ζ Kλ(ζ)

+
β2

α2 − β2

[
Kλ+2(ζ)
Kλ(ζ)

−
(

Kλ+1(ζ)
Kλ(ζ)

)2
])

(1.16)

where ζ = δ
√
α2 − β2. In (1.16) the term in the round brackets is scale- and location-

invariant.

Proof. With Gut (1995, Theorem III.3.3) all moments of X exist. We apply the equation
K′λ(x) = −Kλ+1(x) + λ

x Kλ(x) for the derivative of the Bessel function and assume µ = 0
without loss of generality.

M ′(u) =
(α2 − β2)λ/2

Kλ(δ
√
α2 − β2 )

(
Kλ

(
δ
√
α2 − (β + u)2

)(
α2 − (β + u)2

)−λ/2)′
=

(α2 − β2)λ/2

Kλ(δ
√
α2 − β2 )

Kλ+1

(
δ
√
α2 − (β + u)2

)
(α2 − (β + u)2)(λ+1)/2

(1.17)

If we insert 0 for u we obtain

M ′(0) =
βδKλ+1(δ

√
α2 − β2))√

α2 − β2 Kλ(δ
√
α2 − β2))

Applying the definition of ζ gives the result for the mean; the similar computation of the
variance is more complicated but straightforward. The scale- and location-invariance of the
term in the round brackets of equation (1.16) follows with Lemma 1.5.

Clearly, both formulae are less complicated in the symmetric case, e.g. when we assume β = 0
the mean is simply µ.

Lemma 1.18. The characteristic function of the generalized hyperbolic distribution is given
by

ϕ(u) = eiµu
(

α2 − β2

α2 − (β + iu)2

)λ/2 Kλ

(
δ
√
α2 − (β + iu)2

)
Kλ

(
δ
√
α2 − β2

) .

Proof. The radius of convergence of the moment generating function M around zero is α−β.
With Gut (1995, Theorem III.3.3) the moment generating function M is a real analytic,
i.e. it can be expanded in a power series around zero. Consequently M is a holomorphic
function for complex z with |z| < α− β. Therefore, we obtain for the characteristic function
ϕ(u) = M(iu).

Shape Triangle

In the case of hyperbolic distributions the scale- and location-invariant parameters (χ, ξ)
are used to determine the shape of the distribution, because (χ, ξ) describe asymptotically
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skewness and kurtosis (Barndorff-Nielsen, Blæsild, Jensen, and Sørensen 1985): for not too
large values of % we have the approximations for the skewness γ1 ≈ 3χ and kurtosis γ2 ≈ 3ξ2.
The domain of variation of GH distributions given in the 3rd parametrization is 0 ≤ |χ| <
ξ < 1. Hence, they may be plotted in a triangle. This leads to a useful visualization of the
shape in the shape triangle (ξ, χ).

It is possible to extent the concept of the shape triangle to generalized hyperbolic distribu-
tions with fixed λ, but the approximations of skewness and kurtosis are not valid in general.
Hence we also compare the values of skewness and kurtosis directly.

See Eberlein and Keller (1995), Barndorff-Nielsen and Prause (1999) for an application
of the hyperbolic and NIG shape triangle to analyze returns of financial assets on different
time scales. In the Figures 2.24 and 5.12 we use shape trianglees to compare risk-neutral
distributions and return distributions of nonlinear portfolios respectively.

We often restrict our empirical investigations to these two subclasses with fixed λ because
hyperbolic distributions are the fastest to estimate (see next section) and NIG distributions
are closed under convolution.

Tail Behaviour

The generalized hyperbolic distributions have semi-heavy tails, in particular

gh(x;λ, α, β, δ) ∼ |x|λ−1 exp
(
(∓α+ β)x

)
as x→ ±∞ (1.19)

up to a multiplicative constant (Barndorff-Nielsen and Blæsild 1981, equation 15).

1.2 Maximum-Likelihood Estimation

In this section we begin with a description of the ML estimation algorithm: We assume the
independence of the observations xi, i = 1, . . . , n and maximize the log-likelihood function

L = log a(λ, α, β, δ) +
(λ

2
− 1

4

) n∑
i=1

log
(
δ2 + (x− µ)2

)
(1.20)

+
n∑
i=1

[
log Kλ− 1

2

(
α
√
δ2 + (xi − µ)2

)
+ β(xi − µ)

]
,

where a is given in Definition 1.1. For hyperbolic (λ = 1), NIG (λ = −1/2), hyperbola
(λ = 0), and hyperboloid (λ = 1/2) distributions the algorithm uses the simpler expressions
of the log-likelihood function. We have chosen a numerical estimation procedure mainly based
on an optimization for each coordinate. For the optimization step in each direction we have
implemented a refined bracketing method (Jarrat 1970; Thisted 1988) which makes no use
of derivatives. This gives us the possibility to replace the log-likelihood function easily by
different metrics (see Section 1.7). The resulting algorithm is fast and stable. However, a
further increase in the speed may be obtained by using the derivatives given in Section 1.3.1

1We decided not to implement a numerical optimization algorithm using derivatives, because an increase in
the speed also for the subclasses would have required the implementation of all derivatives for the subclasses.
However, after a decision for a particular subclass of GH distributions one should use the derivatives to increase
the speed. For instance, the hyp program of Blæsild and Sørensen (1992) for the estimation of hyperbolic
distributions uses derivatives.
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We have implemented the direct solutions for µ given in Section 1.3. In contrast to the
hyperbolic case, estimation of GH parameters for financial return data converges quite often
to limit distributions at the boundary of the parameter space. Hence, it was necessary to
adapt the algorithm to the parameter restrictions given above. We have also modified the
algorithm to estimate parameters for a fixed λ.

An important point concerning the speed of the estimation is the selection of starting
values. To estimate the generalized hyperbolic distribution for a particular data set, we
choose starting values by rescaling a symmetric GH distribution with a reasonable kurtosis,
e.g. ξ ≈ 0.7, such that the empirical variance and the variance of the GH distribution are
equal. See Section 2.1 for a detailed description of the rescaling mechanism. We tested this
approach with data sets from different origins. In general, this choice of starting values leads
to good results. The estimation algorithm is stopped if the relative change in the parameter
values (pi,n)1≤i≤5 in the n-th iteration step is smaller than a given constant, i.e.

5∑
i=1

∣∣∣∣pi,n+1 − pi,n
pi,n

∣∣∣∣ < 10−10. (1.21)

Although the computational power increases, it is necessary to find a reasonable tradeoff
between the introduction of additional parameters and the possible improvement of the fit.
Barndorff-Nielsen and Blæsild (1981) mentioned the flatness of the likelihood function yet for
the hyperbolic distribution. The variation in the likelihood function of the GH distribution
is even smaller for a wide range of parameters (see Section 1.6 below). Consequently, the
generalized hyperbolic distribution applied as a model for financial data leads to overfitting.
This will become more obvious in the following sections.

The first four centered moments of return distributions yield simple and useful economet-
ric interpretations: trend, riskiness, asymmetry and the probability of extreme events. For
fixed λ subclasses with four parameters corresponding to the mentioned characeristics are
obtained. Therefore, it seems to be appropriate to model return data with one of the sub-
classes. However, from a mathematical point of view, GH distributions, as the most general
distributions which include all subclasses, are more interesting.

Because of the restrictions on the parameter values and the flatness of the likelihood
function, it seems not to be possible to use standard minimization algorithms. These ready
implemented routines often assume that the parameters and the value of the function have the
same order of magnitude and that the gradient is not too small (Press, Teukolsky, Vetterling,
and Flannery 1992). Although we have no theoretically assured convergence of our algorithm,
tests with different starting values reveal that for financial data the use of reasonable starting
values results in the convergence to a global extremum. In the special case of hyperbolic
distributions we estimate the same parameters with our algorithm and the hyp program
implemented by Blæsild and Sørensen (1992).

The main factor for the speed of the estimation is the number of modified Bessel functions
to compute. They are calculated by a numerical approximation described in Press, Teukolsky,
Vetterling, and Flannery (1992, pp. 236–252). Note, that for λ = 1 this function appears only
in the norming constant. For a data set with n independent observations we need to evaluate
n and n + 1 Bessel functions for NIG and GH distributions respectively, whereas only one
for λ = 1. This leads to a striking reduction in the time necessary to calculate the likelihood
function in the hyperbolic case (see Table 1.11).
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We applied the estimator to log-return2 data from the German stock market and to New
York Stock Exchange (NYSE) indices. We define the return of a price process (St)t≥0 for a
time interval ∆t, e.g. one day, as

Xt = logSt − logSt−∆t. (1.22)

Thus, the return during n periods is the sum of the one-period returns. The stock data set
consists of daily closing prices from January 1988 to May 1994. We had to correct these quoted
prices due to dividend payments. The NYSE indices are reported from January 2, 1990 to
November 29, 1996. In Tables 1.13 and 1.14 we present the estimated GH, hyperbolic and
NIG distributions, and those obtained with λ = 0, 1/2,−3/2 for both data sets. The tables
present also the value of the log-likelihood function and the second and third parametrizations
(%, ζ) and (χ, ξ).

For numerical reasons it is useful to find a suitable subclass of the GH distributions,
i.e. choose a λ ∈ 1/2 ZZ. The estimates of λ for the NYSE indices are scattered around zero.
Therefore, it is not possible to choose one subclass for all NYSE indices. For the 30 german
stocks in the DAX the estimates for λ range from −2.4 to 0.8, but for 23 of 30 stocks we
obtain −2 < λ < −1.4. Similar results are obtained for the DAX (Eberlein and Prause 1998).

Moreover, a volatility approach based on the mixing GIG distribution leads to a com-
parable range of estimates for λ. Wirth (1998) estimated GIG distributions for historical
volatility estimates. Then he compared GH distributions constructed from the estimated
GIG distributions (by means of the mixing representation (1.6)) with the empirical distribu-
tion of the returns: both distributions are not very distinct.3 The estimates for λ are below
−1/2. In both approaches, neither NIG nor hyperbolic distributions are inside the range of
the estimates for λ.

In view of the obtained range of λ, the subclass of the generalized hyperbolic distribution
with λ = −3/2 is interesting. It has the following density, mean and variance

h̃(x;α, β, δ, µ) = a(−3/2, α, β, δ)
K2

(
α
√
δ2 + (x− µ)2

)
δ2 + (x− µ)2

eβ(x−µ) (1.23)

a(−3/2, α, β, δ) =
α2δ5/2

π(α2 − β2)1/4(1 + ζ)
eζ

EX = µ+
βδ2

δ
√
α2 − β2 + 1

VarX = δ2

(
1
ζ

+
β2

α2 − β2

1
ζ + 1

)
ζ

ζ + 1

The number of parameters is reduced to four and the Bessel function K is of integer order,
which simplifies numerical calculations and the estimation. Unfortunately, this subclass is
not closed under convolution and the function contains a Bessel function outside the norming
constant a. Hence, the estimation is considerably more time-consuming than for hyperbolic
distributions. Note, that the variation of the likelihood for the GH distributions and the
subclasses is very small. We will investigate this in Section 1.4 in a more detailed way.

2We use “returns” and “log-returns” synonymously.
3Wirth (1998) obtained the following λ̂ for historical volatility estimators applied to the DAX and defined

in Section 2.5: Hist15 −0.85, Hist20 −1.27, Hist30 −2.28. For the VDAX he obtained λ̂ = −3.99, but the
GH distribution constructed by this GIG estimate is not close to the distribution of the empirical returns
(estimation period: January 1992 to December 1997).
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Naturally the GH estimates (in the Tables 1.13 and 1.14) have a higher likelihood than
the nested subclasses. For the German stocks we usually obtain values for λ below −3/2
and hence under all subclasses the likelihood is maximal for λ = −3/2 and decreases with
increasing λ.

The values of χ are usually close to zero, which indicates a symmetric distribution. For
the subclasses we obtain ξ values from 0.65 to 0.86. Recall that χ and ξ give the position of
the GH estimate in the shape triangle corresponding to the subclass.

For seven German stocks (Allianz-Holding, Bayerische Vereinsbank, Commerzbank,
Karstadt, MAN, Mannesmann, Siemens) and the NYSE Composite Index the estimated GH
distribution converge to the boundary of the parameter space as β → α, λ < 0, 0 < δ. In
terms of the other parametrizations this means χ, ξ, %→ 1 and ζ → 0.

Lemma 1.24. The limit of the generalized hyperbolic distribution for β → α and λ < 0 has
the following density

h̄(x;λ, α, δ, µ) =
2λ+1

√
2π Γ(−λ)δ2λ αλ−1/2

Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
exp(α(x − µ)).

Proof. For x ↓ 0, λ > 0 the following property of the modified Bessel function Kλ holds

Kλ(x) ∼ Γ(λ)2λ−1x−λ. (1.25)

We also use the fact that Kλ(x) = K−λ(x). Hence, the norming factor a given in Definition
1.1 simplifies in the following way

a(λ, α, β, δ) =
(α2 − β2)λ/2

√
2π αλ−1/2 δλ K−λ

(
δ
√
α2 − β2

)
−−→
α↓β

(α2 − β2)λ/2√
2π αλ−1/2 δλΓ(−λ)2−λ−1δλ(α2 − β2)λ/2

=
2λ+1

√
2π Γ(−λ)δ2λ αλ−1/2

.

The parametrization in this limiting case is 4-dimensional, but a substantial change appears
only in the norming factor.

Since β → α the parameter ψ = α2 − β2 of the GIG distribution in the mixture rep-
resentation tends to 0. For µ = 0 we obtain then the Student-t distribution as a mixture
of normals with inverse gamma distributions (Barndorff-Nielsen and Blæsild 1983). The ob-
tained distribution for µ 6= 0 is not equal to a noncentral t-distribution since the latter one
is a mixture only in the variance with a constant mean and not a variance-mean mixture as
the GH distribution (Johnson and Kotz 1970).

1.3 Derivatives of the Log-Likelihood Function

We obtain the following expressions for the derivatives of the log-likelihood function of the
GH distributions, which we denote by L. See Appendix B for the definition and properties
of the functions Rλ and Sλ. We apply in the in the differentiation the well-known properties
of the Bessel function Kλ given in the appendix and the abbreviation kλ(x) = dKλ(x)/dλ for
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the derivative of the Bessel function with respect to order. We skip the tedious details of the
differentiation.

d
dλ
L = n

[
1
2

ln
α2 − β2

αδ
− kλ(δ

√
α2 − β2 )

Kλ(δ
√
α2 − β2 )

]

+
n∑
i=1

[
1
2

ln(δ2 + (xi − µ)2) +
kλ−1/2

(α
√
δ2 + (xi − µ)2 )

Kλ−1/2
(α
√
δ2 + (xi − µ)2 )

]
d

dα
L = n

δα√
α2 − β2

Rλ(δ
√
α2 − β2 )

−
n∑
i=1

√
δ2 + (xi − µ)2Rλ−1/2

(a
√
δ2 + (xi − µ)2 )

d
dβ
L = n

[
− δβ√

α2 − β2
Rλ(δ

√
α2 − β2 )− µ

]
+

n∑
i=1

xi

d
dδ
L = n

[
−2λ
δ

+
√
α2 − β2Rλ(δ

√
α2 − β2 )

]
+

n∑
i=1

[
(2λ− 1)δ

δ2 + (xi − µ)2
− αδRλ(α

√
δ2 + (xi − µ)2 )√

δ2 + (xi − µ)2

]
d

dµ
L = − nβ +

n∑
i=1

xi − µ√
δ2 + (µ− xi)2

×
[

2λ− 1√
δ2 + (xi − µ)2

− αRλ−1/2
(α
√
δ2 + (xi − µ)2 )

]
.

Therefore, we obtain direct solutions of the likelihood equations for β and µ. From d
dβL = 0

and d
dµL = 0 we get

µ = − δβ√
α2 − β2

Rλ(δ
√
α2 − β2 ) +

1
n

n∑
i=1

xi (1.26)

β =
1
n

n∑
i=1

xi − µ√
δ2 + (xi − µ)2

(1.27)

×
[

2λ− 1√
δ2 + (xi − µ)2

− αRλ−1/2
(α
√
δ2 + (xi − µ)2 )

]
.

The solutions of the likelihood equations for the other parameters are obtained by maximizing
the log-likelihood equation with respect to (λ,α, δ, β). The location parameter µ is then found
by (1.26). It is of course preferable to maximize (λ, logα, log δ, β) to circumvent the positivity
condition on α and δ.
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Figure 1.2: NYSE Industrial Index and Bayer.

1.4 Comparison of the Estimates and Tests

The aim of this section is to analyze and compare the goodness of fit of the generalized
hyperbolic distributions and their subclasses. For a first graphical comparison we provide
plots of the densities, and qq-plots for the NYSE Industrial Index and Bayer share in Figure
1.2. Both types of plot reveal that generalized hyperbolic distributions provide excellent
fits to empirically observed return distributions. It is obvious that generalized hyperbolic
distributions are leptokurtic, i.e. the peak in the center is higher and there is more mass in
the tails than for the normal distribution.

We also compare the GH estimates with fitted normal distributions statistically. As a
measure for the goodness of the fit we use various distances between the fitted and the
empirical cumulative density function (CDF): The Kolmogorov distance is defined as the
supremum over the absolute differences between two cumulative density functions. We also
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compute L1 and L2 distances of the CDFs. The Anderson & Darling statistic is given by

AD = max
x∈IR

|Femp(x)− Fest(x)|√
Fest(x)(1− Fest(x))

, (1.28)

where Femp and Fest are the empirical and the estimated CDFs. We apply this statistic
because it pays more attention to the tails of the distribution (see also Hurst, Platen, and
Rachev 1995) and therefore hints at the possibility to model the probability of extreme events
with a given distribution. In Table 1.3 we give the results for some share values included in
the German stock index DAX.

Table 1.3: Goodness of fit of the GH, NIG, hyperbolic and normal distribution. Different met-
rics are applied to measure the difference between the estimated and the empirical cumulative
density functions.

GH NIG HYP normal

Kolmogorov distance
Allianz-Holding 0.0016 0.0018 0.0019 0.0097
Bayer 0.0164 0.0167 0.0160 0.0593
Daimler Benz 0.0122 0.0122 0.0120 0.0628

Anderson & Darling statistic
Allianz-Holding 0.1301 0.5426 3.0254 5.84e07
Bayer 0.0604 0.0884 0.1462 17.8506
Daimler Benz 0.1094 0.5533 4.0783 6.58e09

L1-distance of CDFs
Allianz-Holding 0.0004 0.0006 0.0007 0.0024
Bayer 0.0003 0.0003 0.0004 0.0015
Daimler Benz 0.0004 0.0005 0.0005 0.0021

L2-distance of CDFs
Allianz-Holding 0.0016 0.0018 0.0019 0.0097
Bayer 0.0011 0.0012 0.0015 0.0070
Daimler Benz 0.0014 0.0013 0.0014 0.0085

For all analyzed metrics we get better results for the GH distributions and their subclasses
than for the normal distribution. The poor fit of normal distributions to the heavier tails
of returns comes to light in the values of the Anderson & Darling statistic. Looking at
the statistics for the GH, NIG and HYP distributions, no striking differences are found.
Recalling the flatness of the likelihood function and the proximity of the log-likelihood values
in Tables 1.13 and 1.14, this result is no surprise and underlines the overfitting of generalized
hyperbolic distributions with arbitrary λ. The values of the Kolmogorov and L2 distances of
GH, NIG and hyperbolic distributions are very close, and the distribution with the highest
value changes. Both, Anderson & Darling statistic and the L1 distance reveal the following
ranking in the fit: GH, NIG, hyperbolic and normal distribution.

Another way to analyze the discrepance of GH distributions to their subclasses is to
perform a statistical test under the hypothesis that the true distribution is included in the
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Table 1.4: Likelihood ratio test of GH estimates under the hypothesis of a hyperbolic
resp. NIG distribution.

Hyperbolic NIG
statistic p-value statistic p-value

NYSE indices, 1746 observations, January 2, 1990 to November 11, 1996
Composite 0.097 0.756 3.003 0.083
Finance 0.758 0.384 0.234 0.629
Industrial 1.245 0.264 0.915 0.339
Transport 15.1 0.0001 7.107 0.008
Utility 1.614 0.204 0.16 0.689

German stock, 1598 observations, January 1, 1988 to May 24, 1994
BASF 21.435 3.6e−06 8.397 0.004
Bayer 15.375 0 4.3 0.038
Daimler Benz 18.385 1.8e−05 4.476 0.034
Deutsche Bank 11.604 0.001 0.764 0.382
Siemens 32.195 1.3e−08 12.113 0.001
RWE 18.196 1.9e−05 0.005 0.946

hyperbolic resp. NIG subclass of GH distributions. In Table 1.4 we provide the results of a
likelihood ratio test.

Looking at the p-values, we see that the NIG and the hyperbolic hypothesis is not rejected
at a 5% niveau for all NYSE indices but the NYSE Transport Index. Both hypotheses are
rejected in most cases for the German stocks. This is no surprice for a large data set, since the
likelihood ratio test is consistent (see Theorem 6.60 and the following remarks in Witting and
Müller-Funk 1995). Nevertheless, this result hints at an even better fit of NIG and hyperbolic
distributions for the NYSE indices in comparison to German stocks. This is also visible in
the qq-plots on page 12.

1.5 High-Frequency Data

Generalized hyperbolic distributions are also appropriate for the modelling of intraday data.
We explore a data set published by Olsen & Associates (1998) in preparation of the HFDF
II conference 1998. See Appendix A.1 for a detailed description of the data set. We estimate
distributions of intraday returns for different time lags, using data recorded from the global
foreign exchange (FX) market and from the US-market. For high-frequency data we follow
Guillaume et al. (1997) in the definition of a log-price

p(t) = [log pask(t) + log pbid(t)]/2 (1.29)

and the corresponding return

r(t) = p(t)− p(t−∆t), (1.30)

where ∆t is the time interval. We estimate the GH parameters after removing all zero-
returns. Although this is only a provisional approach to focus on time periods where trading
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Figure 1.5: Densities and log-densities of high frequency data.

takes place, we can conclude that under the assumption of independence the class of GH
distributions provides excellent fits to the empirically observed distributions. This assumption
is of course not realistic, considering the seasonalities and long-range dependence usually
observed in these time series. The microstructure one finds in these globally traded assets
needs much more attendance, particularly in comparison to daily data from a single market.
However, the results given in Figure 1.5 encourage further research. In particular, stochastic
volatility models with generalized hyperbolic marginals may be interesting.

1.6 Finite-Sample Properties

In this section we investigate the stability of the estimation of GH distributions by a simulation
study. We generate random numbers from the GH distribution estimated for the Bayer returns
(see Table 1.14) using the quantile function and a random number generator on [0, 1], and
we produce data sets with different sample sizes. Note, that the choice of the sampling
distributions restricts the validity of the following results to typical log-return distributions
of financial assets. On page 17 we show the results of the simulation. Similar results are
obtained for other sampling distributions.
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Volatility and Quantiles

First, we assume that the true distribution is GH, compute its theoretical standard deviation
and 1% quantile, and compare both with the values resulting from likelihood estimates of
hyperbolic and NIG distributions and the nonparametric estimates. The results are given in
Table 1.6.

The first observation is, that the estimation of the standard deviation is strikingly poor.
For 250 observations, which corresponds to the number of trading days in one year, the mean
absolute errors are larger than 5% and for 1598 (≈ 6.5 years) about 3%. In most cases we
observe an underestimation of the volatility and the nonparametric estimate of the volatility
gives better results.

On the contrary, the parametric results for the estimation of 1% quantiles are better than
the non-parametric. However, the mean absolute errors measured in percent are even larger
than the corresponding errors for the standard deviation.

Skewness, Kurtosis, and Subclass

Due to the flat log-likelihood the comparison of single parameter values of the sampling and
the estimated distribution does not make sense. Therefore, we prefer to compute the error in
the estimate for the subclass λ, the Kolmogorov distance maxx∈IR |Fsampling(x) − Fest(x)|
and the Anderson & Darling statistic defined in (1.28). The results are given in Table 1.7.

Latter Table shows that only for large sample sizes the parameter λ is close to the sampling
distribution. This reveals that the estimation of the subclass, characterized by λ, is difficult.
For instance, the mean absolute error in the estimation of λ for 1598 observations is of the
same order of magnitude as the difference in λ between NIG and hyperbolic distributions.
Recall from Section 1.4 that the difference between the subclasses in terms of the likelihood
is small. Of course, it is not possible to find financial time series at any given length without
getting in trouble with changes of regime.

Table hints at the number of observations necessary for a desired precision of the estimate.
The Kolmogorov and A&D distance decrease with increasing sample size. From these results
we conclude—as a rule of thumb—that at least 250 observations are necessary to obtain a
reasonable fit.

Another way to visualize the stability of the GH estimates with respect to the shape of
the distribution is given in Figure 1.8. We generated 100 i.i.d. random samples of length
250 and 1598 for the hyperbolic distribution estimated for the Bayer stock. The shape of the
hyperbolic distributions estimated from these random samples is shown in the shape triangles.
Obviously, it is preferable to estimate shape parameters from time series longer than one year.

1.7 Minimum-Distance Estimation

In this section we apply different estimation methods by replacing the log likelihood function
with other score functions. We want to know whether one of these different approaches yields
a better fit, in particular, to tails of GH distributions. This may improve the modelling of
the probability of extreme events. We estimate parameters for the GH, NIG and hyperbolic
distributions using the metrics already applied in Section 1.4. The results are given on page
33 for Deutsche Bank returns. Note, that the numerical differences in the values for GH,
NIG and hyperbolic distributions are small for each distance. For the minimal Kolmogorov
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Table 1.6: Simulation study: estimation of standard deviation and quantiles. Sampling
distribution: Bayer ML estimate for the GH distribution with standard deviation 0.01147
and 1%-quantile −0.0298; 1000 iterations.

Sample size 250 random numbers 1598 random numbers
Average Error AbsErr SquErr Error AbsErr SquErr

% % % %

Standard Deviation
Empirical 0.21 7.07 1.15e−6 −0.26 2.95 1.78e−7
Hyperbolic −2.95 5.92 7.13e−7 −3.20 3.51 2.29e−7
NIG −1.05 6.40 8.69e−7 −1.63 2.84 1.62e−7

1%-Quantile
Empirical 3.67 14.33 2.80e−5 0.79 5.94 5.03e−6
Hyperbolic 3.39 9.70 1.27e−5 2.92 4.40 2.66e−6
NIG −0.08 11.38 1.86e−5 −0.27 4.53 2.99e−6

Table 1.7: Stability of the estimation of the full GH distribution, i.e. with arbitrary λ. Sam-
pling distribution: GH maximum-likelihood estimate for Bayer; 100 iterations.

Sample Size Mean Absolute Errors Mean Mean
λ St Dev Kolm. dist. A&D-stat.

50 9.182 0.00161 0.0937 0.908
100 4.31 0.00128 0.0586 0.566
150 3.43 0.00105 0.0451 0.433
200 3.572 0.00268 0.0419 0.399
250 2.405 0.00356 0.035 0.333
500 2.127 0.000561 0.0262 0.25
750 1.874 0.000549 0.0233 0.221

1000 1.81 0.00104 0.0189 0.178
1598 1.33 0.000362 0.0153 0.145
2500 0.976 0.000351 0.0119 0.112
5000 0.484 0.000205 0.00721 0.068
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Figure 1.8: Stability of GH estimates: Estimation of a hyperbolic distribution from 250
resp. 1598 random variates. This procedure is repeated 100 times.

distance and the minimal Anderson & Darling distance we observe values for λ close to −1/2,
which indicates that NIG distributions provide a very good fit with respect to these metrics.

Is it useful to use different metrics for the estimation of distributions from log-returns
in Finance? To answer this question, we compare the empirical skewness and kurtosis with
those values for the estimated distributions. The exact values of the skewness and kurtosis
for a specified generalized hyperbolic distribution are computed by the formulas given in
Barndorff-Nielsen and Blæsild (1981). Both values are complicated expressions in terms
of modified Bessel functions. The results are given in Table 1.15. They indicate that the
Anderson & Darling statistic and the Kolmogorov distance have poor finite-sample properties
as estimators, in particular, in comparison to Lp distances of CDFs or the maximum likelihood
approach. On the one hand, the kurtosis of estimated generalized hyperbolic distributions is
always closer to the empirical kurtosis. On the other hand estimated generalized hyperbolic
distributions are sometimes skewed in the other direction than the empirical distribution.
Similar results are obtained for other stock data sets. In general, the Anderson & Darling
statistic and the Kolmogorov distance yield estimates for which skewness and kurtosis deviate
in an irregular pattern from the empirical values. The estimates based on Lp-norms are closer
to the empirical kurtosis, but the estimation of the skewness is rather poor. We obtain the
best fits to the empirial skewness and kurtosis, also for other datasets, following the maximum
likelihood approach. Therefore, considering the finite-sample properties, it is not favourable,
to replace the ML approach by one of the proposed distances.

1.8 Measures of Risk

A good fit of the empirically observed semi-heavy tails is also important for the estimation
of Value-at-Risk (VaR). The motivation to introduce the concept of Value-at-Risk was the
necessity to quantify the risk for complex portfolios in a simple way. The VaR to a given
level of probability α is defined as the maximal loss inherent to a portfolio position over a
future holding period which is exceeded only with a probability of α ∈ (0, 1). This level of
probability is typically chosen as 1% or 5%. It should not be confused with the confidence
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Figure 1.9: VaR of a portfolio with linear risk and the value of one currency unit (US-$ or
Deutsche Mark). The exposure period is one trading day. We compare the empirical VaR at
different levels of probability to the estimated VaR using GH, NIG, hyperbolic and normal
distributions.

level. We look at the whole interval of levels of probability. This approach corresponds to the
multivariate approach in Davé and Stahl (1997). They propose to measure VaR for a whole
range of levels of probability α. Since we are interested in extreme events, we have only a
small number of observations; e.g. in a 99% quantile we obtain about 16 observations for our
data sets. Looking into VaR as a function of α gives an impression for the behaviour of a risk
measure.

First of all, we analyze VaR for portfolios with linear risk, e.g. portfolios consisting of only
one stock or index. The VaR estimates for the GH, NIG and hyperbolic distribution are given
in Figure 1.9. Obviously the class of generalized hyperbolic distributions and its subclasses
provide better fits to the empirical VaR—in particular for small levels of probability—than
the normal distribution.

A detailed discussion of the various approaches to risk measurement especially for multi-
variate price processes is given in Chapter 5. The good description of the risk inherent in
a financial asset by GH distributions may also be used as a basic ingredience to portfolio
optimiziation approaches. For instance, Sulem (1999) has shown that a smaller part of the
capital is invested in the risky asset, if the process of the risky asset is non-Gaussian.

1.9 Subordination, Lévy-Khintchine Representation

In the following section we derive the Lévy-Khintchine representation of GH distributions for
arbitrary λ. In the case λ = 1 and λ = −1/2 the corresponding densities have been derived by
Keller (1997, Proposition 51) and Barndorff-Nielsen (1998). However, the Lévy-Khintchine
representation for arbitrary λ is rather unpleasant, therefore we add subsequently a simpler
version for positive λ.

Apart from the fact that the subordination allows to calculate the Lévy-Khintchine rep-
resentation, it gives also a link to other approaches to explain the behaviour of asset prices
by a simpler process viewed on business time scales. See Schnidrig and Würtz (1995) for
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empirically constructed business times scales for high-frequency data, and Geman, Madan,
and Yor (1998) for time-transformed Brownian motions as a model for asset prices.

Subordination

A straightforward approach to calculate the Lévy density of the GH distribution is based
on the representation of the GH Lévy motion as a Brownian motion W (t) with independent
random time Y (t). This representation is denoted as subordination (Huff 1969).

Proposition 1.31 (Lévy-Khintchine Representation). A variable X following a cen-
tered and symmetric GH with parameters (λ, α, 0, δ, 0), λ ∈ IR has the Lévy-Khintchine rep-
resentation of the characteristic function

X̂(u) = fW (Y (1)) = exp
(∫ ∞
∞

(cos(ux)− 1)dMX (x)
)

(1.32)

with spectral measure

MX(x) = −sign(x)
∫ ∞

0

∫ −|x|
−∞

1√
2πt

exp(−y2/2t)dy dMY (t). (1.33)

The spectral measure MY of the random time Y has the density

h(x) =
[
δ2

∫ ∞
0

e−xξgλ(2δ2ξ)dξ + max{0, λ}λ
x

]
e−α

2x/2, (1.34)

with

gλ(x) =
[
(π2/2)x

(
J2
|λ|(
√
x ) +N2

|λ|(
√
x )
)]−1

. (1.35)

Further, J and N are modified Bessel functions.4

Proof. As a consequence of the variance-mean mixture, GH Lévy motions may be written as
subordinated processes W (Y (T )) in the sense of Huff (1969). Here W (t) denotes a Brownian
motion and Y (t) an independent random time with characteristic function

fY (T )(u) = exp
(
T
(
iuγY +

∫ ∞
0

(eiux − 1)dMY (x)
))

.

From Theorem 4 in Huff (1969) follows that the subordinated process W (Y (T )) has the
following Lévy triplet γ = 0, σ2 = Tγx and

M(x) = TM0(x) =


T

∫ ∞
0

∫ x

−∞

1√
2πt

exp(−y2/2t)dy dMY (t), x < 0

−TM0(−x), x > 0.

Consequently one obtains for the characteristic function at T = 1 the following expression

fW (Y (1)) = exp
(
−γY u2/2 +

∫ ∞
−∞

(cos(ux)− 1)dM0(x)
)
.

Replacing MY with the spectral measure of GIG distributions yields the result above. The
density of MY is given in Barndorff-Nielsen and Shephard (1998, Theorem 4.1).5

4Sometimes N is denoted by Y , see e.g. Halgreen (1979)
5See Table 1.1 for an overview over the various parametrizations.
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Remark 1.36. The Lévy triplet of GH symmetric and centered GH distributions contains
no Brownian part. Of course, assuming a drift µ 6= 0 does not change this.

Moreover, the Lévy-Khintchine representation of skewed GH distributions are related to
symmetric GH distributions Lemma 1.51. Obviously, also skewed GH Lévy motions are pure
jump processes.

Positive λ

In the case λ > 0 we get a simpler Lévy-Khintchine representation which does not translate
to negative λ, since a integral representation similar to Theorem B.19 is not valid.

Lemma 1.37. Denote by ξ(u) =
∫∞

0 e−uz gig(z)dz the Laplace transform of the GIG distri-
bution. Then we have ϕ0(u) = ξ

(
u2

2 − iβu
)

where ϕ0 is the characteristic function of the GH
distribution with µ = 0.

Proof. The GH distribution has the following mixture representation gh(dx) =∫∞
0 N(βw,w)(dx) gig(w)dw where N is the normal distribution. With Lukasz (1970, The-

orem 12.1.1) follows

ϕ0(u) =
∫
eiux gh(dx) =

∫ ∞
0

∫
eiuxN(βw,w)(dx) gig(w)dw

=
∫ ∞

0
exp
(
−
(
u2

2
− iβu

)
w

)
gig(w)dw

= ξ

(
u2

2
− iβu

)
.

Lemma 1.38. For the symmetric centered case β = µ = 0 we obtain the following represen-
tation for the Laplace transform of the GIG distribution

ξ(u) =
(

α2

α2 + 2u

)λ/2 Kλ

(
δ
√
α2 + 2u

)
Kλ

(
αδ
) .

Proof. Note that ξ(u) = ϕ
(√

2u
)

holds for β = 0. The result follows with Lemma 1.37.

Lemma 1.39. The Laplace transform of the GIG(λ, δ2, α2 − β2) distribution is given by

ξ(u) =
(

α2 − β2

α2 − β2 + 2u

)λ/2 Kλ

(
δ
√
α2 − β2 + 2u

)
Kλ

(
δ
√
α2 − β2

) .

Proof. We abbreviate the norming constant of the generalized inverse Gaussian distribution
by

b(λ, χ, ψ) :=
(ψ/χ)λ/2

2 K(
√
ψχ)

,
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where χ = δ2 and ψ = α2 − β2. Hence, the Laplace transform is given by

ξ(u) = b(λ, χ, ψ)
∫ ∞

0
e−ux exp

(
−1

2
(χ
x

+ ψx
))

dx

=
b(λ, χ, ψ)

b(λ, χ, ψ + 2u)

=
(ψ/χ)λ/2

2 Kλ(
√
χ(ψ + 2u))

2 Kλ(
√
χψ)(

ψ+2u
χ

)λ/2
=

(
ψ

ψ + 2u

)λ/2 Kλ(
√
χ(ψ + 2u))

Kλ(
√
χψ)

.

Replacing ψ and χ completes the proof.

For the proof of the following theorem we need some integral representations.

Lemma 1.40.

− ln
(

1 +
u2

2z

)
=

∫
eiux − 1− iux

|x| e−
√

2z |x|dx (1.41)

− ln
(

1 +
u2

α2

)
=

∫
eiux − 1− iux

|x| e−α|x|dx (1.42)

Proof. See Keller (1997, Lemma 50c and p. 83)

Theorem 1.43. The Lévy-Khintchine representation of the characteristic function of the
generalized hyperbolic distribution for λ ≥ 0 is

lnϕ(u) = iuµ+
∫ (

eiux − 1− iux
)
g(x)dx

g(x) =
eβx

|x|

(∫ ∞
0

exp
(
−
√

2y + α2|x|
)

π2y
(
J2
λ(δ
√

2y ) + Y 2
λ (δ
√

2y )
)dy + λe−α|x|

)

Proof. First of all, we assume that µ = β = 0 and define wu := δ
√
α2 + 2u. Hence, we can

follow

d
du

ln ξ(u) =
d

du
ln Kλ(wu)− d

du
ln(α2 + 2u)λ/2

=
K′λ(wu)δ2/wu

Kλ(wu)
− λ

2
2

α2 + 2u

=
δ2

wu Kλ(wu)

(
− λ

wu
Kλ(wu)−Kλ−1(wu)

)
− λδ2

w2
u

= −δ
2λ

w2
u

− δ2 Kλ−1(wu)
wu Kλ(wu)

− λδ2

w2
u

= −2δ2λ

w2
u

− δ2 Kλ−1(wu)
wu Kλ(wu)
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Since λ ≥ 0, we can use Theorem B.19 to derive the following by integrating the latter
identity

ln ξ(u) =
∫ u

0

(
−δ2 Kλ−1(wv)

wv Kλ−1(wv)
− 2δ2λ

w2
v

)
dv

= −δ2

∫ ∞
0

∫ u

0

gλ(y)
y + w2

v

dv dy − λ
∫

2
α2 + 2v

dv

= −δ2

∫ ∞
0

∫ u

0

dv

y + δ2(α2 + 2v)
gλ(y)dy − λ ln

(
1 +

2u
α2

)
;

here we use that
∫ u

0
1

C+udu = ln(C + u) − ln(C) = ln(1 + u/C). Denote ψ = α2 and by the
change of variable y 7−→ ln(z) = 2δ2z − δ2ψ we get

ln ξ(u) = −δ2

∫ ∞
ψ/2

∫ u

0

dv

z + v
gλ

(
2δ2
(
z − ψ

2
))
dz − λ ln

(
1 +

2u
ψ

)
= −δ2

∫ ∞
ψ/2

ln(1 +
u

z
)gλ
(

2δ2
(
z − ψ

2
))
dz − λ ln

(
1 +

2u
ψ

)
.

Hence, with Lemma 1.37 we obtain

lnϕ(u) = ln ξ
(u2

2
)

= −δ2

∫ ∞
ψ/2

gλ
(
2δ2(z − ψ

2
)
)

ln
(
1 +

u2

2z
)
dz − λ ln

(
1 +

u2

ψ

)
.

Applying the integral representations of Lemma 1.40 and the change of variable z 7−→ λ(y) =
y + ψ

2 , and interchanging integrals, we obtain

lnϕ(u) = δ2

∫ ∞
ψ/2

gλ(2δ2(z − ψ

2
))
∫
eiux − 1− iux

|x| e−
√

2z |x|dx dz

+ λ

∫
eiux − 1− iux

|x| e−α|x|dx

=
∫
eiux − 1− iux

|x|

(∫ ∞
0

δ2gλ(2δ2y)e−
√

2y+α2|x|dy + λe−α|x|
)
dx.

Therefore, the Lévy Khintchine representation of the characteristic function in the case of
symmetric centered GH distributions is given by

lnϕ(u) =
∫

(eiux − 1− iux)g(x)dx

g(x) =
1
|x|

(∫ ∞
0

exp(−
√

2y + α2|x|)
π2y(J2

λ(δ
√

2y) + Y 2
λ (δ
√

2y))
dy + λe−α|x|

)
,

where λ ≥ 0. With Lemma 1.51, we obtain the Lévy measure of the skewed GH distribution.
Introducing also µ proves the desired result.
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Figure 1.10: Lévy measure of GH, NIG and hyperbolic distributions.

In Figure 1.10 we show the Lévy densities of GH distributions estimated for the NYSE
composite index. Since the estimated value of λ = 0.84 is closer to the hyperbolic distribution,
in this case the NIG distribution has more large jumps than the GH distribution.

1.10 The Generalized Hyperbolic Lévy Motion

Barndorff-Nielsen and Halgreen (1977) showed that the GIG distribution given in Definition
1.7 is infinitely divisible. A direct consequence of this fact is that a mixture of normal
distributions with GIG distributions is again an infinitely divisible distribution. Therefore, we
can construct Lévy processes based on these distributions. Unfortunately only in the special
case of normal inverse Gaussian distributions, i.e. for λ = −1/2, the family of distributions
{GH(−1/2, α, β, tδ, tµ), t ∈ (0,∞)} forms a semi-group under convolution. Consequently,
the convolutions of generalized hyperbolic distributions in general are no longer generalized
hyperbolic. Nevertheless, with the following Lemma we can reduce the calculation of the
n-fold convolution to the symmetric case.

Lemma 1.44. The convolution semigroup of GH Lévy motions X is characterized by the
densities

gh∗t(x;λ, α, β, δ, µ) =
eβx

M t
0(β)

gh∗t(x;λ, α, 0, δ, µ)
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Proof. Recall that a = a(λ, α, β, δ) was defined as the norming factor of the GH distribution.
For a two-fold convolution we obtain:

gh∗2(x) = gh∗2(x;λ, α, β, δ, µ) =
∫

gh(x− y) gh(y)dy

= a2

∫
(δ2 + (x− y + µ)2)(λ−1/2)/2

×Kλ−1/2

(
α
√
δ2 + (x− y + µ)2

)
eβ(x−y−µ)

× (δ2 + (y − µ)2)(λ− 1
2

)/2 Kλ− 1
2

(
α
√
δ2 + (y − µ)2

)
eβ(y−µ)dy

= a2(λ, α, β, δ) exp(βx− 2βµ)a−2(λ, α, 0, δ) gh∗2(x;λ, α, 0, δ, µ)

× a2(λ, α, β, δ)
a2(λ, α, 0, δ) exp(2βµ)

exp(βx) gh∗2(x;λ, α, 0, δ, µ)

=
(
M(β;λ, α, 0, δ, µ)︸ ︷︷ ︸

=:M0(β)

)−2 exp(βx) gh∗2(x;λ, α, 0, δ, µ)

Clearly, this result translates to IN.

gh∗n(x) = M−n0 (β) exp(βx) gh∗n(x;λ, α, 0, δ, µ) ∀n ∈ IN .

We use the following abbreviation for an element of the convolution semigroup of symmetric
GH distributions.

f̃(x) =
exp(βx)
M t

0(β)
gh∗t(x;λ, α, 0, δ, µ), for 0 < t < 1.

Then we obtain for 0 < s, t < 1(
f̃s ∗ f̃t

)
(x) =

∫
eβ(x−y)

M t
0(β)

gh∗t(x− y;λ, α, 0, δ, µ)
eβy

Ms
0 (β)

gh∗s(y;λ, α, 0, δ, µ)dy

=
eβx

M t+s
0

∫
gh∗t(x− y;λ, α, 0, δ, µ) gh∗s(y;λ, α, 0, δ, µ)dy

=
eβx

M t+s
0 (β)

(gh∗t(·;λ, α, 0, δ, µ) ∗ gh∗s(·;λ, α, 0, δ, µ))(x)

=
eβx

M1
0 (β)

gh(x;λ, α, 0, δ, µ).

At last we define gh∗t(x) = f̃(x), which yields the result.

Consequently, we obtain a real valued expression for the characteristic function in the
symmetric centered case β = µ = 0.

ϕ(u;λ, α, δ) =
(

α2

α2 + u2

)λ/2 Kλ(δ
√
α2 + u2 )

Kλ(αδ)
, (1.45)

and the density gh∗t of L(Xt) with Xt symmetric and centered, is given by the Fourier
inversion formula

gh∗t(x;λ, α, 0, δ, 0) =
1
π

∫ ∞
0

cos(ux)ϕ(u;λ, α, δ)tdu (1.46)
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where t > 0. The Fast Fourier Transformation (FFT) allows to compute this density in
an efficient way (Press, Teukolsky, Vetterling, and Flannery 1992). At the end of 1.14 we
propose an alternative method to compute quantiles of convolutions of GH distributions,
which translates also to densities. Of course, in the case of the NIG distribution the density
gh∗t can be computed directly

nig∗t(x;α, β, δ, 0) = nig(x;α, β, tδ, 0) for t > 0. (1.47)

On the one hand the estimation of NIG distributions is more time consuming, on the other
hand convolutions, necessary for option pricing, are easier to obtain.

1.11 The Exponential Lévy Model

We consider the following financial market living on a stochastic basis (Ω,F , (Ft)0≤t≤T , P )
which satisfies the usual conditions. We model two assets: The first one is a risk free asset
(Bt)0≤t≤T evolving according to the equation{

dBt = rBtdt, 0 ≤ t ≤ T
B0 = 1,

(1.48)

where r is a given interest rate and T is the fixed horizon date for all market activities. The
second asset is a stock with price process (St)0≤t≤T given as follows

St = S0 exp(Xt). (1.49)

where Xt is a GH Lévy process. This process is purely discontinuous as well. We are in
an incomplete setting, therefore we have to select a particular equivalent martingale mea-
sure. Arbitrage free prices are obtained as expectations under these measures (Delbaen and
Schachermayer 1994). Moreover, Eberlein and Jacod (1997) have shown in the hyperbolic
model that prices in the whole trivial no-arbitrage-interval are possible. See Raible (1999) for
similar results for other GH distributions.

1.12 Derivative Pricing by Esscher Transforms

In the sequel we investigate the risk-neutral probability measure obtained as Esscher equiva-
lent measure Pϑ given by

dPϑ = eϑXt−t logM(ϑ)dP. (1.50)

Sometimes (1.50) is called exponential tilting. Esscher (1932) introduced these measure trans-
forms for different economic and statistical applications (see for instance Jensen 1995, pp. 11–
16 for a discussion). Gerber and Shiu (1994) proposed to use this equivalent measure transfor-
mation for the pricing of derivatives. They define the Esscher transform for 0 ≤ t ≤ ∞. This
transformation does not define an equivalent measure on FX∞ (see Proposition 19 Remark ii
in Keller 1997). Otherwise, if we look only on a finite time horizon the problem is not to proof
the equivalence of the measure but to give a consistency condition, that the new process is
an equivalent Lévy process (see the remark of Delbaen, Schachermayer and Schweizer in the
discussion of Gerber and Shiu 1994, pp. 148–151).

It is remarkable that the Esscher tranform may also be obtained by a transformation of
the Lévy triplet.
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Lemma 1.51. Let X be a Lévy process with Lévy triplet (0, 0, F ) and let y(x) = exp(ϑx) and
suppose that

∫
|x|≥1 exp(ϑx)dF <∞, then the new measure Q defined by the change of triplet

according to (
b′ = b+

∫
h(y − 1)df, c′ = 0, F ′ = yF

)
is the Esscher transform of P .

The assertion was proved by Keller (1997, Lemma 21 and equation 1.29). The lemma
allows to compute the Esscher transformed risk-neutral density by Fourier inversion methods
when only the characteristic function of the real-world measure is known.

Esscher Transforms in Finance

In a discrete time setting a generalization of (1.50) is proposed by Bühlmann, Delbaen,
Embrechts, and Shiryaev (1996) considering conditional Esscher transforms. In their case
one finds a reason to choose the Esscher transform as a risk-neutral measure by equilibrium
arguments. See also Shiryaev (1999, pp. 683–690) for Esscher transforms in finance and
Keller (1997, Section 1.4.3) for an equilibrium approach leading to Esscher transform as a
risk-neutral measure. However, in the two equilibrium approaches the settings and utility
functions are different.

Moreover, Grandits (1996) considered one step processes: then the risk-neutral Esscher
probability measure corresponds to the p-optimal measure for p→ 1. The p-optimal measure
is a generalization of the variance-optimal measure.

From a mathematical and numerical point of view the simplicity and analytical tractability
of the Esscher transform is favourable.

Esscher Prices and the Minimal Martingale Measure

Chan (1999) asserts that the Esscher transform yields an equivalent martingale measure for
the stockprice model

dSt = σtSt−dXt + btSt−dt (1.52)

where (Xt)0≤t≤T is a Lévy process with E[exp(hX1)] <∞ for all h ∈ (h1, h2), 0 < h1, h2 ≤ ∞.
The diffusion and drift coefficients (σt)0≤t≤T and (bt)0≤t≤T are defined to be deterministic
continuous functions. The condition on X in Chan (1999), which is fulfilled for a GH Lévy
motion, implies that Xt has finite moments of all order. In the model (1.52) the Esscher
transform yields a minimal martingale measure in the sense of Föllmer and Schweizer (1991).

On the contrary, in the model

St = S0 exp(σtXt + btt), (1.53)

where the price follows an exponential Lévy process, the minimal martingale measure does
not coincide with the Esscher transform. However, both measures are very close. They are
identical in the case of a Brownian motion X, and if the Lévy measure of X is concentrated
around 0, the Esscher martingale measure approximates the minimal martingale measure.
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Esscher Prices in the GH Model

With Keller (1997, Lemma 14) we have to find the solution of

r = log
M(ϑ+ 1)
M(ϑ)

(1.54)

= µ+
λ

2
log

α2 − (β + ϑ)2

α2 − (β + ϑ+ 1)2
+ log

Kλ

(
δ
√
α2 − (β + ϑ)2

)
Kλ

(
δ
√
α2 − (β + ϑ+ 1)2

) ,
where M is the moment generating function given in Lemma 1.13 and r > 0 the constant
interest rate (corresponding to the time lag for which the GH law was estimated). We find
the solution ϑ0 by a refined bracketing method. In the case of a NIG distribution equation
(1.54) simplifies to

r = µ+ δ
(√

α2 − (β + ϑ)2 −
√
α2 − (β + ϑ+ 1)2

)
. (1.55)

The density of the Esscher transform is obtained from the convolution semi-group (gh∗t)t>0.
To avoid the computation of convolutions for asymetric densities we reduce the computation,
in the way we described above, with FFT to the symmetric case. We use the fact that Lemma
52 of Keller (1997) translates directly to generalized hyperbolic distributions. M0(u) denotes
the moment generating function given in Definition 1.13 for β = 0.

gh∗t,ϑ(x;λ, α, β, δ, µ) =
eϑx

M t(ϑ)
gh∗t(x;λ, α, β, δ, µ)

=
eϑx

M t(ϑ)
eβx

M t
0(β)

gh∗t(x− µt;λ, α, 0, δ, 0). (1.56)

In the case of the NIG distribution we obtain

gh∗t,ϑ(x;−1/2, α, β, δ, µ) =
eϑx

M t(ϑ)
nig(x;α, β, tδ, tµ) (1.57)

and especially in the case of a centered NIG distribution we obtain a risk-neutral NIG distri-
bution

gh∗t,ϑ(x;−1/2, α, β, δ, 0) = nig(x;α, β + ϑ, tδ, 0). (1.58)

Consequently, centered NIG transforms are the easiest GH Esscher transforms to implement.
The price of a derivative contract with payoff function h(ST ) is (for all GH distributions)

given by

EQϑ [e−rTh(ST )] = e−rT
∫
h(S0e

x)dQϑXT ,

where Qϑ and QϑXT denote risk-neutral Esscher transformed probability measure and distri-
bution of XT respectively. For the price of an European call option with payoff function
h(ST ) = (ST −K)+ we obtain

Cgh = EQϑ0 [e−rTh(ST )] = e−rTEQϑ0 [(ST −K)+] (1.59)

= e−rTEQϑ0 [(S0e
XT −K)+] = e−rT

∫
{S0ex>K}

(S0e
x −K)dQϑ0

XT
(x)

= S0

∫ ∞
log K

S0

gh∗T,ϑ0+1(x; . . . )dx− e−rTK
∫ ∞

log K
S0

gh∗T,ϑ0(x; . . . )dx.

For the last step we follow Keller (1997, Section 1.4.2).
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1.13 Computation of Esscher Prices by FFT

The numerical computation of option prices by fast Fourier transforms (FFT) procedes in
four steps:

1. First, we solve equation (1.54), or the given simpler versions for the various subclasses,
to obtain ϑ0 by a refined bracketing method. For ϑ0 we have the following condition
−α−β < ϑ0 < α−β−1. We use these bounds as starting values for the Illinois method
(Thisted 1988). This approach allows us to compute ϑ0 in less than 10 iterations with
an error smaller than 10−10.

2. Second, we calculate the symmetric density gh∗T (x − µt;α, 0, δ, 0) using the Fourier
inversion formula (1.46). Although the implementation of sophisticated FFT algorithms
needs some attention to get exact results, the execution needs only fractions of a second.

Two-fold convolutions are used as a standard method in the field of image processesing
and filtering. The numerical problems of the discrete Fourier transforms and simula-
tion results are treated extensively by the computer scientists. Although characteristic
functions are often used in probability theory to prove limit theorems, numerical algo-
rithms for n-fold convolutions with n > 2 for arbitrary measures are no subject in the
numerical literature.

Unfortunately, only in the case of the NIG subclass the density is available as a closed
formula.

3. The Esscher transform is calculated as given in equation (1.56). Since β and µ have
often opposite sign, it is numerically favourable to “skew” the distribution in one step.

4. The last step is the calculation of the prices with formula (1.59), which is essentially a
numerical integration.

We summarize the numerical results for the comparison of GH Esscher prices with Black-
Scholes prices in Section 2.3.

1.14 Saddle-Point Approximation to Esscher Prices

An alternative approach to calculate Esscher prices is based on the saddle-point method, a
well-known tool in statistics to approximate densities or tail probabilities, if only the moment-
generating or cumulant generating function is known. See Jensen (1995) for a thorough expo-
sition of saddle-point approximation methods. The idea behind saddle-point approximations
is to compute the density or a tail probability by the Fourier inversion formula (see equation
1.46 for a special case), not by discretizing and the application of the FFT algorithm, but by
an expansion of the convex cumulant generating function at the saddle-point. Hence, the first
derivative vanishes and the approximation obtains a simple form. Rogers and Zane (1999)
proposed to compute option prices by saddle-point methods. In particular, they propose this
for stock price models in which XT has a NIG distribution6 under the martingale measure—
avoiding any “soul-searching” to find a particular martingale measure. In the sequel we show

6Rogers and Zane (1999) confuse NIG and hyperbolic distributions. Actually, they give the characteristic
function of the NIG distribution. Since convolutions of NIG distributions are known explicitly, it is not
necessary to approximate them by saddle-point methods.
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that this approximation method is also useful for the calculation of prices with the Esscher
change of measure.

As a first step, we compute the cumulant generating function of XT under the Esscher
equivalent martingale measure where (Xt)0≤t≤T follows a GH Lévy process. The cumulant
generating function (CGF) is defined as the log of the moment generating function (MGF)

κ(u) := logM(u) = logE[exp(uX)]. (1.60)

Let M(u, t) and κ(u, t) denote the MGF and CGF of the t-fold convolution. Since M(u, t) =
M(u)t for the convolution of i.i.d. random variates, we also have κ(u, t) = tκ(u).

The moment generating function of the Esscher transform with parameter ϑ is given by
(Gerber and Shiu 1994)

M(u, t, ϑ) =
M(u+ ϑ, t)
M(u, t)

, (1.61)

where ϑ ∈ IR is the parameter of the Esscher transform. Using Lemma 1.13 we obtain for the
CGF of the Esscher transform in the GH model:

κ(u, t, ϑ) := logM(u, t, ϑ) = log
M(u+ ϑ, t)
M(u, t)

= log
M(u+ ϑ)t

M(u)t
= t log

M(u+ ϑ)
M(u)

= t log

[
e(u+ϑ)µ

eϑµ

(
α2 − (β + ϑ)2

α2 − (β + u+ ϑ)2

)λ/2 Kλ

(
δ
√
α2 − (β + u+ ϑ)2

)
Kλ

(
δ
√
α2 − (β + ϑ)2

) ]

= tuµ+
tλ

2
log

α2 − (β + ϑ)2

α2 − (β + u+ ϑ)2
+ log

Kλ

(
δ
√
α2 − (β + u+ ϑ)2

)
Kλ

(
δ
√
α2 − (β + ϑ)2

) .

Note, that κ(u, tϑ) exists for |β + u + ϑ| < α. Since κ(u, t, ϑ) is the cumulant generating
function of a t-fold convolution of a GH distribution with parameter β′ = β + ϑ, we have
shown again that the risk-neutral Esscher transformation of a Lévy process changes only the
skewness in the following way β 7→ β + ϑ∗.

The price of a European put option under an equivalent martingale measure Q is according
to the martingale pricing theory given by

p = EQ[e−rT (K − ST )+] (1.62)

with strike priceK and stock price ST underQ. Since we model the logarithm Xt = log(St/S0)
of the stockprice St, we could also write

p = e−rTEQ[(K − S0e
XT )+]

= e−rT+logS0EQ
[(

exp(logK − log S0︸ ︷︷ ︸
=: k

)− exp(XT )
)+]

= S0e
−rTEQ

[(
ek − eXT

)+]
, (1.63)

where k = log(K/S0). Note, that the value of a European put p and a European call c with
the same strike price K are closely related by

p = c− S0 + e−rTK, (1.64)
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where S0 is the stock price at time 0. This follows from a trivial arbitrage consideration and
does not depend on the model.

Now we construct an exponential family by a second exponential tilting under the mar-
tingale measure Q. See Jensen (1995, Chapter 1.2) for a short introduction.

We assume that the cumulant generating function κ of XT under Q is finite in some open
stripe {z : −a− < Re z < a+} containing the imaginary axis with a− > 0 and a+ > 1. Define
the measure Qy by the

dQy
dQ

= exp
(
yXT − κ(y)

)
. (1.65)

Note, that this exponential tilting (or Esscher transform) is not related to the Esscher tranform
used to obtain the equivalent martingale measure. Then the cumulant transform κy of Qy is
given by

κy(u) = κ(y + u)− κ(y).

Now we can rewrite (1.63) as

p = S0e
k−rTQ(XT < k)− S0e

−rT+κ(1)Q1(XT < k). (1.66)

The tail probabilities Q(XT < k) and Q1(XT < k) may now be approximated by saddle-point
methods.

Lugannani-Rice Formula

We start by reviewing one particular saddle-point method. The exponential family generated
by X and Q defined in (1.65) has the following mean and variance

µ(y) = EyX =
dκ
dy

(y) (1.67)

σ(y) = VaryX =
d2κ

dydy
(y). (1.68)

The solution ŷ of Ey(X) = x, x ∈ int C, where C is the closed convex hull of the support of X,
is unique. When the exponential family is steep we have in fact that {EyX : y ∈ int C} ⊂ C,
i.e. µ(y) = x has a solution ŷ ∈ int Θ := {y ∈ IR : exp(κ(y)) < ∞} for any x ∈ int C
(Barndorff-Nielsen 1978, Section 9.3).

One application of saddle-point methods is to find approximations to sums X n of
X1, . . . ,Xn i.i.d. random variates. The following formula for the approximation of the lower
tail probability proved by Lugannani and Rice (1980) is an improvement to other saddle-point
approximations, since it is valid for all x ∈ IR. See Daniels (1987) for a comparison of the
Lugannani-Rice approach to other saddle-point methods.

Theorem 1.69 (Lugannani-Rice Formula). Assume that the solution ŷ exists and
Laplace-transform integrable. Then

P (X n ≤ x) = Φ
(
r(x)

)
− ϕ

(
r(x)

)( 1
λ(x)

− 1
r(x)

+O(n−3/2)
)
,
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where ϕ and Φ are the density and CDF function of the standard normal distribution, respec-
tively. Furthermore

r(x) = sign
(
ŷ(x)

)√
2n
(
ŷ(x)x− κ(ŷ(x))

)
(1.70)

λ(x) =
√
n ŷ(x)σ(ŷ(x)). (1.71)

See Jensen (1995, 3.3.2-9) for the proof.
It is remarkable that under the given assumptions the Lugannani-Rice formula holds

uniformly for ŷ(x) in a compact subset of int Θ (Jensen 1995, Theorem 3.3.2). Note that
a better approximation may be achieved using the higher order terms given in the original
paper of Lugannani and Rice (1980). In general, simulation studies indicate that the use of
the first order approximation yields good results (Daniels 1987).

Properties of the Cumulant Generating Function

Finally, we have to present the properties of GH distributions necessary for the application
of Theorem 1.69.

• The CGF of the GH distribution is the logarithm of the moment generating function
given in Lemma 1.13. For the parameter values which were typically estimated from
financial time series, the MGF and hence the CGF exists and fulfills a+ > 1.

• The Laplace transform is integrable (this follows from Lemma 1.13 and Lukasz 1970,
Section 7.2).

• With Lemma 1.13, equation (1.17) and Definition B.26 the we can compute the first
derivative of the CGF κ(u). We assume µ = 0 for simplicity and obtain

κ′(y) =
Rλ
(
δf(u)

)
f(y)

for |β + y| < α, (1.72)

where f(y) =
√
α2 − (β + y)2. The second derivative is easily computed with equation

(B.32).

Hence, if a solution ŷ(x) exists, we can apply the Lugannani-Rice Formula to compute the
option price given in equation (1.66).

Note, that the approximation by saddle-point method, which we have proposed here, is
also valid for the approximation of quantiles of convolutions of Gh distributions. Consider,
for example, the calculation of the VaR for a holding period of ten days from a hyperbolic
distribution estimated from daily log-returns.

1.15 Conclusion

In this chapter we developed an algorithm to estimate parameters for the class of general-
ized hyperbolic distributions which includes the hyperbolic and the normal inverse Gaussian
distribution as special cases. We compared the results of the estimations for financial return
data sets. In general, generalized hyperbolic distributions and their subclasses provide better
fits to the data than the normal distribution. As expected, the best fits are obtained for the
generalized hyperbolic distributions followed by the NIG and the hyperbolic distributions.
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Table 1.11: Computation times: GH and hyperbolic prices are computed by FFT algorithms.

1000 call prices 1000 estimations

Black/Scholes 3 sec
GH 2 min 28 sec 2 h 16 min
NIG 6 sec 2 h 15 min
hyperbolic 15 sec 1 h 31 min

It is worth to mention that generalized hyperbolic distributions tend to overfitting and
that the estimation is computationally demanding. The computation times necessary for
estimation and derivative pricing are given in Table 1.11. Hyperbolic and NIG distributions
provide an acceptable tradeoff between the accuracy of fit and and the necessary numerical
effort.

1.16 Tables

Table 1.12: Minimum distance estimates for Deutsche Bank returns.

λ α β δ µ Distance χ ξ % ζ

Maximum Likelihood
-1.0024 39.6 4.14 0.0118 -0.000158 4878.00 0.086 0.827 0.104 0.463
NIG 59.4 4.64 0.0094 -0.000226 4877.62 0.063 0.802 0.078 0.556
HYP 114.8 3.35 0.0000 -0.000000 4872.25 0.029 1.000 0.029 0.000

Minimal Kolmogorov Distance
-0.5002 63.8 3.81 0.0097 -0.000211 0.013469 0.047 0.786 0.060 0.620
NIG 63.8 3.81 0.0097 -0.000211 0.013470 0.047 0.786 0.060 0.621
HYP 116.8 4.60 0.0000 -0.000211 0.014424 0.039 1.000 0.039 0.000

Minimal Anderson & Darling Statistic
-0.7162 39.6 4.00 0.0117 -0.000158 0.10 0.083 0.827 0.101 0.463
NIG 48.5 4.05 0.0118 -0.000158 0.13 0.067 0.799 0.084 0.568
HYP 80.5 2.98 0.0000 -0.000162 0.20 0.037 1.000 0.037 0.000

Minimal L1 Distance
0.0590 85.5 5.62 0.0073 -0.000282 0.000352 0.052 0.786 0.066 0.620
NIG 64.9 3.79 0.0098 -0.000064 0.000337 0.046 0.782 0.058 0.636
HYP 116.5 6.12 0.0000 -0.000328 0.000407 0.053 1.000 0.053 0.000

Minimal L2 Distance
0.4900 102.7 7.24 0.0052 -0.000459 0.00111 0.057 0.807 0.070 0.536
NIG 64.2 6.48 0.0098 -0.000382 0.00119 0.079 0.785 0.101 0.623
HYP 122.7 7.68 0.0022 -0.000503 0.00114 0.056 0.887 0.063 0.270
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Table 1.13: Maximum likelihood estimates of generalized hyperbolic distributions and the
following subclasses: λ= –3/2 (in Equation 1.23), NIG (λ= –1/2), hyperboloid (λ=0), hy-
perbola (λ=1/2), and hyperbolic (λ=1) distributions. New York Stock Exchange Indices
from January 2, 1990 to November 29, 1996. The first line always contains the estimate for
arbitrary λ. 1746 observations.

λ α β δ µ LogLH χ ξ % ζ

NYSE Composite Index
0.83 213.74 −6.22 0.0022 0.00066 6396.06 -0.024 0.83 -0.029 0.47

−1.5 74.9 −10.44 0.0084 0.00085 6392.09 -0.11 0.78 -0.14 0.62
−0.5 136.29 −8.95 0.0059 0.00079 6394.56 -0.049 0.74 -0.066 0.81

0 164.91 −8.06 0.0046 0.00075 6395.39 -0.037 0.75 -0.049 0.76
0.5 193.86 −6.99 0.0032 0.0007 6395.93 -0.028 0.78 -0.036 0.62
1 225.03 −5.84 0.0016 0.00065 6396.01 -0.022 0.86 -0.026 0.35

NYSE FINANCE Index
0.05 151.55 −4.57 0.0062 0.00074 6067.61 -0.022 0.72 -0.03 0.94

−1.5 73.07 −3.96 0.01 0.00071 6066.60 -0.041 0.75 -0.054 0.77
−0.5 125.26 −4.28 0.0078 0.00073 6067.49 -0.024 0.71 -0.034 0.97

0 149.09 −4.54 0.0063 0.00074 6067.61 -0.022 0.72 -0.03 0.95
0.5 172.48 −4.91 0.0048 0.00076 6067.53 -0.021 0.74 -0.028 0.83
1 196.24 −5.46 0.003 0.0008 6067.23 -0.022 0.79 -0.028 0.59

NYSE Industrial Index
1.36 243.92 −10.37 8.9e-10 0.0009 6317.80 -0.043 1 -0.043 2.2e-07

−1.5 75.42 −10.26 0.0089 0.00091 6317.36 -0.11 0.78 -0.14 0.66
−0.5 135.3 −9.39 0.0064 0.00087 6319.21 -0.051 0.73 -0.069 0.86

0 163.5 −9.02 0.0051 0.00085 6319.61 -0.041 0.74 -0.055 0.83
0.5 192.02 −8.76 0.0037 0.00083 6319.61 -0.035 0.76 -0.046 0.72
1 222.25 −8.83 0.0022 0.00083 6319.05 -0.032 0.82 -0.04 0.5

NYSE Transport Index
−2.31 7.19 7.19 0.016 -0.00028 5725.53 1 1 1 2e-06

−1.5 62.99 7.4 0.013 -0.0003 5724.14 0.087 0.74 0.12 0.81
−0.5 109.49 7.74 0.01 -0.00032 5721.97 0.049 0.69 0.071 1.1

0 129.88 7.87 0.0084 -0.00033 5720.77 0.042 0.69 0.061 1.1
0.5 149.56 8.01 0.0068 -0.00034 5719.46 0.038 0.71 0.054 1
1 169.14 8.2 0.005 -0.00035 5717.98 0.036 0.74 0.048 0.84

NYSE Utility Index
1.84 298.21 −9.98 3e-11 0.00055 6379.26 -0.033 1 -0.033 8.9e-09

−1.5 122.16 −9.16 0.0095 0.00052 6380.93 -0.051 0.68 -0.075 1.2
−0.5 180.05 −9.17 0.0075 0.00052 6380.88 -0.033 0.65 -0.051 1.4

0 206.46 −9.22 0.0065 0.00052 6380.72 -0.029 0.65 -0.045 1.3
0.5 232 −9.31 0.0053 0.00052 6380.48 -0.027 0.67 -0.04 1.2
1 257.19 −9.44 0.0041 0.00053 6380.15 -0.026 0.7 -0.037 1
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Table 1.14: Maximum likelihood estimates of generalized hyperbolic distributions and the
following subclasses: λ= –3/2 (in Equation 1.23), NIG (λ= –1/2), hyperboloid (λ=0), hy-
perbola (λ=1/2), and hyperbolic (λ=1) distributions. German stocks from January 1988 to
May 1994. The first line always gives the estimate for arbitrary λ. 1598 observations.

λ α β δ µ LogLH χ ξ % ζ

Bayer
−1.79 21.3 2.67 0.0153 -0.000004 5003.69 0.109 0.869 0.125 0.323

−1.5 37.58 2.87 0.014 -2.7e-05 5003.52 0.062 0.81 0.076 0.53
NIG 81.6 3.69 0.0103 -0.000123 5001.54 0.033 0.737 0.045 0.843
0 101.03 4.17 0.0085 -0.00018 5000.05 0.03 0.73 0.041 0.86
0.5 119.93 4.72 0.0065 -0.00024 4998.23 0.029 0.75 0.039 0.78

HYP 139.0 5.35 0.0044 -0.000311 4996.00 0.030 0.789 0.039 0.608

Bayerische Hypotheken und Wechselbank
−1.59 17.9 2.19 0.0157 -0.000072 4815.05 0.108 0.884 0.122 0.278

−1.5 22.82 2.29 0.015 -8.6e-05 4815.03 0.087 0.86 0.1 0.35
NIG 63.8 3.12 0.0106 -0.000211 4813.37 0.038 0.773 0.049 0.674
0 81.68 3.48 0.0083 -0.00026 4811.72 0.033 0.77 0.043 0.68
0.5 99.58 3.8 0.006 -0.00031 4809.41 0.03 0.79 0.038 0.6

HYP 118.5 4.03 0.0035 -0.000330 4806.13 0.029 0.840 0.034 0.418

Daimler Benz
−1.68 13.0 3.93 0.0182 -0.000539 4625.48 0.272 0.903 0.301 0.227

−1.5 21.54 4.13 0.017 -0.00058 4625.38 0.16 0.86 0.19 0.36
NIG 57.6 5.09 0.0120 -0.000748 4623.24 0.068 0.769 0.088 0.691
0.5 88.88 5.99 0.0068 -0.0009 4619.3 0.053 0.79 0.067 0.6
0 73.31 5.52 0.0095 -0.00082 4621.52 0.058 0.77 0.075 0.69

HYP 105.2 6.58 0.0039 -0.000999 4616.28 0.053 0.843 0.063 0.406

Deutsche Bank, see Table 1.12.

Siemens
−1.89 3.680 3.65 0.0164 -0.000056 4914.74 0.988 0.996 0.992 0.008

−1.5 28.61 3.95 0.015 -9.6e-05 4913.72 0.12 0.84 0.14 0.41
NIG 74.7 4.76 0.0107 -0.000188 4908.68 0.047 0.745 0.064 0.800
0 94.27 5.06 0.0089 -0.00022 4905.66 0.04 0.74 0.054 0.84
0.5 113.09 5.31 0.007 -0.00025 4902.34 0.035 0.75 0.047 0.79

HYP 131.8 5.52 0.0049 -0.000266 4898.64 0.033 0.780 0.042 0.644

Thyssen
−2.34 1.4 0.92 0.0241 0.000545 4558.12 0.654 0.988 0.662 0.025

−1.5 42.92 1.27 0.02 0.00047 4557.22 0.022 0.73 0.03 0.86
NIG 72.1 1.62 0.0154 0.000399 4555.85 0.015 0.688 0.022 1.110
0 84.63 1.8 0.013 0.00036 4555.16 0.015 0.69 0.021 1.1
0.5 96.4 1.96 0.01 0.00033 4554.52 0.015 0.71 0.02 0.97

HYP 107.6 2.10 0.0066 0.000300 4553.96 0.015 0.764 0.020 0.714
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Table 1.15: Comparison of the directly estimated skewness and kurtosis with the skewness
and kurtosis calculated from the estimates of GH, NIG and hyperbolic distributions with
different metrics (Deutsche Bank and Bayerische Hypotheken und Wechselbank returns).

Skewness Kurtosis Skewness Kurtosis
Deutsche Bank Bay.Hyp.u.Wechselbank

Empirical −0.519 10.872 −1.220 15.919
Normal 0.0 3.0 0.0 3.0

Maximum Likelihood GH 0.378 7.492 0.291 10.413
Maximum Likelihood NIG 0.314 5.529 0.178 4.490
Maximum Likelihood HYP 0.123 3.010 0.071 3.003

Kolmogorov distance GH 0.227 4.906 −0.793 1.007
Kolmogorov distance NIG 0.227 4.903 −0.000 0.020
Kolmogorov distance HYP 0.166 3.018 −0.009 2.708

Anderson & Darling GH 0.419 7.233 0.058 3.210
Anderson & Darling NIG 0.332 5.427 −1.141 9.068
Anderson & Darling HYP 0.156 3.016 0.043 2.579

L1 distance GH 0.261 3.887 0.238 4.438
L1 distance NIG 0.219 4.782 0.237 4.252
L1 distance HYP 0.222 3.032 0.249 2.563

L2 distance GH 0.281 3.315 0.323 4.087
L2 distance NIG 0.383 5.010 0.320 4.024
L2 distance HYP 0.246 2.764 0.227 3.034
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Chapter 2

Application and Testing of
Derivative Pricing Models

One result of the empirical study in the last chapter is that generalized hyperbolic distributions
provide a realistic model for daily stock returns. We have derived an option pricing formula
using the Esscher transform as one possibility to find prices in an incomplete market. In
this chapter we compare the Black-Scholes model with the GH option pricing model, which
is a generalization of the hyperbolic model developed by Eberlein and Keller (1995), Keller
(1997).

Moreover, we also propose a general recipe for a comparison of option pricing models with
market reality. Some parts of the comparison of the hyperbolic and the Black-Scholes model
have already been published in Eberlein, Keller, and Prause (1998).1 The objectives of our
research are to examine

• The consistency of the model assumptions with empirical observed price processes,

• Typical patterns in implicit volatilities2,

• The application and performance of option pricing models from a practicioner’s point
of view.

Due to the difficulty if not impossibility to construct a test in a strict statistical sense for
option pricing models (see Section 2.7 for some further remarks), we try to understand and
compare the models using criteria which are relevant for practice.

On the one hand there is a constant interest in alternative models, on the other hand, from
the practicioner’s point of view, these models should improve everyday’s work. One reason for
the widespread use of Black-Scholes type models is that their deficiencies are well-understood.
Hence, we compare the advantages and disadvantages of both models, the Black-Scholes and
the generalized hyperbolic model. We want to understand the implicit volatility patterns, the
pricing behaviour, and the practical value of the generalized hyperbolic alternative to models
based on normal distributions. See Rubinstein (1985), Bates (1996), Bakshi, Cao, and Chen
(1997) for tests of pricing models driven by Gaussian Lévy processes.

1Numerical errors are corrected, therefore some results are different.
2Volatility denotes the annualized standard deviation, obtained from the daily standard deviation under

the assumption of independence. We assume 250 trading days per annum.
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2.1 Preliminaries

Preparation of Intraday Option Datasets

The study is based on intraday option and stock market data of Bayer, Daimler Benz,
Deutsche Bank, Siemens and Thyssen from July 1992 to August 1994. The option data set
contains all trades reported by the Deutsche Terminbörse (DTB) during the period above.3

Per month there are 736 to 7924 observed option and 434 to 2049 observed stock prices.
The data is processed in the following way: At first, we assign to each option price the

corresponding intraday stock price. The electronic DTB had longer business hours than the
stock exchange in Frankfurt. Following Rubinstein (1985), Clewlow and Xu (1993) we remove
all option quotes without stock trading in the preceding 20 minutes. This leads to a removal
of approximately half of the option quotes.

The time to maturity is calculated on the basis of actual trading days. This means that
the days with trading at the exchanges in Frankfurt during the lifetime of each option were
counted. In contrast to Cox and Rubinstein (1985) we use the resulting trading time scale for
option pricing and variance estimation. This guarantees comparability between the implicit
volatilities produced by contingent claims and the empirical (historical) volatilities of the
stock. Trading days are the natural time scale in the hyperbolic case since the model was
proposed for the reason of the good fits to daily data.

Dividend payments reduce the price of the stock. Following Kolb (1995) we correct the
share value by substracting the discounted dividend, i.e. S− = S0 − d exp(−rt), where d
denotes the amount of the dividend payment which is made t trading days after the option
trade and r the riskless daily interest rate. On the German market dividends are paid only
once a year. Hence, we had to correct about 18% of the values. For the interest rate we used
the Frankfurt interbank offered rate (FIBOR) on a monthly basis with different maturities
(1, 3, 6 months). Hence, the substantial changes in the term structure in the years from 1992
to 1994 were taken into account. Finally, option prices must satisfy some trivial no-arbitrage
conditions (Cox and Rubinstein 1985). If an option quote violates these bounds it is removed.
Note, that most of the trading takes place at-the-money and with a short time to maturity
(T = 1, . . . , 50 trading days). Therefore, one should pay particular attention to this region.

Rescaling of Generalized Hyperbolic Distributions

Normal distributions are characterized by the scale and location parameter. The additional
parameters of GH distributions allow to specify in particular the tail of the distribution more
exactly. Tail estimates in financial applications are typically based on time series observed
over a longer horizon. Especially rare events like crashes should be taken into account as
accurately as possible. On the contrary, variance estimates should be adatepd regularly to
short-term developments. In the case of GH distributions it is possible to distinguish shape
parameters from scale and location parameters. We apply this approach frequently: For
the calculation of implicit volatilities we rescale the generalized hyperbolic distribution while
keeping the shape of the distribution fixed. A similar problem occurs while the calculation

3Since autumn 1998 Eurex Germany, formerly the DTB (Deutsche Terminbörse), comprises the derivatives
market of the Deutsche Börse Group. The official merger of Eurex Germany and the Swiss derivatives market
Eurex Zürich (formerly SOFFEX) has created a genuine European futures and options market. Eurex is run
on a joint electronic trading platform utilising harmonised trading guideline and admission procedures as well
as a common clearing house.
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of option prices in the GH model for a given volatility, e.g. a volatility estimated from time
series data.

The rescaling of GH distributions is based on the shape- and location-invariant parameters
given in Lemma 1.5. A consequence of this lemma is that the variance of the generalized
hyperbolic distribution has a linear structure VarX1 = δ2Cζ , where Cζ depends only on the
shape, i.e. the scale- and location invariant parameters. Therefore, one could also use δ as a
volatility parameter.

To rescale the distribution such that it equals a given variance σ̂2, one obtains the new δ̃
by

δ̃ = σ̂

Kλ+1(ζ̂ )

ζ̂ Kλ(ζ̂ )
+

β̂2

α̂2 − β̂2

Kλ+2(ζ̂ )

Kλ(ζ̂ )
−
(

Kλ+1(ζ̂ )

Kλ(ζ̂ )

)2
−1/2

, (2.1)

where
(
α̂, β̂, δ̂

)
and ζ̂ are estimated from a longer time series. With Lemma 1.5 the term in

the brackets is also scale- and location invariant. To fix the shape of the distribution while
rescaling with a new δ̃, one has to change the other parameters of the first parametrization
in the following way

λ̃ = λ̂, α̃ =
α̂ δ̂

δ̃
, β̃ =

β̂ δ̂

δ̃
and µ̃ = µ̂. (2.2)

In the sequel we apply long-term estimates of the shape for the German stock options, es-
timated from daily time series from January 1, 1988 to May 24, 1994, and often rescale the
generalized hyperbolic distribution for a short-term volatility estimate. Note, that by chang-
ing to the fourth parametrization the second step (2.2) is no longer necessary. The densities
and moments in the forth parametrization are given in Appendix C.

Visualisation

Analysing intraday option data sets, it is nearly impossible to see characteristic structures in
the numerical results for each quote or single series. Graphics are much more comprehensible
and allow a fast and frequent control of the results especially during the application of new
mathematical or statistical approaches. An appropriate smoothing reduces the noise and the
structure in the data becomes clearer. On the one hand tables have the advantage that they
provide the exact numerical figures, but we believe that the patterns in the option pricing
behaviour and implicit volatilities become more obvious with an adequate visualisation.

The curves in the plots are smoothed by the LOESS algorithm (Cleveland, Grosse, and
Shyu 1993). In this approach it is only assumed that the parameter could be fitted locally by
a polynomial of first or second order. We frequently do not want to make global assumptions
regarding parameters in option data sets. Hence, we adapted the S tools for the LOESS
smoothing algorithm to option data sets and modified it to prevent unnecessary extrapolation.
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Figure 2.1: Rescaled hyperbolic density (parameters estimates from Bayer stocks (δ′ =
c δ̂, ζ = 0.61, % = 0.039) and hyperbolic densities with const. variance and different shapes.

2.2 Model versus Underlying Process

The first step in the evaluation of a particular option pricing model is the comparison of the
model for the price process with observed prices. Samuelson (1965) proposed to model prices
with the geometric or in his words “economic” Brownian motion. The famous Black and
Scholes model is based on this reasoning. Nevertheless, already in the 60’s began the search
for more realistic models.

Eberlein and Keller (1995) proposed to model daily returns with the hyperbolic distribu-
tion and provide an extensive statistical examination. We discussed the fit of the hyperbolic
distribution in the context of the extension of the hyperbolic model to generalized hyperbolic
distributions in Chapter 1. The GH distribution provides also an excellent fit to the marginal
distribution of intraday-returns (see Section 1.5 for intraday FX data). See Eberlein, Keller,
and Prause (1998) for an overview over alternative modelling approaches.

Dependence Structure

Typically, we find a nonsignificant correlation of the log-returns of most financial assets and
a significant correlation of the squared returns at a confidence level of 5%. As an example we
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Figure 2.2: Empiciral autocorrelation functions (ACF) of the returns and the absolute returns
of Deutsche Bank stock from 1988–94 with 95% confidence interval.

show the empirical autocorrelations of Deutsche Bank returns in Figure 2.2. The low correla-
tion of log-returns hints at the efficiency of stock markets and also explains the difficulties to
predict the future value of a stock price only from time series data. The correlation of squared
returns has led to the development of GARCH and stochastic volatility models. Both models,
the discrete and the continuous one rely on the fact that not the direction of the change but
the magnitude depends on past behaviour in the share value.

The GH model is based on a Lévy motion, i.e. it is assumed that the returns are inde-
pendent. This implies that squared returns are uncorrelated. Therefore, the introduction of
stochastic volatility may improve the generalized hyperbolic model.

It is indeed difficult to handle temporal dependence in diffusion models. As an alterna-
tive Barndorff-Nielsen (1998) proposed a model in which the stochastic volatility is given by
an Ornstein-Uhlenbeck type process. He replaced the GIG distribution in the mixing rep-
resentation (1.6) by an Ornstein-Uhlenbeck-type process which is driven by a background
driving Lévy process. See Chapter 3 for details. Finally, the construction led to a process
with an ACF of the form exp(−λu). We fitted this function to the empirical ACF by a
minimization of the absolute and the squared errors. From the middle plot in Figure 2.2 it
is clear, that it is not possible to model the structure of the empirical ACF exactly by the
means of this simple model. Nevertheless, it is possible to refine this model by replacing the
inverse Gaussian Ornstein-Uhlenbeck type (IGOU) process by a superposition, i.e. a finite
sum of independent IGOU processes (Barndorff-Nielsen, Jensen, and Sørensen 1995, Chap-
ter 3). Barndorff-Nielsen (1998) obtained promising results modelling the ACF of Deutsche
Bank absolute returns by a superposition of two IGOU processes. Using this approach has
the advantage that it leads to statistically and analytically tractable models with stochastic
volatility, GH marginal distributions, and an analytically given ACF.

Another approach based on GH distributions without independent returns is given by Ry-
dberg (1999). She proposes a diffusion model for stock returns, following Bibby and Sørensen
(1997), where the stationary distribution is GH. However, neither the increments nor the
ACF seem to be modelled appropriately by fitting the stationary distribution of an ergodic
diffusion process. It is not clear, if the proposed process is close to observed processes.
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Figure 2.3: Intraday value of the DAX during the crash 1997 (October 24-28, 1997) and
Mannesmann October 28, 1997.

Scaling Laws

One important aspect in the modelling of financial assets is the choice of the time scale.
Analyzing price processes on different scales indicates the use of different models. Moreover,
using wavelet transforms Cont (1999) has shown that often no existing model fits to the
observed frequency structure on every scale.

Intraday behaviour of price processes is characterized by frequent jumps (see Figure 2.3).
Thus, the hyperbolic Lévy motion as a pure jump process provides a better description of the
stock market microstructure than processes with continuous paths. Another “stylized fact”
of the intraday behaviour of financial assets are daily and weekly seasonalities (Guillaume,
Dacorogna, Davé, Müller, Olsen, and Pictet 1997). This more complicated structure is usually
modelled following a time series approach. See Kallsen and Taqqu (1998) for an option pricing
approach in GARCH models. In Section 3.14 we propose a model which exhibits volatility
clustering and has a purely discontinuous price process.

Barndorff-Nielsen and Prause (1999) hint at an explanation of the scaling laws of absolute
returns typically observed in the foreign exchange market by NIG Lévy processes.

2.3 Options Sensitivities

After the comparison of the GH Lévy motion as a model for returns of financial assets with
some stylized facts of observed price processes, we look closer at the properties of GH prices
obtained by Esscher transforms. In this section we investigate the role of the different pa-
rameters for the pricing of options. This simulation study is based on estimated values of
GH distributions for German stocks (but not on data sets of quoted options). The use of the
Black-Scholes model as a benchmark is only a first step to understand a new model. Later on
we confront the theoretical models with reality, i.e. intraday data from secondary markets.

At first, we compute the difference of Black-Scholes minus generalized hyperbolic respec-
tively hyperbolic and NIG prices. The typical pattern of these differences is given in Figure
2.4. For options with a short time to maturity we observe the W-shape which was already
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observed by Eberlein and Keller (1995) for hyperbolic prices. For the approximately symmet-
ric GH distributions usually estimated for financial data, the price difference decreases with
time-to-maturity, but it does not vanish for the usual range of maturities. Also for long-term
options Black-Scholes prices at-the-money are higher than GH prices.

The W-shape is a result of the higher kurtosis of risk-neutral GH distributions. Conse-
quently, we obtain a more pronounced W-shape for GH and NIG distributions than hyperbolic
distributions, since they have more mass in the tails. Also for longer maturities the difference
to Black-Scholes prices is bigger in the GH and NIG case. Recall, that the NIG prices are
computed without Fast Fourier Transform. This allows to minimize the risk of numerical er-
rors, since we can compare the prices in both approaches. Although it is impossible to exclude
every numerical error, there are at the worst only small numerical errors in the subsequent
computations left.

We summarize results in a short overview below. Note, that the simulation results are
only valid for the GH distributions usually estimated from financial time series data. We have
plotted the difference of hyperbolic minus Black-Scholes prices on page 45 for of hyperbolic
distributions (we look at subclasses because this allows us to use the shape triangle in Figure
2.5 to compare the shape parameters of different stocks). However, the results are similar for
other GH distributions. For instance, compare the results for the hyperbolic model on page
45 with those for the NIG model on page 46.

Kurtosis: The GH distribution is more peaked in comparison to the normal distribution.
This leads to a W-shape in the price differences for short maturities (see Figure 3.16
in Keller 1997), and allows for a correction of the smile effect of implicit volatilities
(cf. Section 2.4).

In Figure 2.5 and 2.8 we have plotted the price difference for some hyperbolic and NIG
distributions with different shapes. To eliminate the effect of the varying volatilities,
we have rescaled all hyperbolic distributions to an annual volatility of 20%. The shape
parameters are given in the triangle on the right side: The Deutsche Bank (DBK)
estimate has a substantially higher kurtosis, therefore, the W-shape is more emphasized
than the W-shape for Bayer and Thyssen calls.

Time to Maturity: The difference of GH prices and Black-Scholes prices decreases with
time to maturity (see page 44). This is a result of the aggregational Gaussianity in the
generalized hyperbolic model.

On the other hand, if we assume a very high skewness, the difference of GH minus
Black-Scholes price increases with time to maturity (see Figure 2.6).

Skewness: In Figure 2.6 and 2.9 we have shown the effect of the skewness (given by χ) on
the price difference. Note, that the values of χ are larger than usually observed for the
hyperbolic distribution.

The effect of skewness depends in the following way on the construction of the simulation
study: we have assumed that the volatility of the real-world measures is the same in the
Black-Scholes and the GH model. The Esscher transform leads to a smaller volatility
in the Esscher martingale measure (see Figure 2.11).

Only the absolute magnitude of skewness matters, whereas the sign of the skewness
parameter χ has no influence on the price in the GH model: the curves in Figure 2.6 are
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identical. Note, that the variance in (1.16) depends only on the square of the skewness
parameter β. This explains why the curves are identical.

On the other hand, the volatility remains unchanged by the Girsanov transformation
in the Black-Scholes model. Hence, GH prices have to be smaller. If we compare prices
in the GH and the Black-Scholes model with an equal variance under the risk-neutral
measure, the difference vanishes as a result of the aggregational Gaussianity of the GH
Lévy motion. See Raible (1999) for a comparison of prices based on an equal volatility
under the risk-neutral measure.

Drift: In the Black-Scholes model the drift is removed by the Girsanov transformation.
Hence, it plays no role for the pricing of options. The Esscher transformation skews
the exponential Lévy process until it is a martingale, but the exponential tilting does
not remove the drift itself. Therefore, the choice of the drift has a small influence on
the price. The simulation results in Figure 2.7 show that the effect of a drift decreases
when the time to maturity decreases.

In particular a positive skewness leads to an increased difference of GH minus Black-
Scholes prices in-the-money and vice versa.

2.4 Implicit Volatilities

Writing the actual market price on the left side of the equation and the Black-Scholes option
pricing formula on the right side and solving for the volatility parameter σ yields the Black-
Scholes implicit volatility σImp.BS. This is the volatility assumed by the traders. According
to both models the volatility should be constant for different stockprice-strike ratios % =
S−/K. Figure 2.12 shows for the Black-Scholes model, that in reality σImp.BS depends on the
stockprice-strike ratio and on time to maturity.

Typically the implicit volatility is higher in-the-money and out-of-the-money. This effect
is called the smile because the shape of the curve resembles a smiling face. The smile is
decreasing with time to maturity and has its minimum for % = S−/K ≈ 1. Looking at data
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Figure 2.12: Black-Scholes implicit volatilities of Thyssen calls from July 1, 1992 to August
18, 1994.

sets corresponding to different time periods, the implicit volatility follows always the same
pattern but of course the smile is more regular for longer observation periods. The pattern
repeats for all analysed share values and for the option on the DAX future given in Figure
2.13. Below the interdependence of implicit volatility and stockprice-strike ratio respectively
time to maturity is plotted separately for Thyssen calls.

But the “smirks” of implicit volatilities that were reported for the S&P future and index
options (see also Derman and Kani 1994, and Longstaff 1995) show a different pattern than
the smile effect we observed for individual German stock and DAX future options. We also
looked at the implicit volatilities of options on the DAX in the year 1996. There we observed
an asymmetric smile in comparison to the options on stocks and for options on futures in
the German market. The liquidity of the DAX options is much higher than the liquidity
of single stock options, therefore, the (symmetric) effect of a low liquidity of deep-in- or
deep-out-of-the-money options may be reduced.

Reduction of the Smile

One of the first who systematically and empirically studies alternative but now outdated
option pricing formulas was Rubinstein (1985). None of the models he examined correct
all the observed deficiencies of the Black-Scholes model. Therefore, he proposed to build a
composite model, or to correlate the bias of the option prices to macroeconomic variables.

Eberlein, Keller, and Prause (1998) give an overview over various approaches to reduce
the smile effect. It is worth to mention, that most pricing models recently proposed lead
theoretically, i.e. in simulation studies, to a reduction of the smile. On the contrary, empirical
studies with a representative data set from the secondary market are seldomly available.
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Figure 2.13: Black-Scholes implicit volatilities of DTB stock options from July 1, 1992 to August
19, 1994 and of DAX futures options from July 1, 1994 to December 29, 1994.
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Smile Effect in the Generalized Hyperbolic Model

Now we examine to which extend the replacement of the Gaussian model by the generalized
hyperbolic one leads to a better option pricing behaviour. For the comparison of the Black-
Scholes and the GH model we use GH parameters derived from the variance by the rescaling
mechanism described in (2.1) and (2.2). The implicit generalized hyperbolic volatility σImp.GH

is computed in the same way as in the Black-Scholes case.

The empirically observed σImp.Hyp is shown in Figure 2.14 (top left) for Deutsche Bank
call options. The implicit Black-Scholes volatility for the same data set is given in Figure
2.13 (top left). At first sight the implicit hyperbolic volatility produces a smile effect similar
to the one arising in the Black-Scholes setting. Plotting the difference σImp.BS − σImp.Hyp of
implicit volatilities of the two models (top right) shows that in the hyperbolic case the smile
effect is reduced according to the W-shape. In the second row we plotted the difference of
Black-Scholes minus NIG resp. GH implicit volatility. Obviously, we see a larger correction
of the smile effect in the NIG and the largest correction in the GH model. The two remaining
plots in Figure 2.14 show the difference σImp.BS− σImp.Hyp as a function of moneyness and as
a function of time to maturity respectively.

It is worth to mention that the differences σImp.BS − σImp.Hyp of the implicit volatilities
are not symmetric around % = S−/K = 1. Consequently we also observe a correction of
the asymmetries in the smile—the “smirk” effect—which is only small in the German stock
options datasets.

Another way to analyse the smiles in both models is to fit the following linear model for
the implicit volatilities

σImp,i = b0 + b1Ti + b2
(%i − 1)2

Ti
+ ei, (2.3)

where ei is the random error term and i the number of the trade in the option data set.
The cross-term (% − 1)2/T reflects the degression of the smile effect with increasing time to
maturity T . The regression function was chosen as parsimonious as possible. Results of this
regression are given in Table 2.15. Note, that T is measured in trading days and therefore, the
time-to-maturity effect is of a relevant order. As the value of the coefficients for (% − 1)2/T
and for T are smaller for the hyperbolic, the NIG and the GH model, we conclude that these
models reduce the smile effect. As we have already seen in Figure 2.14, we observe the largest
correction of the smile effect in the GH model. We provide in Table 2.15 also the results
for the symmetric centered versions of the models which yield option prices similar to the
Black-Scholes model for longer maturities. Therefore, we do not observe any reduction of the
time-to-maturity effect but the expected decrease of the smile.
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Figure 2.14: Implicit hyperbolic volatility and comparison of the implicit volatilities of the
Black-Scholes, the hyperbolic the NIG and the generalized hyperbolic model (Deutsche Bank
calls from July 1992 to August 1994, 68803 obs.).
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Table 2.15: Fitted coefficients for call options from July 1992 to August 1994. “SC” marks
the results for the symmetric centered versions of the models.

b0 b1 b2 R2

Bayer Black-Scholes 0.1901 −0.00033 51.77 0.5432
Hyperbolic 0.1907 −0.000334 48.66 0.516
HYP SC 0.1904 −0.000332 48.44 0.5156
NIG 0.1909 −0.000334 47.45 0.5057
NIG SC 0.1906 −0.000333 47.31 0.5055
GH 0.1915 −0.000337 46.22 0.4932
GH SC 0.1911 −0.000336 46.13 0.4932

Daimler Benz Black-Scholes 0.2177 −0.00029 40.53 0.5416
Hyperbolic 0.2186 −0.0003 36.89 0.4972
HYP SC 0.2184 −0.000293 36.33 0.4951
NIG 0.2191 −0.000305 35.11 0.4746
NIG SC 0.2189 −0.000296 34.48 0.4716
GH 0.2207 −0.000321 32.81 0.4378
GH SC 0.2201 −0.000306 31.98 0.4343

Deutsche Bank Black-Scholes 0.1831 −0.000266 57.75 0.4409
Hyperbolic 0.1843 −0.000273 51.00 0.385
HYP SC 0.1840 −0.000271 50.65 0.3836
NIG 0.1851 −0.000278 47.71 0.3563
NIG SC 0.1846 −0.000275 47.25 0.3543
GH 0.1856 −0.000281 46.16 0.3426
GH SC 0.1850 −0.000278 45.73 0.3408

Siemens Black-Scholes 0.1712 −9.7e−05 86.92 0.4673
Hyperbolic 0.1728 −0.000106 77.17 0.4043
HYP SC 0.1726 −0.000105 76.83 0.4036
NIG 0.1735 −0.00011 73.73 0.3805
NIG SC 0.1731 −0.000109 73.34 0.3799
GH 0.1779 −0.000125 69.67 0.3414
GH SC 0.1747 −0.000123 68.34 0.3411

Thyssen Black-Scholes 0.2504 −0.000214 81.73 0.481
Hyperbolic 0.2522 −0.000225 75.75 0.4422
HYP SC 0.2520 −0.000225 75.94 0.4438
NIG 0.2525 −0.000227 74.97 0.436
NIG SC 0.2524 −0.000228 75.31 0.4386
GH 0.2522 −0.000225 75.96 0.4438
GH SC 0.252 −0.000225 76.05 0.4448
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Figure 2.16: Deficiencies of historical and implicit volatility estimators.

2.5 Pricing Performance

An alternative approach to testing option pricing models is to compare observed market prices
with model prices. In contrast to volatility comparisons pricing performance analyses price
differences. Hence, the unit of measurement is a currency unit, in this case Deutsche Mark.
Note, that the same difference in volatility has a greater effect on the price if the time to
maturity is longer.

However, one remaining problem is to choose the volatility. We estimate volatility pa-
rameters following different approaches. First, we compute historical volatilities for time
windows of 30 calendar days before the trading day of the option using the classical variance
estimator. These are named Hist30 in the sequel. Secondly, we apply implicit volatilities
observed before each trade. For the estimator Imp.mediann we take the running median of
the implicit volatilities of the last n quoted options. Because of its robustness the running
median proved to be a better estimator than means or trimmed means. Note, that we follow
out-of-sample approaches both for the historical and the implicit volatility. Cox and Ru-
binstein (1985) describe the option pricing service of Fisher Black, who used historical and
implicit volatilities and some other market parameters for computing a volatility estimate.
Thus, both procedures are used in practice.

Both estimation approaches for the volatility have their disadvantages: The implicit
volatilities are peaked before the expiration day of the options. This can be seen in Fig-
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Figure 2.17: Pricing performance of Thyssen calls (July 1, 1992 to August 18, 1994, volatility
estimator Imp.median20).

ure 2.16, where the uninterrupted line shows the daily weighted average of the Black-Scholes
implicit volatilies and the vertical dotted lines the expiration days at the DTB. The dashed
and the dotted lines represent the historical volatility estimators. Obviously, they are dom-
inated by single larger returns and their values are distinct for different window lengths.
Of course it is possible to find more sophisticated versions of these estimators, e.g. variance
estimators with decreasing weights or implicit volatility estimators using only quotes at-the-
money, but the fundamental statistical problems do not change: First, the volatility is usually
not assumed to be stationary. Therefore, only short time intervals should be used to esti-
mated the instantaneous volatility. Furthermore, since the option price is not a linear function
w.r.t volatility in pricing models, even an unbiased estimate of the “true” volatility may not
yield unbiased estimates of true option prices. Moreover, even if the volatility estimate is
unbiased, the variance of the estimates is high. Review Table 1.6 for the stability of the
volatility estimation.

In Figure 2.17 we present typical plots of the pricing performance for the Black-Scholes
and for the GH models. The difference of model price minus market price of the call options
increases with time to maturity. We used the volatility estimator Imp.median20 which is
based on implicit volatilities.
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Figure 2.18: Comparison of the pricing performance of Thyssen calls (July 1, 1992 to August
18, 1994, volatility estimator Imp.median20).

Looking at the options with short maturities we see the inverse pattern to the smile of
the implicit volatilities. All models lead to prices below the market price for short maturity
options out-of-the-money or in-the-money, hence the implicit volatility surface becomes U-
shaped.

A comparison of the pricing performance of the Black-Scholes and the hyperbolic model
within a single plot is given in Figure 2.18 (left). We compute for each quote the difference
of the absolute pricing errors of the two models: absolute pricing error using Black-Scholes
minus absolute pricing error using the hyperbolic model. The plot reveals a distinct correction
of the mispricing by the GH model for call options with short maturities according to the
smile. In Figure 2.18 (right) we provide the same difference for the symmetric centered
model. Obviously, the correction of pricing errors does primarily depend on the modelling of
the kurtosis in the GH model. Skewness and drift are not equally important.

Considering the smile plots in Section 2.4 the deficiencies of the Black-Scholes model
are worse for options near to expiration. The pricing error measured in Deutsche Mark is
bigger for options with longer maturities. Consequently, we have to analyse both, pricing
performance and smile, to get a complete picture for the two models.

Finally, we choose a global approach to compare the models. In Table 2.19 we give the
mean (and the standard deviation) of the pricing errors for Bayer calls, i.e.

1
N

N∑
i=1

(
Cmodel,i − Ĉi

)
, (2.4)

where Ĉi denotes the quoted option price of trade i = 1, . . . ,N .
It is obvious that prices based on implicit volatility estimators are closer to the market. In

an efficient secondary market new information affecting the volatility of the underlying stock
will be impounded in the option prices immediately. Clearly, estimation of volatilities from
historical data will react more slowly. Nevertheless, Beckers (1981) observed that historical
volatilities add information to implicit volatilites. Therefore, he concluded that at that time
the secondary market was not informationally efficient. This has changed after the crash of
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Table 2.19: Pricing performance of pricing models w.r.t. different volatility estimators: mean
and standard deviation of the difference of the model price minus quoted price (July 1, 1992
to August 19, 1994).

Black-Scholes Hyperbolic NIG GH
Estimator Mean StDev Mean StDev Mean StDev Mean StDev

Bayer
Hist30 0.798 2.389 0.78 2.379 0.773 2.379 0.752 2.373
Imp.median20 0.279 1.475 0.28 1.462 0.281 1.457 0.283 1.449
Imp.median30 0.276 1.399 0.276 1.393 0.281 1.457 0.283 1.449
Thyssen
Hist30 0.208 1.894 0.191 1.891 0.189 1.89 0.19 1.89
Imp.median20 0.062 0.745 0.065 0.744 0.066 0.745 0.065 0.744
Imp.median30 0.055 0.696 0.058 0.7 0.058 0.701 0.057 0.7

‘87. See Christensen and Prabhala (1998) for a recent study of implied and realized volatility
for S&P100 Index options. They especially emphasize the shift of regime during the crash
’87, which led to a less noisy implied volatility in the post-crash period, and they find that
implied volatility predicts future realized volatility as well as in conjunction with historical
volatility estimates.

The construction of the estimator Imp.mediann allows on the one hand for the quick
adaption to new information, on the other hand the estimator is robust enough against outliers
in observed implicit volatilities. These outliers are likely to occur because prices change only
in tick-size steps and small changes in the price do have a large impact on implicit volatilities
for options with short maturities.

Another interesting aspect is to take trading volume into consideration. We compute the
weighted mean of the difference of the absolute errors

N∑
i=1

(
|CBS,i − Ĉi| − |CGH,i − Ĉi|

)
·Voli

/
N∑
i=1

Voli , (2.5)

where Voli denotes the volume of trade i = 1, . . . ,N with quoted option price Ĉi. Furthermore,
the model prices are named CHyp,i and CBS,i. We also compute the (unweighted) median and
standard deviation of the difference of the absolute errors. Positive values for the weighted
mean and the median are obtained when a GH model produces a smaller pricing error. The
hitting rate gives the percentage of trading volume for which the Black-Scholes price is closer
to the market price.

The weighted means (2.5) and the median of the difference of the absolute errors are
positive for all volatility estimators and subclasses of GH distributions, hence we always
observe an improvement in comparison to the Black-Scholes model. This is confirmed by
the values of the hitting rate, which are about 31% for the historical volatility estimator
and about 42% for the implicit volatility estimators. The best results under all GH models
with respect to the hitting rate are obtained for the symmetric centered hyperbolic model
whereas the largest improvements to the Black-Scholes benchmark in terms of the difference
of absolute errors are observed for the GH model with arbitrary λ.
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Table 2.20: Comparison of the pricing errors for Bayer calls. “SC” marks the symmetric
centered versions of the models.

Difference of the abs. errors Hitting Rate
Estimator Models w. mean median st. dev. BS model

Hist30 BS / Hyperbolic 0.0058 0.0065 0.0189 31.2419
Hist30 BS / Hyperbolic SC 0.0112 0.0137 0.0271 29.5022
Hist30 BS / NIG 0.0131 0.0163 0.0353 30.0227
Hist30 BS / NIG SC 0.0088 0.0098 0.0281 31.4254
Hist30 BS / GH 0.021 0.0264 0.0594 32.258
Hist30 BS / GH SC 0.016 0.0181 0.0483 31.645

Imp.median20 BS / Hyperbolic. 0.0018 0.0004 0.0547 42.0699
Imp.median20 BS / Hyperbolic SC 0.0024 0.0006 0.0542 41.4553
Imp.median20 BS / NIG 0.0027 0.0008 0.0783 41.8004
Imp.median20 BS / NIG SC 0.0024 0.0006 0.0788 42.0026
Imp.median20 BS / GH 0.0032 0.0008 0.1216 43.3419
Imp.median20 BS / GH SC 0.0032 0.0008 0.1217 43.4586

Imp.median30 BS / Hyperbolic 0.0014 0.0005 0.046 42.4558
Imp.median30 BS / Hyperbolic SC 0.0021 0.0007 0.0477 41.9724
Imp.median30 BS / NIG IL 0.0024 0.0009 0.0652 42.5437
Imp.median30 BS / NIG SC 0.0019 0.0007 0.0645 42.4173
Imp.median30 BS / GH 0.0023 0.0013 0.0987 43.2795
Imp.median30 BS / GH SC 0.0023 0.0012 0.0987 43.2614
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Figure 2.21: Pricing performance of Thyssen calls as a time series, June 1, 1993 to August
18, 1994. The average and quantiles are computed on a daily basis.

When do we Observe Mispricing?

In the first part of this section we analysed pricing patterns with respect to time-to-maturity
and stockprice-strike ratio. For instance we observed small pricing errors for at-the-money
options with short maturities. At first sight, the average daily pricing errors as a time series
in Figure 2.21 reveals that Black-Scholes prices computed with intraday implicit volatilites
are less erroneous than prices based on historical volatility estimates. The results for the
prices correspond to the volatility patterns in Figure 2.16.

To give a more explicit answer to the question in the title of this section, we look at
the correlations of the average daily pricing errors and their standard deviations with other
observable parameters, respectively. Below we describe only those results which hold for
both, Bayer and Thyssen options and both volatility estimators Imp.median20 and Hist30.
Although the volatility estimators used for the calculation of prices cause errors with distinct
patterns, we obtain similar results concerning the correlations with other observables.

First, we analyze the correlation of the errors with three volatility estimates: the average
daily implicit volatility (denoted by ImpVol), the historical volatility estimator Hist30, and
the volatility index VDAX of the Deutsche Terminbörse. The index VDAX is constructed as
the implicit volatility of at-the-money options on the German stock index DAX with 45 days
to expiration. Obviously the spread of the pricing errors SdErr has a positive correlation with
all three volatility series.

Looking at the correlation of the daily trading volume and the standard deviations of the
pricing errors, reveals that at those days with an increased trading it is also more difficult
to compute prices which are close to the market. Moreover, the spread of the pricing errors
increases if the stockprice (Kassakurs) increases.
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Table 2.22: Correlation of the average daily pricing errors AvErr (resp. standard deviations
SdErr of daily pricing errors) of Black-Scholes prices and other parameters. The p-values are
computed using Pearson’s test with a 2-sided alternative. We applied the volatility estimators
Hist30 and Imp.median20. ImpVol is the average value (weighted by the trading volume) of
the Black-Scholes implicit volatilities during one trading day and Kassakurs the value of the
stock at 12 o’clock.

Bayer calls Thyssen calls
Correlation p-value Correlation p-value

Hist30
AvErr ImpVol −0.13 0.0025 −0.108 0.0149
SdErr ImpVol 0.124 0.0040 0.19 0

AvErr Hist30 0.582 0 0.684 0
SdErr Hist30 0.379 0 0.502 0

AvErr VDAX 0.357 0 −0.126 0.0029
SdErr VDAX 0.452 0 0.353 0

AvErr Kassakurs 0.206 0 0.02 0.5664
SdErr Kassakurs 0.626 0 0.615 0

AvErr Volume 0.062 0.0846 0.019 0.6020
SdErr Volume 0.34 0 0.412 0

Imp.median20
AvErr ImpVol 0.076 0.0785 −0.2 0
SdErr ImpVol 0.242 0 0.285 0

AvErr Hist30 −0.087 0.0468 −0.013 0.7710
SdErr Hist30 0.035 0.4219 0.148 0.0011

AvErr VDAX 0.024 0.5771 −0.009 0.8327
SdErr VDAX 0.221 0 0.267 0

AvErr Kassakurs 0.251 0 0.069 0.0479
SdErr Kassakurs 0.56 0 0.653 0

AvErr Volume 0.198 0 0.009 0.8050
SdErr Volume 0.38 0 0.518 0
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2.6 Statistical Martingale Measures

In the Black-Scholes model the price measure depends only on the volatility of the geometric
Brownian motion. Thus, in this case the estimation of the risk-neutral density implicit in the
secondary market corresponds to the computation of implicit volatilities (cf. Section 2.4). See
Christensen and Kiefer (1999) for a simulation approach to martingale measures in complete
continuous time diffusion models. Here we assume that log-prices follow a GH Lévy motion
also under the martingale measure.

In the GH model the risk-neutral density is characterized by more than one parameter.
Consequently, if we assume that the risk-neutral distribution is generalized hyperbolic, it is
not possible to estimate the density from a single quote observed at the secondary market.
Recall, that we fixed the shape of the distribution in the preceding sections whereas we
are interested in the shape of the risk-neutral distribution in this section. However, in the
following way it is possible to estimate the risk-neutral GH density from a set of observed
option prices: Following Keller (1997, pp. 97–105), Eberlein, Keller, and Prause (1998) in
models where the log-price follows a Lévy process, the risk-neutral distribution has to be
chosen such that r = logM(1) is satisfied, where M is the moment-generating function of
L(X1). Recall, that a homogeneous Lévy process (Xt)t≥0 is characterized by the distribution
of X1. Therefore, it is necessary to find the optimal GH density in the space Θ of parameters
which yield a martingale measure

Θ =
{

(λ, α, β, δ, µ)
∣∣∣ λ ∈ IR, 0 < |β| < α, δ > 0,

µ = r − log
Kλ(δ

√
α2 − (β + 1)2 )

Kλ(δ
√
α2 − β2 )

+
λ

2
log

α2 − (β + 1)2

α2 − β2

}
.

Note, that statistical martingale measures (SMM) are not necessarily equivalent to objective
measures estimated from time series data. Moreover, since option traders could assume a
price process different to the empirically observed process, the equivalence of the measure to
the empirically observed probability measure is for the computation of statistical martingale
measures not relevant.

In particular, Keller (1997) proposed to minimize (squared) pricing errors, i.e. to find the
statistical martingale measure as

argmin(λ,α,β,δ,µ)∈Θ

∑
i

∣∣∣Ĉi −Cmodel(ϑ)
∣∣∣h, (2.6)

where h = 1, 2. We call the obtained probability measure a pricing error minimizing SMM.
See also Özkan (1997) for latter SMM estimates in the hyperbolic model.

The minimization of (2.6) yields an optimal SMM with respect to pricing performance.
Another aspect in the testing of option pricing models, equally important to pricing, is the
smile of implicit volatilities. This leads to the question which SMM explains the smile effect,
i.e. for which risk-neutral shape parameters do we get a flat implicit volatility curve with
respect to moneyness and time to maturity? To find an answer, we minimize

argmin(λ,χ,ψ)∈Θ

∑
i

∣∣∣σimplicit(Ĉi, λ, χ, ψ) − σimplicit

∣∣∣h, (2.7)

where h = 1, 2 and σimplicit denotes the average implicit volatility with respect to the Esscher
transformed historical parameter estimates and Θ is given in the 3rd parametrization (1.3).
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The implicit volatility σimplicit(Ĉi, λ, χ, ψ) of each quote is computed as in Section 2.4. Note,
that we minimize (2.7) only w.r.t. scale- and location-invariant parameters. For practical
purposes the value of σimplicit has only a minor influence on the obtained scale- and location-
invariant parameters: We have replaced σimplicit by other values, e.g. the median of the
implicit volatility and a volatility estimate from time series data; the results do not change.
Note, that the scale of these risk-neutral distributions plays no role for the calculation of the
distance (2.7), since we always rescale the distribution to compute implicit volatilities. We use
the rescaling mechanism described in Section 2.1. Therefore, these risk-neutral distributions
are rescaled to the variance of the time series estimates. This SMM, which we call smile
minimizing, describes the shape, i.e. the skewness and kurtosis of the return distribution
assumed by traders in the secondary market.

One could also use shape parameters of smile minimizing SMMs to construct a volatility
estimator based on GH implicit volatilities. Usually the smile is removed by using only
options at-the-money with a given time to maturity to construct a volatility estimator (see
for instance Deutsche Börse (1997) for the removal of the smile effect in the construction of
the VDAX). An estimator based on the smile minimizing martingale measure minimizes the
noise in Black-Scholes implicit volatility estimators coming from the smile effect (see Eberlein,
Keller, and Prause (1998) for a similar approach based on the Esscher martingale measure).

Computational Aspects

We apply the Powell algorithm implemented by Özkan (1997) to estimate the SMMs by
minimizing (2.6) or (2.7). In the case of the statistical martingale measure computed by
minimizing pricing errors, a further refinement of the minimization algorithm allows a much
faster computation: the first step in the refined minimization procedure is to fix the shape of
the GH distribution and to change only the scale parameter. Since the choice of the volatility
is the crucial point in the computation of prices which are close to observed market prices,
the speed of the minimization procedure increases markedly.

We estimate the statistical martingale measure only for the subclass of NIG distributions.
Since NIG distributions are closed under convolution we have an explicit risk-neutral density
for all times to maturity. Hence, we avoid possible numerical errors from the Fast Fourier
Transform for extreme parameter values of the GH distribution.

Statistical Results

Figure 2.23 shows the densities of daily log-returns of Bayer stocks estimated in different ways.
The kernel-density estimate and likelihood estimate are obtained from 6 years of observations.
The parameters of all the GH estimates are given in Table 2.27. Obviously, the likelihood
estimate is the GH distribution closest to the empirical data.

The densities of the pricing error minimizing SMM (for the L1 and L2 distance) differ
markedly from the estimated densities based on time series data. Both densities are skewed,
in particular they put more weight in the right tail than in the left. Recall, that skewed risk-
neutral GH densities yield a larger difference to Black-Scholes prices also for longer maturities
(see Figure 2.6). Taken together, the pricing error minimizing SMMs have less kurtosis than
the likelihood estimate. This is also highlightened by their position in the shape triangle
plotted in Figure 2.24. Both positions are not close to the usually estimated values of ξ
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as SMM estimates: Bayer stock and call options, January 1994, 1240 observations.
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and χ for financial assets. See Barndorff-Nielsen and Prause (1999) for positions of NIG
distributions estimated for various financial assets in the shape triangle.

A distinct picture is obtained for the smile minimizing SMM. Densities estimated in this
way show a substantial increase in the kurtosis. Note, that the smile minimizing risk-neutral
densities in Figure 2.23 are rescaled, such that their variance equals the variance of the
likelihood estimate. The high kurtosis is also visible in the NIG shape triangle in Figure 2.24;
the position of the smile minimizing SMM is close to the top of the triangle, above almost all
ξ-values estimated for historical data. However, in contrast to the pricing error minimizing
SMMs, the smile minimizing risk-neutral distributions are approximately centered.

In Figure 2.25 we have plotted the IG distributions obtained by the mixing representation
(1.6). A natural way to construct stochastic volatility models based on the GH model is to
look at these mixing IG distributions (see Chapter 3, Barndorff-Nielsen and Shephard 1999,
Nicolato and Prause 1999). Moreover, the independent IG distributions may be replaced by
a more appropriate process. Figure 2.25 shows that volatility processes with IG marginals
obtained from the various SMM measures should differ substantially from the mixing IG
distributions inherent in likelihood estimates.

In Figure 2.26 we have plotted the implicit volatilities obtained for the smile minimiz-
ing martingale measure. Obviously, by choosing appropriate shape parameters, the smile is
markedly reduced, although it is not totally removed (e.g. compare Figure 2.26 with Figures
2.13).

Another way to show this is to fit a linear model as in Section 2.4. We estimate the
coefficients in the same linear model (2.3) for Bayer calls from July 1992 to August 1994.
While we observe a coefficient b2 = 51.77 in the Black-Scholes model and b2 = 46.13 in the
symmetric and centered GH model, we obtain b2 = 34.32 for the implicit volatility in the
smile minimizing martingale measure.

Pricing Performance

Finally, we use the SMM estimates to compute prices and compare them with observed prices.
To compute a particular price, we fix the shape parameters of the GH distributions and rescale
the distribution with short-term volatility estimates, i.e. we follow the same procedure as in
Section 2.5. The SMM estimates for the shape are obtained from Bayer call options in January
1994. We use these SMM estimates to compute prices for the whole two year period in the
same way as in Section 2.5. The results are given in Table 2.28.

First we look at the pricing error minimizing martingale measures: with one exception
(Hist30, L1) they have a mean error which is smaller in absolute terms but a higher standard
deviation than the Black-Scholes prices.

On the contrary, the pricing performance of the smile-minimizing martingale measure is
worse than the performance of the corresponding Black-Scholes approach. Both, mean error
and standard deviation increase in this NIG SMM approach. Of course, the poor results for
the smile-minimizing SMMs are not surpricing.

Taken together, SMMs do explain aspects of pricing behaviour and implicit volatility
patterns, but both approaches to find a martingale measure do not coincide at all.
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Table 2.27: Historical and SMM normal inverse Gaussian densities. Bayer stock 1988-94 and
Bayer call options, January 1994.

Method α β δ µ ξ χ Vola

ML estimate 81.6 3.69 0.0103 −0.00012 0.74 0.033 0.178

Smile minimizing SMM
argmin

(∑
(iv-ave.vola)2

)
22.9 −1.73 0.0029 0.00042 0.97 −0.07 0.178

argmin
(∑
|iv-ave.vola|

)
26.4 −0.53 0.0034 0.00022 0.96 −0.02 0.178

Pricing error minimizing SMM

argmin
(∑

(Ĉ − CNIG)2
)

200.2 115.96 0.0163 −0.01144 0.52 0.30 0.194
argmin

(∑
|Ĉ − CNIG|

)
114.6 55.09 0.0134 −0.00722 0.65 0.31 0.208

Table 2.28: Pricing performance of the statistical martingale measure calculated for the Bayer
calls January 1994 (compare with Table 2.27). The prices are computed for Bayer calls, July
1, 1992 – August 19, 1994, 21021 observations.

Bayer calls Cmodel − Cquoted

model volatility estimator mean st.dev.

Pricing error minimizing SMM, L1, Bayer calls Jan 1994
NIG Imp.median20 0.06 2.062
BS Imp.median20 0.279 1.475

NIG Imp.median30 0.063 1.979
BS Imp.median30 0.276 1.399

NIG Hist30 1.335 2.114
BS Hist30 0.798 2.389

Pricing error minimizing SMM, L2, Bayer calls Jan 1994
NIG Hist30 0.784 2.402
Black-Scholes Hist30 0.798 2.389
NIG Imp.median20 −0.222 2.64
BS Imp.median20 0.279 1.47
NIG Imp.median30 −0.224 2.57
BS Imp.median30 0.276 1.4

Smile minimizing SMM, L2, Bayer calls Jan 1994
NIG Imp.median20 0.309 1.46
Black-Scholes Imp.median20 0.279 1.475

NIG Imp.median30 0.311 1.444
Black-Scholes Imp.median30 0.276 1.399

NIG Hist30 0.564 2.328
Black-Scholes Hist30 0.798 2.389
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2.7 Alternative Testing Approaches

Lo (1986) developed a methodology which allows for a test of an option pricing model in a
classical statistical sense. He proposed to find confidence intervals for the estimates of the
parameters in the model of interest. In particular the volatility is the most important para-
meter. The variance may be estimated by the canonical ML-estimator, which is a consistent
and uniformly asymptotically normal distributed (CUAN) estimator (Pfanzagl 1994). Since
option prices are a monotone function with respect to volatility, this results in confidence
bounds for the option price (for a specified model). The test, build on large-sample theory,
has the following deficiency: Since in reality frequent changes in the volatility of the under-
lying do occur, it is not appropriate to use arbitrarily large data sets for the estimation of
volatility parameters. Another deficiency comes from the fact that quoted option prices reflect
the behaviour of stock prices expected by the traders for the period from trade to expiration.
This is not the period of time used to estimate historical parameters. The trader’s forecasts
may be biased in an unknown way, e.g. in expectation of a crash which will never occur.
Hence, a rigorous statistical test as described above is difficult if not impossible. Moreover,
the differences in the underlying and the risk-neutral density were used to test for crash fears
in the secondary market (Bates 1991; Bates 1997; Christensen and Prabhala 1998). There-
fore, this asymptotic approach seems not to be adequate to test the performance of option
pricing models. See Figure 2.29 for an illustration of the problems in the construction of tests
for option pricing models.

Maturity

implicit volatility

historical volatility

quoted price resp.

realized volatiliy

Trade

time

expectation of tradersdifferent periods,
(e.g. crash fears)change of regime
biased expectations of traders

corresponds to the

Figure 2.29: Fundamental problems in the evaluation of option pricing models.

Bakshi, Cao, and Chen (1998) observed that in contrast to the monotonicity of call prices
with respect to stock prices, which is assumed in all (reasonable) models with one source of
randomness, stock prices and call prices often move in opposite directions. The same result
holds for the German market. We zoomed down in single option series and calculated the
increments ∆Ci and ∆Si of stocks and call options from quote to quote. Overnight-increments
were removed to avoid decreasing call prices due to the shorter time to maturity. For roughly
10% of the quoted increments the product ∆Ci∆Si is negativ (type-I violations in Bakshi,
Cao, and Chen (1998)). From Table 2.30 we also see that the (absolute) magnitude of the call
and stock price violating the monotonicity of the increments is clearly above tick-size. These
violations hint at possible difficulties for the practical implementation of hedging strategies.

There are different possible explanations for this effect. Bakshi, Cao, and Chen (1998)
concluded from their empirical results that a stochastic volatility model may explain this
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Table 2.30: Do call prices and stock prices move in different directions? Percentage and
magnitude of violations of the monotonicity in Daimler Benz call series. The last four columns
refer only to those quotes violating the monotonicity condition.

strike maturity quotes errors mean abs. incr. median abs. incr.
# % call stock call stock

550 1 93 641 64 9.984 0.4125 1.0422 0.2 1
700 12 92 254 26 10.236 0.4885 1.2308 0.5 1
800 9 92 138 14 10.145 0.2071 1.1286 0.2 0.5
800 12 92 142 16 11.268 0.425 0.9875 0.45 0.65
800 10 93 511 70 13.699 0.2743 1.1229 0.2 1
900 12 94 133 19 14.286 0.5579 1.1474 0.4 1

effect; but, they also mention that the Hull and White (1987) model of stochastic volatility
only explains 60% of the observed violations of the monotonicity. However, if these violations
could be explained by stochastic volatility models, the volatility of the average volatility
during the expiration period of the call must be rather high. A more appropriate explanation
of these violations is the influence of trading at the secondary market. Prices of derivative
assets are not only determined by the behaviour of the underlying but also by supply and
demand.

2.8 Conclusion

This chapter contains a thorough empirical study of the implicit volatility patterns and the
pricing behaviour of the proposed generalized hyperbolic model and the Black-Scholes model.
The conclusion from the empirical results is that GH models improve the Black-Scholes model,
but they do not explain all deficiencies of the Black-Scholes model. To get this complete
picture of the advantages and disadvantages it is necessary to perform more than a single
test.

It is worth to mention that with respect to option pricing new models lead to intricate
problems. On the one hand it is impossible to take care of all kinds of “stylized features”
within one particular model. On the other hand the statistical and numerical problems which
arise are often substantial.

The problems which are not solved by any of the described models are on the one hand
a realistic modelling of the depencency structure and on the other hand the trading effects
from the secondary market. Stochastic volatility and trading effects are possible reasons for
the smile and smirks of implicit volatilities and the violation of the monotonicity condition
of stock and option movements.
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Chapter 3

Stochastic Volatility Models of the
Ornstein-Uhlenbeck type

Following the results of the last chapter we have to refine the GH Lévy model by an appro-
priate modelling of the volatility structure. This is done in a natural way by assuming that
the latent volatility is a process of the Ornstein-Uhlenbeck type. This model, proposed by
Barndorff-Nielsen (1998), Barndorff-Nielsen and Shephard (1999), is analytically as well as
numerically tractable.1 Parts of this chapter are a joint work with Elisa Nicolato; the results
are published in Nicolato and Prause (1999).

3.1 Empirical Motivation

In the sequel we discuss volatility processes with GIG, and more precisely, IG and Gamma
marginals. Wirth (1998) has shown that GIG distributions are an appropriate model for
the marginals of the German volatility index VDAX and also for the marginals of historical
volatility estimates. As a motivation for the introduction of volatility processes with IG
marginals, we compare in Figure 3.1 daily averages of Black-Scholes implied volatilities of
Bayer stock options and mixing IG distribution of the NIG estimate from Bayer stock returns.
The mixing IG distributions are implicitly given for known NIG distributions by the variance-
mean mixture (1.6). Black-Scholes implied volatilities are often markedly different to historical
volatility estimates. This is in particular true for short time periods. Therefore, it is no
surprise that the empirical distribution of Black-Scholes implicit volatilities given in Figure
3.1 differs substantially from the mixing IG distribution. However, one could estimate an IG
distribution which fits Black-Scholes implied volatilities precisely. This IG estimate is also
shown in Figure 3.1. For the estimation we use an algorithm implemented by Wirth (1998).

In Figure 3.2 we show GIG distributions corresponding to one- and three-dimensional
estimates of hyperbolic distributions. Note, that the scale of mixing GIG distributions differ

1We have to add some remarks concerning the notation. The parameters used in this chapter are consistent
in this dissertation and with most papers concerning the GH distributions. However, they differ from the
parametrizations used in Barndorff-Nielsen (1998), Barndorff-Nielsen and Shephard (1998, 1999), Nicolato and
Prause (1999) in the following way: In this study λ denotes the subclass and τ describes the autocorrelation
(instead of λ̄ and λ). We changed the parametrizations of the GIG distributions in this chapter (see equation
(3.15)).
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Figure 3.1: Comparison of the empirical density and the IG likelihood estimate of Black-
Scholes implied volatilities with mixing IG distributions (Bayer stocks 1988–94 and stock
options 1992–94).
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from the scale of the typically examined volatility (annualized standard deviations) since we
look at daily variances.

In Section 2.2 we have already mentioned that a significant autocorrelation is usually
observed in the squared or absolute returns of financial time series. The model we are investi-
gating in this chapter has the (quasi-)long-range dependence typically observed in volatilites
of financial time series (see Barndorff-Nielsen (1998) for the details).

3.2 Ornstein-Uhlenbeck type Processes

First, we give a brief introduction to Ornstein-Uhlenbeck type processes which were introduced
by Barndorff-Nielsen (1998) as a model in Finance. Further references to Ornstein-Uhlenbeck
type processes are Wolfe (1982), Sato and Yamazato (1982), Jurek and Vervaat (1983), Sato,
Watanabe, and Yamazato (1994). These processes can be constructed on the basis of the
following class of distributions.

Definition 3.1 (Self-Decomposability). A probability measure µ (or equivalently its char-
acteristic function ϕ) is defined as self-decomposable (or to belong to Lévy’s class L), if for
each τ > 0 there exists a probability measure ντ such that

ϕ(ζ) = ϕ(e−τ ζ)ϕτ (ζ), (3.2)

where ϕ and ϕτ denote the characteristic functions of µ and ντ respectively.

Note, that self-decomposable distributions are infinitely divisible. The following characteri-
zation clarifies the structure of self-decomposable distributions.

Theorem 3.3 (Characterization of Self-Decomposable Distributions). A random
variable Y has a self-decomposable distribution if and only if

Y =
∫ ∞

0
e−tdZt, (3.4)

where (Zt)t≥0 is a Lévy process. The relation of the Lévy measures V and W of Y and Z1 is
then given by

V (dy) =
∫ ∞

0
W (etdy)dt. (3.5)

If there exist continuous Lebesgue densities v and w for V and W respectively, they satisfy

v(y) = y−1W ([x,∞)), (3.6)
w(y) = −v(y)− yv′(y), y > 0. (3.7)

The theorem was proved by Jurek and Vervaat (1983), see also Barndorff-Nielsen (1998,
Theorem 2.2).

Definition 3.8 (Ornstein-Uhlenbeck type Processes). A stochastic process (Yt)t≥0 is
defined as a process of the Ornstein-Uhlenbeck type if it satisfies the stochastic differential
equation

dYt = −τYtdt+ dZt, (3.9)

where τ > 0 and (Zt)t≥0 is a Lévy process, to which we refer to as the background driving
Lévy process (BDLP).
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We take a càdlàg version of the process (Zt)t≥0 and assume τ > 0. The stochastic
differential equation (3.9) is then solved by

Yt = e−τt Y0 +
∫ t

0
e−τ(t−s)dZs︸ ︷︷ ︸

=: ut

. (3.10)

where Y0 and the BDLP are independent. With this definition of ut we may write Yt =
exp(−τt)Y0 + ut. If the solution (3.10) is stationary and square integrable and if E[x0] =
E[Z1] = 0, then the correlation function of (Yt)t≥0 is of the form acf(u) = exp(−τu).

The following theorem yields the existence of a stationary solution (Yt)t≥0, with a marginal
distribution given by the self-decomposable distribution.

Theorem 3.11 (Existence of Ornstein-Uhlenbeck type Processes). Let c(ζ) be a dif-
ferentiable and self-decomposable characteristic function and let κ(ζ) = log c(ζ). Suppose, that
ζκ′(ζ) is continuous at 0 and let ϕτ (ζ) = τζκ′(ζ) for a τ > 0. Then exp

(
ϕτ (ζ)

)
is an infinitely

divisible characteristic function.
Furthermore, letting (Zτt )t≥0 be the Lévy process for which Zτ1 has the characteristic func-

tion exp
(
ϕτ (ζ)

)
and defining the process (Yt)t≥0 by dYt = −τYtdt + dZτt , we assert that a

stationary version of Y exists, with one-dimensional marginal distribution given by the char-
acteristic function c(ζ).

The theorem was proved by Barndorff-Nielsen (1998, Theorem 3.2), see also Barndorff-Nielsen,
Jensen, and Sørensen (1995, Section 3). Since (Zτt )t≥0 is a Lévy process, ϕτ (ζ) = τϕ1(ζ) holds
and we have that (Zτt )t≥0 is identical in law to (Z1

τt)t≥0. Using the abbreviation Zt := Z1
t we

have

(Zτt )t≥0
L= (Zτt)t≥0, (3.12)

where L= means “equal in law”. This implies that

Yt
L= e−τtY0 + e−τt

∫ τt

0
esdZs (3.13)

with the corresponding differential equation

dYt = −τYtdt+ dZτt. (3.14)

Inverse Gaussian Ornstein-Uhlenbeck type Processes

The IG(δ, γ) distribution is given by the Lebesgue density2

δ√
2π

exp(δγ) x−3/2 exp
(
−1

2
(
δ2x−1 + γ2x

))
, x > 0. (3.15)

GIG and in particular IG distributions are self-decomposable (Halgreen 1979). Therefore, we
can construct a GIG Ornstein-Uhlenbeck type process (Yt)t≥0, i.e. a stationary process such
that Yt ∼ GIG for all t ≥ 0. To conserve analytical and numerical tractability, we restrict

2This notation is related by χ = δ2 and ψ = γ2 to the notation in Chapter 1.
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ourselves to IG and Gamma distributions (the processes are denoted as IGOU or Gamma-OU,
for short). However, most of the interesting results hold also for GIG Ornstein-Uhlenbeck
type processes. The Lévy density of IG distributions is

v(x) =
1√
2π

δ x−3/2 exp(−γ2x/2), x > 0. (3.16)

It follows that the Lebesgue density w(x) of the Lévy measure of Z1 as given by (3.7) is

w(x) =
1√
2π

δ

2

(
1
x

+ γ2

)
x−1/2 exp(−γ2x/2), x > 0. (3.17)

The second term in the characteristic triplet vanishes. Thus, the background driving Lévy
process is purely discontinuous. This follows also from the fact that all Lévy processes con-
structed from infinitely divisible probability distributions with support IR+ have no Brownian
part.

The BDLP (Zt)t≥0 of the IG(δ, γ) Ornstein-Uhlenbeck process (Yt)t≥0 is a sum of two
independent processes Zt = Qt + Pt, where (Qt)t≥0 is an IG Lévy process with parameters
Q1 ∼ IG(δ/2, γ) and (Pt)t≥0 is of the form

Pt = γ−2
Nt∑
i=1

u2
i , (3.18)

with Poisson process Nt of rate (δγ/2)−1 and the ui being independent standard normal and
independent of the process Nt.

The upper tail integral, which is a building block for the simulation of Ornstein-Uhlenbeck
type processes, is defined as

U(x) =
∫ ∞
x

w(y)dy. (3.19)

If Yt ∼ IG(δ, γ) we obtain

U(x) =
δ√
2π

x−1/2 exp
(
− 1

2
γ2x
)
. (3.20)

This follows from the relation U(x) = xv(x) of upper tail integral and Lévy measure.

Gamma Ornstein-Uhlenbeck type Processes

From a numerical point of view the Gamma Ornstein-Uhlenbeck process is particularly in-
teresting. It is obtained as a generalized inverse Gaussian process with parameters3 λ > 0,
δ = 0 and γ2 > 0. More exactly, Γ(λ, γ2/2) = GIG(λ, 0, γ2). Here the Gamma distribution
has the following density

(γ2/2)λ

Γ(λ)
xλ−1 exp

(
− γ2x/2

)
, x > 0. (3.21)

3Kotz and Johnson (1983, pp. 292–298) describe a more general version of the Gamma distribution with
parameters (ϑ,κ, η). The parameters applied here are related in the following way (ϑ,κ, η) = (2/γ2, λ, 0).
In the mentioned article further properties of Gamma distributions are given. Also for Gamma distributions
conflicting parametrizations are in use.
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Following Barndorff-Nielsen and Shephard (1999, Theorem 2.2) the Gamma distribution has
the following Lévy measure

v(x) =
λ

x
exp
(
− γ2x/2

)
. (3.22)

Consequently, the upper tail integral is given by

U(x) = xv(x) = λ exp(−γ2x/2), (3.23)

which we can invert analytically (in contrast to the IG case)

U−1(x) = max{0; −2 log(x/λ)/γ2}. (3.24)

The inversion of U is necessary for the simulation by Rosinski expansion in Section 3.7. Since
we have an analytic inversion of the upper tail integral U , the computation of option prices
based on the simulation of integrated volatilities is 30 times faster for Gamma Ornstein-
Uhlenbeck type processes than for inverse Gaussian Ornstein-Uhlenbeck type processes.

The symmetric centered Variance-Gamma distribution is constructed also as a variance-
mean mixture (Madan, Carr, and Chang 1998) with respect to (δ, γ) and has the density

h(z) =
γγ

2+1

√
λπ Γ(γ2/2)2(γ2/2)

(
x2

2λ

)(γ2−1)/4

K(γ2−1)/2

(
γ2

√
2λ

x

)
(3.25)

x = z − γ2

2
ln
(

1− 2λ
γ4

)
, (3.26)

where Γ is the gamma function. This follows after some computations from Madan, Carr,
and Chang (1998). Variance and kurtosis are

VarX =
2λ
γ2

(3.27)

E(X − EX)4 = 12
λ2

γ4

(
2
γ2

+ 1
)

(3.28)

Of course, mean and skewness vanish in the symmetric centered case.

Other Ornstein-Uhlenbeck type Processes

In the preceding part of this section we have introduced those Ornstein-Uhlenbeck type
processes which are—from our point of view—the most interesting for financial applica-
tions. Recall, that the construction of Ornstein-Uhlenbeck type processes is possible for
all self-decomposable distributions: NIG Ornstein-Uhlenbeck type processes are described in
Barndorff-Nielsen (1998) and the Ornstein-Uhlenbeck type processes for other subclasses of
the GIG distribution are examined in Barndorff-Nielsen and Shephard (1998). In particular,
the upper tail integrals of positive hyperbolic and inverse Gamma distributions are given in
Barndorff-Nielsen and Shephard (1998, Section 4.6)
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3.3 The Model

Given a stochastic basis (Ω,F , (F t)0≤t≤T , P ) we consider a financial market consisting of two
assets. The first one is a bank account or risk free asset (Bt)0≤t≤T evolving according to the
equation

dBt = rBtdt, 0 ≤ t ≤ T
B0 = 1.

(3.29)

As usual, we are not modelling the stock (St)0≤t≤T but the discounted log-price Xt =
log(St/S0), which is given as a solution of the following stochastic differential equations

dXt = σtdWt + (µ+ βσ2
t )dt (3.30)

dσ2
t = −τσ2

t dt+ dZτt, (3.31)

where τ > 0 and (Zt)0≤t≤Tτ is the BDLP such that σ2 is a positive, (strictly) stationary
process with càdlàg path and σ2

t ∼ GIG for all 0 ≤ t ≤ T . The processes σ2 and W are
assumed to be independent and adapted to the filtration (F t)0≤t≤T . The solution is given by

Xt =
∫ t

0
σudWu + βσ2∗

t + µt, 0 ≤ t ≤ T . (3.32)

In the sequel we use the following notation for the integrated volatility

σ2∗
t =

∫ t

0
σ2
udu, 0 ≤ t ≤ T. (3.33)

While σ2 has purely discontinuous, càdlàg sample paths, the integrated volatility σ2∗ has
continuous sample paths. By construction, the volatility process σ2 has an autocorrelation
function

acf(s) = exp(−τs). (3.34)

Note, that diffusion models often have a similar autocorrelation structure (Barndorff-Nielsen
and Shephard 1998).

For µ = β = 0 the process X is a continuous local martingale and [X]t = σ2∗, 0 ≤ t ≤ T .
Barndorff-Nielsen and Shephard (1999, equation 40) give a calculus for computing all the
cumulants for any weighted sum of the paths of the log-price, which offers more analytical
tractability than most bivariate diffusion models posses. In particular they compute the mean
and variance of Xt.

3.4 The Minimal Martingale Measure

It is well known that stochastic volatility models of the type introduced in Section 3.3 are
arbitrage-free. As a consequence we getMe 6= Ø, whereMe denotes the set of the equivalent
martingale measures, i.e. Me = {Q ∼ P : (St)0≤t≤T is a Q-martingale}, where (St)0≤t≤T is
the discounted price process given by St = S0 exp(Xt), 0 ≤ t ≤ T .

Following the description of the model, we define and characterize a particular martingale
measure Q equivalent to the real-world measure P . Hence, we can compute prices for a
contingent claim at time T given by a random variable H ∈ L2(Ω,FT , Q). We start with
some preparatory results concerning the volatility process.
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Lemma 3.35. Let (Xt)0≤t≤T be a positive, (strictly) stationary stochastic process adapted to
the given filtration (Ft)0≤t≤T and with one-dimensional marginal distribution given by

Xt ∼ GIG(λ, δ, γ) with δγ > 0. (3.36)

Then the following holds P-a.s.∫ T

0
Xtdt <∞ and

∫ T

0
X−1
t dt <∞. (3.37)

Proof. The proof follows from Liptser and Shiryayev (1977, Chapter 1); see Jørgensen (1982,
p. 14) for the integrability conditions on GIG distributions. Let us denote by Y ∼ GIG(λ, δ, γ)
the marginal distribution of the stationary process X. Since δγ > 0 we have that E[Y ] < +∞
implying that ∫ T

0
E[Xt]dt = T E[Y ] < +∞. (3.38)

Applying the positivity of Xt yields

E
[∫ T

0
Xtdt

]
=
∫ T

0
E[Xt]dt = T E[Y ], (3.39)

and hence P-a.s. ∫ T

0
Xtdt <∞. (3.40)

The same reasoning applies to the stationary stochastic process (X−1
t )0≤t≤T noticing that its

one-dimensional marginal distributions are given by Y −1 ∼ GIG(−λ, γ, δ) and that E[Y −1] <
+∞, being δγ > 0.

Remark 3.41. Jørgensen (1982, p. 14) gives conditions for the finiteness of E[Y −1] for
Y ∼ GIG(λ, δ, γ) which are, in particular, fulfilled for Gamma distributions with λ > 1 and
inverse Gamma distributions with λ < 0 (in the parametrizations as GIG distributions, see
Table 1.1).

Our project is to investigate the existence of a Q ∈ Me which is minimal in some sense.
In the sequel we follow the approach of Föllmer and Schweizer (1991) and Schweizer (1991)
to the pricing of derivatives in incomplete markets in a slightly more general setup.

Assume that the price process S is a strictly positive, continuous semi-martingale with
decomposition

St = S0 +Mt +At, 0 ≤ t ≤ T ,

where (Mt)0≤t≤T is a local martingale and (At)0≤t≤T a predictable process with bounded
variation. The dynamics of X are given by (3.30). Using the Itô formula we can describe the
dynamics of S by

dSt = StσtdWt + St

(
µ+

(
β +

1
2

)
σ2
t

)
dt. (3.42)

The integral (
∫ t

0 StσtdWt)0≤t≤T is a martingale since W and σ are independent and the second
part in equation (3.42) is predictable and has finite variation. Hence, we have derived the
Doob-Meyer decomposition of S.
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Definition 3.43 (Minimal Martingale Measure). An equivalent martingale measure
Q ∈Me is said to be minimal if

(min1) Q = P on F0;

(min2) Gt = E
[

dQ
dP

∣∣∣Ft] is a continuous P -martingale;

(min3) for any continuous P -local martingale L which is orthogonal to S, in the sense that
(〈L,S〉t) ≡ 0, the process L is also a (continuous) Q-local martingale.

Proposition 3.44 (Change of Measure). Let (σt)0≤t≤T in (3.31) be such that P-a.s.∫ T

0
σ−2
t dt < +∞. (3.45)

Then the process (Gt)0≤t≤T defined by

Gt = exp
(
−
∫ t

0
ϕs dWs −

1
2

∫ t

0
ϕ2
s ds

)
, (3.46)

with

ϕt =
µ

σt
+
(
β +

1
2

)
σt (3.47)

is a P -martingale and the probability measure Q defined by

dQ = GT dP (3.48)

is the minimal martingale measure.

Proof. See Nicolato and Prause (1999) for a detailed proof.

3.5 Risk-Minimizing Hedging Strategies

To hedge against a contingent claim H, we use a portfolio strategy which involves the stock
S and the riskless bond B = 1 (for simplicity) and which yields the payoff H at the terminal
time T . Recall, that the asset price (only in this chapter) is discounted for simplicity.

The processes (ξt)0≤t≤T and (ηt)0≤t≤T denote the amounts of stock and bond, respectively,
held at time t. We assume that ξ is predictable and η is adapted. The value process of the
portfolio is then given by

Vt = ξtSt + ηt, 0 ≤ t ≤ T . (3.49)

The cost process up till time t is defined as

Ct = Vt −
∫ t

0
ξsdSs, 0 ≤ t ≤ T . (3.50)

We only admit strategies (ξ, η) such that the value process (Vt)0≤t≤T and the cost process
(Ct)0≤t≤T are square-integrable, have right-continuous paths and satisfy

VT = H, 0 ≤ t ≤ T. (3.51)
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We also require the integrability condition

E
[∫ T

0
ξ2
sd〈S〉s +

(∫ T

0
|ξs| d|A|s

)2
]
<∞, (3.52)

which ensures that the process of stochastic integrals in (3.50) is well defined and belongs to
the space S2 of square integrable semimartingales. These strategies are denoted as admissible.

In the examined model we cannot achieve that the strategy is self-financing, which is
defined as

Ct = CT = H, 0 ≤ t ≤ T . (3.53)

Therefore, we look at strategies based on risk-minimization approaches. Föllmer and Son-
dermann (1986) proposed latter approach to find an equivalent martingale measure in an
incomplete market. We are going to single out that admissible strategy which minimizes the
remaining risk

E
[
(CT − Ct)2

∣∣Ft] (3.54)

for each time point t < T . Risk-minimizing strategies are typically no longer self-financing,
but they are mean-self-financing

E[CT − Ct|Ft] = 0, 0 ≤ t ≤ T , (3.55)

i.e. the cost process C is a martingale.
First, let us look at the case where S is already a martingale. Then the Kunita-Watanabe

decompositon holds

H = H0 +
∫ T

0
ξHs dSs + LHT , (3.56)

with H0 ∈ L2(Ω,F0, P ) and LH a square-integrable martingale orthogonal to S. The risk
minimizing strategy is in this case given by

ξ := ξH , η := V − ξ · S, (3.57)

with value process

Vt := H0 +
∫ t

0
ξHs dSs + LHt , 0 ≤ t ≤ T . (3.58)

However, in general the price process is not a martingale.
To single out a particular martingale measure in a market described by semimartingales,

Schweizer (1988) introduced the concept of local risk-minimization. A strategy is called
locally risk-minimizing if the remaining risk E[(CT − Ct)2|Ft] for any t < T is minimal
under all infinitesimal perturbations of the strategy at time t (see Schweizer (1991, 1992) for
exact definitions and further results). This property is essentially equivalent to the following
criterium which we will apply in the sequel.

Definition 3.59. An admissible strategy (ξ, η) is called optimal if the associated cost process
C is a square-integrable martingale which is orthogonal to M under P .
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Proposition 3.60. The existence of an optimal strategy is equivalent to a decomposition

H = H0 +
∫ T

0
ξHs dSs + LHT , (3.61)

with H0 ∈ L2(Ω,F0, P ), where ξH satisfies the integrability condition in Föllmer and
Schweizer (1991, equation (2.8)) and LH is a square-integrable martingale orthogonal to M .
For such a decomposition the associated optimal strategy (ξ, η) is given by (3.57) and (3.58).

The existence of the optimal hedging strategy follows with the next theorem from the
existence of the minimal martingale measure in the sense of Föllmer and Schweizer (1991).
Unfortunately, we have not shown that the density process in the Girsanov transformation
and the price process are square integrable in the IGOU model. Therefore, the following
theorem and the explicit computation of the hedging strategy are not true in general.

Nevertheless, we state the results since we think that it should be possible to show that
both processes are sqare integrable, possibly only for a subset of parameters.4

Theorem 3.62 (Optimal Strategy and Minimal Martingale Measure). The optimal
strategy, hence also the corresponding decomposition (3.61) is uniquely determined. It can be
computed in terms of the minimal martingale measure Q given in the sense of Föllmer and
Schweizer (1991): If (Vt)0≤t≤T denotes a right-continuous version of the martingale

Vt := EQ[H|Ft], 0 ≤ t ≤ T, (3.63)

then the optimal strategy (ξ, η) is given by (3.57), where

ξH =
d〈V, S〉
d〈S〉 (3.64)

is obtained by projecting the Q-martingale V on the Q-martingale S.

Föllmer and Schweizer (1991, Theorem 3.14) proved this theorem.

Explicit Computation of the Hedging Strategy

For the explicit computation of the locally risk-minimizing hedging strategy we follow Musiela
and Rutkowski (1997, Section 5.1.3). Assume, that the option price V follows

Vt = v(St, t) (3.65)

for some function v : IR×[0, T ] → IR. The optimal replicating strategy is then given by the
following functions

(ξ, η) =
(
g(St, t), h(St)

)
, (3.66)

where g : IR×[0, T ]→ IR and h : IR×[0, T ]→ IR are functions unknown at the moment. The
wealth process equals then

Vt(ξ, η) = g(St, t)St + h(St, t)Bt = v(St, t). (3.67)

4Results in this direction will be included in a final version of Nicolato and Prause (1999).
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With property (3.61) we obtain the following dynamics of the process (Vt(ξ, η))0≤t≤T

dVt(ξ, η) = g(St, t)dSt + h(St, t)dBt =
∫
ξH dSt + H0 + LHt .︸ ︷︷ ︸

=: h(St, t)dBt

(3.68)

Now we plug in the dynamics of S given by (3.42)

dVt(ξ, η) = g(St, t)StσtdWt + g(St, t)St
(
µ+

(
β +

1
2

)
σ2
t

)
dt+ h(St, t)r dt. (3.69)

From (3.67) we obtain

η = h(St, t) = B−1
t

(
v(St, t)− g(St, t)

)
. (3.70)

We shall search for the wealth function v in the class of smooth functions on the open do-
main D = (0,∞) × (0, T ), more exactly we assume that v ∈ C2,1(D). Now we apply the
Itô formula (in the formulation of Musiela and Rutkowski (1997, p. 463)) conditionally on
σ. This is possible since the driving Brownian motion W and the volatility process σ2 are
mutually independent. See Section 3.6 for another application of this argument. As usual,
the subscripts to v denote the corresponding partial derivatives.

dv(St, t) = vt(St, t)dt+ St

(
µ+

(
β +

1
2

)
σ2
t

)
vs(St, t)dt (3.71)

+ Stσtvs(St, t)dWt +
1
2
S2
t σ

2
t vss(St, t)dt

Now we consider the process Yt = v(St, t) − Vt(ξ, η), 0 ≤ t ≤ T . Then we obtain for the
dynamics of (Yt)0≤t≤T

dYt = dv(St, t)− dVt(ξ, η) (3.72)

= vt(St, t)dt+ St

(
µ+

(
β +

1
2

)
σ2
t

)
vs(St, t)dt

+ Stσtvs(St, t)dWt +
1
2
S2
t σ

2
t vss(St, t)

− g(St, t)St, σtdWt − g(St, t)St
(
µ+

(
β +

1
2

)
σ2
t

)
dt

− h(St, t)r dt.

Since Vt(ξ, η) = v(St, t) holds, Y vanishes identically. Thus, the diffusion term in (3.72) has
to be zero. We obtain ∫

Suσu
(
vs(St, t)− g(St, t)

)
dWt = 0 (3.73)

and hence

vs(St, t) = g(St, t) ∀(s, t) ∈ IR+×[0, T ]. (3.74)

Consequently, the hedging strategy, conditional on σ, is given by the derivative vs of the option
price w.r.t. the stock price. Recall, that this is a locally risk-minimizing heging strategy only
under the condition that the density process and the price process are square integrable.
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3.6 Conditional Log-Normality

The calculation of IGOU prices can be split in two parts. We use th indepencende of σ2 and
W to prove that XT has a log-normal distributon conditionally on the integrated volatility
σ2∗
T at maturity.

Theorem 3.75. In the stochastic volatility model introduced in Section 3.3 and the measure
transformation from Theorem 3.44 we can compute prices for a sufficiently regular terminal
payoff function h by

EQ[h(ST )] =
∫

IR+

BS(h, S0, v, T )λQ(dv). (3.76)

Here λQ denotes the distribution of the average volatility v =
√
σ2∗
T /T at time T under Q

and BS(h, S0, v, T ) the Black-Scholes price of an option with terminal payoff function h.

Compare latter theorem with similar results in Frey (1996, Chapter 6.2.1), Hull and White
(1987).

Proof. Under P we have that σ and W are independent. Therefore, we could write the
original probability space as a product space

(Ω,F , P ) =
(
(Ω,Fσ)× (Ω,FW ), P σ ⊗ PW

)
(3.77)

where Fσ, P σ and FW , PW denote the filtrations and the distributions associated with the
processes σ and W respectively. Consequently, we can condition on the filtration Fσ and the
process W remains conditionally on Fσ a Brownian motion. For a fixed v ∈ Ωσ the following
holds

EQ[h(ST )|σ = v] = BS(h, S0, v, T ). (3.78)

The measure transformation P → Q in Theorem 3.44 for a given v is equal to the measure
transformation in the Black-Scholes model. Consequently,

EQ[h(ST )] = EQ
[

E[h(ST ) |σ = v]
]

= EQ[BS(h, S0, v, T )] =
∫ ∞

0
BS(h, S0, v, T )λQ(dv),

where λQ denotes the distribution of the average volatility.

Remark 3.79. For the actual computation we can use that λQ is equal to the distribution of
the integrated volatility λP under P . This follows from the fact, that we have not changed the
law of the volatility process σ in Girsanov transformation.

Corollary 3.80 (European Call Option). A European call option, i.e. a contingent claim
with terminal payoff function (ST −K)+, has the IGOU price

CIGOU =
∫ ∞

0
CBS(S0,K, v, T )λP (v),
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where CBS denotes the Black-Scholes formula for European call options

CBS(S0,K, v, T ) = S Φ(x)− e−rTK Φ
(
x− σ

√
T
)

x =
ln(S erT /K)

σ
√
T

+
σ
√
T

2

and Φ is the cumulative density function of a standard normal distribution.

An extension of this result to Ornstein-Uhlenbeck type models incorporating leverage
effects (Barndorff-Nielsen and Shephard 1999) is not possible with the same argument, since
the Brownian motion W and the instantaneous volatility σ are no longer independent.

3.7 Computation of Prices by Rosinski Expansion

In the previous section we have shown that in principle it is possible to perform arbitrage-
pricing whenever the one-dimensional marginal distibution of the stationary process σ2 is
chosen within the class of the GIG(λ, δ, γ) laws with δγ > 0 or fulfills the conditions given in
Remark 3.41. In order to show that the computation of formula (3.76) is feasible in practice
we restrict ourselves to the case of σ2

t ∼ IG(δ, γ) with δγ > 0. The crucial point in the
computation of prices by formula (3.76) is to determine the distribution λP of the integrated
volatility σ∗2T . In the sequel we follow Barndorff-Nielsen and Shephard (1998, Section 4.5).

Using the property of the integrated volatility that

σ2∗
t =

1
τ

(
Zτt − σ2

t + σ2
0

)
, (3.81)

the distribution λP of the integrated volatility σ2∗ may be simulated. A direct computation
of σ2∗

T using (3.81) is not possible, since (Zτt)0≤τt≤T and (σ2
t )0≤t≤T are not independent.

The equation above implies for simulated increments of the integrated volatility
σ 2

∆(n+1) := σ2∗
∆(n+1) − σ2∗

∆n the following identity

σ2
n+1 =

1
τ

(
Zτ∆(n+1) − Zτ∆n + σ2

∆n − σ2
∆(n+1)

)
, (3.82)

with sampling interval ∆ > 0. We can simulate sequences of integrated volatilities by simulat-
ing the bivariate process of the BDLP Z and the instantaneous volatility σ2 in the following
way

σ2
∆(n+1) = e−τ∆σ2

∆n + e−τ∆

∫ τ∆(n+1)

τ∆n
e−(τ∆(n+1)−s)dZs,︸ ︷︷ ︸

=: w1,n+1

(3.83)

Zτ∆(n+1) = Zτ∆n +
∫ τ∆(n+1)

τ∆n
dZs︸ ︷︷ ︸

=: w2,n+1

.
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Equation (3.83) is obtained by the application of (3.13). Using the fact that Z is a Lévy
process we can express wn by

wn
L=


exp(−τ∆)

∫ τ∆

0
es dZs∫ τ∆

0
dZs

. (3.84)

The following expansion allows us to simulate the innovations in a comfortable way. For an
integrable function f : [0, x]→ IR+ holds (Rosinski 1991)∫ x

0
f(s)dZs

L=
∞∑
i=1

U−1(a∗i /x)f(xri), (3.85)

where {a∗i } and {ri} are two independent sequences of random variates with the ri independent
uniform random variables on [0, 1] and a∗1 < · · · < a∗i < . . . arrival times of a Poisson process
with intensity 1. Here U is the upper tail integral with the inverse

U−1(x) = inf{y > 0 : U(y) ≤ x}. (3.86)

The values for U in the case of IG und Gamma Ornstein-Uhlenbeck type processes are given
in Section 3.2. Note, that a∗i − a∗i−1

L= − log(ui), where {ui} are uniformly distributed on
[0, 1]. Furthermore, U−1 is inverted in (3.85) for increasing a∗i /τ . Therefore, a∗i /τ may be
used as an initial upper bracket in the numerical inversion algorithm. We have used the
Illinois algorithm leading to a fast convergence.

Taken together, we can simulate the increments of the integrated volatility in the following
way

σ 2
n+1 = τ−1

(
w2,n+1 + σ2

∆n − exp(−τ∆)σ2
∆n − w1,n+1

)
(3.87)

w1,n+1 = exp(−τ∆)
∞∑
i=1

U−1(a∗i /(τ∆)) exp(τ∆ri) (3.88)

w2,n+1 =
∞∑
i=1

U−1(a∗i /(τ∆)). (3.89)

The simulation of the integrated volatility needs the major part of the computation time
of Ornstein-Uhlenbeck type option prices. Therefore, various approaches to increase the
speed of computations have been proposed, e.g. to memorize the values of the inverted upper
tail integral U−1 in a matrix. We have not applied these approaches, since in practical
applications the integrated volatility of the IGOU process has to be rescaled by changing up-
to-date volatility estimates. This would lead to an unpleasant data handling of the various
matrices.

3.8 Saddle-Point Approximation to the Option Price

To apply the saddle-point approximation already proposed in Section 1.14 we have to know
some results concerning the cumulant generating function of the (discounted) log-price XT at
maturity in the IGOU model. The cumulant generating function, defined as K{z ‡XT } :=
log E[exp(zXT )], is quite complicated, but explicit.
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Proposition 3.90 (IGOU Cumulant Generating Function). The cumulant generating
function K{z ‡XT } is finite in the interval (−a−, a+) where

a− = −1− [1 + 4γ2τ(1− e−τT )−1]1/2

2
,

a+ =
1 + [1 + 4γ2τ(1 − e−τT )−1]1/2

2
.

It is given by K{z ‡XT } = C1(z) + C2(z), where

C1(z) = δγ

[
1−

(
1− (1− e−τT )

γ2τ
(z2 − z)

)1/2
]
,

C2(z) = F1(z) + F2(z) 1[−b−,b+](z) + F3(z) 1[−a−,a+]\[−b−,b+](z)

and the real numbers b−, b+ are given by

b− = − 1− [1 + 4γ2τ ]1/2

2
, and b+ =

1 + [1 + 4γ2τ ]1/2

2
.

We use the following abbreviations

g1(z) =
√
γ2 − τ−1(z2 − z)

(
1− e−τT

)
,

g2(z) =
√
γ2 − τ−1(z2 − z),

g3(z) =
√
−
(
γ2 − τ−1(z2 − z)

)
,

then the expressions for F1(z), F2(z) and F3(z) are given by

F1(z) = δ(g1(z)− γ),

F2(z) =
δ(z2 − z)
2τg2(z)

log
(

(γ − g2(z)) (g1(z) + g2(z))
(γ + g2(z)) (g1(z) − g2(z))

)
,

F3(z) =
δ(z2 − z)
2τg3(z)

[
arctan

(
γ

g3(z)

)
− arctan

(
g1(z)
g3(z)

)]
.

Moreover, the Laplace transform of XT is integrable and the exponential family (in the sense
of Jensen 1995, p. 6) is steep.

Proof. See Nicolato and Prause (1999) for the details of the proof.

Note, that the condition a+ > 1 is satisfied for any values of the parameters τ and γ, enabling
us to use equation (1.66) to express the price of European put options

Price = Ke−rTQ [XT < k − rT ]− S0e
κ(1)P1 [XT < k − rT ] , (3.91)

where κ(z) = K{z ‡ XT } and k = log(K/S0). To apply the saddle-point approximation
we have to compute the first and second derivative of the cumulant generating functions of
κ(z) = K{z ‡ XT }. We look at the representation given in Propositon 3.90 and use the
abbreviation

A :=
1− e−τT
γ2τ

.
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Then we get for the derivatives of C1

C ′1(z) = δγ
A

2
2z − 1√

1−A(z2 − z)
,

C ′′1 (z) =
δγA√

1−A(z2 − z)
+

δγA2(2z − 1)2

4(1−A(z2 − z))3/2
.

We write B = 1− exp(−τT ) for short and obtain

F ′1(z) = − δB

2τ
2z − 1
g1(z)

,

F ′′1 (z) = − δB

τg1(z)
− δB2(2z − 1)2

4τ2(g1(z))3
.

In the actual implementation we differentiate the functions F2 and F3 numerically and for
numerical reasons we compute g1 − g2 as

g1 − g2 =
(z2 − z)e−τT
τ(g1 + g2)

. (3.92)

For typical estimates of IG distributions and values of k− rT the CDF does exist. Moreover,
b− and b+ are close to a− and a+ respectively. Therefore, in most cases only F3 needs to be
calculated.

With Proposition 3.8 all necessary conditions are fulfilled to apply Theorem 1.69 (Lugan-
nani and Rice 1980) to approximate IGOU option prices. In Section 3.11 we will compare
the numerical results of the saddle-point approximation and of the pricing by the simulation
of the integrated volatility.

Note, that a better approximation may be achieved using the higher order terms given
in the original paper of Lugannani and Rice (1980). In general, simulations studies indicate
that the use of the first order term leads to good results (Daniels 1987).

3.9 Calibration of the IGOU Model

The estimation of parameters of the Ornstein-Uhlenbeck type process proceeds in two steps:
First, we compute under the assumption of independence the likelihood estimate of the
marginal NIG distribution using the algorithm described in Section 1.2. Then we can de-
rive from (1.6) the mixing IG(δ, γ) distribution which will be the stationary distribution of
the Ornstein-Uhlenbeck type volatility process. In particular, δ is a common parameter of
GH and GIG distributions whereas γ =

√
α2 − β2. Secondly, the autocorrelation parameter

τ is estimated by regression
T∑
t=0

∣∣ âcf(t)− exp(−τt)
∣∣h, (3.93)

where h = 1, 2 and âcf denotes the empirical ACF of the absolute returns. As an alternative
the regression may be based on the cumulative ACF.

One could apply likelihood estimation not only for the stationary distribution, but also
for the autocorrelation described by τ > 0. Barndorff-Nielsen (1998, Section 3.2) proposed to
estimate the parameters in a simulation-based likelihood approach; see also Barndorff-Nielsen
and Shephard (1999, Section 5) for other estimation methods.
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3.10 Superposition of IGOU Processes

A further refinement of the model described above is achieved by replacing the simple
IG Ornstein-Uhlenbeck type process by a sum of IG processes (denoted as supIGOU; see
Barndorff-Nielsen (1998, Chapter 6) and Barndorff-Nielsen (1999) for other results on super-
positions). We use the fact that IG distributions are closed under convolution

IG
( n∑
i=1

δi, γ
)

=
n∗
i=1

IG(δi, γ), (3.94)

where γ > 0 and δi > 0 for i = 1, . . . , n. Assume, Y i, i = 1, . . . , n are independent and sta-
tionary IG Ornstein-Uhlenbeck type processes with parameters (δi, γ, τi). Then Y =

∑n
i=1 Y

i

is a stochastic process with IG(
∑n

i=1 δi, γ) one-dimensional stationary distribution and auto-
correlation function

acf(s) =
n∑
i=1

exp(−sτi) δi/δ, (3.95)

where δ =
∑n

i=1 δi.
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Estimation

With the same two-step approach as described in Section 3.9 it is also possible to estimate
parameters in the case of a superposition of n IG Ornstein-Uhlenbeck type processes. Again,
from the NIG distribution we get the mixing IG(δ, γ) distribution and we will use this distri-
bution as the IG law of the superposition.

The next step is the estimation of the autocorrelation and weight parameters
(λ1, . . . , λn,m1, . . . ,mn). To obtain stable numerical results one could minimize∫ ∞

0

(
âcf(t)−

n∑
j=1

mj exp(−τjt)
)2
dt ≈

[T/∆]∑
i=0

(
âcf(i∆)−

n∑
j=1

mj exp(−τji∆)
)2
,

with
∑n

j=1mj = 1. We choose ∆ = 1/2 and interpolate the empirical autocorrelation function

âcf(t) linearly between the integer values. The parameters of the n IGOU processes are now
given as (δmj , γ, τj), j = 1, . . . , n. Hence, the superposition has the IG(δ, γ) distribution
obtained from the mixture representation.

We restrict ourselves to a superposition of two IG Ornstein-Uhlenbeck type processes. The
estimation procedure described above yields the estimates (δ, γ) for the IG distribution and
the parameters (τ1, τ2,m1,m2) with m1 + m2 = 1. Now we can construct two independent
IGOU processes with parameters (δmi, γ, τi), i = 1, 2. Their superposition has an IG(δ, γ)
marginal density and the desired autocorrelation structure

acf(s) = m1 exp(−τ1s) + (1−m1) exp(−τ2s). (3.96)

In Figure 3.3 we present the estimation results for the autocorrelation functions of the
IGOU and supIGOU processes for Bayer stock returns. Obviously, simple IG Ornstein-
Uhlenbeck type processes have not enough flexibility to fit empirical autocorrelation func-
tions especially for increasing time lags. However, a superposition of only two IG Ornstein-
Uhlenbeck type processes allows to model the dependence structure and the long-range de-
pendence precisely. Estimated supIGOU processes usually consist of two distinct components:
One IGOU process with substantial long-range dependence but a lower weight (e.g. in the
case of Bayer stocks we have τ1 = 0.0103 and m1 = 0.1537) and a second IGOU process with
a much faster decreasing autocorrelation function.

To simulate the distribution of the integrated volatility λP of the superposition we have
to simulate the integrated volatilities λPj , j = 1, 2 of both independent Ornstein-Uhlenbeck
type processes and obtain

λP = λP1 ∗ λP2 . (3.97)

To get a single simulation result of (3.97) we simulate independently paths of both IGOU
processes and sum the integrated volatilities with weights mi. The repetition of this procedure
approximates the distribution of the integrated volatility λP of the superposition.

A statistical motivation of this two-step approach, which was already used in Section
3.9, is given by Jiang and Pedersen (1998). They examine the parameter estimation for a
superposition of two IG Ornstein-Uhlenbeck type processes as an unobserved volatility process
and prove a CLT for marginal NIG distributions in the case of an increasing observation period
Tn and decreasing sampling interval ∆n, i.e. for ∆n → 0 and Tn → ∞ such that Tn∆n → 0
for n→∞. Finally, they propose to fit the autocorrelation and weight parameters m1, τ1, τ2

by regression.
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3.11 Numerical Results

In this section the computational methods proposed in the Sections 3.7–3.8 are carried out for
the Bayer stock estimates. The mixing IG distribution is given (in the different parametriza-
tions of the Chapters 1 and 3) by

χ = 0.0001068 ψ = 6653.032,

δ = 0.01034 γ = 81.57.

Simulation of Integrated Volatilities

The first step in the computation of IGOU prices is the simulaton of λP as described in
Section 3.7. As starting value σ2

0 we use the mean of the IG distribution. Other starting
values are possible, e.g. the current volatility estimate or a random variate sampled out of
the stationary distribution. However, the latter approach does not change the IGOU option
prices substantially. We realized the algorithm with ∆ = 1 (day) and simulated 1000 or
more paths of the instantaneous volatility for each price computation. A large number of
simulations is necessary to obtain stable results for IGOU prices. Therefore, the computation
of a single price is rather slow.

In contrast to saddle-point approximation of option prices, the simulation of σ2∗
T yields also

the paths of instantaneous volatilities. Figure 3.4 shows the path of an IGOU process and the
marginal distribution of the path obtained by the simulation, which is close to the stationary
IG distribution of the process. The paths show volatility clustering , i.e. the instantaneous
volatility jumps upwards and the reversion effect described by τ forces σ2 back to smaller
values. The two plots below show the volatility measured in annualized standard deviations.
Clearly, the values of σ2 belong to the usually observed range of (annualized) volatilities.

Figure 3.5 shows the paths of a superposition and of the component with long-range
dependence, both measured in annualized standard deviations. We have simulated the IGOU
process with τ = 0.01 over a longer time period. Obviously, this component may explain
significant jumps in the volatility and a slow calming down in the stock market afterwards.

Stability of IGOU Price Simulations

How stable is the calculation of the IGOU prices, i.e. how many paths of the integrated
volatility do we have to simulate? To examine this question, we have simulated the integrated
volatility for various sample sizes. The simulated density of λQ, which is plotted in Figure
3.6 becomes sufficiently stable for at least 1000 simulations. Considering only the densities
and log-densities in Figure 3.6, one would expect stable results for about 1000 simulations.
However, looking at the mean values of the integrated volatilites and the prices computed for
increasing sample sizes plotted in Figure 3.7, shows that the simulation error is not a quantité
negligable, but it is small enough to distinguish IGOU prices from Black-Scholes prices. This
is also shown in Figure 3.7.

Unfortunately, the large simulation error prevents the computation of implicit volatilities
in this model. A possible by-pass would be to apply for each computation of IGOU price in the
inversion algorithm the same pseudo-random-numbers. Hence, one would enforce artificially
the stability of the simulation, but this would not remove the simulation error itself.
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Although it is not really satisfying, we compute prices based on 1000 simulated paths.
This choice is motivated by the desire to compute the prices in a reasonable time. Finally,
saddlepoint approximations will turn out to be a reasonable, less time-consuming alternative.

Comparison of IGOU, supIGOU and Black-Scholes Prices

The first step in the evaluation of a new pricing model for derivatives—before looking at
real option data—is usually the simulation of prices. Since the Black-Scholes model is the
industrial standard in Finance, we could compare IGOU and Black-Scholes prices instead of
plotting the IGOU prices themselves.

The IGOU prices are based on the simulation of the integrated volatility. Note, that
we have plotted in Figures 3.8 and 3.9 the differences to the Black-Scholes model—which
are small in comparison to the prices. As a consequence of the simulation error, the graphs
are rather rough. We vary the autocorrelation parameter τ and the kurtosis of the NIG
distribution to explain the effect of dependence structure and heavy tails, respectively.

The first observation is that we observe again the W-shape in the price differences to Black-
Scholes prices which was already observed by Eberlein and Keller (1995) in the hyperbolic
model. Obviously, prices of derivatives in the IGOU model also have the potential to explain
the smile effect. We have not calculated implied volatilies for the IGOU model, but we propose
an “implied” approach in Section 3.13.

In contrast to the prices in the GH Lévy model we observe an increasing difference to
the Black-Scholes prices for longer maturities. The differences plotted in the Figures 3.8–3.11
correspond to those in Figure 2.4 for the GH Lévy model. All simulation results are based
on parameter estimates from the same Bayer return time series; this allows for comparability
of the results in the Chapters 2 and 3.

Figure 3.8 shows the difference of IGOU prices minus Black-Scholes prices for different
values of τ . Recall, that a decreasing τ means a dependence structure with a longer range.
Obviously, changes in τ affect the prices especially at-the-money with less than 60 days to
expiration: A more slowly decreasing autocorrelation function leads to a steeper increase in
the price difference.

Figure 3.9 explains the sensitivity of IGOU prices with respect to the kurtosis of the
NIG distribution. A larger χ, or equivalently a smaller ζ, corresponds to a higher kurtosis.
Obviously a higher kurtosis leads to an overall increase in the price differences.

In Figure 3.10 we have repeated the simulation results for the corresponding GH model
and the supIGOU model. In the exponential Lévy model the price differences to Black-Scholes
are large just before the expiration of the option whereas the difference increases in the IGOU
model with time to maturity. The supIGOU prices are quite close to the prices in the IGOU
model. This is also stressed in Figure 3.11 which summarizes all simulation results for the
supIGOU and IGOU model with varying autocorrelation parameter τ .

Saddle-Point Approximation

In Section 3.8 we proposed the saddle-point approximation as an alternative to the time-
consuming simulation of prices. Here we compute the saddle-point approximation to IGOU
prices again for a simulated option data set.

The condition z ∈ (−a−, a+) given in Proposition 3.90 for the existence of the cumulant
generating function is sometimes violated for options with a very short time, i.e. one day, to
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maturity. We omit those options from the data set. From a practical point of view this is not
of a deep concern, since we could—as a feasible alternative for short-term options—compute
the prices via simulation. Moreover, the implementation of the saddle-point approximation
is intricate because sometimes the numerical values are close to zero. One has to be careful
that values which are close to zero are not set equal to zero.

On the other hand, the use of saddle-point approximations reduces the computational
time to fractions of a second.

Figure 3.12 compares the IGOU prices based on the simulation of the integrated volatility
and those computed via saddle-point approximation. The IGOU prices computed with both
methods are close everywhere but for options in-the-money with a short time to maturity.
The good results for the approximation in all but one region indicate that there are no large
numerical errors in the other regions left. Only the difference of simulated and approximated
prices in the problematic region has to be explained by more fundamental errors in one of the
computation methods. The following remarks hint at possible sources of the error:

• The integrated volatilities are simulated for each time to maturity without respect to
the stockprice-strike ration. Therefore, the error in terms of integrated volatility is the
same for all options with the same time to maturity. However, because of the leverage
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effect, the errors in terms of prices need not to be symmetric. The asymmetry of the
errors in Figure 3.12 alone is no indication that the saddle-point results are wrong.

• The risk premium for options is largest for options at-the-money, whereas the price
for call options far-out or far-in-the-money should be close to the intrinsic value (S0 −
Ke−rT )+. This is the case for the prices computed by simulation. The approximated
prices deviate substantially from the intrinsic value. This indicates that the saddle-
point approximation of prices of in-the-money options close to maturity is not reliable
enough.

From a practical point of view it could be useful to apply the saddle-point approximation
for all options but those in-the-money with a short time to maturity.

The asymptotical properties of the saddle-point methods are valid for n→∞. In Section
1.14 we have applied this method for n ≥ 1 corresponding to the number of trading days. In
the IGOU model we apply it for n = 1. This may cause the approximation errors described
above.

It would be interesting to investigate higher-order saddle-point approximations given in
Lugannani and Rice (1980) and compare their numerical errors with the previous results.

3.12 Pricing Performance

In the preceding section we have shown that the derivative prices in IGOU type models
may explain the smile effect and correct the often observed overpricing of options with long
maturities in the Black-Scholes model. Following the simulated pricing comparisons in the
last section, we are now evaluating the pricing performance of the model with real data. The
test is based on intraday call option data sets for Bayer and the corresponding stock prices.
See Chapter 2 for a more detailed description of the data set and the pricing performance of
models based on GH Lévy motions.
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Table 3.13: Pricing errors with different volatility estimators: Mean and standard deviation
of the difference of the model price minus quoted price, Bayer call options.

Black-Scholes NIG IGOU supIGOU
estimator mean st.dev. mean st.dev. mean st.dev. mean st.dev.

Bayer calls, January 1993, 424 obs.
Hist30 –0.126 1.23 –0.126 1.23 –0.156 1.22 –0.158 1.216
Imp.median30 0.548 1.552 0.543 1.551 0.508 1.538 0.506 1.533

Bayer calls, February 1993, 662 obs.
Hist30 0.606 1.779 0.599 1.779 0.564 1.764
Imp.median30 0.715 1.817 0.706 1.817 0.67 1.802

Bayer calls, March 1993, 759 obs.
Hist30 2.079 3.075 2.06 3.072 2.012 3.049
Imp.median30 1.111 2.566 1.099 2.561 1.055 2.541

Our recipe to find a particular price is the the same as described in Section 2.1: We
estimate parameters of the NIG distribution from daily data over a long-term period (1988–
94). In the sequel we keep the scale- and location-invariant parameters (ζ, %) and in particular
the kurtosis of the NIG distribution fixed. This reflects the fact that the tail behaviour can
only be estimated over a long period, e.g. several years. On the other hand we have to adapt to
short-term volatility changes. We estimate the volatility in two ways: Hist30 is the standard
deviation of the stock price 30 calendar days before the trade and Imp.median30 is the median
of the 30 quoted Black-Scholes implied volatilities observed prior to a particular trade. We
rescale the NIG distribution while keeping the shape parameters fixed, such that the variance
of the NIG distribution is equal to the volatility estimate. See Section 2.1 for details of the
rescaling procedure in the case of GH distributions. We use the mixing IG distribution of the
NIG distribution as the marginal distribution of the IG Ornstein-Uhlenbeck type volatility
process. Then we simulate the distribution λP of the integrated volatility corresponding to
this IGOU process with a long-term estimate (1988–94) of the autocorrelation parameter λ.
Finally, we compute the price with Corrollary 3.80. Essentially the same procedure is used for
supIGOU prices. We have not applied the saddle-point approximation method to investigate
the pricing performance.

The results of the pricing experiment are given in Table 3.13 for three different monthly
datasets of Bayer call options. The first two columns show the pricing errors and the standard
deviation in the Black-Scholes model and under the assumption that log-prices follow a NIG
Lévy motion. The risk-neutral measure is derived by the Esscher transform (see Section 1.11).
For the IGOU model we often observe a reduction of pricing errors and of standard deviations.
Although the differences are small, in all but one case the prices are corrected in the right
direction.

Table 3.13 contains also results concerning the pricing performance of the supIGOU model
in one particular month. From the simulation study in Section 3.11 (see for instance Figure
3.10) it is clear that we could not expect results which are substantially different to the results
in the IGOU model. Obviously, the better modelling of the long-range dependence by the
supIGOU model does not change the pricing behaviour markedly.
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3.13 Statistical Martingale Measures

In this section we outline the implied approach to the estimation of parameters involved in
the Ornstein-Uhlenbeck type process σ2. For numerical reasons we compute the statistical
martingale measure only for the Gamma OU model. Suppose, that the one-dimensional
marginal distribution σ2

t ∼ Gamma(λ, δ), with λ > 1 and δ > 0. In this case we want to
estimate λ, δ as well as the parameter τ . A possible approach is as follows.

1. Given the market prices of n derivatives Ĉ1, Ĉ2, . . . , Ĉn, we use the IGOU model in
order to compute theoretical prices CGamma,1(λ, δ, τ), . . . , CGamma,n(λ, δ, τ) of the same
derivatives. If the quoted derivatives are European call options, we can use Corrollary
3.80 for pricing.

2. Then we can estimate the parameters λ, δ, τ by minimizing pricing errors

n∑
i=1

(
CGamma,i(λ, δ, τ) − Ĉi

)2
. (3.98)

In the Black-Scholes world this approach corresponds to the computation of implied volatil-
ities, since the volatility is the only unknown parameter. See Eberlein, Keller, and Prause
(1998, Chapter IX) for this approach in the case of the hyperbolic model.

Table 3.14: Statistical martingale measures in the volatility model of the Gamma Ornstein-
Uhlenbeck type computed for Bayer stock options.

Data set obs. γ λ τ pricing error

July 1–9, 1992 100 299.2942 1.999 14.525 19.132
January 3–31, 1994 1240 153.298 1.473 0.73 1830.499

The statistical martingale measures (SMM) obtained for two data sets are given in Table
3.14. Since we have calculated the statistical martingale measures only for small data sets,
we could not expect as stable results as in Section 2.6, where we used a two year data set. In
Section 3.11 we have shown that the kurtosis of the NIG distribution and hence, the mixing
IG distribution has a more procounced effect on the price than the autocorrelation parameter
τ . Therefore, we get quite unstable results for τ .

The SMM Gamma distributions are shown in Figure 3.15. They are as distinct to the
Black-Scholes implicit volatilities as the mixing IG distributions of NIG estimates from his-
toricial time series data (see also Figure 3.1).

Since historical and implicit volatilites are often quite different—in particular for the
short time periods we used to estimate the statistical martingale measures—it is difficult
to say something about the quality of the IGOU model based on these risk-neutral density
estimates. (Note, that also the smile patterns shown in Section 2.4 are more erratic for
monthly data sets. Since we wanted to show the general structure, we have not shown smiles
for monthly data.)
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Figure 3.15: Statistical martingale measures in the volatility model of the Gamma Ornstein-
Uhlenbeck type computed for Bayer stock options.

3.14 Volatility Models driven by Lévy Processes

We propose a refinement of the IGOU model by replacing the price process itself, above driven
by a Brownian motion, by an exponential GH Lévy model

St = exp(σtXt) (3.99)

dσ2
t = − τσ2

t dt+ dZτt, (3.100)

where (Xt)0≤t≤T is a standard GH Lévy motion (i.e. with VarX1 = 1) and (σt)0≤t≤T the IG
Ornstein-Uhlenbeck type process described above. This GH–IGOU model combines a realistic
modelling of the volatility structure by an IG Ornstein-Uhlenbeck type volatility process and
the flexible modelling of the tails by a GH distribution.

A similar construction is proposed by Marinelli, Rachev, Roll, and Göppl (1999) for in-
traday prices of the Deutsche Bank stock: They consider a Gamma distribution for the
description of the increments of the subordinated business time process (see also Marinelli,
Rachev, and Roll (1999) for results concerning FX rates). Recall, that Gamma distributions
are a special case of GIG distributions (see Table 1.1). Statistical tests hint at the presence
of long-range dependence in their business time, which is simply the arrival time of price
quotes in a particular market. Moreover, they reject a modelling of the business time pro-
cess by processes with heavy tails. For the price process itself Marinelli, Rachev, Roll, and
Göppl (1999) propose a stable process whereas we suggest a GH Lévy process. Using GH
distributions should simplify the estimation problems markedly. We reviewed the approach
of Marinelli, Rachev, Roll, and Göppl (1999) with the intention to show that the proposed
new model does not come out of the blue.

Unfortunately, the marginal distribution of the log-prices does not belong to the class of
GH laws. Therefore, we cannot obtain the IG distribution of the volatility process as a mixing
distribution via formula (1.6). A reasonable procedure to estimate parameters is to estimate
the volatility of observed prices locally, rescale the log-returns with the volatility (devolatize)
and compute the GH likelihood estimate from the residuals.

The simulation of a price process is also straightforward: We can simulate the volatility
process σ2 and the NIG Lévy process X independently. Here we simulate the volatiliy process
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Figure 3.16: Path of a simulated IG Ornstein-Uhlenbeck type process with parameters δ =
0.0116, γ = 72.3695 and autocorrelation parameter τ = 1.143 (top) and simulated geometric
NIG–IGOU price process (bottom).

as in Section 3.11 using the Rosinski (1991) expansion (with ∆ = 1 day); the standard NIG
Lévy process is simulated pathwise by sampling a Poisson process and the jumps from the
(truncated) Lévy measure independently. The path of the NIG Lévy motion used for Figure
3.16 was produced by Wiesendorfer Zahn (1999). This simulation approach to NIG Lévy
processes was initially investigated by Rydberg (1997a).

In principle it is also possible to find an equivalent martingale measure with the same
argumentation as in Section 3.6 and by the way to extend the Esscher approach from Chapter
1: Conditionally on the independent volatility process σ2 an Esscher transform may be applied
to find a risk-neutral density. This measure transformation is obviously equivalent on a finite
time horizon. In analogy to Section 3.6 it should be possible to prove that if X is a NIG Lévy
motion the distribution of the log-price σTXT at maturity obeys a NIG law conditionally on
σ∗TT . If this holds, the calculation of “conditional” Esscher prices in the NIG–IGOU model
is straightforward. However, there is no immediately obvious motivation for this ad hoc
approach, for instance by hedging arguments.
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Chapter 4

Multivariate Models
in Finance

The challenge in the multivariate modelling of financial assets is that the models have to
take the interaction of different assets into account. Statistically this is done by correlation
matrices.

As a first step we give some insights into multivariate financial data: We use statistical
methods in an explorative sense to describe the structure of e.g. the German stocks included
in the DAX. In the sequel we also look at data sets with more complex structures. Although
the methods in the first section are used in an explorative way, we will recline upon them
for the construction and discussion of risk measures in Chapter 5. Then we will introduce
multivariate GH distributions and propose an approach to estimate these distributions also
for high-dimensional data efficiently. Finally we discuss the generation of random variates
and the pricing of derivatives following the Esscher approach.

4.1 Correlation Structure

Cluster Analysis

Cluster analysis provides the possibility to find structures in multivariate data without any
previously given information: “A cluster should exhibit the properties of internal cohesion
and external isolation” (Cormack 1971). A natural measure for the similarity is correlation.
Therefore, we propose a distance adapted to returns of financial assets

− 1
2
(
Corr(Xi,Xj)− 1

)
i,j≤d . (4.1)

Here (Xi) denote the returns resp. the absolute returns of stocks i = 1, . . . , d. Note, that this
metric needs a modification in the case of FX data because then the sign of the correlation has
no meaning. The hierarchical clustering we apply here starts with a cluster for each object.
We rely on the complete linkage approach, i.e. the distance between two clusters is defined as
the largest dissimilarity between a member of cluster 1 and a member of cluster 2. Iteratively
we fuse those two clusters that are closest (Seber 1984). From the resulting tree one obtains
particular clusters by cutting the tree by a horizontal line. Though it is well-known that the
hierarchical clustering is not a stable algorithm our approach gives an initial insight into the
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Figure 4.1: Hierarchical clustering of returns and absolute returns.

correlation pattern of the returns and the absolute returns. Note the striking similarity in
the clustering observed for returns and absolute returns.

Looking at Figure 4.1, it is easy to find clusters with firms which belong to the same branch
(e.g. Commerzbank/Dresdner Bank or BASF/Bayer). We also find—what is no surprise—
high correlations of Deutsche Bank with Siemens, Daimler Benz. Cluster analysis allows to
group the financial assets from an empirical point of view—in contrast to a classification
based on the products of the firms.

Principal Component Analysis

Principal component analysis (PCA) is a technique usually applied in the field of dimension
reduction of multivariate data (see Seber (1984) for an introduction and Loretan (1997) for
applications to the measurement of risk in financial markets). This approach needs no model
assumptions in contrast to the similar factor analysis. Nevertheless, PCA is only a meaningful
procedure if “axis symmetry” is given, i.e. that the joint distribution must be symmetric about
its axes. The financial assets in our study are nearly symmetric. PCA is based on eigenvalue
decomposition T ′ST = diag(λ1, . . . , λd), λ1 ≥ · · · ≥ λd ≥ 0 of the sample dispersion matrix
S. The the j-th column yj of T ′(x − µ) is called the j-th principal component (PC). These
principal components are uncorrelated and we have Var(yj) = λj .

The principal component analysis, applied to multivariate financial data, reveals that
there is one dominating principal component in the German stock market which explains
57% of the variance in the DAX (DAFOX 70%). Loretan (1997) found a similar structure
for common stocks and FX rates—in contrast to short term interest rates which seem to be
less correlated. As an example for a less homogeneous market we also carry out a principal
component analysis for a subset of the NMZF data set (see Appendix A.1 for a description
of the data sets). We examine those 20 assets which are quoted in Deutsche Mark.

In Figure 4.2 we show the obtained loadings, i.e. the weight of single variables in the
principal components and explained proportions of variance for the successive principal com-
ponents. For the German market we see that the first principal component is dominant. All
30 assets are included in the first component with a comparable and positive weight. In each
of the other 29 components only one or two assets are important. In contrast to this we
find more than one dominating component in the NMZF data set. We also observe that the
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Figure 4.2: Loadings of the first three principal components and explained proportion of
variance resulting from the principal component analysis: 30 German stocks and 20 assets
(15 FX rates, 1 interest rate (“Umlauf”/Umlaufrendite) and 4 indices). All values are quoted
in Deutsche Mark resp. index points.

interest rate has a negative weight and the magnitudes of the other weights are no longer
comparable. For instance, the European FX rates have small loadings which is due to the
reduced variability in the European foreign exchange market before the introduction of the
Euro. The second PC explains opposite developments in the Japanese market to the US and
European markets. And in all three plotted principal components the DAX and the inter-
est rate “Umlaufrendite” have opposite weights. We do not want to interpret the economic
meanings of single principal components here, but obviously we see more structure in the
PCA of the NMZF data set. Loretan (1997) remarks also that it is often possible to find a
useful, e.g. geographical, interpretation.

Another useful application of PCA in finance is the modelling of yield curves. In this case,
the first three principal components are canonically interpreted as shift, twist and butterfly
(Rodrigues 1997).

From the results of the PCA we conclude that the German stock market is very homoge-
neous in the following sense: The variance in the market is dominated by a single factor. The
international market described the NMZF data set is less homogeneous. Therefore, it should
be easier to diversify risk, i.e. using negative correlations to reduce the aggregated variance
of the whole portfolio.

The motivation for the use of PCA in a financial context is dimension reduction. PCA
is a useful tool for analyzing large portfolios which could consist of some hundreds of assets.
It allows to find the source of high “values of risk” for a particular portfolio. Based on this
analysis it is possible to develop a strategy to hedge risk. For example, an owner of a portfolio
with German stocks included in the DAX may buy put options or invest in federal government
bonds to reduce his exposure to market risk.

The Epps Effect

In the discussion about correlations one has to add the following warning: In the case of
a crash one observes that all equity prices are falling without exception. Therefore, the
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“correlation” is close to one and no diversification by buying other equities in the same market
is possible. This hints at limitations for correlation-based methods in measuring bankruptcy
risk. From this point of view, the old method of banking regulators, who did not allow to use
correlations in the portfolio to reduce the capital requirement, is not as ridiculous as it may
sound. However, diversification of portfolios is also desirable in non-crash situations.

Epps (1979) already remarked that the correlation of intraday returns (10 min, 1 hour, . . . )
is considerably lower than the correlation of daily returns. This complicates the construction
of multivariate risk-measurement approaches which are applicable on different time scales.

4.2 Skewness and Kurtosis

Mardia (1970) proposed the following measures of multivariate skewness

b1,p =
1
n2

n∑
i=1

n∑
j=1

[
(Xi − X )′S−1(Xj − X )

]3
(4.2)

and multivariate kurtosis

b2,p =
1
n

n∑
i=1

[
(Xi − X )′S−1(Xi − X )

]2
, (4.3)

where X denotes the sample mean vector and S the sample covariance matrix. Mardia
deduces the symptotic distributions of b1,p and b2,p under the assumption of normality; this
allows for a test.

Table 4.3: Multivariate kurtosis and skewness of daily returns. All corresponding p-values,
calculated for the asymptotic distributions for b1,p and b2,p (Mardia 1970) are below 0.01%.

Kurtosis Skewness
Empirical Normal var(kurt) Empirical

DAX 1988-94 30 stocks 1629.18 960 4.806 109.27
NYSE 1990-96 4 subindexes 58.49 24 0.11 0.538
DAFOX 1974-95 12 indexes 415.56 168 0.244 15.59

The results are given in Table 4.3. They indicate that there is skewness and kurtosis in
multivariate financial data. The hypothesis of normality is rejected for the analyzed data.

We also have calculated the multivariate skewness and kurtosis for larger time lags than
one trading day. The results are shown in Figure 4.4. Obviously, the kurtosis reduces for
longer time lags. This is expected since, e.g., Lévy processes with jumps aggregate to Gaus-
sianity. For larger time lags we observe first a slightly higher kurtosis which falls finally below
the level of kurtosis of the normal distribution. This could be interpreted as the effect of
stochastic volatility: Stochastic volatility models have instantaneous normal returns, after
some time the stochastic volatility leads to an increase in the kurtosis, but in the long run
most stochastic volatility models aggregate again to Gaussianity. Consequently, models with
jumps and stochastic volatility (for instance the model proposed in Section 3.14) seem to be
the appropriate models for multivariate financial data.
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4.3 Multivariate Generalized Hyperbolic Laws

In the preceeding sections we have described stylized features of multivariate financial data.
Generalized hyperbolic distributions (GHd) offer the possibility to construct models with the
desired features; in particular, they allow to model the skewness (β or Π ∈ IRd) individually
for every dimension. The kurtosis (described by λ ∈ IR and ζ > 0), i.e. the tail behaviour,
is a result of the mixing distribution which is a univariate GIG law and, hence, similar in
all dimensions. The fact that the multivariate GH distribution is also driven by a univariate
mixing distribution—which might also be replaced by an appropriate volatility process—
is sufficient for many modelling purposes in Finance, since the variance of all assets in a
particular market usually changes together (see for instance the results of the PCA).

Definition 4.4. The d-dimensional generalized hyperbolic distribution (GHd) is defined for
x ∈ IRd by the Lebesgue density

ghd(x) = ad
Kλ−d/2

(
α
√
δ2 + (x− µ)′∆−1(x− µ)

)(
α−1

√
δ2 + (x− µ)′∆−1(x− µ)

)d/2−λ exp
(
β′(x− µ)

)
,

ad = ad(λ, α, β, δ,∆) =

(√
α2 − β′∆β

/
δ
)λ

(2π)d/2 Kλ

(
δ
√
α2 − β′∆β

)
These parameters have the following domain of variation1: λ ∈ IR, β, µ ∈ IRd, δ > 0, α2 >
β′∆β. The positive definite matrix ∆ ∈ IRd×d has a determinant |∆| = 1. For λ = (d+ 1)/2
we obtain the multivariate hyperbolic and for λ = −1/2 the multivariate normal inverse
Gaussian (NIG) distribution.

Blæsild and Jensen (1981, p. 50) introduced a second parametrization (ζ,Π,Σ), where

ζ = δ
√
α2 − β′∆β, Π = β∆1/2 (α2 − β′∆β)−1/2 and Σ = δ2∆. (4.5)

Corresponding to the univariate case (see Section 1.1) we can find simpler expressions in
the cases λ ∈ 1/2 ZZ. The symmetric hyperbolic and the symmetric normal inverse Gaussian

1We omit the limiting distributions obtained at the boundary of the parameter space; see for instance Blæsild
and Jensen (1981). Generalized hyperbolic distributions are symmetric if and only if β = Π = (0, . . . , 0)′
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are defined in equation (4.17) and (4.18) below. Contour ellipses of GH distributions are
computed in Blæsild (1981, pp. 254 ff).

To visualize the characteristics of these distributions and to compare the GH to the multi-
variate normal distribution we use the estimates of the following Section 4.4. Figure 4.5 (top
left/right) shows the density and the log-density of the hyperbolic distribution estimated for
Deutsche Bank/Volkswagen.

In the second row we compare the symmetric hyperbolic with the normal distribution. The
left plot shows the difference of the densities. The right plot contains the logarithm of the
absolute difference of the densities, which allows to compare the tail behaviour. In the center
the hyperbolic distribution has more mass than the normal distribution, in the “middle” the
normal distribution has higher densities and the tails of hyperbolic distributions are heavier
again. The same pattern repeats for other GH distributions.

In the third row we compare the symmetric hyperbolic and the symmetric NIG distribu-
tion. In this case we have four different regions: The hyperbolic distribution has more mass
in the center and the second circle; the NIG distribution has more mass in the first circle and
the tails.

For the computation of moments and Esscher transforms, we need the multivariate mo-
ment generating function.

Lemma 4.6. The moment generating function of the generalized hyperbolic distribution is
given by

M(u) = eµu
(

α2 − β′∆β
α2 − (β + u)′∆(β + u)

)λ/2 Kλ

(
δ
√
α2 − (β + u)′∆(β + u)

)
Kλ

(
δ
√
α2 − β′∆β

) ,

where α2 > (β + u)′∆(β + u)).

Proof. First, we assume without loss of any generality µ = 0.

M(u) =
∫
eu
′x ghd(x)dλ

= ad(λ, δ, κ)
∫ Kλ−d/2

(
α
√
δ2 + (x− µ)′∆−1(x− µ)

)(
α−1

√
δ2 + (x− µ)′∆−1(x− µ)

)d/2−λ exp
(
(β + u)′x

)
=

ad(λ, δ, κ)
ad(λ, δ,

√
α2 − (β + u)′∆(β + u))

Resubstituting ad and multiplying by exp(µu) yields the desired result.

Lemma 4.7. In the case of a multivariate NIG distribution the moment-generating function
given in Lemma 4.6 simplifies to

MNIG(u) = exp
[
µu+ δ

(√
α2 − β′∆β −

√
α2 − (β + u)′∆(β + u)

)]
.

Lemma 4.8. The characteristic function of the GH distribution is

ϕ(t) =

(
α2 − β′∆β

α2 − β′∆β + 1
2t
′∆t− iβ′∆t

)λ/2 Kλ

(
δ
√
α2 − β′∆β + 1

2 t∆t− iβ′∆t
)

Kλ(δ
√
α2 − β′∆β )

,

where t ∈ IRd.
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Figure 4.5: Comparison of normal, hyperbolic and NIG densities: Deutsche Bank / Volkswa-
gen.
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Proof. We use the characterization of the multivariate GH distributions as a mixture of a
d-dimensional normal distribution with a GIG distribution (see Definition 1.7) and param-
eters χ = δ2 and ψ = α2 − β′∆β. Following Barndorff-Nielsen and Halgreen (1977) the
characteristic function of the GH distribution has the representation

ϕ(t) = eiµ
′tζ
(1

2
t′∆t− iβ′∆t

)
where t ∈ IR and ζ is the Laplace transform of the GIG distribution which is given in Lemma
1.39. Hence, we obtain

ϕ(t) =

(
ψ

ψ + 1
2 t
′∆t− iβ′∆t

)λ/2 Kλ

(√
χ(ψ + 1

2t
′∆t− iβ′∆t)

)
Kλ(
√
χψ)

;

replacing χ and ψ yields the result.

Remark 4.9. Note, that Barndorff-Nielsen and Halgreen (1977) proved the infinite divisi-
bility of multivariate GH distributions using the approach of the proof of Lemma 4.8: The
GIG distribution is infinitely divisible and consequently with Feller (1966, p. 538) also the
GH distribution is infinitely divisible. This allows the construction of GHd Lévy processes.

Remark 4.10. The multivariate characteristic function of the NIG distribution is easily com-
puted using the equation K−1/2(x) =

√
π/2 x−1/2 exp(−x). From the resulting representation

it is clear that also the multivariate distributions {NIGd(α, β, tδ, tµ,∆)} for t > 0 are closed
under convolution.

We cite the following theorem which shows that generalized hyperbolic distributions are
closed under margining, conditioning and regular affine transformations.

Theorem 4.11. Suppose that X is a d-dimensional variate distributed according to the gen-
eralized hyperbolic distribution GHd(λ, α, β, δ, µ,∆). Let (X1,X2) be a partitioning of X, let
r and k denote the dimensions of X1 and X2, respectively, and let (β1, β2) and (µ1, µ2) be
similar partitions of β and µ, let

∆ =
(

∆11 ∆12

∆21 ∆22

)
be a partition of ∆ such that ∆11 is a r × r matrix. Then one has the following:

1. The distribution of X1 is the r-dimensional generalized hyperbolic distribution.
GHr(λ∗, α∗, β∗, δ∗, µ∗,∆∗), where λ = λ∗, α∗ = |∆11|−1/(2r)

(
α2 − β2(∆22 −

∆21∆−1
11 ∆12)β′2

)1/2, β∗ = β1 + β2∆21∆−1
11 , δ∗ = δ|∆11|1/(2r), µ∗ = µ1 and ∆∗ =

|∆|−1/r∆11.

2. The conditional distribution of X2 given X1 = x1 is the k-dimensional generalized hyper-
bolic distribution GHk

(
λ̃, α̃, β̃, δ̃, µ̃, ∆̃

)
, where λ̃ = λ − r/2, α̃ = α|∆11|1/(2k), β̃ = β2,

δ̃ = |∆11|−1/(2k)
(
δ2 + (x1 − µ1)∆−1

11 (x1 − µ1)′
)1/2, µ̃ = µ2 + (x1 − µ1)∆−1

11 ∆12 and
∆̃ = |∆11|1/k(∆22 −∆21∆−1

11 ∆12).
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3. Let Y = XA+B be a regular affine transformation of X and let ||A|| denote the absolute
value of the determinant of A. The distribution of Y is the d-dimensional generalized
hyperbolic distribution GHd(λ+, α+, δ+, µ+,∆+), where λ+ = λ, α+ = α||A||−1/d, β+ =
β(A−1)′, δ+ = ||A||1/d, µ+ = µA+B and ∆+ = ||A||−2/dA′∆A.

Proof. See Blæsild (1981, Theorem I).

A consequence of this theorem is that we could find easily an invariant parametrization of the
shape (Blæsild and Jensen 1981): The families of the GHd distribution with fixed parameters
(λ, ζ,Π,Σ) defined in (4.5) are invariant under a transformations of location and scale.

We define the following functions to simplify the notation. See Appendix B for relevant
properties of these functions.

Rλ(x) =
Kλ+1(x)
Kλ(x)

(4.12)

Sλ(x) =
Kλ+2(x) Kλ(x)−K2

λ+1(x)
K2
λ(x)

(4.13)

Then we obtain for the mean and variance of X ∼ GHd (Blæsild and Jensen 1981)

EX = µ+ δRλ(ζ)Π∆1/2 (4.14)

VarX = δ2
(
ζ−1Rλ(ζ)∆ + Sλ(ζ)

(
Π∆1/2

)′(Π∆1/2
))
. (4.15)

Note, that the expressions for the mean and the variance are much simpler in the symmetric
case, i.e. for β = Π = (0, . . . , 0)′. Also for NIG distributions (4.14) and (4.15) simplify
considerably, since R−1/2(x) = 1 and S−1/2(x) = x−1 (see (B.33); the second identity follows
immediately from (B.17)).

4.4 Estimation of Symmetric GH Distributions

For the estimation of hyperbolic distributions exists an algorithm, the hyp program developed
by Blæsild and Sørensen (1992). This program allows to estimate skewed and noncentered
hyperbolic distributions up to 3 dimensions in a reasonable time. Here we would like to esti-
mate GH distributions for high-dimensional financial data also in an efficient way. Therefore,
we propose to restrict the estimation to symmetric GH distributions. The assumed symme-
try is reasonable for returns of financial assets. Symmetric GH distributions are also closed
under conditioning, margining and regular affine transformation; this is a direct consequence
of Theorem 4.11.

In the symmetric centered case GH distributions have the following Lebesgue density

(α/δ)λ

(2π)d/2 Kλ(δα)

Kλ− d
2

(
α
√
δ2 + x′∆−1x

)
(
α−1
√
δ2 + x′∆−1x

) d
2
−λ

(4.16)

The d-dimensional symmetric centered NIG distribution (λ = −1/2) is characterized by the
Lebesgue density (the skewed NIG density is given in Barndorff-Nielsen 1997)

2δ
( α

2π

)d+1
2 exp(δα)

K(d+1)/2

(
α
√
δ2 + x′∆−1x

)
(δ2 + x′∆−1x)(d+1)/4

; (4.17)
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and the multivariate hyperbolic distribution (λ = (d+ 1)/2) has the following density

(α/δ)(d+1)/2(2π)(1−d)/2

2αKd+1
2

(αδ)
exp
(
− α

√
δ2 + x′∆−1x

)
. (4.18)

The first step of the estimation follows a “method of moments” approach: we estimate
the sample mean µ̂ ∈ IRd and the sample dispersion matrix S using canonical estimators. In
the symmetric case equation (4.14) yields that µ is identical with the mean. Therefore, we
replace the observations xi ∈ IRd by (xi − µ̂)i in the sequel. From (4.15) we get the following
estimate for ∆

∆̂ =
ζ

δ2Rλ(ζ)
S = S |S|−1/n. (4.19)

Consequently, the matrix ∆̂ may be computed by norming the sample dispersion matrix such
that |∆̂| = 1.

The second step is to compute yi = x′i∆̂
−1xi from observations xi ∈ IRd, 1 ≤ i ≤ n. Then

the log-likelihood function has the following form

L(x;λ, α, δ) = n

[
d

2
log

α

2π
− λ log δ − log Kλ(δα)

]
+

n∑
i=1

log Kλ− d
2

(
α
√
δ2 + yi

)
(4.20)

+
1
2

(
λ− d

2

) n∑
i=1

log
(
δ2 + yi

)
.

As in the univariate case, the computation of log-likelihood functions simplifies for λ ∈
1/2 ZZ. In the case of NIG distributions, i.e. for λ = −1/2 the number of Bessel functions
Kλ to compute is reduced by one. In the case of hyperbolic and hyperboloid distributions we
only have to compute one Bessel function instead of n + 1. Since the computation of Bessel
functions is the most time-consuming part, in the latter cases the computation is substantially
faster. In the sequel we give the likelihood function and their derivatives for the hyperbolic
and NIG subclasses, but we omit the tedious details of the calculations.

The last step in the estimation procedure is to maximize this log-likelihood function. We
use again the Powell algorithm implemented by Özkan (1997) in Splus. We implemented
the estimaton algorithm successfully for hyperbolic and NIG distributions. In the case of an
arbitrary λ we get numerical problems due to very low values of the involved Bessel functions
Kλ. The GH density contains Bessel functions of order λ−d/2. Standard numerical algorithms
are not stable enough for Bessel functions with very high or very low order λ.

Hyperbolic distribution

The log-likelihood function for hyperbolic distributions is

Lhyp(x, α, δ) = n
[d+ 1

2
log

α

δ
+

1− d
2

log(2π) − log(2α) − log K d+1
2

(δα)
]

− α
n∑
i=1

√
δ2 + yi. (4.21)
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The derivatives are expressed in terms of the functions R and S. See Appendix B for the
necessary properties.

d
dα

Lhyp = n
[
− α−1 + δR d+1

2
(δα)

]
−

n∑
i=1

√
δ2 + yi (4.22)

d
dδ
Lhyp = n

[
− d+ 1

δ
+ αR d+1

2
(δα)

]
− αδ

n∑
i=1

(δ2 + yi)−1/2. (4.23)

The second derivatives are
d

dα
d

dα
Lhyp = n

[
α−2 +

δ

α
R d+1

2
(δα) − δ2S d+1

2
(δα)

]
d
dδ

d
dα

Lhyp = n
[
2R d+1

2
(δα) − δαS d+1

2
(δα)

]
− δ

n∑
i=1

(δ2 + yi)−1/2

d
dδ

d
dδ
Lhyp = n

[d+ 1
δ2

+
α

δ
R d+1

2
(δα) − α2S d+1

2
(δα)

]
− α

n∑
i=1

[
(δ2 + yi)−1/2 − δ2

(δ2 + yi)3/2

]
.

NIG Distribution

For NIG distributions we obtain the following log-likelihood function

Lnig(x, α, δ) = n
[

log(2δ) + δα +
d+ 1

2
log

α

2π

]
(4.24)

+
n∑
i=1

[
log K d+1

2

(
α
√
δ2 + yi

)
− d+ 1

4
log(δ2 + yi)

]
.

The first derivatives are

d
dα

Lnig = n
[
δ +

d+ 1
α

]
−

n∑
i=1

√
δ2 + yi R d+1

2

(
α
√
δ2 + yi

)
(4.25)

d
dδ
Lnig = n(δ−1 + α)−

n∑
i=1

αδ√
δ2 + yi

R d+1
2

(
α
√
δ2 + yi

)
(4.26)

and the second derivatives are
d

dα
d

dα
Lnig = − n(d+ 1)

α2

−
n∑
i=1

(δ2 + yi)

R d+1
2

(
α
√
δ2 + yi

)
α
√
δ2 + yi

− S d+1
2

(
α
√
δ2 + yi

)
d
dδ

d
dα

Lnig = n−
n∑
i=1

[
2δ√
δ2 + yi

R d+1
2

(
α
√
δ2 + yi

)
− αδS d+1

2

(
α
√
δ2 + yi

)]
d
dδ

d
dδ
Lnig = − n

δ2
+ α2δ2

n∑
i=1

(δ2 + yi)−1 S d+1
2

(
α
√
δ2 + yi

)
− α

n∑
i=1

R d+1
2

(
α
√
δ2 + yi

)(
(δ2 + yi)−1/2 + 2δ2(δ2 + yi)−3/2

)
.
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Tail-Emphasized Estimation

As an alternative approach to the estimation of GH distributions we propose to minimize the
following distance

∑
α∈A

(
qemp(α) − qgh(α, ζ,Σ)

)2
, A = {0.01, 0.05, 0.95, 0.99}. (4.27)

The motivation to minimize this particular distance is clearly given by the computation of
risk measures; see Section 5.6 for more details.

Estimation Results

For a price process St ∈ IRd we define returns xt ∈ IRd by

x
(i)
t =

[
S

(i)
t − S

(i)
t−∆t

]/
S

(i)
t ≈ logS(i)

t − log S(i)
t−∆t, 1 ≤ i ≤ d, (4.28)

which are approximated by the log-returns defined in equation (1.22). The reason for this
definition of the returns is that the return of an investment described by a vector h ∈ IRd is
then simply given by h′xt.

Table 4.6 contains the results for the estimates for various data sets and three types
of generalized hyperbolic distributions: symmetric hyperbolic, symmetric NIG and skewed
hyperbolic. Skewed hyperbolic distribution with at most three dimensions are estimated with
the hyp programm implemented by Blæsild and Sørensen (1992).

In general, the likelihood of the NIG distributions is higher and the distance (4.27) to the
empirical distributions is smaller than for hyperbolic distributions. However, the estimation
of hyperbolic distributions is much faster because of the already mentioned simpler structure
of the distribution. Of course the likelihood of skewed hyperbolic distributions is higher
than symmetric hyperbolic distributions. Nevertheless, it is below the likelihood of NIG
distributions.

For the hyperbolic distribution the parameter ξ is often estimated close to 1, which indi-
cates the highest kurtosis possible for hyperbolic distributions. A comparison of the ξ-values
for the maximum-likelihood and the tail-emphasized estimate reveals no clear picture. For
only half of the datasets we obtain a higher tail-emphasized estimate for the kurtosis, de-
scribed by the values of ξ.

The marginal density of a GH distributions is obtained by Theorem 4.11. Typically, we
obtain the pattern shown in Figure 4.7 for the densities and log-densities: The marginal
distributions of hyperbolic and NIG distributions are closer to the empirical distribution than
normal distributions. In the center marginals of hyperbolic distributions are closer to the
empirical distribution but in the tails marginals of NIG distributions provide a better fit.
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Table 4.6: ML and tail-emphasized estimates of hyperbolic and NIG distributions. The
estimates of the location µ, skewness β and variance matrix ∆ are omitted. All but the hyp

estimate for the first data set are symmetric, i.e. β = (0, . . . , 0)′.

GH Parameters Method Log-Likel./
λ α δ ζ ξ L2-distance

German stock, January 1, 1988 - May 24, 1994 / 1598 observations
Daimler Benz / Deutsche Bank / Thyssen
Sym. NIG −0.5 96.634 0.01 1.010 0.705 SGH 15418.17
Sym. HYP 2 197.953 8.0e− 16 1.5e− 13 1 SGH 15404.57
HYP 2 199.042 2.7e− 07 6.0e− 05 0.999 ‘hyp’-Prog. 15415.94

Sym. NIG −0.5 153.310 0.0167 2.569 0.529 tail-emph. 8.54e-05
Sym. HYP 2 219.608 0.010 2.207 0.558 tail-emph. 9.32e-05

NYSE Indices, January 2, 1990 to November 11, 1996 / 1746 observations
Industrial-Transport-Utility-Finance
Sym. NIG −0.5 251.345 0.007 1.844 0.592 SGH 26819.20
Sym. HYP 2.5 416.154 1.3e− 16 5.4e− 14 1 SGH 26800.84

Sym. NIG −0.5 222.999 0.006 1.485 0.634 tail-emph. 3.75e-05
Sym. HYP 2.5 409.1709 4.75e−10 1.94e−07 0.999 tail-emph. 4.59e-05

NMZF-Returns: dowdem-ftsdem-daxdem-nikdem / 1781 observations
Sym. NIG −0.5 133.089 0.014 1.842 0.593 SGH 22831.64
Sym. HYP 2.5 220.572 1.3e− 16 2.9e− 14 1 SGH 22815.54

Sym. NIG −0.5 107.681 0.011 1.232 0.669 tail-emph. 4.15e-05
Sym. HYP 2.5 216.877 3.55e−09 7.71e−07 0.999 tail-emph. 7.16e-05

NMZF-Returns: usddem-jpydem-gbpdem-chfdem/ 1781 observations
Sym. NIG −0.5 194.075 0.004 0.8255 0.740 SGH 28752.62
Sym. HYP 2.5 506.344 1.0e− 15 5.5e− 13 1 SGH 28735.53

Sym. NIG −0.5 222.45 0.0048 1.083 0.692 tail-emph. 7.26e-06
Sym. HYP 2.5 477.954 1.63e−09 7.82e−07 0.999 tail-emph. 1.55e-05

20-dim NMZF-Returns/ 1781 observations
Sym. NIG −0.5 375.886 0.003 1.085 0.692 SGH 163347.72
Sym. HYP 10.5 1780.619 2.1e− 24 3.773e−21 1 SGH 162099.19

Sym. NIG −0.5 355.202 0.002798 0.994 0.708 tail-emph. 0.000188
Sym. HYP 10.5 1632.506 1.7e− 09 2.84e−06 0.999 tail-emph. 0.000795

30-dim dataset, German stocks, January 1, 1988 - May 24, 1994 / 1598 observations
Sym. NIG −0.5 178.916 0.014 2.587 0.527 SGH 160554.84
Sym. HYP 15.5 641.615 8.0e− 16 5.1e− 13 1 SGH 159783.58

Sym. NIG −0.5 521.98 0.0426 22.255 0.207 tail-emph. 0.01483
Sym. HYP 15.5 720.34 0.0299 21.55 0.210 tail-emph. 0.01485
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Figure 4.7: Daimler Benz/Deutsche Bank/Thyssen. Marginals for Thyssen.

4.5 Estimation of Skewed GH Distributions

In the previous section we have proposed a method to estimate high-dimensional symmetric
generalized hyperbolic distributions, for instance from stock return data. A natural question
is now, is it also possible to estimate high-dimensional skewed GH distributions efficiently?
In principle, this is no problem, but the number of parameters increases too rapidly with the
dimensions for an implementatin which is useful in practice. Financial models, in particular
for market risk management, should allow a for fast calibration of the model and evaluation
of the risk measures also for higher dimensions. Otherwise they are only of academic interest.

The hyp programm of Blæsild and Sørensen (1992) works very well for up to three di-
mensions, but for more dimensions the estimation of hyperbolic distributions seems not to be
feasible in a reasonable time. Recall, that the hyperbolic distribution allows to construct the
fastest estimation procedures of all GH distributions, since it contains only a Bessel function
in the norming constant (see also Section 1.2 for remarks concerning the univariate esti-
mation). For all other distributions from the GH family the estimation problems in higher
dimensions are even worse, because the number of Bessel functions is greater or equal to the
number of observations. Of course, for real-world financial applications three dimensions are
not sufficient.

We have implemented an algorithm for the estimation of skewed GH distributions in
higher dimensions—without encouraging results. The estimation is very slow and not stable.
Moreover, numerical problems with the Bessel functions do occur frequently. Consequently,
we decided to focus our attention to symmetric hyperbolic and symmetric NIG distributions.
For both symmetric subclasses the algorithm is very reliable: For the backtesting studies
over a six year time interval we could use the algorithm without numerical problems in a
reasonable time (see Sections 5.4 and 5.6).

Nevertheless, we conclude with some remarks concerning the estimation of generalized
hyperbolic distributions with skewness: First, it is useful to take the symmetric estimates as
starting values. Usually financial log-returns are nearly symmetric, and therefore symmetric
distributions are a very good approximation. Secondly, one has to keep in mind that the
covariance matrix has to remain positive definite during the maximization of the log-likelihood
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function. A solution to this problem is to decompose the matrix in two upper triangular
matrices with positive diagonal elements. Their product is allways positive definite.

4.6 Generating Random Variates

In this section we construct random number generators for the multivariate generalized hyper-
bolic distribution. We examine four different ways to generate multivariate generalized hyper-
bolic random variates.

A straightforeward approach would be to sample from full multivariate distributions.
Note, that it is not possible to find a transformation of the GHd distribution which yields
independent marginal distributions. In the case of the normal distribution it is possible to
find this transformation. Thus, the construction of a multivariate normal random generator
reduces to sampling from univariate marginal distributions, which are fortunately also normal.

To compute n random numbers yj ∼ GHd(λ, α, β, δ, µ,∆) we generate random variates
{wj : 1 ≤ j ≤ n} with wj ∼ GIG

(
λ, δ2, α2 − h′0∆h0

)
and {xi : 1 ≤ i ≤ dn} with standard

normal distribution. Then the d-dimensional GH random numbers are obtained as

yj =
√
wj
(
xd(j−1)+1, . . . , xdj

)
D + µ+ wjβ∆, (4.29)

where D is the Cholesky decomposition of the matrix ∆. Note that we have to compute the
decomposition only once.

There are two possible ways to generate GIG random variates: First, one can evaluate
the quantile function of GIG distributions (numerically) for iid uniform random variates. A
second possibility is to use the algorithm proposed by Michael, Schucany, and Haas (1979),
based on random variates with a normal distribution (see also Atkinson 1982).

An alternative is to draw random variates from univariate marginal distributions of condi-
tional distributions. The first step in this approach is to sample from the univariate marginal
distribution of the full GHd distribution (for the first dimension). Secondly, we have to cal-
culate the distribution for the dimensions 2 to d conditional on the first dimension; then
we have to calculate the marginal distribution for the second dimension of the previously
calculated conditional distribution. In the third step we would have to calculate the distribu-
tion for dimensions 3 to d conditional on the first and second dimension and so on. Clearly
this approach leads to a complicated computer program which has to be adapted to varying
dimensions of multivariate GH distributions.

As a third possibility is to follow a Markov chain Monte Carlo (MCMC) approach which
is well-known in Bayesian statistics especially for sampling from a posterior distribution. Two
important examples are the Metropolis algorithm and the Gibbs sampler (Tierney 1994; Gilks
1994).

We propose to construct a Gibbs sampler for a given d-dimensional probability measure
π in the following way: For the target density π(x), x ∈ IRd we have to know the induced
1-dimensional conditional densities π(xi|x−1), where x−i = (. . . , xi−1, xi+1, . . . ). We begin
with an arbitrary starting value x0 ∈ IRd and obtain a sequence of realisations x1, x2, . . .
with xt ∈ IRd by successive drawings of random variates for each xti from the conditional
probability densities π( · |xt1, xti−1, x

t−1
i+1, x

t−1
d ). We denote with KG : IRd× IRd → [0, 1] the
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transition kernel of the Markov chain X = (X1,X2, . . . ) given by

KG(x, y) =

{∏d
`=1 π(y`|xj, yi, i < j) if

∫
π(y1, . . . , yi, xi+1, . . . , xk)dyi > 0

0 otherwise

For the proof of the convergence we need the following notation: We define D = {x ∈ E :
π(x) > 0} and a function h : IRd → IR+ as lower semicontinuous at 0 iff for all x with
h(x) > 0 there exists an open neighbourhood B of x and ε > 0 such that for all y ∈ B holds
h(y) ≥ ε > 0. The n-step Gibbs sampler is then defined as

Kn
G(xn, x0) =

∫
· · ·
∫
KG(xn, xn−1)KG(dxn−1, xn) · · ·KG(dx1, x0)

Proposition 4.30. The n-step Gibbs sampler Kn
G constructed by the 1-dimensional condi-

tional density π(xi|x−1) given in Theorem 4.11 for a multivariate generalized hyperbolic den-
sity converges weakly against the GH target density π.

Proof. GH distributions have a continuous Lebesgue density which is clearly a stronger prop-
erty than being lower semicontinuous.

From Roberts and Smith (1994, Theorems 1 and 2) we know that if π has a d-dimensional
Lebesgue density, π is lower semicontinuous at 0,

∫
π(x)dxi is locally bounded for i = 1, . . . , d,

and D is connected then ∀x ∈ D follows that |Kn
G − π| → 0 as n→∞.

The result follows since D = IRd and
∫
π(x)dxi is locally bounded in the case of GH

distributions.

The aim of this section is to provide a recipe to draw a sequence of independent random
generates from multivariate GH distributions. Therefore, we define P ln as the measure on IRd`

generated by a finite number of Gibbs samplers Kn
G

P `n(B) =
∫
· · ·
∫

(x′n,x
′
2n,...,x

′
`n)∈B

Kn
G(dx`n, x(`−1)n) . . . Kn

G(dx2n, xn)Kn
G(dxn, x0).

Proposition 4.31. The measure P `n converges weakly against the product of the stationary
distributions π of the n-step Gibbs sampler Kn

G

P `n
n−−−−→

⊗̀
i=1

π

Proof. We define x(n) = (x′n, x
′
2n, . . . , x

′
`n). Regard the characteristic function ϕ`n of the

measure P `n, which is defined for t ∈ IRd`. We apply Proposition 4.30 to get the limiting
characteristic function

ϕ`n(t) =
∫
eit
′x(n)

dP `n(x(n))

=
∫
· · ·
∫
eit
′x(n)

Kn
G(dx`n, x(`−1)n) · · ·Kn

G(dx2n, xn)Kn
G(dxn, x0)

n−−−−→
∫
· · ·
∫
eit
′x(∞)

π(dx) · · · π(dx)

where x ∈ IRd and x(∞) ∈ IRd`. The proposition follows with Cuppens (1975, Theorem
2.6.9).
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The previous theorem provides the theoretical possiblity to construct a random generator
for multivariate GH distributions. For the practical implementation we recommend to follow
three steps:

1. Find the affine transformation XA + B for a random variate X ∼ GHd in Theorem
4.11 to simplify the parameters of the GH distribution. After the simplification it is
sufficient to implement the random generator for a GH distribution with parameters
(λ, α+, β+, δ+, 0, Id).

2. The Gibbs sampler is than constructed using the 1-dimensional conditional distributions
(see Theorem 4.11) π(xi|x−i) = GHd−1 with parameters λ̄ = λ− 1/2, ᾱ = α+, β̄ = β+

−1,
δ̄ = {(δ+)2 + x′−ix−i}1/2, µ̄ = 0 and ∆̄ = 1.

3. Finally, we have to transform the obtained d-dimensional random variates (xi)i≥1 to
(xiA−1 −B)i≥1.

Note, that the π(xi|x−i) distribution is a 1-dimensional centered GH distribution and
that the observations x−i enter the conditional distribution via the parameter δ as an inner
product. Since δ is the scaling parameter, the previous observations affect especially the
variance and not the “shape” of the distribution GH.

It is worth to mention that π(xi|x−i) is hyperbolic if and only if π(x) is hyperbolic. This
reduces the necessary computational efford. In the case of NIG distributions we get a GHd−1

distribution with λ̄ = −1.

4.7 Pricing of Derivatives

Multivariate Esscher Transformations

We start the usual filtered probability space (Ω,F ,F0≤t≤T , P ), where F is generated by the
d-dimensional process (St)0≤t≤T to be introduced below and satisfies the usual conditions.
Prices of d non-dividend paying assets are given by (Sjt )0≤t≤T ,1≤j≤d. As usual, we define the
log-prices as Xj

t = ln(Sjt /S
j
0). Let Xt = (X1

t , . . . ,X
d
t )′ be the vector of log-prices and r the

constant interest rate. We model (Xt)0≤t≤T by a d-dimensional (homogeneous) Lévy process
which is of course characterized by the infinitely divisible distribution of X1.

In this section we desribe the multivariate Esscher transforms introduced by Gerber and
Shiu (1994) for option pricing purposes. In contrast to the original approach, we look only
at a finite time horizon 0 ≤ t ≤ T to assure the equivalence of the martingale measure.

We define the cumulative density function F (x, t) = P (Xt ≤ x) for x ∈ IRd and
the moment-generating function M(z, t) = E[exp(z′Xt)] for 0 ≤ t ≤ T and z ∈ IRd. As-
sume, that (Xt)0≤t≤T is a stochastic process with iid increments. Consequently M(z, t) =
[M(z)]t, 0 ≤ t ≤ T , where M(z) is defined as the moment generating function of the infinitely
divisible distribution L(X1). We also assume that (Xt)0≤t≤T has a continuous density given
by

f(x, t) =
dn

dx1 . . . dxn
F (x, t), 0 ≤ t ≤ T . (4.32)

The multivariate Esscher transform for parameter h ∈ IRd is then defined by

f(x, t, h) =
exp(h′x)
M(h, t)

f(x, t), where x, h ∈ IRd . (4.33)

115



The moment generating function under the Esscher transformed measure P h is

M(z, t, h) =
∫

exp(z′Xt)dP ∗ =
∫

exp(z′Xt + h′Xt)
M(h, t)

dP

=
1

M(h, t)

∫
exp(z′Xt + h′Xt) dP =

M(z + h, t)
M(h, t)

. (4.34)

Proposition 4.35. Let X be a multivariate Lévy process and assume that its moment gen-
erating function exists for z ∈ U with U open and 0 ∈ U ⊂ IRd. Define

%ht =
dQhXt
dPXt

= exp
(
h′x− t logM(h)

)
, where |h| < C. (4.36)

Then Zht = %ht ◦Xt is a positive P-martingale and Zh defines for every T <∞ a new measure
QhT on FXT (the Esscher transform) equivalent to PT given by dQhT = ZhTdPT such that the
process (Xt)0≤t≤T is a Lévy process under QT .

Proof. The Propositions 19 and 20 in Keller (1997) hold after mild modifications also in the
case of multivariate Lévy processes.

We have seen that Esscher transforms describe an equivalent change of measure and the
transformed process is again a Lévy process. Consequently, we have M(z, t, h) = [M(z, 1, h)]t.

Keller (1997) discusses parametric changes of measures by changing triplets. Most of the
results hold also in the multivariate case.2 Especially his Lemma 21 holds, which means that
the Esscher transform of a Lévy process with triplet (b, 0, G) can be described by changing
triplets. Under the integrability condition

∫
|x|≥1 exp(h′x)dG < ∞ the Esscher transform is

given by the Lévy triplet(
b′ = b+

∫
h(y − 1)dG, c′ = 0, G′ = yG

)
, (4.37)

where y is defined as y(x) = exp(h′x) for x, h ∈ IRd. The triplet (4.37) characterizes the
measure Q uniquely. Incidentally, Esscher transforms of triplets and of marginal distributions
(Xt)0≤t≤T are essentially given by the same function.

Now we have to find the risk-neutral Esscher transform given by h0 ∈ IRd, which makes
the process (e−rtSt)0≤t≤T to a martingale. We denote this measure by Q and the corre-
sponding expectation by EQ. Following Delbaen and Schachermayer (1994), we can use this
equivalent martingale measure to compute prices for derivatives. Therefore, we have to find
the parameter h0 such that

Sj0 = EQ
[
e−rtSjt

]
∀0 ≤ t ≤ T , 1 ≤ j ≤ d. (4.38)

Define 1j = (0, . . . , 1, . . . , 0) where the 1 is on the jth position. Then we have that equation
(4.38) is equivalent to

ert = EQ
[
Sjt
/
Sj0
]

= EQ
[

exp(Xj
t )
]

= M(1j , t, h0)
= [M(1j , 1, h)]t

⇐⇒ r = logM(1j , 1, h0)
⇐⇒ r = logM(1j + h0)− logM(h0) (4.39)

for all 0 ≤ t ≤ T and 1 ≤ j ≤ d.
2We do not repeat the proofs in the multivariate case, because only minor changes are necessary.
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The following theorem allows the computation of more complicated options, e.g. the value
of an option to exchange one asset for another at the end of the period (Gerber and Shiu
1994, p. 123–126).

Theorem 4.40 (Gerber and Shiu 1994, pp. 121–122). For a measurable function g :
IRd → IR and 0 ≤ t ≤ T we have

Eh0
[
e−rtSjt g(S

1
t , . . . , S

d
j )
]

= Sj0 Eh0+1j
[
g(S1

t , . . . , S
d
j )
]
,

where Eh denotes expectation with respect to the Esscher transformed measure.

Esscher Transforms of Symmetric NIG Lévy Motions

Of course it is possible to apply the pricing approach described above to arbitrary multivariate
GH Lévy motions, but we restrict ourselves to symmetric centered normal inverse Gaussian
(NIG) Lévy motions, since we want to propose a model which is computationally feasible.
See Prause (1999b) for a summary of the theoretical properties and empirical results for the
subclass of symmetric NIG distributions. This subclass enjoyes an increased numerical and
analytical tractability; hence, it can be used in real-time implementations to measure market
risk and for the pricing of derivatives.

The moment generating function for symmetric centered NIG distributions is given by

M(u) = exp
[
δ
(
α−

√
α2 − u′∆u

)]
, (4.41)

where α2 > u′∆u. We have to solve the d equations given in (4.39). In this case they are
equivalent to

r = δ
(√

α2 − h0
′∆h0 −

√
α2 − (h0 + 1j)′∆(h0 + 1j)

)
, 1 ≤ j ≤ d. (4.42)

Solving these equations leads to the risk-neutral Esscher parameter h0 ∈ IRd. The risk-neutral
Esscher transform of L(X1) is again a NIG distribution with Lebesgue density

nig(x;α, 0, δ, 0,∆, h0) =
exp(h0

′x) nig(x)
M(h0)

. (4.43)

NIG distributions are closed under convolution, consequently the risk-neutral distribution of
Xt is furthermore NIG(α, h0, δt, 0,∆) for 0 ≤ t ≤ T .

Since we obtain a multivariate NIG distribution as a risk-neutral probability measure
at the end of the period [0, T ], we can easily evaluate arbitrary terminal payoff functions.
For payoff functions which do not allow analytic expressions we can also apply a Monte-
Carlo approach to evaluate the discounted expectation under the risk-neutral measure. The
procedure based on the mixing representation of GH distributions is described in Section 4.6.

Skewed GH Lévy Motions

In the last paragraph we restricted ourselves to the special case of an asset pricing model
driven by symmetric NIG Lévy motions. This model is very pleasant for the estimation of
densities and the pricing of derivatives. However, if we look at the most general model, we can
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state, that Esscher transforms of GH distributions are again GH distributions. The following
computation shows, that we basically obtain a transformation of the skewness parameter.

gh(λ, α, β, δ, µ,∆;h0)(x) =
exp(h′0x)
MGH(h0)

gh(λ, α, β, δ, µ,∆)(x)

=
exp(h′0(x− µ))

MGH(h0) exp(−h′0µ)
gh(λ, α, β, δ, µ,∆)(x)

=
exp((h0 + β)′(x− µ))
MGH(h0) exp(−h′0µ)

gh(λ, α, 0, δ, µ,∆)(x)

= gh(λ, α, β + h0, δ, µ,∆)(x)

4.8 Basket Options

For a vector w ∈ IRd we consider a “basket” of assets S†t =
∑d

i=1wjS
j
t /S

j
0 for 0 ≤ t ≤ T .

The weights w describe the quantity of single assets in a portfolio with value process S†. We
approximate this process by S†t ≈ exp(At) where At is defined as

At =
n∑
j=1

wjX
j
t = w′Xt, 0 ≤ t ≤ T. (4.44)

A “basket option” is now given by the terminal payoff function (S† −K)+ for a strike price
K. Consequently, we have to evaluate e−rT E∗[(S† − K)+]. For a “real world” NIG Lévy
motion with L(Xt) = NIG(α, 0, δ, 0,∆) we obtain as a risk-neutral Esscher transform the
Lévy motion with Xt ∼ NIG(α, h0, tδ, 0,∆), 0 ≤ t ≤ T . For the distribution of AT under
QT we obtain a univariate NIG(α|h′∆h|−1/2, 0, T δ|h′∆h|1/2, 0) distribution.

One drawback is, that we use the approximation S†t ≈ exp(At) and not the exact value
S†t =

∑d
j=1 exp(Xj

t ). However, using the mentioned Monte-Carlo approach, it is easy to
calculate the price of a basket option without an approximation error (cf. Beißer (1999) for
methods to reduce the approximation error in the calculation of prices for basket options).

One can also use the fact that NIG distributions are closed under marginalisation and
regular affine transformation (this follows from Blæsild 1981, Theorem 1). This allows the
efficient calculation of option prices based on these mappings. In contrast to this, conditional
distributions are no longer normal inverse Gaussian. Only in the one-dimensional case we
recommend the use of Fast Fourier Transforms to calculate densities of convolutions for GH
distributions.
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Chapter 5

Market Risk Controlling

What are the reasons for the increasing interest in risk measurement? Risk measures are used
in banks and investment firms with different objectives. Banking regulators as well as the
management want to reduce the probability of bankruptcy. Therefore, they set limits to the
exposure to market risk relative to the capital of the firm. Internally, risk measures provide
a possibility for the senior management to allocate risk:

Setting limits in terms of risk helps business managers to allocate risk to those
areas which they feel offer the most potential, or in which their firms’ expertise is
greatest. This motivates managers of multiple risk activities to favor risk reducing
diversification strategies.1

J.P. Morgan and Reuters (1996) illustrate the allocation of risk to the subdivisions of a firm
in their Chart 3.1.

On the one hand risk measures are a necessary simplification of a complex risk structure.
Scalar Figures describing the exposure to market risk like VaR estimates satisfy this require-
ment. Moreover, they are easy to compare with the capital of the firm. On the other hand
the methodology should allow a precise understanding what are governing factors leading to
high potential losses. A methodology should also hint at possibilities to reduce risk, i.e. to
diversify the portfolio or to insure the portfolio by buying or selling appropriate derivatives.

5.1 Concepts of Risk Measurement

The standard methodology in the finance industry to measure risk of a random variate X is
Value-at-Risk (VaR), i.e. the potential loss given a level of probability α ∈ (0, 1),

P [X < −VaRα] = α.

Is VaR the adequate measure to meet the requirements mentioned above? Quantile-based
methods like Value-at-Risk have the disadvantage, that they do not answer the question
“How bad is bad?” The magnitude of losses greater than the chosen level of probability
remains disregarded. However, not only the current risk-based capital rules for the market
risk exposure of US commercial banks, effective as of January 1, 1998, are explicitly based
on VaR estimates. See Basel Committee on Banking Supervision (1996) for the general rules

1J.P. Morgan and Reuters (1996, p. 33).
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and Lopez (1999) for a description of the current evaluation methods and calculation of the
capital requirement used by US regulatory authorities. From a supervisor’s point of view,
it is dangerous that institutions or even individual traders may establish a portfolio with a
small measured risk to reduce the capital requirement—which leads to an inacceptable risk
exposure e.g. below the 1%-quantile.2 For the allocation of risk in a firm—in contrast to the
prevention of bankruptcy—VaR is maybe more appropriate.

Stress testing offers a partial solution of this problem. This approach is focussing on
extreme scenarios by simulating historical or possible future crash scenarios. From a regu-
lator’s point of view, evaluation methods for risk measurement should be comparable across
institutions and applicable to all types of financial assets. These requirements are easier to
fulfill with VaR-type approaches than with the construction of scenarios. On the other hand
standardized stress scenarios are often not specific enough to identify all risks that pose a
thread to a particular institution.

The Basel Committee on Banking Supervision (1995, Chapter V) demands that banks
that use internal models for meeting market risk capital requirements must have a rigorous
and comprehensive stress testing program that covers a range of factors that can create
extraordinary losses in trading portfolios.

To avoid bankruptcy one has to forecast the distribution of the maximum expected loss.
From this point of view regulators should use other risk measures than VaR. A better incor-
poration of extreme events especially in view of nonlinear portfolios is desirable. One concept
(which is also easy to implement and to understand) is the shortfall defined as

Shortfallα,t = −E
[
X
∣∣X < q(α)

]
, (5.1)

where q : [0, 1] → IR is the corresponding quantile function. We assume that E|X| exists.
Note, that the shortfall goes clearly beyond the concept of VaR because it takes the extreme
negative returns into account. The log-density of the empirical distribution in Figure 5.2
shows that they often occur at a level of probability below 5% or even below 1%.

Coherent Risk Measures

We would like to mention the axiomatic concept of coherent risk measures developed by
Artzner, Delbaen, Eber, and Heath (1999). Their article starts with a discussion of necessary
properties of risk measures and reviews current approaches to risk management.

Definition 5.2. % : IRd → IR is a coherent risk measure if and only if for all real random
variates X,Y and n, t ∈ IR the following holds

1. %(X + Y ) < %(X) + %(Y ), Subadditivity,

2. %(tX) = t%(X), Homogeneity,

3. %(X) ≥ %(Y ) ∀X ≤ Y , Monotonicity,

4. %(X + rn) = %(X)− n, Risk-Free Condition,
2The Basel Committee on Banking Supervision (1999) is concerned that currently used models to cope with

Credit Risk are not sophisticated enough. This allows the construction of portfolios which “exploit divergences
between true economic risk and risk measured.” Models for market risk are more advanced in comparison.
However, the described shortcomings of the VaR approach do not inhibit the existence portfolios with a high
risk which occurs only below a given level of probability.
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where r is the risk-free interest rate. A position X is defined as acceptable if and only if
%(X) ≤ 0.

Note that VaR is no coherent risk measure since it is not subadditive, whereas the short-
fall is one (Artzner, Delbaen, Eber, and Heath 1997; see also Embrechts, Klüppelberg, and
Mikosch 1997, Section 6.2.2, and Matthes and Schröder 1998 for an application of shortfall
measures in practice).

The US Securities and Exchange Commision (SEC) rules, as applied by the National
Association of Securities Dealers (NASD), are based on the construction of finitely many
scenarios and belongs to the class of coherent risk measures (Artzner, Delbaen, Eber, and
Heath 1997). In principle, this is the most challenging way to construct a risk measure, since
it is necessary to understand all possible sources of risk. Artzner, Delbaen, Eber, and Heath
(1997) prefer the generalized scenarios, because “it requires thinking before calculating, which
can only improve risk management.” However, the construction of generalized scenarios is not
straightforward and dependent on the individual market structure and the modelled financial
assets.

Procedures to Compute Value-at-Risk

To compute Value-at-Risk, there are different ways how to get from an observation of a price
vector (S1

t , . . . , S
d
t )′ to estimates of (scalar) risk measures. At first, one may fix the number

of assets or the amount of money initially invested into a particular asset. Fixing the number
of assets allows a reconstruction of the price path of the portfolio, which is denoted S̄ht in
Figure 5.1. This approach is portrayed on the right side of the figure and, for instance, used
in the construction of stock indices. Changes in the price of a particular stock alter also its
weight measured in currency units for instance in the DAX.

On the contrary, one may keep the investment in each particular asset fixed (left side of
Figure 5.1). In this case it is of course possible to reconstruct univariate return distributions
L(X ) of the portfolio value (center part of the Figure). The estimation of multivariate return
distributions allows a simple computation of risk measures for a given portfolio denoted by
h ∈ IRd. This approach is widely used in practice. For instance, J.P. Morgan and Reuters
(1996) provide volatilities and correlations of most globally traded financial assets, i.e. they
sell distribution estimates to investors and risk managers. With this information institutions
can compute risk estimates for their portfolios without the need to handle and update large
databases.

A small error occurs in the approximation of the portfolio return by a scalar product of
log-returns. This approximation error can be removed by a Monte-Carlo simulation, which
is of course time consuming. This approximation error is also of some consideration in the
computation of basket option prices (see Section 4.8 and Beißer 1999).

The optimal choice of the risk-management method depends on some preferences, e.g. the
simulation of S̆ gives more exact results but it is in particular for large data sets very computer-
intensive. The reconstruction of the portfolio (right side of Figure 5.1) makes it in every case
necessary to have the full data set available to adapt to changes in the portfolio composition.
On the contrary, the updating procedure of the IGARCH approach leads to very small memory
requirements (see Section 5.3 for the recursion formulas for the variance and covariance).

In the sequel we have considered the investment of a fixed amount of money, i.e. one
currency unit, in each asset. Experiments indicate that the results in the sequel do not
depend on the choice of the portfolio h = (1, . . . , 1)′.
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S = (S1
t , . . . , S

d
t )′tFixed Investments

measured in currency units
Variable Weights

(number of assets fixed)

X = (X1
t , . . . ,X

d
t )′t, Xi

t = log(Sit/Sit−1) S̄ht = h′St, h ∈ IRd

d-dim. distribution of (X1, . . . ,Xd)′ (X h
t )t, X h

t = log(S̄ht /S̄
h
t−1)X = h′X

L(S̆), S̆ =
∑

i hie
Xi
t L(X̃), X̃ = h′X L(X h

t ), 1-dim distr. Empirical distributionL(X ), 1-dim distr.
Simulation necessary Parametric distribution Parametric distrib. Parametric distrib. “Historical Simulation”

Quantiles by MC-Sim. Exact Quantiles Exact Quantiles Exact Quantiles Empirical Quantiles

Risk-management using covariance structure.
IGARCH: smallest memory requirements.

Risk-management based on a reconstruction of the portfolio return distribution.
Time series data sets are always needed in full length.

Remarks: denotes estimation, e.g. following a maximum-likelihood approach.
1-dim distribution obtained by matrix manipulation of the covariance matrix (Lemma 5.3, Theorem 5.4).

This scheme is common for generalized hyperbolic and normal distributions.
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Holding Period

Usually capital requirements based on risk measures are calculated for holding periods of ten
trading days (Basel Committee on Banking Supervision 1995). Due to the fact that trading
takes place with different time horizons, the holding period should correspond to the trading
frequency in a particular market. For instance, traders on global FX markets often close
their positions every evening. Consequently. risk measures evaluated for overnight portfolios
cannot capture the risk inherent in the day trading on FX markets. An often underestimated
aspect is the liquidity of markets in the time of a crash. The time period necessary to close
a position on a particular market is an indicator for the appropriate choice of the holding
period to use for risk measurement.

5.2 Statistical Realization

In the last section we have discussed what are appropriate risk measures. In the sequel we
describe standard methods to actually compute these measures and propose more realistic
approaches based on generalized hyperbolic distributions.

A standard method to compute VaR is to simulate the return of the portfolio by the
preceding, e.g. 250, observed returns and to use the quantile of this distribution. The Basel
Committee calls this approach historical simulation. However, it is well-known that the
estimation risk is higher for empirical quantiles than for quantiles of parametric distributions
(Huisman, Koedijk, and Pownall 1998; see also Section 1.6). A proposed sophistication of
this approach is to rescale the observed data set with up-to-date volatilities (Hull and White
1998).

A second simulation technique proposed to forecast VaR is Monte Carlo. It is computa-
tionally intensive, in particular, for large portfolios. Therefore, it is less widely used to measure
the exposure to market risk (Basel Committee on Banking Supervision 1995, Paragraph I.7).
We have not examined this method in the backtesting studies because distinct differences to
the variance-covariance approach are only obtained for nonlinear portfolios (Bühler, Korn,
and Schmidt 1998) and it should be adjusted to an individual risk-measurement problem.
Hence, it offers too much variability for a valid statistical comparison. See Section 5.7 for a
description of a full valuation approach based on GH distributions.

The variance-covariance methodology is based on the multivariate normal distribution
and it is very popular since it is easy to calculate the distribution of an affine transformation
using the following theorem.

Lemma 5.3. For a d-dimensional normal random variate X ∼ Nd(µ,Σ) and a linear map-
ping A : IRd → IRq we obtain AX ∼ N(Aµ,AΣA′).

Proof. See Anderson (1958, Theorem 2.4.1).

Assuming a parametric model for a return distribution, one has to consider that the parame-
ters usually change over the time. How to estimate these changing parameters, is one difficult
problem (recall from Section 1.6 that volatility estimates have poor finite sample properties).
Another point is that appropriate distributional assumptions should be made. If the para-
metric model is correct, the statistician is rewarded with a lower estimation risk for extreme
quantiles (Huisman, Koedijk, and Pownall 1998). See also Section 1.6 for nonparametric and
parametric quantile estimation results under the assumption that the returns distribution is
generalized hyperbolic.
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Generalized Hyperbolic Distributions

Let us start with a general result on densities for generalized hyperbolic distributions which
corresponds to Lemma 5.3.

Theorem 5.4. Let X be a d-dimensional random variable with symmetric generalized hyper-
bolic distribution, i.e. with β = (0, . . . , 0)′, and let h ∈ IRd where h 6= (0, . . . , 0)′. The
distribution of h′X is univariate generalized hyperbolic with the following parameters λ× = λ,
α× = α|h′∆h|−1/2, β× = 0, δ× = δ|h′∆h|1/2 and µ× = h′µ.

Proof. Let h1 6= 0 without loss of generality. Apply Theorem Ic) of Blæsild (1981) with

A =


h1 h2 · · · hd
0 1 0
...

. . .
0 0 1

 and B =


0
...

0

 . (5.5)

Then project the d-dimensional GH distribution onto the first coordinate using Theorem
Ia).

The latter theorem may be used to calculate risk measures for a portfolio of d assets with
investments given by a vector h ∈ IRd. As an example, we consider a portfolio consisting of
three German stocks: Daimler Benz, Deutsche Bank and Thyssen from January 1, 1988 to
May 24, 1994. The estimates are given in Table 4.6. We choose h = (1, 1, 1)′ and show the
empirical density of the returns h′xt of the portfolio in Figure 5.2. Theorem 5.4 gives the
corresponding densities obtained from the d-dimensional estimates of symmetric hyperbolic
and symmetric NIG distributions. Note, that the distribution of the sum of multivariate NIG
distributions is again NIG, whereas the distributon of the sum of hyperbolic distributions
is generalized hyperbolic with λ = (d + 1)/2. Figure 5.2 shows also the direct estimate for
the univariate GH distribution to the returns of the whole portfolio. We obtain the estimate
λ = −1.96 for the one-dimensional generalized hyperbolic distribution, which corresponds to
similar estimates of λ for univariate asset return distributions.

The densities and log-densities indicate that symmetric GH distributions lead to a rather
precise modelling of the return distribution of the portfolio. As a consequence, one can
get more realistic risk measures than the traditional ones based on the normal distribution.
Figure 5.3 shows the Value-at-Risk over a 1-day horizon with respect to a level of probability
α ∈ (0, 1) and the shortfall.

Reduction to One Dimension

This approach corresponds to the approach in the middle column of Table 5.1: We reduce the
multivariate portfolio to one dimension and apply univariate GH distributions. This approach
is a shortcut, which allows to avoid the estimation of multivariate distributions. Moreover,
in the case of a crash, the “correlation” of assets is close to unity. Therefore, multivariate
distributions based on a correlation matrix can be a good model for the “center” of the
distribution, but there might be problems with the modelling of extreme tails. In particular,
tails of univariate distributions derived from multivariate GH laws by Theorem 5.4 can be
deficient, e.g. for levels of probability below 1% (see Section 4.1, The Epps Effect).
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Bank/Thyssen. Investment of one DM in each asset.
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Figure 5.3: Risk measures for Daimler Benz/Deutsche Bank/Thyssen.

126



Long-Term Shape Parameters

An approach similar to the rescaling mechanism proposed in the univariate case is the esti-
mation of the shape (characterized by (λ, ζ)) from a longer time period and to use an up-
to-date covariance matrix S. This allows to incorporate risk of extreme events which do not
occur in the preceding 250 trading days, the minimum time period proposed by the Basel
Committee on Banking Supervision (1995). Therefore, we have to choose a subclass, i.e. a
parameter λ ∈ IR, and to fix a long-term estimate for ζ. We compute the matrix Σ in the
second parametrization by

Σ = δ2∆ =
ζ

Rλ(ζ)
S and |∆| = 1. (5.6)

For numerical reasons we compute δ directly

δ =

√
ζ

Rλ(ζ)
|S|1/(2d). (5.7)

The obtained symmetric GH distributions are again used to calculate VaR. The use of a
long-term shape parameter incorporates a high possibility of extreme events, even if no crash
in the preceding 250 trading days occured.

Related Approaches: VaR-x

We also want to mention a different but closely related approach to risk measurement which
is proposed by Huisman, Koedijk, and Pownall (1998): They replace the normal distribution
by a (univariate) Student-t distribution and call their approach to risk measurement VaR-x.
Indeed, it is a special case of the GH risk measurement approach examined in this study.
Huisman, Koedijk, and Pownall (1998) propose to estimate Student-t distributions from one
tail of the distribution using a modified Hill-estimator. The obtained tail index α together
with the empirical mean and variance allows to determine a particular Student-t distribution.
The tail index also identifies the number of moments which do exist. They have tested this
method with good results.3 However, a multivariate extension of this particular approach is
not straightforward, because the tail index is determined from only one side of a univariate
empirical distribution.

5.3 GH-IGARCH

In contrast to some standard financial models where the volatility is assumed to be constant,
in the financial markets frequent changes in the “temperature” of the market are observed.
In contrast, e.g. to the historical simulation, ARCH-type models allow for the necessary
volatility updating. This leads to models with heavier tails than the normal distribution. We
have applied the multivariate IGARCH model of Nelson (1990). In this model the variance

3They have excluded the crash of ’87 from their data set. This is not appropriate in the evaluation of a
risk measurement method.
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σ2
1,t and covariance σ2

12,t are given by

σ2
1,t = (1− λ)

∑
t≥1

λt−1(rt − r̄) (5.8)

σ2
12,t = (1− λ)

∑
t≥1

λt−1(r1,t − r̄1)(r2,t − r̄2), (5.9)

where λ is a decay factor, rt, r1,t, r2,t returns of financial assets and r̄, r̄1, r̄2 the corresponding
mean values. This model for the volatility corresponds to the computation of variance and
covariance with exponential weights. Therefore, it is sometimes called exponentially weighted
moving average (EWMA) model.

The computation of IGARCH estimates is very simple since the following recursion for-
mulas may be applied

σ2
1,t = λσ2

1,t−1 + (1− λ)r2
1,t, (5.10)

σ2
12,t = λσ2

12,t−1 + (1− λ)r1,tr2,t. (5.11)

Although GARCH models have heavier tails, Bollerslev (1987) mentioned that the residuals
are still not normal. Another motivation for the application of the IGARCH model in this
study is, that it is implemented in RiskMetrics and used as a standard tool by risk managers.
To guarantee comparability, we have used the decay factor λ = 0.94, which is also applied in
J.P. Morgan and Reuters (1996) for daily returns.

Now we can also take this IGARCH estimate of the variance matrix and construct a GH
distribution following the procedure described in (5.6) and (5.7). We used the same long-term
estimates for ζ as above. Of course, further refinements are possible (and necessary): For
instance the shape parameter ζ may be estimated from residuals of Gaussian IGARCH models.
However, often it is possible to estimate the parameters of the GARCH process without fixing
a particular distribution of the innovations, whenever the distribution is normalized and
centered. Then the distribution itself may be estimated using the residuals. To distinguish
this approach from Gaussian GARCH approaches we have called it GH-IGARCH.

5.4 Backtesting Experiments

In the sequel we are going to compare the model-generated risk measures with actually ob-
served market risk exposures for certain example portfolios. The quality of quantile-based
risk measures like VaR is usually evaluated by backtesting, i.e. counting excess losses over an
estimated quantile value. The Basel Committee on Banking Supervision (1996) stresses that
“backtesting offers the best opportunity for incorporating suitable incentives into the internal
models approach.” However, no methodology for the backtesting has been singled out as in-
dustrial standard. See Davé and Stahl (1997) for a study focussing on the variance-covariance
and GARCH approaches to estimate VaR.

We examine the methodologies to estimate VaR following the backtesting proposals of the
Basel Committee on Banking Supervision (1995, Paragraph IV.23). The Basel Committee
on Banking Supervision (1995, Paragraph IV.3) has chosen a holding period of 10 days for
the calculation of capital requirements. First of all with the objective to put more weight on
options. Nevertheless, we use a one-day horizon because our example portfolios do not include
options and the increased number of nonoverlapping returns in the observation period allows
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more accurate statistical results. Moreover, for backtesting in contrast to the calculation
of capital requirements, the Basel Committee on Banking Supervision (1996) prefers a 1-day
trading period. The Basel Committee on Banking Supervision (1996) compares VaR estimates
with trading outcomes for each trading day and with changes in the price without changes in
the portfolio composition. Working with a 1-day trading horizon minimizes the contamination
of the results by trading. Moreover, trends and fees do have a smaller influence in shorter
time intervals. In the case of this backtesting experiment these arguments are not applicable,
since we do not model trading during the holding period at all. After computing VaR for each
day in a time period from the preceding 250 days, we count the losses occuring on the day
after the estimation period which are greater than the Value-at-Risk.4 Since Value-at-Risk is
essentially a quantile estimate, the percentage of excess losses should correspond to the level
of probability α.

We have performed the backtesting experiment for the following portfolios:

German stocks: 1 DAI + 1 DBK + 1 THY

NYSE-Indices: 1 Industrial + 1 Transport + 1 Utility + 1 Finance

Global Indices in Deutsche Mark: 1 dowdem + 1 ftsdem + 1 daxdem + 1 nikdem

FX: 1 usddem + 1 jpydem + 1 gbpdem + 1 chfdem

The notation means a fixed investment of one currency unit in each asset (not the number
of assets). In the sequel we describe only the results for the first data set. The results for
the other data sets are comparable to those described for the example portfolio with three
German stocks.

The results given in Table 5.4 show that both standard estimators for Value-at-Risk
underestimate the risk of extreme losses. This effect is visible in the percentage of excess
losses in the historical simulation. In the variance-covariance approach we observe too high
values for the level of probability α = 1% and too small values for α = 5%. This corresponds
to Figure 5.3 (top). The percentages of realized losses greater than VaR are closer to the
level of probability in both cases, α = 1% and α = 5% for the symmetric hyperbolic and the
symmetric NIG distribution than in the standard approaches. Even better results, especially
at the 1% level, are obtained in the GH approaches with a long-term shape parameter ζ and
in the GH-IGARCH methodology.

Note, that the Basel Committee on Banking Supervision (1995) preferes 99% quantiles to
lower quantiles.

Three Zones and the “Factor Three”

The market risk capital that a US bank must hold is calculated as the maximum of the current
VaR estimate and the average of recent VaR estimates

max

{
VaRt(10 days, 1%); Ft ×

1
60

59∑
i=0

VaRt−i(10 days, 1%)

}
+ CRt,

where Ft ≥ 3 is a multiplicative factor and CRt is an additional capital charge for the
portfolios idiosyncratic credit risk (Lopez 1999). To determine Ft the exceptions, i.e. the

4The Basel Committee on Banking Supervision (1996) denotes them as “exceptions”.

129



Table 5.4: Ex post evaluation of risk measures: percentage of losses greater than VaR. Each
trading day the value at risk for a holding period of one day is estimated from the preceding
250 trading days (German stocks: Daimler Benz/Deutsche Bank/Thyssen from January 1,
1989 to May 24, 1994, Investment of one Deutsche Mark in each asset).

α = 1% α = 5%
VaR methodology % Max Loss/VaR %

Historical Simulation 2.08 5.9295 5.79
Variance-Covariance 1.63 6.0266 4.45
RiskMetrics / IGARCH 1.34 5.8509 4.75

Sym. hyperbolic 1.34 5.3073 4.6
Sym. NIG 1.26 5.4286 4.75
Sym. hyperbolic, long-term ζ 1.26 5.3744 4.45
Sym. NIG, long-term ζ 1.04 5.1595 4.9
Hyperbolic IGARCH, long-term ζ 1.11 5.247 4.82
NIG IGARCH, long-term ζ 1.11 5.0464 5.34
1-dim HYP 1.41 5.9214 4.9
1-dim NIG 1.41 5.8397 4.97

returns below the (negative) VaR(1 day, 1%) in the recent 250 trading days, are counted (see
also the Basel Committee on Banking Supervision 1996). Note, that for the determination
of Ft the VaR is calculated for a holding period of one trading day which corresponds to the
results in Table 5.4. In the “green zone”, i.e. with four or fewer exceptions, Ft remains at the
minimum value of three. From five to nine exceptions (in the “yellow zone”) the factor Ft
increases incrementally. With ten or more exceptions in the red zone the regulatory authority
requires an improvement of the risk manangement system. This underlines the necessity to
have good estimates of VaR at the 1% level with a holding period of one trading day. See
the Basel Committee on Banking Supervision (1996) for the statistical reasoning behind the
definition of the three zones. Note, that the “green zone” ends at 1.6%, therefore, the results
for the historical simulation and the variance-covariance approach in Table 5.4 would trigger
a supervisor’s inspection, if this models would have been used in a financial institution.

From a statistical point of view it is not clear, how to justify this factor Ft. In Table
5.4 we have given the maximum of the quotient of observed loss and VaR for the different
risk-measurement approaches. Obviously this factor is smaller in all GH based approaches
than in the three standard methods.

In Table 5.5 we give the same quotients for the other example data sets. We have chosen
the variance-covariance approach to faciliate a comparison. Note, that this factor does not
correspond exactly to Ft as given above, but it hints at the tail distribution of the example
portfolios.

Obviously these portfolios differ substantially in their return distribution below a 1% level
of probability. The Value-at-Risk multiplied by a standard factor seems not to be very reliable
as a basis for the calculation of the capital, which is necessary to cover crash events.
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Table 5.5: Maximum of the quotient of observed loss and VaR. The VaR estimate is calculated
for a 1 trading day horizon and a 1% level of probability following the variance-covariance
approach.

Dataset Max Loss/VaR

German stocks: Daimler Benz, Deutsche Bank, Thyssen 6.0266
NYSE Indices: Industrial, Transport, Utility, Finance 2.6841
Indices in DEM: dowdem, ftsdem, daxdem, nikdem 2.7957
FX rates: usddem, jpydem, gbpdem, chfdem 1.9222
20 financial assets, NMZF dataset 2.6994
30 German stocks, DAX 8.6444

5.5 Statistical Tests

Evaluation of Distribution Forecasts

In the last paragraph we have only discussed the results of the backtesting experiment on
the basis of two lower quantile values, 1% and 5%. Let us also look at the whole distribution
(Breckling, Eberlein, and Kokic 1999).

Essentially risk-measurement is based on distribution forecasts for a period ahead. In
the backtesting experiment we obtain a prediction for the distribution of the return on a
particular day. The estimated distribution is e.g. based on the preceding 250 trading days.
We plug the actually observed return in the probability function of the estimated distribution
and repeat this procedure for the whole data set. Then we obtain, under the assumption of
independence, values which should obey a uniform distribution on [0, 1]. In principle, this
is the inverse procedure to the generation of GH random variates: They are obtained by
plugging uniform random variates into the quantile function. Figure 5.6 shows histograms of
these observations. Since these observations should be uniformly distributed, values smaller
than one indicate that returns in the corresponding range of quantiles, e.g. from 0% to 10%,
occur less frequently than predicted by the forecasted distribution.

Basically, the plots in Figure 5.6 allow for an analysis of the overall fit of a particular
approach used for risk-measurement. For instance, the normal distribution underestimates
the probability of small returns, i.e. the values in the bins from 40% to 60% are too high. A
more flat pattern is observed for the GH-based than for normal approaches. Nevertheless, it
is obvious that the best overall fit can be observed for the historical simulation and for the
reduction to a 1-dimensional dataset.

However, the underestimation of the frequency of returns in the tails is not clear form
Figure 5.6. Choosing smaller classes as in Figure 5.7 shows that there are more observations
in the tails than predicted by normal distributions. The values of extreme returns, in the way
they are given in Table 5.4, seem to be more useful for the examination of lower quantiles.
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Figure 5.6: Visualization via CDF: 1 DAI + 1 DBK + 1 THY / German stock, January 1,
1988 - May 24, 1994
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Figure 5.7: Visualization via CDF: 1 DAI + 1 DBK + 1 THY / German stock, January 1,
1988 - May 24, 1994

Statistical Tests

The fact that the transformed observations should be uniformly distributed on [0, 1] under
the assumption that the model behind the risk measurement approach is correct, allows for
a statistical test. We performed a Kolmogorov-Smirnov and a χ2-test under the hypothesis
that the true distributions are mutually independent and uniform. The results are given in
Table 5.8.

Both tests reject the hypothesis in the case of the variance-covariance approach; we also
get low p-values for all IGARCH models. We obtain high p-values for the historical simulation
and the reduction to a 1-dimensional data set. The hypothesis of a uniform distribution is
not rejected for symmetric GH with or without long-term shape parameter ζ. The ranking
of hyperbolic and NIG distributions varies in these tests. Similar results are obtained for the
other data sets.

Tests of Independence of Residuals

The statistical tests in this chapter are focused on the tail behaviour and the goodness of fit
of the quantile estimates. Another question is whether clustering effects in the exceedences
occur or not. In particular, this allows for a comparison of the different volatility estimators.
Since our research topic is the comparison of the “driving” distributions, we have not pursued
this question further; see Davé and Stahl (1997, 4.3) for relevant statistical tests.
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Table 5.8: German stock, January 1, 1988 – May 24, 1994: 1 DAI + 1 DBK + 1 THY /
Holding period: 1 trading day.

Kolmogorov-Smirnov Test χ2-Test
KS-Statistic p-value χ2-Statistic p-value

Historical Simulation 0.015 0.912 12.736 1
Variance-Covariance 0.048 0.004 82.119 1.2e−05
Riskmetrics / IGARCH 0.028 0.243 50.178 0.046

Sym. Hyperbolic 0.016 0.9 42.54 0.178
Sym. NIG 0.018 0.77 42.7 0.174

Sym. Hyperbolic, long-term ζ 0.018 0.803 44.516 0.13
Sym. NIG, long-term ζ 0.018 0.789 36.131 0.416

Hyperbolic IGARCH 0.03 0.191 53.062 0.026
NIG IGARCH 0.042 0.018 75.442 8.6e−05

1-dim Hyperbolic 0.017 0.849 31.27 0.649
1-dim NIG 0.015 0.922 26.57 0.846

5.6 High-Dimensional Data

In the previous sections we have described estimation procedures and risk measures using
a 3-dimensional example. In this section we will look at a 20-dimensional data set which
is much less homogenous. The structure of the 20-dimensional NMZF data set has already
been examined in Sections 4.1 and 4.2. Although the GH approach is an improvement in
comparison to the normal distribution, the higher number of dimensions leads to a poor fit
of likelihood estimates in the tails. Therefore, we propose two more sophisticated methods to
by-pass this problem. Finally, we compare the results by a backtesting experiment based on
the following example data sets:

20 financial assets (NMZF): usddem, gbpdem, caddem, nlgdem, chfdem, befdem, frfdem,
dkkdem, nokdem, sekdem, itldem, atsdem, espdem, ptedem, jpydem, umlauf5, daxdem,
nikdem, ftsdem, dowdem;

30 German stocks (DAX): ALV, BAS, BAY, BHW, BMW, BVM, CBK, CON, DAI,
DGS, DBC, DBK, DRB, MET, HEN, HFA, KAR, KFH, LIN, LHA, MAN, MMW,
PRS, RWE, SCH, SIE, THY, VEB, VIA, VOW.

In the sequel we model an investment of one Deutsche Mark in each asset. See Appendix A.1
for a detailed description of the data sets.

5“Umlaufrendite”, i.e. German interest rate.
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Tail-Emphasized Estimation

In Section 4.4 we have proposed to minimize the distance∑
α∈A

(
qemp(α)− qgh(α, ζ,Σ)

)2
, A = {0.01, 0.05, 0.95, 0.99} (5.12)

with respect to ζ. The reason for the use of this (rather unusual) distance is the application
to measure risk. Risk managers need good estimates for 1% and 5% quantiles. In contrast to
other distances, e.g. the Kulback-Leibler or the Kolmogorov distance, this estimation method
enforces good results for some quantiles. From a numerical point of view the implementation
is rather simple, since we only have to perform a one-dimensional optimization. In Figure
5.9 we have shown the obtained errors in the calculation of VaR, i.e. errors for all levels of
probability.
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Figure 5.9: VaR errors for normal and generalized hyperbolic distributions. The GH distri-
butions were estimated “tail-emphasized” by minimizing (5.12).

Dimension Reduction

Principal component analysis allows a deeper understanding of the risk inherent in a financial
market: The complexity of the market is reduced to some factors and using principal compo-
nent analysis (PCA) shows the primary sources of risk to which a portfolio is exposed. See
Section 4.1 for a detailed description of the PCA.

We have rescaled the vector hred, such that the variance of the whole portfolio is constant

Var[h′X] = Var[h′redY ],

where X is the original and Y the reduced random vector. The results of this approach
applied to a 20-dimensional data set are shown in Figure 5.10. The empirical and the “re-
duced” empirical distribution and VaR estimates respectively are close. Therefore, not much
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explanatory power is lost by the reduction to 3 dimensions. Obviously GH distributions are
closer to the empirical and the “reduced” empirical distribution in the center and also in the
tails. In the backtesting experiment we will also consider the combination of this dimension
reduction method with the tail-emphasized estimation of GH parameters.

See Christiansen (1999) for a similar approach to apply dimension reduction to the mod-
elling of ARCH time series. Note, that financial institutions use PCA to construct stress
testing scenarios (Loretan 1997, 3.3). For the backtesting experiment we have chosen a re-
duction to three factors, which is of course somewhat arbitrary. In contrast to the other
approaches to risk measurement we observe a striking difference between the 20-dimensional
mixed data set of financial assets and the 30 German stocks for the VaR approaches based
on PCA.

Backtesting

To summarize the results of the high-dimensional backtesting experiment, we emphasize the
following as results from Table 5.11:

• Comparing the results for both data sets, the 20 mixed assets and the 30 German stocks,
it is clear, that VaR estimation works better for the German stocks. This data set is
more homogeneous, see for instance Section 4.1.

• For the 20 dimensional data set we always observe an underestimation of risk at both
levels of probability. With respect to the 1% VaR in the case of the 30 German stocks,
the risk is only overestimated in one NIG approach. At the 5% level we observe both,
over- and underestimation, for the 30 German stocks. Looking at the VaR plots, e.g. in
Figure 5.3, one expects these mixed results for the normal distribution.

• Historical Simulation: We observe a substantial underestimation of risk. With exception
of the 1% VaR for the 20 mixed assets, the historical simulation yields the worst results
of all analyzed approaches. In view of the poor finite-sample properties of nonparametric
quantile estimators (see Section 1.6) this is not surprising. A longer estimation period
may improve the ability of the historical simulation to cope with large returns. However,
this leads to volatilities which are less up-to-date.

• Variance-Covariance: As expected (see Figure 5.3), we observe a striking underestima-
tion of risk at the 1% level of probability and better results at the 5% level.

• RiskMetrics/IGARCH: This approach allows for an improvement of the variance-
covariance approach in most cases. Nevertheless, the underestimation of risk at the
1% level in the normal model confirms the remark of Bollerslev (1987), that residuals
of ARCH-type models are still not normal.

• Application of symmetric GH distributions leads to an improvement of backtesting
results in comparison to the historical simulation and corresponding apporaches based
on normal distributions. The only exception are symmetric hyperbolic distributions
estimated from the preceeding 250 trading days.

• Long-term shape parameter: The application of a long-term estimate for the shape
parameter ζ improves the VaR estimation substantially.
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Table 5.11: Ex post evaluation of VaR measures applied to high-dimensional data sets (holding
period one trading day, fixed investment of one currency unit in each asset). The “green zone”
ends at 1.6% for the 1% level.

20 financial assets 30 German stocks
VaR methodology 1% 5% 1% 5%

Historical Simulation 2.02 6.01 1.78 6.75
Variance-Covariance 2.42 5.55 1.56 4.08
RiskMetrics / IGARCH 2.02 5.23 1.63 5.27

GH-based approaches
Sym. hyperbolic 2.42 5.81 1.56 4.38
Sym. NIG 1.70 5.68 1.41 4.30
Sym. hyperbolic long-term ζ 2.22 5.62 1.48 4.23
Sym. NIG long-term ζ 1.44 5.75 1.26 4.38
Hyperbolic IGARCH 2.02 5.23 1.63 5.27
NIG IGARCH 1.63 5.42 1.11 5.42

Tail-emphasized estimation of the shape parameter
Sym. hyperbolic 2.29 5.62 1.48 4.15
Sym. NIG 1.89 5.68 1.26 4.38
Sym. hyperbolic long-term ζ 2.22 5.62 1.56 4.08
Sym. NIG long-term ζ 1.44 5.75 1.56 4.15
Hyperbolic IGARCH 2.02 5.23 1.63 5.27
NIG IGARCH 1.63 5.42 1.63 5.27

Dimension reduction using PCA, three Factors
Historical Simulation - reduced 2.02 6.14 1.71 7.20
Variance-Covariance 2.68 5.49 1.34 4.53
Sym. hyperbolic 1.63 5.55 1.11 5.27
Sym. NIG 2.16 5.88 0.89 5.34
Sym. hyperbolic, tail-emph. est. 2.09 5.49 1.11 4.60
Sym. NIG, tail-emph. est. 2.09 5.62 1.11 4.67

Reduction to one dimension
Hyperbolic 1.37 5.29 1.19 4.97
NIG 1.31 5.49 1.11 5.04
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• GH-IGARCH: The results are superior to the normal IGARCH approach. Note, that we
have applied the shape parameter ζ estimated under the assumpiton of independence—
better results may be obtained for an appropriately estimated ζ.

• Normal inverse Gaussian distributions are always superior at the 1% level to the corre-
sponding approaches with hyperbolic distributions.

This is in accordance with the estimation results in Table 4.6, where NIG distributions
have a higher likelihood or a lower squared distance of quantiles respectively.

• Tail emphasized estimation: We observe an improvement to the calculation of VaR
based on likelihood estimates for the less sophisticated approaches (Sym. hyperbolic
and Sym. NIG) whereas the differences in the long-term ζ and in the GH-IGARCH
cases are only small and unsystematic.

• Dimension reduction by PCA: The reduction of dimensions to three factors yield a
further improvement to standard an GH based risk-management approaches in the case
of the 30 German stocks. The results in the case of the 20 mixed assets are not that
good.

From Figure 4.2 it is clear that the same number of factors explains only a smaller
portion of the variance in the case of the 20 dimensional data set in comparison to the
more homogenous 30 German stock data set. Unfortunately, an increase in the number
of factors for the 20 financial assets does not change the results substantially. Recall,
that there is no canonical way to choose the number of factors.

The principal advantage of this approach is, that it allows to get better insights into
the origins of market risk.

• Combination of dimension reduction and tail-emphasized estimation: The results are
mixed, no substantial improvement to the dimension reduction with likelihood esti-
mation is observed.

• Reduction to one dimension: This approach corresponds to the approach in the middle
column of Table 5.1. Obviously we obtain the best results of all approaches with this
method. In particular, the experiment yields the best results for the 20-dimensional
data set and the 1% level of probability.

Summarizing the results, using the NIG distribution for high-dimensional data sets in con-
junction with a long-term shape parameter ζ, which may be obtained via tail-emphasized
estimation and an up-to-date covariance matrix seems to be a reasonable approach from a
statistical and numerical point of view. Of course, it is favourable to estimate the covari-
ance matrix also following the IGARCH approach. Stochastic volatility models like GARCH
have the potential to avoid serial correlation in the exceedances—a topic which we have not
examined further in this study. Because of the recursion formulae (5.10) and (5.11) the NIG-
IGARCH approach is computationally not demanding. Since NIG distributions are closed
under convolution, it is also straightforward to compute the 10-day distributional forecast
from one-day forecasts.

139



calendar days

D
M

0 50 100 150

0

50

100

150

200

250

300

Bayer: Stock and 3 Calls

April 7 -- September 14, 1993 / #obs= 109

Bayer Stock

K=280, 9/1993

K=300, 9/1993

K=300, 12/1993

-0.5 0.0 0.5 1.0 1.5
.001

0.01

0.1

1.0

5.0

Bayer Call Option: K= 300, 9/1993

lo
g-

de
ns

ity

-0.2 -0.1 0.0 0.1 0.2

0.
01

0.
10

1.
0

5.
0

Bayer: Stock and 3 Calls

Weights in DM: Stock 0.67  Calls 0.11 / 0.11 / 0.11 

Empir
Normal
Hyp
NIG

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ξ

χ

λ = −0.5

Bayer: Stock and 3 Calls

Portfolio
Stock
280, 9/93
300, 9/93
300, 12/93

Figure 5.12: Bayer stock and three call options, April 7 – September 14, 1993.

5.7 Nonlinear Portfolios, GH Simulation Method

In view of the leverage effect of options it is necessary to pay particular attention to nonlinear
portfolios and to develop appropriate statistical methods.

First insights into the behaviour of portfolios with nonlinear risk are obtained by looking
directly at the return distribution of an example portfolio with options. Figure 5.12 shows the
paths of the stock and the three options (top left), the distributions of returns of one call (top
right) and the whole nonlinear portfolio (bottom left). The last graph contains the shapes of
estimated NIG distributions. Obviously, as a result of the leverage effect, return distributions
of derivatives have a higher kurtosis and they live on a different scale. Furthermore, the NIG
distribution estimated for the portfolio is skewed in contrast to NIG distributions estimated
for linear portfolios. See the NIG shape triangle for the 30 German stocks in the DAX in
Barndorff-Nielsen and Prause (1999).

The calculation of risk measures is often based on a linear approximation. For instance,
the latter approach is used for assets with currency risk or for portfolios with options (Bühler,
Korn, and Schmidt 1998). One drawback of the linear approximation is that the leverage effect
of derivative assets is often not modelled in a sufficiently realistic way. This may lead to a
fatal underestimation of risk.
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We propose to use a full-valuation approach to calculate risk-measures. Wirth (1998) has
shown that GIG distributions provide a realistic model for the marginal distribution of the
VDAX, the volatility index of the former Deutsche Börse AG, Frankfurt. Therefore, mixing
GIG distributions can be used as an estimate for the volatility index of the market. In Chap-
ter 3 we have mentioned some approaches to construct stochastic processes with an adequate
correlation structure and GIG marginal distribution. This allows for a further refinement
of our approach. In the iid case one can sample w ∼ GIG easily since the distribution is
univaritate. The product w∆ is then used as a covariance matrix to generate normal random
variates describing the asset returns. This mixing yields multivariate GH random variates.
Consequently, we obtain a realistic return sample and the corresponding volatility sample.
Large random samples can be obtained efficiently and be used to simulate the return distri-
bution of nonlinear portfolios. This allows to compute the return distribution of a portfolio
that includes derivatives in a fast and more accurate way than with a linear approximation.
Note, that the right choice of the option pricing model is also important (Eberlein, Keller,
and Prause 1998): The model risk caused by the choice of an unrealistic option pricing model
is often neglected.

Another important aspect of the Monte-Carlo simulation of nonlinear portfolios is, that
it allows to overcome the linear approximation. The advantages are stressed in the following
example: Assume that a trader builds up a straddle portfolio by writing a call with strike
K2 > S0 and writing a put with strike K1 < S0, where S0 is the current asset price. This
results in a terminal payoff function linear in the neighbourhood of S0. See Figure 5.13 for
the payoff function of this portfolio.

stock price0 K1 S0 K2

 

Portfolio
Call
Put

payoff

Figure 5.13: Payoff function of a straddle.

Large changes in the value of the asset price lead to possibly unbounded losses. These
risks are not recognizable with standard methods based on linear approximations. The GH
simulation method described above allows to forecast the return distribution of the whole
portfolio in a more exact way, which is not limited by the assumption of linearity. A portfolio
with a similar payoff function led to the bankruptcy of the Barings Bank.
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Although unethical behaviour may always lead to severe problems, appropriate math-
ematical methods may prevent that a single trader risks the capital of a whole bank (see
Rawnsley 1995, and Jorion 1997, Section 2.2.1 for further details). Moreover, the proposed
GH simulation approach takes also the risk of frequently observed volatility changes into ac-
count. These changes are potentially hazardous if the portfolio includes derivatives and is to
be sold before expiration.

5.8 Conclusion

In the last chapter we have applied generalized hyperbolic distributions to model risk inherent
in financial markets. GH distributions improve markedly the modelling of risk. Moreover, the
application is only a little more computer-intensive than models based on normal distributions.

To implement risk-measurement systems based on GH distributions one should choose
a subclass and may use the algorithm proposed in Section 4.4 to estimate parameters. By
Lemma 5.4 the computation of risk-measures for linear portfolios reduces to the univariate case
and for nonlinear portfolios the GH simulation method based on the mixing GIG distribution
(see Section 4.6) is straightforward. Sophisticated volatility estimation methods are easy to
incorporate by replacing the variance estimate in (5.6), (5.7) or (4.19).
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Appendix A

Data Sets and Computational
Aspects

A.1 Data Sets

The empirical analysis is based on the following data sets:

DTB The tests of option pricing models were based on intraday data sets of options from the
Deutsche Terminbörse Frankfurt (since autumn 1998 Eurex Germany). The processing
of the data is described in detail in Section 2.1. See also www.exchange.de.

FWB Returns of stock and stock indices were calculated from daily data of the Frankfurter
Wertpapierbörse. We also use intraday data from the FWB to synchronize the prices
of the option and the underlying. See Section 2.1 and www.exchange.de.

HFDF96 Olsen & Associates (1998) released high frequency data in preparation for the
Second International Conference on High Frequency Data in Finance (HFDF II), held
in April 1998.

The emphasis of the second conference was however on multivariate high frequency
effects and hence the data set released consists of 25 different FX spot rates, 4 spot
metal rates, 12 series of Eurofutures contracts, and 2 series of indices.

These data were collected by Olsen & Associates in the period from January 1, 1996
GMT to December 31, 1996 GMT using O&A proprietary real-time data collection
software. More information is available on the www-page www.olsen.ch.

NMZF The data sets are available under the address
www-public.tu-bs.de:8080/∼y0003876/ (nmzf@gmx.de).

NYSE Indices The indices consist of a Composite Index of all common stocks listed on
the NYSE and four subgroup indices: Industrial, Transportation, Utility, and Finance.
They provide a comprehensive measure of the market trend for the benefit of many
investors who are concerned with general stock market price movements.

The indices are basically a measure of the changes in aggregate market value of NYSE
common stocks, adjusted to eliminate the effects of capitalization changes, new listings
and delistings. The market value of each stock is obtained by multiplying its price per
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share by the number of shares listed. The aggregate market value, which is the sum of
the individual market values, is then expressed relative to a base point market value.
The base value was set at 50.00 on December 31, 1965 because this figure was reasonably
close to the actual average price of all common stocks at that time.

More information is available from www.nyse.com.

A.2 Computational Aspects

In the following section we list the algorithms used for the numerical evaluation of the various
models, densities and formulae. We explain the methodology for estimation and numerical
evaluation in the text at the place, where the problem arises. We do not include all the
computer codes, because it would multiply the number of pages. A German documentation
of the programs is given in the manual Eberlein, Ehret, Lübke, Özkan, Prause, Raible, Wirth,
and Wiesendorfer Zahn (1998) Freiburg Financial Data Tools.

Univariate Model

• Densities, probability and quantile functions, moments for the GIG, GH, NIG, and
hyperbolic distribution.

• Estimation procedures for the univariate generalized hyperbolic distribution:

– for fixed and arbitrary λ. In the case of the hyperbolic and NIG distributions the
simpler representations of the GH densities are used to increase the speed of the
algorithms.

– for different metrics: L1, L2, Kolmogorov distance and Anderson & Darling metric.

• Calculation of prices in the generalized hyperbolic and the hyperbolic model by use of
Fast Fourier Transforms. Prices in the NIG case are computed using the convolution
semigroup property. A description of each step in the calculation is given in Section
1.12.

• Inversion of pricing formulas with respect to volatility by the Newton iteration resp. re-
fined bracketing methods.

• Algorithms for the estimation of implicit, historical and realized volatility in rolling
windows and application of these “vola” estimates to intraday option data.

We want to remark that most algorithms are implemented efficiently to allow interactive
use of the GH model. This is especially demonstrated by the hyperbolic option calculator
available under www.fdm.uni-freiburg.de/UK/.

Ornstein-Uhlenbeck type Volatility Model

• Estimation of the autocorrelation parameter,

• Simulation of integrated volatilities,

• Prices in the stockprice model with a volatility process of IG-OU type and superpositions
of independent IG-OU type volatility processes:
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– by saddlepoint approximation,

– and by integration over the simulated integrated volatility (also for Gamma-OU
type processes).

• Estimation of the statistical martingale measure for the IG-OU and Gamma-OU volatil-
ity model.

Multivariate Model

• Calculation and tests for the multivariate skewness and kurtosis introduced by Mardia
(1970).

• Estimation algorithms for symmetric multivariate GH distributions:

– Pseudo likelihood estimation for fixed λ. In the case of hyperbolic and NIG distri-
butions the simpler versions of the density are used.

– Tail emphasized estimation.

• Risk measures for generalized hyperbolic distributions and those for the standard ap-
proaches.

• Backtesting of risk measures.

The algorithms for the multivariate GH model are compiled in a demonstration program to
show that this approach allows a quick estimation in particular for high-dimensional financial
data. (See also Prause (1999b).)

GH Package

Some of the C functions for the GH model are also collected in a package which will be
part of a larger program for financial analyses (produced by Insiders GmbH, Wissensbasierte
Systeme, Wilhelm-Theodor-Römheld-Straße 32, D–55130 Mainz).

Data Handling and Visualization

A careful design of classes in Splus leads to a significant reduction of complexity in the
programs. Especially the various parametrizations of the generalized hyperbolic distribution
can be handled in an intuitive way.

In the context of an object-oriented language “methods” are general functions which can
be applied to a particular object without bothering about details of the implementation.
Consider a user who wants to plot the GH density estimated for a particular return data set.
The estimates of the distribution are saved in an Splus object, e.g. returns.gh which is an
object of the gh-class. The command to plot the density is simply plot(returns.gh). The
computer chooses the appropriate algorithm for the method plot and and an object of the
the class gh. The algorithm itself usually contrasts to the simplicity of the command. In the
example above, the programm has to call C functions to calculate the density and to apply
adapted graphical routines. This concept is also called “information hiding”, i.e. a user need
not to know all tedious technical details.
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• S-class gh for the multivariate generalized hyperbolic distribution. The object-oriented
approach in Splus allows to construct a class which contains univariate as well as multi-
variate generalized hyperbolic distributions. The NIG, GH, hyperboloid and hyperbolic
distributions are contained as special cases in an unified framework.

• Splus data structures based on the object oriented approach in Splus for intraday stock
and intraday option data sets and for daily time series.

• Visualisation tools for arbitrary parameters in option data sets. We rely on the same
object-oriented approach described above.

Last but not least we want to remark, that all data structures and algorithms are Y2K
compliant.
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Appendix B

Modified Bessel Functions

We summarize some properties of modified Bessel functions which are useful for the work
with generalized hyperbolic distributions.

Definition B.1. Kλ(x) and I±λ(x), x ∈ Cl are solutions of the differential equation

x2 d
2w

dx2
+ x

dw

dx
− (x2 + λ2)w = 0, (B.2)

Remark B.3. Kλ(x) and I±λ(x) are regular function of x ∈ Cl throughout the x-plane cut
along the negative real axis and for fixed x 6= 0 an entire function. Kλ(x) tends to zero as
|x| → ∞ in the sector |arg x| < π/2 and for all λ. Kλ(x) and Iλ(x) are real and positive when
λ > −1 and x > 0.

Reference. Abramowitz and Stegun (1968, Equation 9.6.1)

Theorem B.4 (Integral Pepresentation).

Kλ(x) =
1
2

∫ ∞
0

yλ−1 exp
(
−x

2
(
y + y−1

))
dy, x > 0 (B.5)

Reference. Barndorff-Nielsen and Blæsild (1981, App. 1)

Theorem B.6 (Basic Properties).

Kλ(x) = K−λ(x) (B.7)

Kλ+1(x) =
2λ
x

Kλ(x) + Kλ−1(x) (B.8)

Kλ+ε > Kλ(x) for λ > 0, ε > 0, x > 0 (B.9)

Reference. Barndorff-Nielsen and Blæsild (1981, Equations A1.1-A1.3) and Lorch (1967, In-
equality B)

Theorem B.10 (Relation of Kλ and Iλ, Asymptotic Properties).

Kλ(x) =
π

2
1

sin(πλ)
(I−λ(x)− Iλ(x)) (B.11)

Kλ(x) ∼ Γ(λ)2λ−1x−λ as x ↓ 0 (B.12)
K0(x) ∼ − lnx as x ↓ 0 (B.13)

Kλ(x)
Kλ+ε(x)

↓ 1 for 0 < x ↑ ∞, ε > 0, λ ≥ 0 (B.14)
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Reference. Barndorff-Nielsen and Blæsild (1981) and Lorch (1967, Equation 14)

Theorem B.15 (Series Representation for λ = n+ 1/2, n ∈ IN).

Kn+1/2
(x) =

√
π

2
x−1/2 e−x

(
1 +

n∑
i=1

(n+ i)!
(n− i)! i! (2x)−i

)
(B.16)

K−1/2(x) = K1/2
(x) =

√
π

2
x−1/2 e−x (B.17)

K3/2(x) =
√
π

2
x−

1/2 e−x
(

1 +
1
x

)
(B.18)

Reference. Barndorff-Nielsen and Blæsild (1981, Equation A1.5)

Theorem B.19. For t > 0 and λ ≥ 0 holds

Kλ−1(x)
xKλ(x)

=
∫ ∞

0

gλ(t)
x2 + t

gλ(t) =
2

π2t(J2
λ(
√
t) + Y 2

λ (
√
t))

> 0

where Jλ and Yλ are Bessel functions of first and second kind.

Reference. Grosswald (1976, Corollary 4).

Theorem B.20 (Derivatives).

K′0(x) = −K1(x) (B.21)

K′λ(x) = − 1
2

(Kλ+1(x) + Kλ−1(x)) (B.22)

= − λ

x
Kλ(x)−Kλ−1(x) (B.23)

(lnKλ(x))′ =
λ

x
−Rλ(x) (B.24)

(ln Kλ(x))′′ = Sλ(x)− Rλ(x)
x
− λ

x2
(B.25)

Reference. Abramowitz and Stegun (1968, Equation 9.6.27) and Barndorff-Nielsen and
Blæsild (1981, Equations A1.3, A1.16, A1.17)

Derivatives with respect to Order

Reference. Abramowitz and Stegun (1968, Equations 9.6.42-46)

Definition B.26 (Rλ and Sλ).

Rλ(x) :=
Kλ+1(x)
Kλ(x)

, x > 0 (B.27)

Sλ(x) :=
Kλ+2(x) Kλ(x)−K2

λ+1(x)
K2
λ(x)

, x > 0 (B.28)
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Reference. Barndorff-Nielsen and Blæsild (1981, App. 1)

Theorem B.29 (Properties of Rλ und Sλ).

R−λ(x) = Rλ−1(x)−1 (B.30)

Rλ(x) =
2λ
x

+ R−λ(x) (B.31)

R′λ(x) =
Rλ(x)
x
− Sλ(x) (B.32)

R−1/2(x) = 1; R1/2(x) = 1 +
1
x

; R−3/2 =
x

x+ 1
(B.33)

R−λ(x) =
1

Rλ−1(x)
=

2
π2

∫ ∞
0

xdy

y(J2
λ(
√
y) + Y 2

λ (
√
y))(y + x2)

(B.34)

for λ ≥ 0, x > 0

lim
x↓0

Rλ(x) =


∞ if λ > −1/2
1 if λ = −1/2
0 if λ < −1/2

(B.35)

Reference. Barndorff-Nielsen and Blæsild (1981, pp. 38–39)

Remark B.36. Lorch (1967) proved that Rλ is decreasing if and only if λ > −1/2 and
increasing if and only if λ < −1/2.
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Appendix C

Fourth Parametrization of GH
Distributions

For the implementation of GH pricing models in real world applications we recomment the
use of the 4th parametrization. Then one can restrict to the parameters λ, α, β , δ, µ or
λ, α, β , σ, µ, the volatility σ denotes the standard deviation of the distribution. To compute
a density or a pricing formula, one simply has to calculate δ with formula (2.1). The advantage
is, that for a user, who is not familiar with details of GH distributions a variance parameter
and some shape parameters are less confusing than the rescaling procedure. Moreover, from
the representation of the densities in the fourth parametrization the role of the scale and
location parameters δ resp. µ is obvious: in all formulae only the term (x−µδ ) and not x alone
appears.

Definition C.1. The generalized hyperbolic (GH) distribution is in the univariate case given
by the following Lebesgue density

gh(x;λ, α, β , δ, µ) = a(λ, α, β , δ)
(

1 + (x−µδ )2
)(λ− 1

2
)/2

(C.2)

×Kλ−1/2

(
α

√
1 + (x−µδ )2

)
exp

(
β (x−µδ )

)
a(λ, α, β , δ) =

(α2 − β 2)λ/2
√

2π αλ−1/2 δKλ

(√
α2 − β 2

) (C.3)

where Kλ is a modified Bessel function and x ∈ IR. The domain of variation of the parameters
is µ ∈ IR and

δ ≥ 0, |β | < α if λ > 0
δ > 0, |β | < α if λ = 0
δ > 0, |β | ≤ α if λ < 0.

Definition C.4. For λ = 1 we obtain the hyperbolic distribution (HYP)√
α2 − β 2

2δα K1(
√
α2 − β 2)

exp
(
−α
√

1 + (x−µδ )2 + β (x−µδ )
)

where x, µ ∈ IR, 0 ≤ δ and 0 ≤ |β | < α.
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Definition C.5. For λ = −1/2 we get the normal inverse Gaussian (NIG) distribution:

α

δπ
exp

(√
α2 − β 2 + β (x−µδ )

) K1

(
α

√
1 + (x−µδ )2

)
√

1 + (x−µδ )2

x, µ ∈ IR, 0 ≤ δ and 0 ≤ |β | ≤ α.

Proposition C.6. The generalized hyperbolic distribution has the following mean and vari-
ance

EX = µ+
δβ

ζ

Kλ+1(ζ)
Kλ(ζ)

(C.7)

V X = δ2

(
Kλ+1(ζ)
ζ Kλ(ζ)

+
β 2

α2 − β 2

[
Kλ+2(ζ)
Kλ(ζ)

−
(

Kλ+1(ζ)
Kλ(ζ)

)2
])

(C.8)

where ζ =
√
α2 − β 2. In (C.8) the term in the round brackets is scale- and location-invariant.
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