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We report on our general experience and on some test calculations with quasi-random numbers of the Halton type applied
to Monte Carlo integration in several (4-8) dimensions. Compared with the traditional use of (pseudo-)random numbers we
find that, at a prescribed level of accuracy, at least one order of magnitude in computing time may be saved even for a step
function integrand.

1. Introduction

The advent of fast, inexpensive workstations
has turned multidimensional integration by the
Monte Carlo technique into a feasible method
even for more than trivial accuracies. In a typical
case one would use a computer with 1 Mflops
(million floating-point operations per second),
need 1000 flops (floating-point operations) to de-
cide whether a random point belongs to the in-
tegration volume, have a hit rate of 1 in 1000, and
run until 10 000 hits have been reached. This would
mean 3 hours of computation (which is accepta-
ble), and common wisdom would expect an accu-
racy of the order of 1% for the result, if the
integrand is neither oscillating nor too long-tailed.
(The error formula can be found in eq. (2) below.)

However, this accuracy can be obtained at least
an order of magnitude faster, alternatively, an ac-
curacy at least three times better can be obtained
in the same computing time, if one uses quasi-ran-
dom numbers instead of the traditional pseudo-
random ones. Both kinds of numbers, or better:
multidimensional point sequences, are uniformly
distributed in some domain, generally the unit
hypercube. But, whereas the latter are, in addition,
as uncorrelated as possible (true random numbers
would have no correlation whatsoever), the former

are quite correlated, and chosen in such a way that
new numbers do also uniformly fill the gaps be-
tween the old ones. An exact measure for this
property is the discrepancy of the point set (see
e.g. ref. [1]), which should be as small as possible.
This deficiency of pseudo-random numbers has
nothing to do with a further disadvantage of
pseudo-random generators of the linear congruen-
tial type: random vectors produced by them " fall
mainly in the planes" [2], i.e. lie on certain, not so
random, hyperplanes.

Quasi-random number sequences of several
kinds are well known in mathematics since at least
three decades, and have, e.g., been treated in the
books by Stroud on Multiple Integrals of 1971 [3],
and by Davis and Rabinowitz on Numerical In-
tegration of 1975 [4]. Their merits are, despite ref.
[5], not too well known in the physics community.
We ran into them in 1987, when we had started a
project in which accurate integrals of the classical
phase-space volume of molecular motion were
needed [6]. After finding out that one could save
one order of magnitude in computer time by their
use, we have used them routinely.

In this short paper, we want to report on our
experience mostly with one kind of quasi-random
numbers: the type proposed by Halton [7] ("Hal-
ton numbers" for short), and on some recent test
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calculations. We consider the question, which type
of quasi-random numbers is the best one, still as
open, because the answer in practice depends on
many parameters (dimension of the integral, func-
tion to be integrated, shape of the integration
domain, intended accuracy, type of computer),
and a thorough study exercising all these parame-
ters was not our goal, and has still to be done. The
order of the paper is as follows: in section 2 we
describe our physical problem. In section 3 we
discuss the generation of Halton numbers, and
include the kernel of the FORTRAN program we
use. Section 4 shows results for several examples.
We conclude in section 5 with some general re-
commendations for this type of multidimensional
integration. Other recent papers with similar topic
are refs. [8-10]. The integration of molecular phase
space with quasi-random numbers of the Korobov
type has been tested in ref. [11]. Pseudo-random
numbers have been reviewed in refs. [5,12].

2. Integration of the classical phase space

In molecular dynamics the classical phase-space
volume for a motion of s = 2d degrees of freedom
at some fixed energy E, and sometimes also fixed
total angular momentum J is often needed. It
provides, e.g., a semi-classical approximation of
the number of quantum states, N(E, J), of a
system which is described by its classical Hamilto-
nian H(p, q). N(E, J) is obtained by dividing
the phase-space volume T(E, J) by the size h s of
the quantum cell. The state density is p(E, J)=
dN(E, J )/d E, a differentiation which can easily
be done numerically by locally fitting a power law
to N(E, J). An application where values of N(E,
J) and p(E, J) are needed is the computation of
the unimolecular decay rate of an activated mole-
cule. This is given by RRKM-theory [13] as k(E,
J) = N $ (E, J )/h p* (E, J), where denotes
properties of the so called " transition state", and
* those of the "activated molecule". Another ap-
plication, where uniformly distributed points in
d-dimensional phase space are needed, are trajec-
tory calculations which one wants to start with
microcanonical initial conditions [14]. We will re-
port on this elsewhere.

Our main object of calculation has been the
highly excited molecule H -31- , and its transition
state for decay into F ++ H 2 . The potential-en-
ergy surface for this molecule, hence the Hamilto-
nian for its motion are well known. The integral
needed is

r(E' Jo - II... f f0(E— H(P, 9))

xS(J — Jo) dpi d4i ... dPs d9s, (1)

where 0( • ) is the unit step function (0 =1 if the
argument is > 0, else e = 0), and H(p, q) the
Hamiltonian of the system. The 6-function fixes J
to the given value Jo. In case of the transition
state, H(p, q) must also be taken at fixed value
le of the reaction coordinate, while PR must not
be integrated. The dimension d of the original
integral is thus 12 and 10 for activated molecule
and transition state, respectively. Since Monte
Carlo integration is very ineffective compared with
analytical, or standard one-dimensional numerical
integration, it is always advisable to reduce the
dimension of the Monte Carlo step as much as
possible. We did this by pre-integrating analyti-
cally four dimensions. For the activated molecule
we further integrated the step function O(E — H)
over PR , which means we solved the equation
H( PR , R, p2 , q2 , ...) = E for PR , and used PR( R ,
p2, q2, ... ) as the Monte Carlo integrand, with the
additional benefit that the integrand is now a
continuous function. Finally, we did all Monte
Carlo integrals at fixed reaction coordinate R, and
post-integrated over R numerically, except for the
transition state, where R is constant anyhow. The
Monte Carlo integral had thus d= 6 dimensions.

The accuracy of this Monte Carlo integration
can, of course, not be assessed by comparison with
exact values, since these are unknown. Therefore
we divided the integration into groups of 10 par-
tial computations and monitored their variance,
a 2 . In each group the number of Monte Carlo hits,
Nhit 9 was prescribed (not the number of trials,
Ntrial, which is, however, nearly proportional to

Nhit ). Variation of Nhit allows one to determine
the law by which the standard deviation a de-
pends on Nhit , and to adapt the calculation to a
prescribed level of accuracy. Had we used
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pseudo-random numbers, then Q/' should be
C1/ hit  where for a step function integrand and
large Nh,t, c1 is given by (e.g. ref. [4])

c1 = (1 – Nh„/Ntnal ) 1/2•	 (2)

Since there is no proof that in the quasi-ran-
dom case a is an unbiased statistics, it is im-
portant to check the procedure by examples, whose
results are also known analytically. Therefore we
integrated also two model systems: a nonrotating,
collinear, anharmonic triatomic "molecule" with
d= 4, and the hypersphere with d= 6. The latter
can be thought of as the phase-space volume of
three uncoupled harmonic oscillators, and its
volume is ierr 3 for unit radius. For the former the
Hamiltonian was

H= z(Pi + p2) _ kP1P2 + (1– e—q92

+(1— e —g2)2,

which leads to a phase space volume of

r( E ) — 11/1±k[1
-(1– E) i/z 2 2 E 

X aresin (2 E E)1,

valid for 0 _< E _< 1. In these examples we cannot
only use the standard deviation from groups of
computations, but also the true error to determine
the accuracy and efficiency of the method.

3. Generation of Halton numbers

The nth point in a Halton sequence [7] is a
vector, whose components are Halton numbers,
h(p ), to different bases p. (The numbers them-
selves are originally due to Van der Corput [15]).
The p's should be mutually prime, and as small as
possible (especially for small N h,t ). The ideal pro-
cedure to produce h n (p) is to write n as number
to base p, i.e. as p1 p2 p3 ... pk .0, and to invert this
to the fraction h n = 0. Pk Pk —1 • • • P2 Pi . On most
computers this is hard to program even in assem-

bler code. However, Halton gave the following
short algorithm, which produces h n + 1 from h,,:

Y : =Y/P
	 (s)

goto L1
else h n+1 : = (p + 1)y – x.

We have originally implemented this algorithm
with floating-point (REAL) numbers, and since
our tests showed its superiority compared with a
pseudo-random number generator of the con-
gruential type, we have used it in all our calcula-
tions until recently. However, it is not without
problems. On some computers for some bases p
we got infinite loops, so we had to test for "good"
bases. The source of such problems is the " _< "
relation in line 3 of eq. (5). Since REAL numbers
are approximations to the true, p-ary fractions,
x _< y is not evaluated correctly in the computer. It
is easy to see how this comes about by following
the algorithm on a pocket calculator. On a HP
11C, e.g., the Halton numbers to base 3 are not 0,
1/3, 2/3, 1/9, 4/9 ... , but (since 1.0 –
2.0 * 0.333 ... > 0.333 ...) they are 0, 1/3, 2/3, e,
1/3+€, 2/3+E, 1/9+E, 4/9+€,... with €
10 -9. So, the Halton numbers appear, but with
some near-repetitions before the error "heals out".
Under unfortunate circumstances infinite loops
can occur. Double precision does not improve this
situation; on the contrary, since E is now of order
10 -16 , things become worse. In his published al-
gorithm of 1964 [16], which we found only re-
cently, Halton solves this problem by introducing
a small "bandwidth" E, within which the in-
equality x _< y in the above program has to be
fulfilled, i.e. the if-clause becomes x <y + E. If
the mantissa length of the REAL numbers is
known, a judicious choice of E (different for each
p!) can produce correct sequences. The price paid
is a nonportable generator.

It is, therefore, preferable, to produce a correct
sequence of Halton numbers by programming ra-
tional numbers using a pair of INTEGERs. The
following algorithm implements this (and it is

(3)

(4)

y. =1/p
x:= 1 –hn

L1 If x _< y then
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actually not much slower than the one using
REALs on many computers):

SUBROUTINE HALTON
COMMON/N/ N1, NRA1, NRB1
COMMON/R/ RS1
NXA1 = NRB1 – NRA1

C	 Special case:
IF (NXA1 .EQ. 1) THEN

NRA1 = 1
NRB1 = NRB1 *N1
GOTO 19

END IF
C	 General case:

NXB1 = NRB1/N1
10	 IF (NXA1 .LE. NXB1) THEN	 (6)

NXB1 = NXB1/N1
GOTO 10

ELSE
NRA1 = (1 + N1)*NXB1– NXA1

END IF
19 RS1 = REAL(NRA1)/REAL(NRB1)

RETURN
END

The initialization is:
NRA1 = 0
NRB1 = 1
N1 = p, the base one wishes to use.

This implementation is fully portable, and
should produce identical results on any computer.
It avoids early integer overflow, and works up to
sequence lengths of at least 231/pmax on a 32-bit
computer, where ',max is the largest base em-
ployed. (In detail: it is the variable NRB1 which
overflows first when reaching 2 31 . NRB itself
jumps from p k to pk+1 when Ntrial reaches pk.
Note, however, that the REAL numbers RS1 do
repeat on most computers after – 10' trials, since
there are generally only 223 8 X 10 6 different
mantissas available. This could easily be remedied
by typing the variable RS1 in double precision.)
So we feel that at the moment the algorithm
shown above suffices for all practical problems. If
still larger numbers of points were needed, a data
type INTEGER * 8 would be obligatory or must
be simulated. The time for a single CALL to
HALTON is 19 µ s on a PC running at 20 MHz
with processors 386/3167, 36 µs on an IBM RT,

4.2 µs on an IBM RISC Powerstation 320, and 3.6
µs on an IBM 3090-180. This is less than a CALL
to RANECU (implemented according to ref. [12]),
which is the pseudo-random number generator
used for our comparisons.

4. Results

We present results for three sample calculations
of increasing complexity: - First, the integration of
the 6-dimensional hypersphere, which one can
think of as the phase-space volume of three un-
coupled harmonic oscillators. Second, a computa-
tion of the phase-space volume of the nonrotating
collinear "molecule" described by the Hamilto-
nian, eq. (3), and finally an example from our
production runs, which compute the phase-space
volume of the activated f1 -3' -molecule.

The first example is the unit hypersphere in 6
dimensions, whose volume is V6 = 6?r 3. The in-
tegration domain is the 6-dimensional hypercube
with side length 2 and volume 64, so the probabil-
ity of a hit is 8.075%. (Incidentally, the general
volume ratio of d dimensional hypersphere and
enclosing hypercube is (4 7) d/2/F(2 d + 1), which
asymptotically behaves as d - (d + 1)/, That shows
that in high-dimensional Monte Carlo integrations
the probability of a hit is expected to drop more
than exponentially with increasing d.)

Two integration formulas were used, either

6 = IIIIIIa(
– r6

2 ) drl dr2 dr3 dr4 dr5 dr6,	 (7a)

where 0(•) is the unit step function, and the
Monte Carlo integral has 6 dimensions, or

6 =1III1 (1–ri –r2 –r3 –r4 –r2)
1/2

X dr1 dr2 dr3 dr4 dr5 ,	 (7b)

where the step function has been pre-integrated
over r6 , and a Monte Carlo integral in 5 dimen-
sions with a continuous integrand is left over.
Figure 1 and 2 show the results. In each case an
integration with a prescribed number of hits, Nh,t,

1 –rl2 – r22 –r32 –r42 – rs
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Fig. 1. Monte Carlo integration of the fix-dimensional hypersphere with a step function integrand (eq. (7a)): Each integration with a
given number of hits, NI, is repeated 100 times (for Nh,t - 22 500) or 10 times (for Nh, t > 22 500). (a) The averaged relative standard
deviation (in %) from these sets is plotted against N h, t : + = pseudo-random, x = quasi-random (Halton), p = quasi-random
(Sobol). The upper straight line is the result expected for the pseudo-random case from eq. (2), viz. 0.959 Nh,° .5°°, it coincides
practically with a straight line fitted to the crosses, which has exponent a 2 = –0.527. The lower line is a fit to the results with Halton
points, the exponent is a 2 = – 0.565. The Sobol fit (not shown) has a 2 = – 0.637. (b) Same as above, except that the rms-average of
the true relative errors of the integration has been plotted. The fitted exponents are: – 0.474 (pseudo-random), – 0.574 (Halton), and
– 0.642 (Sobol). The similarity between figs. (a) and (b) is expected, since the standard deviation is a consistent estimate for the error.     
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1000	 10000	 100000 N
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1 00	 10000	 100000 N
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Fig. 2. Monte Carlo integration of the six-dimensional hypersphere after one pre-integration, which makes the Monte Carlo integral
five-dimensional _and the integrand continuous (eq. (7b)): As in fig. 1 except for the upper straight line, which is now (from an
equation analogous to eq. (2)) 1.011 Nh, °.5°°, and the fitted exponents, whose values are: (a) – 0.481, – 0.682, – 0.755, and (b)

– 0.480, – 0.690, and – 0.764.
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was repeated with new random numbers, 100 times
for Nh,t between 400 and 22 500, and 10 times for
the larger values of N h, t . The relative standard
deviation of the ensemble, a/F, and the rms-aver-
ages of the true errors 8/F are plotted in figs. la
and lb, and 2a and 2b, respectively. The random
numbers were drawn from the pseudo-random
number generator RANECU [12,17], the Halton
generator described in section 3 above, and in this
example also from the Sobol-type quasi-random
number generator described in ref. [10]. We also
tried Richtmyer sequences (not plotted), but
notwithstanding their theoretical merits [1,4] they
were little better than pseudo-random numbers
under our conditions. A cursory test with the
Korobov numbers from ref. [3] was also disap-
pointing.

In all three cases integrated according to eq.
(7a), the dependence of the deviations on Nh,t fits
very well to a power law. Exponents are given in
the figure captions. For the integration with
pseudo-random numbers, the observed exponent
-0.527 fits well to the expected one, — 0.500. How-
ever, also the quasi-random method does not show
a too different power law. This seems to be due to
the fact that we integrate a step function. We think
one can prove (along the lines indicated also in
ref. [10]), that any Monte Carlo method used to
integrate a step function should show an error
proportional to N1/2-1/2d (i.e.N-0.583 for d= 6).
We do, however, not know of a formal proof in
the literature. This power law is virtually indis-
tinguishable from N -1/2 for d> 6. Only if one
integrates smooth integrands one would expect the
quasi-random method to have a different func-
tional dependence on N h, t , which the literature [1]
gives as (ln Ntnal ) d/Ntnal • A glimpse of this im-
provement can perhaps be seen in figs. 2a and 2b,
which give the same results as above integrated
according to eq. (7b), i.e. with a continuous (but
still not smooth) integrand. But even here a power
law seems to do well in the three decades of Nh,t
we have used. An unambiguous decision between
the dependencies (ln Ntnai )d/Ntr,ai and N<2 be-
comes difficult by the fact that both functions are
parallel just in the region where we observe our
data.

Very obvious is the increase in accuracy by the

use of quasi-random numbers, which is about 3
for the integration according to eq. (7a) and about
10 for eq. (7b), both for an accuracy of about 1%.
At higher levels of accuracy these factors tend to
be even greater. It is also obvious, that there is no
significant difference between the results with
Sobol or Halton sequences.

Our next exa e, the anharmonic collinear
molecular model of eq. (3), has still the virtue that
the result is known analytically, see eq. (4). So, we
can again use the standard deviation and the true
error to judge accuracy and efficiency of the in-
tegration. We have done two independent calcula-
tions at E = 0.3 and 0.9, both with pseudo-ran-
dom numbers and with Halton numbers. Again,
groups of 10 integrations with the same Nh,t were
performed, the results are shown in tables 1 and 2.
The relative standard deviation, a/T, and the
relative error, 8 = (F - Ttrue)/Ttrue, as functions of
Nh,t are listed. From these data, to be more
specific, we computed with x = aR, 1 8R I, aH ' or
IBHI:

(a) a one-parameter fit of xv h , t to a constant
c l , thus assuming that a and 1 8 I are proportional
to /hit' and

(b) a two-parameter fit of log x to log c2 + a2
log Nh,t , assuming only some power law for
x (Nh, t ). The result is again that both integration
methods give a good fit to a square-root law. For
the pseudo-random case that is the expected re-
sult, i.e. we expect from eq. (2) c1 = 0.853 (for
E = 0.3) or c1 = 0.933 (for E = 0.9), and a 2 =
— 0.5; so we feel that the observed agreement is
good. For the quasi-random case the c1-coefficient
is unknown, and the expected power according to
the arguments put forth above is — 0.625.

The gain of using quasi-random numbers can
best be measured by the ratio c iR/c iH , which lies
between 3.7 and 4.9 for a and between 17 and 88
for the true error 8.

Table 3 shows results at constant Nhit = 2000
averaged over nine different energies. Again, the
pseudo-random integration is similar to expecta-
tion, and the Halton method improves that by a
factor of about 3 for the standard deviation, and
about 15 for the true error. The consistent finding
that the improvement through quasi-random num-
bers is much greater for the true errors than for
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Table 1
Results from the collinear anharmonic molecular model (eq. (3), with k = 0) at E = 0.3 computed with pseudo-random and
quasi-random (Halton) numbers. Nh, t is the number of hits in each single integration (the number of trials is about 3.68 Nh, t ). vol is
the average phase-space volume from 10 integrations (the exact value is 2.510 062 x 10 -2 ). std-dev is the relative standard deviation
within the groups of 10 integrations. err is the relative error of the mean of 10 integrations, i.e. the error of an integration with 10 Nh,t
hits. c1 is the column average of x IN hit (where x = std-dev or I err I), i.e. the constant c1 in a fit of x (Nh, t ) to c1 /.)/K/  hit . a 2 is the
exponent in a fit to a power law x = constant x Nn (where x = std-dev or ( err )

Nhic Pseudo-random Quasi-random

vol

(10-2 )

std-dev

(%)

err

(%)

vol

(10-2)

std-dev

(%)

err

(%)

100 2.539 7.85 1.14 2.523 3.03 0.536
200 2.579 5.41 2.74 2.513 2.11 0.139
400 2.530 2.76 0.79 2.517 1.16 0.289

1000 2.563 2.89 2.11 2.510 0.627 1.06E-2
2000 2.544 2.35 1.34 2.5113 0.389 4.87E-2
4000 2.524 1.26 0.555 2.5112 0.271 4.47E-2

10000 2.5170 0.939 0.279 2.5100 0.188 - 3.09E-3
20000 2.5178 0.649 0.307 2.5102 0.122 4.67E-3
40000 2.5139 0.400 0.152 2.5094 8.93E-2 - 2.41E-2

100000 2.5115 0.228 5.95E-2 2.50989 7.17E-2 - 6.16E-3
200000 2.5100 0.222 3.89E-3 2.50992 2.45E-2 - 5.08E-3
400000 2.5122 0.158 8.44E-2 2.51011 1.31E-2 2.67E-3
1E6 2.51117 8.73E-2 4.49E-2 2.51015 9.86E-3 4.20E-3
2E6 2.51056 6.68E-2 2.02E-2 2.51017 7.90E-3 5.05E-3
4E6 2.51032 4.39E-2 1.07E-2 2.51012 3.71E-3 3.05E-3

cl (%) 86 33 17.5 1.93
a 2 - 0.480 - 0.523 - 0.613 - 0.429

Fig. 3. Monte Carlo integration of the phase-space volume of the molecule H3 at E = + 1.05 eV, J = 25. The relative standard
deviation within groups of 10 integrations, each with Nh,1 hits, has been averaged over 36 values of the coordinate R at which the
integral was taken. For details see the text. The markers are: + = pseudo-random numbers, x = Halton-type quasi-random
numbers. (a) Six-dimensional continuous integrand, the fitted exponents a 2 are - 0.579 (pseudo-random) and - 0.699 (Halton). (b)
Further pre-integration has made the integral four-dimensi 1, see the text. The fitted exponents a 2 are now - 0.502 (pseudo-ran-

dom) and - 0.749 (Halton).
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Table 2
Results from the collinear anharmonic molecular model (eq. (3), with k = 0) at E = 0.9 computed with pseudo-random and
quasi-random (Halton) numbers. Nh,t is the number of hits in each single integration (the number of trials is about 7.70 Nh, t ). vol is
the average phase-space volume from 10 integrations (the exact value is 3.134787 x 10 -1 ). std-dev is the relative standard deviation
within the groups of 10 integrations. err is the relative error of the mean of 10 integrations, i.e. the error of an integration with 10 Nh„
hits. c l is the column average of x I" h,t (where x = std-dev or Derr I), i.e. the constant c1 in a fit of x (Nh , t ) to c1/Ih,t. a 2 is the
exponent in a fit to a power law x = constant X Nn (where x = std-dev or I err )

Nn►t Pseudo-random Quasi-random

vol std-dev err vol std-dev err

(10-1 ) (%) (%) (10_1) (%) (%)

100 3.163 6.89 0.914 3.1323 4.72 - 8.08E-2
200 3.167 4.15 1.026 3.1176 2.08 - 5.45E-1
400 3.227 3.85 2.933 3.1341 0.895 - 2.24E-2

1000 3.194 2.34 1.398 3.1312 0.712 - 1.20E-1
2000 3.176 1.55 1.302 3.1326 0.622 - 6.91E-2
4000 3.1497 1.41 0.474 3.1369 0.425 6.68E-2

10000 3.1454 0.946 0.339 3.13614 0.259 4.25E-2
20000 3.1407 0.696 0.188 3.13665 0.155 5.94E-2
40000 3.1365 0.356 0.0548 3.13517 0.123 1.21E-2

100000 3.1340 0.243 - 0.0249 3.13504 3.99E-2 8.30E-3
200000 3.13822 0.256 0.110 3.13458 4.11E-2 - 6.60E-3
400000 3.13836 8.10E-2 0.114 3.13477 2.45E-2 - 5.31E-4
1E6 3.13559 0.112 2.52E-2 3.13485 1.18E-2 2.19E-3
2E6 3.13534 8.89E-2 1.78E-2 3.13479 8.89E-3 9.54E-5
4E6 3.13536 5.87E-2 1.83E-2 3.13478 3.00E-3 1.0E-5

C l (%) 84 32 22.5 0.365
a 2 -0.459 - 0.477 - 0.598 - 0.622

the standard deviation of a group of otherwise
similar integrations, shows that the distribution of
errors in the quasi-random case is not a normal
distribution. A look on a few histograms revealed
that the error distribution is nearly triangular, so

Table 3
Results from the collinear anharmonic molecular model (eq.
(3), with k = 0) averaged over nine calculations at energies
E = 0.1 (0.1) 0.9, computed with pseudo-random and quasi-
random (Halton) numbers. Each calculation consists of 10
integrations with Nh,t = 2000. (std-dev) is the\average of the
relative standard deviations (in %) from the nine calculations.
(err) the average relative error (in %) of these calculations, i.e.
it belongs to one integration with Nhtt = 20000

(std-dev) (err)
J

Expected 2.236 ± 0.527 0.707 ± 0.236
Pseudo-random 1.644 ± 0.352 1.109 ± 0.278
Quasi-random 0.597 ± 0.092 0.073 ± 0.110
(Halton)
Improvement 2.75 15.2

the probability for small errors peaks much higher
than in a normal distribution of the same standard
deviation. The reasons are not clear, however. The
suspicion that it might be a consequence of the
correlations between different components of the
quasi-random vectors as discussed by Braaten and
Weller [18] did not substantiate, since scrambled
Halton sequences show the same behaviour.

The final example comes from our production
runs. The phase-space volume of H 3 at energy
E= + 1.05 eV and total angular momentum .1=
25 has been computed at 36 values of the reaction
coordinate R. Each integration was done 10 times
with prescribed Nhit , and the standard deviation a
determined. The true errors are no longer known.
For the purpose of this paper, we further averaged
the relative standard deviations a/T over the set
of 36 R's. Figure 3a shows the results from the
integration of a continuous integrand in 6 dimen-
sions as described in section 2. Both data sets fit
well to a power law (with powers given in the
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figure caption), and conform well to expectations.
Again the standard deviation of a group of in-
tegrations is about three times less with quasi-ran-
dom numbers than with pseudo-random numbers,
and this improvement increases with Nh , t , i.e. with
the needed accuracy. A further analytical pre-in-
tegration discussed elsewhere [19] allows to do the
same integrals with only a 4-dimensional Monte
Carlo step. These results are shown in fig. 3b, and
the conclusions are as above. The gain in accuracy
by the use of quasi-random numbers seems to be
even higher than in fig. 3a.

5. General recommendations and conclusions

At least for an integration task of the type
demonstrated here, which is characterized by the
integrand being not smooth, a rather simple in-
tegration domain, an accuracy level of the order of
10 -2-10 -4 , and dimensions between 4 and (say)
12, the lesson to learn from our experience and the
examples shown in this paper is obvious: use
quasi-random numbers and save one or two orders
of computer time! We also showed that d-dimen-
sional quasi-random points of the Halton type can
be easily produced in sufficient numbers by a
portable program. Whether Sobol numbers (or
Faure numbers [20], or the new Niederreiter num-
bers [21], to be sure) are any better has to be
found out; it can neither be decided from tests
which use only a few thousand trials, nor is it
important what the mathematically asymptotic be-
haviour is, if this asymptotic region is only
reached with 10 20 trials!

The use of quasi-random points can, of course,
be combined with methods of variance reduction
well known [4,5] under the labels importance sam-
pling and stratified sampling. Such and other
methods will certainly be needed if one wants to
do integrals in higher dimensions, which is the
proper realm of Monte Carlo integration [5].
Molecular dynamicists would, e.g., like to in-
tegrate phase-space volumes of four- and five-
atomic molecules with d= 18 and 24, respectively.
From our experience, in addition to the use of
quasi-random numbers we recommend:

(a) Do as many integrations as possible before
the Monte Carlo step. This is generally nontrivial,
and we found, e.g., only recently [11,19] that un-
der many circumstances even for a rotating mole-
cule the whole momentum part of the molecular
phase space can be pre-integrated analytically,
saving 3Natoms — 3 dimensions in the Monte Carlo
part.

(b) On integrating a step function 0(E - H),
where H= H1 + 112 + H3 + • • • consists of differ-
ent summands, one may save much computer time
by arranging the H, according to descending val-
ues and stopping the computation of H as soon as
the partial sum exceeds E. Similar "breaks" could
be programmed also for continuous integrands.

(c) It may also be advantageous to set aside
one (or even two) dimensions of the integrand for
a final integration by standard numerical meth-
ods. I.e. compute a Monte Carlo integral rMC (x, ),
which depends parameter-wise on one coordinate
x,, and integrate f FMC (x,) dx, by some high-order
integration rule. The error of this integration may
easily be as small as 0 (N- 6 ) in one or a (N- 3 ) in
two dimensions, where N is the number of points
{ x, } or { x,, xi }, respectively. This seems to con-
tradict the philosophy of the Monte Carlo scheme,
but it has been shown already in ref. [5] that
low-dimensional integrations are better not done
by Monte Carlo, and there is no reason against
combining the advantages of both methods.

(d) A word of warning is due against using
components of Halton vectors in situations where
absence of any kind of correlation is needed. We
encountered such a case, when we alternately sam-
pled from the horizontal and vertical "legs" of a
T-shaped domain, and used the component with
p = 2 of the Halton vector to sample one of the
coordinates. Since the Halton sequence Hp ( n) with
p = 2 lies alternately in the intervals {0.0, 0.5) and
{0.5, 1.0), the coordinate corresponding to p = 2
was now restricted to the first interval in one leg
of the T, and to the second in the other leg. This
produced an an appreciable bias!

We did not, however, see in our calculations
any harm by the correlation between pairs of
vector components discussed in ref. [18]. This ef-
fect apparently dies out for large Ntnai, and is only
important if one uses large p, concurrently with
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small Ntnal. Some of our test calculations were
repeated with scrambled Halton numbers, and did
not show any significant difference.

Concluding, there is strong reason to use
quasi-random numbers in Monte Carlo integra-
tion, even if certain questions must still be
answered: Which are the best quasi-random se-
quences for a given problem? Are there problems
in which it really pays to scramble the Halton
sequences? Under which circumstances are Sobol
or Faure or the improved Niederreiter sequences
better? Is the method also useful in Markov chain
(" Metropolis"-) sampling? Finally: even the
mathematical question of whether one can find
still better quasi-random sequences seems to be an
open one.
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