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Chapter 1

Introduction

The top quark is the heaviest elementary particle in the Standard Model (SM) of particle
physics. It was discovered in 1995 at the Tevatron particle accelerator by the experiments
CDF [1] and D0 [2]. Due to its large mass, it is the only quark that decays before hadronization
can occur (see, e.g., Ref. [3]), providing an important testing ground for QCD, i.e. it allows a
more direct access to the heavy-quark dynamics. The top quark decays almost exclusively into
a bottom quark and a W boson, reflecting the special role of the 3rd generation, where Vtb ∼ 1
and |Vtd|, |Vts| ≪ 1. The quantities Vij are elements of the Cabibbo–Kobayashi–Maskawa
matrix. Because of this property, the top quark plays a key role in any model to explain
the flavor structure. In addition, it has a Yukawa coupling to the Higgs boson of order one.
For these reasons the top quark is a unique window to test the SM on one side, and to have
access to indications of new physics beyond the SM on the other side. A detailed knowledge
of its properties (mass, decay width, couplings, etc.) is crucial for a better understanding of
the mechanism of electroweak symmetry breaking (EWSB). Hence, processes comprising top
quarks are being carefully scrutinized at the Tevatron and at the Large Hadron Collider (LHC).
For example, besides fully inclusive top-quark production, more exclusive final states can be
accessed at hadron colliders, whose cross sections are typically much smaller, yet they can
provide important information on the properties of the top quark. Typical such processes are
tV + jets and tt̄ + V (V ) (V = γ, Z, W±), tt̄ + jets, tt̄H , tt̄bb̄, and tt̄tt̄. All of these can be
considered as signals to test the SM, and subsequently as backgrounds to BSM searches.

Another consequence of the large top-quark mass is its large width Γt. The top-quark
width is an important ingredient in the theoretical evaluation of processes which have the
top-quark as an intermediate state. As an example we can consider top-quark pairs (tt̄),
which are abundantly produced both at the LHC and the Tevatron, and are used to study
the properties of the top quark. Therefore, very precise theoretical calculations have been
performed on the tt̄ production [4] and on its generalization obtained considering the top quarks
off-shell (W+W−bb̄ production). As described in Refs. [5–8], off-shell effects and non-resonant
backgrounds have to be taken into account in the calculation of the NLO QCD corrections,
e.g. using the complex-mass scheme [9–11]. For consistency, it is thus important to retain
the same NLO accuracy for the input parameter Γt. The same argument is valid for other
calculations, such as the NLO QCD corrections to single top production processes described
in Ref. [12]. Moreover, to compare the current experimental measurements of Γt with the SM
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predictions, the theoretical calculations must have an adequate accuracy. A precise knowledge
of the top-quark decay width is therefore fundamental and it is the main goal of this thesis.

In the last 30 years much effort has been invested on the theoretical side to calculate the
top-quark decay width with increasing precision within the SM. The first LO predictions for the
semileptonic decay rate were calculated in Refs. [13,14], long before the first direct measurement
of the top-quark mass. In 1988, knowing that the top quark was much heavier than all other
quarks, Jezabek and Kühn presented the first analytic formula for the QCD corrections to
the semileptonic decay rate of a heavy quark in Refs. [15, 16], taking into account the off-shell
effects of the W boson and the b-quark mass. Later, many predictions for the QCD [17, 18]
and EW [19–25] corrections have been worked out for the dominant decay channel of the top
quark, t → bW , in the approximation of stable W bosons. After the top-quark discovery
in 1995, having precise theoretical predictions for its width became even more important.
Therefore, various O(α2

s) corrections to Γ(t → W b) were performed using different levels of
approximations [26–28]. More recently, the first results on the fully differential decay rates for
semileptonic top-quark decay at NNLO in QCD have been presented in Ref. [29], including
NLO EW corrections. So far, however, the off-shellness of the W boson has been taken into
account only in Refs. [15,16] for the case of NLO QCD corrections to the semileptonic decay. No
other corrections to the three-body decay of the top quark, accounting for the W off-shellness
in the complex-mass scheme and keeping the b quark as massive, has been yet calculated in the
literature.

On the experimental side, the first direct bound on the total decay width of the top quark
has been presented by the experiment CDF II (Tevatron) in 2008 [30]. Direct measurements,
instead, have been presented by CDF II in Refs. [31, 32] and give us only the information of a
non-vanishing width. The other experiment at Tevatron, D0, determined the total top-quark
width from indirect measurements [33, 34], obtaining a value compatible with the SM predic-
tions with a relative uncertainty of approximately 20%. A more precise indirect determination
of the top-quark width, also in agreement with the SM predictions, has been provided by the
CMS experiment (LHC) at

√
s = 8 TeV [35]. The LHC will start again in 2015 to produce

pp collisions at the centre-of-mass energy of 13TeV in its Run 2. The larger amount of data
that is expected to be analyzed will allow for a more precise measurement of Γt. Moreover,
a higher precision may be achieved at future lepton colliders, such as the International Lin-
ear Collider (ILC) or the Future Circular Collider (FCC-ee), formerly known as Triple-Large
Electron-Positron Collider (TLEP) [36].

In this thesis we calculate the fully differential QCD and EW NLO corrections to the partial
widths of the top-quark decay, t→ b f f̄ ′, taking into account also the W -boson off-shell effects
and the b-quark mass. We consider the semileptonic and hadronic decay channels separately
and we use these results to deliver a prediction of the total top-quark decay width at NLO,
which can be compared with the experimental measurements.

To deal with the IR singularities appearing during the calculation, we use the basic idea
of the one-cutoff phase-space slicing method (OCSM) [37–41]. The OCSM has the advantage
that, in contrast to other techniques such as the dipole-subtraction formalism [42–45], it can
be used for the generation of Monte Carlo events with weight one. For the specific case of a
decay process with more than two (massive or massless) particles in the final state, however, no
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valid prescription exists for the one-cutoff slicing approach in the literature yet1. Therefore, we
have developed in this work a generalization of the OCSM, using some analytical results of the
dipole subtraction formalism. The main idea of the method is to isolate the singularities from
the real corrections, identifying two different phase-space regions: a hard region, where no soft
or collinear singularities appear, and a singular region, where a further subdivision of the phase
space is needed. Part of the singular region is integrated analytically over the gluon/photon
phase space and, at a later stage, it has to be integrated over the remaining 1 → 3 particle
phase space. The mentioned analytic integrals are calculated for a general case and can be used
for any other process. The remaining part of the phase space, called the quasi-soft region, has
to be treated using the soft-photon/gluon approximation.

The thesis is structured as follows:

- In Chapter 2 we introduce the fundamentals of the Standard Model (SM). We start from
the construction of the SM Lagrangian in Sect. 2.1, then in Sect. 2.2 we discuss the
renormalization of the theory. Section 2.3 is devoted to the issue of unstable particles
and to the description of the complex-mass scheme.

- In the first section of Chapter 3 we summarize the Weyl–van-der-Waerden formalism,
used to calculate the various matrix elements. The explicit expressions for the Born
and for the real emission amplitudes are presented in Sects. 3.2 and 3.3, respectively.
Section 3.4 briefly describes the technique used to evaluate the virtual contributions and
the counterterms.

- Chapter 4 explains in detail the method developed in this work to deal with the IR
divergences. Section 4.1 gives an overview of the technique, while Sect. 4.2 describes how
to analytically integrate the soft and collinear limits of the singular region for different
pairs of fermions. The contributions of the quasi-soft region are summarized in Sect. 4.3.

- At the beginning of Chapter 5 a brief overview of an adaptive multi-dimensional Monte
Carlo integration is presented. A general description of the phase-space integration tech-
niques is given in Sect. 5.2, while Sects. 5.3 and 5.4 describe the specific cases of the 1 → 3
and the 1 → 4 particle phase-space integrations, respectively.

- Chapter 6 is dedicated to the numerical results for the NLO corrections to the top-quark
partial decay widths. We start describing the settings of the independent calculation to
which we compare our results. Then, in Sect. 6.2, the input parameters of the calculation
are listed. Section 6.3 contains the details of the event selections used in this work. Sec-
tion 6.4 shows the existence of a region where the results are independent from the choice
of the technical cut parameter for the one-cutoff phase-space slicing method. The values
of the QCD and EW corrections to the semileptonic (hadronic) top-quark decay width
and various differential distributions are shown in Sect. 6.4.1 (6.4.2). The chapter ends
with a comparison of the theoretical total top-quark decay width with the experimental
measurements.

1An extension of the dipole-subtraction formalism to treat decay kinematics has been recently developed [46].
The details will be presented, together with a description of our method and the results of this thesis, in Ref. [47].
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- In Chapter 7 we conclude summarizing the results presented in this thesis.

- In Apps. A and B we discuss the narrow-width and the soft-photon approximations,
respectively. In App. C the Feynman rules used in this work are collected.
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Chapter 2

Overview of the Standard Model

The Standard Model (SM) is the quantum field theory of the strong and the electroweak (EW)
interactions of elementary particles. It is a gauge theory based on the

SU(3)c × SU(2)W × U(1)Y (2.1)

gauge group, where SU(3)c is the colour group of the strong interactions, SU(2)W is the weak
isospin symmetry group, and U(1)Y is the hypercharge symmetry group.

The SM includes spin-1
2
fermions: They consist in six quarks (up, down, charm, strange, top,

bottom) and six leptons (electron, muon, tau, and the corresponding neutrinos). These fermions
are grouped into three generations reflecting their mass hierarchy and interact with each other
through the four fundamental forces (strong, weak, electromagnetic and gravitational1). They
are all affected by the weak interactions, mediated by the massiveW± and Z bosons, and by the
electromagnetic (EM) interaction, mediated by the photon. The weak and the electromagnetic
interactions are unified in the electroweak Glashow–Weinberg–Salam (GWS) model [48–50],
where the gauge group SU(2)W × U(1)Y is spontaneously broken, through the Higgs mecha-
nism, down to the electromagnetic gauge group U(1)EM . As a consequence of the breaking
mechanism, a new neutral scalar particle is predicted: the Higgs boson. Moreover, the quarks
are also subject to the strong interactions, mediated by the gluons.

The SM is formulated as local quantum field theory, i.e. in the Lagrangian formalism, which
incorporates all the ingredients of the theory in the Lagrangian density L, which yields the
action of the theory after being integrated over the space-time.

In this chapter we give a brief overview of the Standard Model of particle physics: Section 2.1
is dedicated to the construction of the SM Lagrangian and the renormalization of the theory is
discussed in Sect. 2.2. In Sect. 2.3 we deal with the issue of unstable particles and we describe
the complex-mass scheme. More details regarding the SM can be found in Refs. [51–55].

1The gravitational force is much weaker than the electrical force and is not included in the SM. The theory
of gravity is described by Einstein’s general relativity.
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2.1 The SM Lagrangian

The SM Lagrangian L = L(Φ, ∂µΦ) of a generic field multiplet Φ is invariant under the global
symmetry transformation

U(θc, θW , θY ) = exp

{
igst

aθac + igI iθiW − ig′
Y

2
θY

}
, (2.2)

where gs, g, and g
′ are coupling constants, and θac , θ

i
W and θY are arbitrary real group param-

eters. In Eq. (2.2), ta(a = 1, . . . , 8), I i(i = 1, 2, 3), and Y are the generators of the groups
SU(3)c, SU(2)W , and U(1)Y , respectively. In the fundamental representation they can be writ-
ten as ta = λa/2 and I i = σi/2, where λa are the Gell-Mann matrices and σi the Pauli matrices.
The value of the hypercharge Y is determined by the Gell-Mann–Nishijima relation

Q = I3W +
Y

2
, (2.3)

with Q the electric charge of the particle.
A gauge theory is a field theory which is invariant under a local gauge transformation. In

order to make the transition from a global to a local symmetry, θ → θ(x), with x the space-time
coordinate, it is necessary to substitute the partial space-time derivative ∂µ appearing in the
Lagrangian with the covariant derivative

Dµ = ∂µ − igsG
a
µt

a − igW i
µI

i + ig′Bµ
Y

2
. (2.4)

Here, Ga
µ, W

i
µ, and Bµ are the gauge fields associated to the groups SU(3)c, SU(2)W , and

U(1)Y , respectively. They transform under the local gauge transformation as

Ga
µt

a →G
′a
µ t

a = U(θc)G
a
µt

aU(θc)
−1 +

i

gs
(∂µU(θc))U(θc)

−1,

W i
µI

i →W
′i
µ I

i = U(θW )W i
µI

iU(θW )−1 +
i

g
(∂µU(θW ))U(θW )−1,

Bµ →B′
µ = Bµ − ∂µθY . (2.5)

In the following sections we describe the different contributions to the SM Lagrangian.

2.1.1 Kinetic terms

We start by defining the Yang Mills Lagrangian LYM, which contains the gauge-invariant kinetic
terms of the gauge fields,

LYM = −1

4
Ga

µνG
a,µν − 1

4
W i

µνW
i,µν − 1

4
BµνB

µν . (2.6)

The field-strength tensors are defined as

Ga
µν =∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν ,

W i
µν =∂µW

i
ν − ∂νW

i
µ − gǫijkW j

µW
k
ν ,

Bµν =∂µBν − ∂νBµ, (2.7)
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where fabc and ǫijk are the structure constants of the Lie algebra of SU(3)c and SU(2)W ,
respectively. It is worth to mention that adding explicitly a mass term in the Lagrangian would
violate the gauge invariance of the theory, even though we know from the experiments that the
W and Z bosons are massive particles.

Concerning the fermions, we can distinguish between three generations of leptons (ℓ and ν)
and quarks (u and d). Depending on their chirality, they can be left-handed and transform as
SU(2)W doublets

L′
i,L =


 ν ′i

ℓ′i




L

, Q′
i,L =


u′i

d′i




L

, (2.8)

where i = 1, 2, 3 is the generation index, or right-handed,

ℓ′i,R, u′i,R, d′i,R, (2.9)

and transform instead as SU(2)W singlets. The prime on the fermionic fields indicates that
they are eigenstates of the EW interaction. The quarks have three colour degrees of freedom
(red, green, and blue), with respect to the SU(3)c gauge group, whose index is suppressed in
the notation above.

Using the definition of the covariant derivative in Eq. (2.4), it is possible to write the kinetic
terms for the fermions in a gauge invariant way,

Lferm =
3∑

i=1

(
L̄′
i,Li6DL′

i,L + Q̄′
i,Li6DQ′

i,L + ℓ̄′i,Ri6Dℓ′i,R + ū′i,Ri6Du′i,R + d̄′i,Ri6Dd′i,R
)
. (2.10)

Also for the fermions, it is not possible to directly add mass terms in the Lagrangian: The
addition would mix the two chiralities spoiling gauge invariance.

An elegant possibility to generate the masses in a gauge invariant way is to use the mech-
anism of spontaneous symmetry breaking (SSB). This mechanism was proposed in the early
sixties by Brout, Englert, and Higgs [56–60]. For this theory contribution, Higgs and Englert
were awarded the 2013 Nobel Prize in Physics, after the discovery of the Higgs particle in the
CERN laboratory in July 2012 [61, 62].

2.1.2 The Higgs mechanism

The Higgs mechanism introduces a complex scalar field, also known as the Higgs field, with a
weak hypercharge YΦ = 1, that transforms as an SU(2)W doublet,

Φ(x) =


φ+(x)

φ0(x)


 . (2.11)

The contribution of the Higgs field to the Lagrangian density is given by

LHiggs = (DµΦ)
†(DµΦ)− V (Φ), (2.12)

with a gauge-invariant potential

V (Φ) =
λ

4
(Φ†Φ)2 − µ2(Φ†Φ), with λ, µ2 > 0, (2.13)
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defined in such a way that the Higgs field develops a non-vanishing vacuum-expectation value (vev),
Φ0 with

|Φ0|2 =
2µ2

λ
≡ v2

2
. (2.14)

This vev breaks the SU(2)W × U(1)Y symmetry spontaneously down to the electromagnetic
gauge group U(1)EM . The EM symmetry remains unbroken, i.e. one gauge boson stays massless
and can be identified with the photon. The generator of the U(1)EM symmetry is the electric
charge Q, which is related to the unbroken generator of SU(2)W × U(1)Y by the relation
presented in Eq. (2.3).

In perturbation theory, we expand the Higgs doublet around the chosen vev,

Φ(x) =


 φ+(x)

1√
2
(v +H(x) + iχ(x))


 . (2.15)

The fields φ+(x), φ−(x) = (φ+(x))†, and χ(x), also known as would-be Goldstone bosons [63,64],
are scalar fields with vanishing vev. They are non-physical degrees of freedom and can be
eliminated by a gauge transformation (unitary gauge). After inserting Eq. (2.15) in the Higgs
Lagrangian (Eq. (2.12)), the mass terms

LM = −µ2H2 + v2
[
g2

4
W−

µ W
µ,+ +

1

8
(g′Bµ + gW 3

µ)
2

]
(2.16)

arise, with the charge eigenstates

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (2.17)

From the first term we notice that the real field H(x) corresponds to a physical particle, the
Higgs boson, with a mass of

MH =
√
2µ. (2.18)

In order to identify the remaining terms of Eq. (2.16) with the W - and Z-boson masses, we
need to deeper analyze the GWS model of electroweak interactions (Sect. 2.1.3).

Additionally, the Higgs field can be coupled in a gauge-invariant way with the fermion fields
through Yukawa couplings, yielding mass terms for the fermions. The Yukawa Lagrangian is

LYuk =

3∑

i,j=1

(
Gℓ

ijL̄
′
i,LΦ ℓ

′
j,R +Gu

ijQ̄
′
i,LΦ

cu′j,R +Gd
ijQ̄

′
i,LΦ d

′
j,R + h.c.

)
, (2.19)

where h.c. denotes the hermitian conjugate, Gf
ij are the complex 3×3 Yukawa coupling matrices,

and the charge conjugate of the Higgs field is defined as

Φc ≡ iσ2Φ
†. (2.20)

It is important to notice that the quantum chromodynamics sector (QCD), belonging to the
SU(3)c symmetry, is not affected by the SSB. Thus, its mediators, the gluons, are massless.
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2.1.3 Masses of the particles

We diagonalize the mass matrix of the fields Bµ and W 3
µ , as read from Eq. (2.16), by a rotation


Zµ

Aµ


 =


 cos θw sin θw

− sin θw cos θw




W 3

µ

Bµ


 , (2.21)

where θw is the weak-mixing angle and is defined as

cw = cos θw =
g√

g2 + g′2
, sw = sin θw =

g′√
g2 + g′2

. (2.22)

In Eq. (2.21) the massive field Zµ can be identified with the electrically neutral Z boson and Aµ

corresponds to the massless boson associated to the unbroken U(1)EM symmetry, the photon.
In LM (Eq. (2.16)) the mass terms of the gauge fields W±

µ and Zµ read

MW =
gv

2
and MZ =

v

2

√
g2 + g′2. (2.23)

Concerning the fermions, the Yukawa Lagrangian (Eq. (2.19)) contains the mass matrices

Mf
ij =

v√
2
Gf

ij , (2.24)

which can be diagonalized,

mf,i =
v√
2

∑

j,k

Uf
ij,LG

f
jkU

f†
ki,R, (2.25)

by a unitary transformation of the fields

fi,L =
∑

j

Uf
ij,Lf

′
j,L and fi,R =

∑

j

Uf
ij,Rf

′
j,R. (2.26)

For the quark sector the diagonalization introduces in the Yukawa Lagrangian the combination

Vij =
∑

k

Uu
ikU

d†
kj , (2.27)

also known as the unitary quark-mixing Cabibbo–Kobayashi–Maskawa matrix (CKM) [65, 66].
The factors Vij survive, however, only in the quark-W -boson couplings. At tree level there are
consequently no flavor-changing neutral currents.

In the leptonic sector, instead, a CKM-like matrix is not necessary, since in the SM the
neutrino is originally assumed to be massless 2. Its mass eigenstate is therefore conventionally
chosen as

νi,L =
∑

j

U ℓ
ij,Lν

′
j,L, (2.28)

so that the CKM matrix equals the unity matrix, i.e. the EW eigenstates and the mass eigen-
states coincide (the diagonalization matrices are absorbed in the fields).

2Actually, neutrino oscillation experiments have shown that the neutrinos do have a mass [67]. However,
due to its small value, the neutrino mass will be neglected in this thesis.
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2.1.4 Gauge fixing and ghost terms

Summing all contributions collected in the previous sections, we can write the classical La-
grangian density

Lcl = LYM + Lferm + LHiggs + LYuk. (2.29)

However, further terms need to be added in order quantize the theory:

LSM = Lcl + Lfix + LFP. (2.30)

A gauge-fixing Lagrangian Lfix is introduced to avoid the integration over equivalent field
configurations during the quantization process through the path-integral formalism:

Lfix = − 1

2ξA
(FA)2 − 1

2ξZ
(FZ)2 − 1

ξW
F+F− − 1

2ξG
(FG,a)2, (2.31)

where the gauge-fixing functionals, in the ’t Hooft gauge, are

FA = ∂µAµ,

FZ = ∂µZµ − iMZξZχ,

F± = ∂µW±
µ ∓ iMW ξWφ

±,

FG,a = ∂µGa
µ. (2.32)

In this thesis we choose the ’t Hooft–Feynman gauge, which is defined by taking ξV = 1, with
V = A,Z,W,G. With this choice, the masses of the would-be Goldstone bosons χ and φ±

coincide with the masses of the Z and W bosons, respectively. Moreover, the mixing terms
V µ∂µχ and V µ∂µφ

±, introduced by the SSB, are canceled by the gauge fixing term, simplifying
the propagators.

The Faddeev–Popov term,

LFP = ūα(x)
δF α

δθβ(x)
uβ(x), (2.33)

is introduced to cancel the over-counted degrees of freedom of the gauge fields that originate
in the addition of Lfix. The anticommuting fields uα(x) and ūα(x) are known as the Faddeev–

Popov ghosts [68], with α = ±, A, Z,G, and occur only as virtual particles inside loops, since
they are unphysical degrees of freedom.

2.2 Renormalization of the theory

The SM has been widely experimentally investigated, through the measurements of quantities,
such as the masses of the particles3, the unit charge and the quark mixing matrix,

MZ ,MW ,MH , mf , e, Vij, (2.34)

3A direct measurement of the quark masses is, due to quark confinement into the hadrons, not possible. The
only exception is the top quark, whose mass has been measured for the first time by the CDF experiment in
1994 [1].

14



which are used to parametrize the theory. In particular, the experimental values in Eq. (2.34)
can be identified with the input parameters of the SM at tree level. However, higher-order cal-
culations imply loop integrals that give rise to ultraviolet (UV) divergences, for large internal
momenta, avoiding a physical interpretation of the parameters of the Lagrangian. A renormal-

ization procedure is thus necessary to parametrize the theory in terms of physically measurable
quantities. Indeed, in Refs. [69,70] ’t Hooft proved that all the non-abelian gauge theories with
SSB, including the SM, are renormalizable, i.e. all UV divergences can be absorbed into input
parameters by a redefinition of a finite number of parameters and fields of the Lagrangian, at
each perturbative order. In this thesis the UV divergences are regularized using dimensional

regularization [71, 72].
In the following, we briefly discuss one of the possible ways to renormalize the SM. We

choose the on-shell renormalization scheme [73] and use the counterterms approach [22], which
separates the bare quantities f0 into finite renormalized ones f plus the remaining contributions
δf , containing also the UV divergences, which are fixed by the renormalization conditions and
are known as counterterms. More details can be found in Ref. [22].

- Mass parameters:
For the SM mass parameters the renormalization transformation reads as follows:

M2
W,0 =M2

W + δM2
W ,

M2
Z,0 =M2

Z + δM2
Z ,

M2
H,0 =M2

H + δM2
H ,

mf,i,0 =mf,i + δmf,i. (2.35)

We require, as a renormalization condition, that the renormalized mass parameters are
equal to the physical masses, which are the real parts of the location of the pole of the
particle propagators. This yields [22]

δM2
W = ReΣW

T (M2
W ),

δM2
Z = ReΣZZ

T (M2
Z),

δM2
H = ReΣH

T (M
2
H), (2.36)

δmf,i =
mf,i

2
Re
(
Σf,L

ii (m2
f,i) + Σf,R

ii (m2
f,i) + 2Σf,S

ii (m2
f,i)
)
, (2.37)

where ΣT are the unrenormalized transverse self-energies of the bosons. In Eq. (2.37), L,
R and S are the left-handed, right-handed, and scalar parts of the fermions self-energies
Σf , respectively.

- Weak mixing angle:
In the on-shell scheme the weak mixing angle of Eq. (2.22) is not a free parameter and is
fixed by the relation

c2w = 1− s2w =
M2

W

M2
Z

. (2.38)

It is, however, convenient to introduce renormalization constants as follows

cw,0 = cw + δcw, sw,0 = sw + δsw, (2.39)
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where
δcw
cw

= −s
2
w

c2w

δsw
sw

=
1

2

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
. (2.40)

- Fields:
The renormalization of the parameters appearing in Eq. (2.34) is sufficient to make the
S-matrix finite4. However, the Green functions remain divergent unless a renormalization
of the fields is carried out:

W±
0 =(1 +

1

2
δZW )W±,


Z0

A0


 =


 1 + 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA




Z

A


 ,

fL
i,0 =(1 +

1

2
δZf,L

ii )fL
i ,

fR
i,0 =(1 +

1

2
δZf,R

ii )fR
i . (2.41)

On-shell renormalization conditions for the fields demand that, for on-shell momenta,
the residues of the particle propagators are equal to one. Consequently, no external legs
corrections have to be considered in the calculation of the S-matrix elements, and the
fields’ renormalization constants are [22]

δZW = − Re
∂ΣW

T (k2)

∂k2

∣∣∣∣
k2=M2

W

, δZAZ = −2Re
ΣAZ

T (M2
Z)

M2
Z

,

δZZZ = − Re
∂ΣZZ

T (k2)

∂k2

∣∣∣∣
k2=M2

Z

, δZZA = −2Re
ΣAZ

T (0)

M2
Z

, δZAA = − ∂ΣAA
T (k2)

∂k2

∣∣∣∣
k2=0

,

δZf,L
ii = − ReΣf,L

ii (m2
f,i)−m2

f,i

∂

∂k2
Re
[
Σf,L

ii (k2) + Σf,R
ii (k2) + 2Σf,S

ii (k2)
]∣∣∣∣

k2=m2
f,i

,

δZf,R
ii = − ReΣf,R

ii (m2
f,i)−m2

f,i

∂

∂k2
Re
[
Σf,L

ii (k2) + Σf,R
ii (k2) + 2Σf,S

ii (k2)
]∣∣∣∣

k2=m2
f,i

.

(2.42)

- Electric charge renormalization:
To renormalize the electric coupling constant we define the renormalized electric charge e
to coincide with the eeγ-coupling of on-shell electrons [22], in the Thomson limit (zero-
momentum transfer of the photon):

e0 = (1 + δZe)e, with δZe = −1

2
δZAA − sw

cw

1

2
δZZA. (2.43)

The result does not depend on the fermion species.

4In this work we consider a unit CKM matrix, therefore there is no need to renormalize Vij (more details
can be found in Ref. [22]).
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The procedure of the renormalization has to be applied to all the quantities appearing in the
Lagrangian density. It is therefore possible to rewrite

L0 = L+ δL, (2.44)

where L and L0 depend (in the same form) on the renormalized, and on the bare fields and
parameters, respectively. The appearance of counterterms introduces new Feynman rules for
vertices and propagators. The ones relevant for this work are listed in App. C.

In this thesis we use the Gµ-input parameter scheme: The fine-structure constant α is
derived from the Fermi constant

Gµ =
πα√

2s2wM
2
W

(1 + ∆r), (2.45)

where

∆r =
∂ΣAA

T

∂q2

∣∣∣∣
q2=0

− c2w
s2w

(
ΣZZ

T (M2
Z)

M2
Z

− ΣWW
T (M2

W )

M2
W

)
ΣWW

T (0)− ΣWW
T (M2

W )

M2
W

+

+ 2
cw
sw

ΣAZ
T (0)

M2
Z

+
α

4πs2w

(
6 +

7− 4s2w
2s2w

ln c2w

)
(2.46)

is the radiative correction to muon decay [74–76]. The quantity Gµ can be indeed easily obtained
from themuon lifetime τµ, which is very precisely measured by experiments [77,78]. Technically,
the Gµ-scheme implies a shift of the electric charge counterterm

δZe → δZe −
∆r

2
. (2.47)

2.3 Unstable particles and the complex-mass scheme

In the SM there are unstable particles, such asW , Z, H bosons and the top quark, which have a
very short lifetime and can be therefore experimentally detected only via their decay products.
Their reconstructed invariant-mass distribution has a resonant peak around the mass value M ,
described by a Breit-Wigner shape with a finite width Γ.

In perturbation theory, the width Γ enters the calculation via a Dyson summation of self-
energy insertions in the resonant propagators. However, the procedure of the summation gen-
erally violates gauge invariance: It leads to a mixing of perturbative orders, which can spoil the
cancellation of gauge-dependent terms, and destroys Slavnov-Taylor andWard identities [79,80].

There are many way to perform a calculation which involves unstable particles (see Ref. [81]).
For simplicity, one often works with approximations. One example is the narrow-width approx-

imation (NWA), which considers the unstable particles on-shell and assumes Γ ≪ M . This
allows to factorize a process into the production of the unstable particle and its subsequent
decay. The NWA gives a description of the theory correct up to order O (Γ/M) [81, 82], even
though it has several limitations, as described in Ref. [83]. More details on the NWA are
presented in App. A.

In this thesis we use the complex-mass scheme (CMS) [9–11], a method that takes into
account the effects of the instability and the off-shellness of the unstable particle in a gauge
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invariant way, providing a consistent procedure at the one-loop level.

The main idea of the CMS is to consider the squared boson masses as complex quantities,
defined as follows

µ2
V =M2

V − iMV ΓV , with V = W,Z, (2.48)

and to introduce them directly in the Lagrangian density. To preserve gauge invariance, the
complex masses have to be introduced everywhere. This implies new counterterms and a
redefinition of the weak mixing angle,

c2w = 1− s2w =
µ2
W

µ2
Z

. (2.49)

Moreover the whole renormalization procedure has to be generalized for the case of unstable
particles. In the following we will briefly describe the new counterterms. More details can be
found in Refs. [10, 11].

The renormalization of the theory follows the same idea introduced in Sect. 2.2. First the
bare parameters (with the subscript 0) and fields split into complex renormalized quantities
and the corresponding complex counterterms,

M2
V,0 =µ2

V + δµ2
V ,

W±
0 = (1 +

1

2
δZW )W±,


Z0

A0


 =


 1 + 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA




Z

A


 ,

fσ
0 = (1 +

1

2
δZf,σ)fσ, with σ = L,R,

cw,0 = cw + δcw, sw,0 = sw + δsw,

e0 = (1 + δZe)e. (2.50)

In the previous equation we have used the same notation as in Sect. 2.2 and the quantities δZ
denote the complex counterterms. Then the renormalization conditions are applied to fix the
new counterterms, which read [10]

δµ2
W =ΣW

T (µ2
W ), δµ2

Z = ΣZZ
T (µ2

Z), δZW = − ∂ΣW
T (k2)

∂k2

∣∣∣∣
k2=µ2

W

,

δZZZ = − ∂ΣZZ
T (k2)

∂k2

∣∣∣∣
k2=µ2

Z

, δZAZ = − 2

µ2
Z

ΣAZ
T (µ2

Z),

δZZA =
2

µ2
Z

ΣAZ
T (0), δZAA = − ∂ΣAA

T (k2)

∂k2

∣∣∣∣
k2=0

,

δZf,σ = − Σf,σ(m2
f )−m2

f

∂

∂k2
[
Σf,L(k2) + Σf,R(k2) + 2Σf,S(k2)

]∣∣∣∣
k2=m2

f

,

δcw
cw

= − s2w
c2w

δsw
sw

=
1

2

(
δµ2

W

µ2
W

− δµ2
Z

µ2
Z

)
, δZe = −1

2
δZAA − sw

cw

1

2
δZZA. (2.51)
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In Eq. (2.51) the self-energies in the first two rows appear with complex momenta. To avoid the
analytic continuation of the 2-point functions to the unphysical Riemann sheet, the expressions
can be expanded around the real masses MV ,

ΣW
T (µ2

W ) =ΣW
T (M2

W ) + (µ2
W −M2

W )
∂ΣW

T (k2)

∂k2

∣∣∣∣
k2=M2

W

+ cWT +O(α3),

ΣZZ
T (µ2

Z) =ΣZZ
T (M2

Z) + (µ2
Z −M2

Z)
∂ΣZZ

T (k2)

∂k2

∣∣∣∣
k2=M2

Z

+O(α3),

1

µ2
Z

ΣAZ
T (µ2

Z) =
1

µ2
Z

ΣAZ
T (0) +

1

M2
Z

ΣAZ
T (M2

Z)−
1

M2
Z

ΣAZ
T (0) +O(α2). (2.52)

We have added the constant term cWT =
α

π
(M2

W − µ2
W ), which originates from the non-analytic

terms from photon exchange (more details in Ref. [10]). The first five counterterms of Eq. (2.51)
can be thus replaced by

δµ2
W =ΣW

T (M2
W ) + (µ2

W −M2
W )

∂ΣW
T (k2)

∂k2

∣∣∣∣
k2=M2

W

+ cWT ,

δµ2
Z =ΣZZ

T (M2
Z) + (µ2

Z −M2
Z)

∂ΣZZ
T (k2)

∂k2

∣∣∣∣
k2=M2

Z

,

δZW = − ∂ΣW
T (k2)

∂k2

∣∣∣∣
k2=M2

W

, δZZZ = − ∂ΣZZ
T (k2)

∂k2

∣∣∣∣
k2=M2

Z

,

δZAZ =− 2

M2
Z

ΣAZ
T (M2

Z) +

(
µ2
Z

M2
Z

− 1

)
δZZA. (2.53)

In the CMS the radiative correction to the muon decay (Eq. (2.46)) can be rewritten as

∆r = −δZAA +
ΣW

T (0)− δµ2
W

µ2
W

− 2
δsw
sw

+
cw
sw
δZZA +

α

4πs2w

(
6 +

7− 4s2w
2s2w

ln
µ2
W

µ2
Z

)
. (2.54)

Even though the CMS introduces complex masses and couplings, making the Cutkosky cutting
rules invalid, it preserve the unitarity of the theory at NLO, as proven in Ref. [84].
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Chapter 3

Calculation of the amplitudes

A general decay width is obtained integrating the squared amplitude of the process,

∑
|M(p; p1, ..., pn)|2, (3.1)

over the phase-space volume times a flux factor:

Γn =
(2π)4−3n

2m

∫ [ n∏

i=1

d4pi δ(p
2
i −m2

i )θ(p
0
i )

]
δ(4)

(
p−

n∑

i=1

pi

)
∑

|M(p; p1, ..., pn)|2, (3.2)

where p and m are the momentum and the mass of the decaying particle, and pi and mi are
the momenta and the masses of the n outgoing particles, respectively. The symbol

∑
takes

into account the average of the initial spins and colours and the sum over all possible final
polarizations and colours. In Eq. (3.2) the on-shell conditions are imposed on the momenta,
the energy is required to be positive, and the four-momentum is conserved.

An approximated value of Γn can be estimated calculating the leading order (LO) prediction.
More accurate values can be obtained by considering higher orders in perturbation theory. The
next-to-leading order (NLO) corrections comprise the real emission of a gluon (QCD corrections)
or photon (EW corrections), and one-loop diagrams (virtual corrections) together with the
corresponding counterterms.

The aim of this thesis is to calculate the NLO QCD and EW corrections to the top-quark
partial decay width, for both the cases of a semileptonic, t→ b νℓ ℓ

+, and a hadronic, t→ b q q̄′,
decay. In the following we will omit the term ’partial’ for the decay width into a specific final
state, unless an ambiguity of the text would explicitly required. In this work the top and the
bottom quarks are massive, while the other fermions appearing in the process are considered
massless. Moreover, with t→ b u d̄ we will refer to both t→ b u d̄ and t→ b c s̄ processes. The
details of the calculation are presented in the following chapters.

There are different methods to evaluate the necessary matrix elements, e.g. the usual Dirac
formalism or spinorial formalisms. In this thesis a spinorial technique, the Weyl–van-der-
Waerden formalism, as e.g. formulated in Ref. [85], has been used and is briefly described in
Sect. 3.1. The result for the Born amplitude is shown in Sect. 3.2 and the squared matrix
elements for the real emission are listed in Sect. 3.3. Section 3.4 describes how to calculate the
virtual contributions and the corresponding counterterms.
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3.1 The Weyl–van-der-Waerden formalism

The main idea of the Weyl–van-der-Waerden (WvdW) formalism is to reduce all higher-
dimensional Lorentz structures (i.e. Dirac matrices, polarization vectors, four-vectors) to the
two-dimensional irreducible representations D(1

2
, 0) and D(0, 1

2
). While with the conventional

approaches the number of terms grows quadratically with the number of diagrams (squared
amplitudes and completeness relations), with the WvdW formalism the squaring of the ampli-
tudes is performed numerically. A sum over the different helicity contributions is required, but
the calculation can be simplified employing discrete symmetries.

In the following the basic concept of the WvdW spinor technique, used in our calculation,
is presented. More details on the formalism can be found in Ref. [85], which we follow closely.

Spinors

The WvdW spinors, ψA and ψȦ, belong to the representations D(1
2
, 0) and D(0, 1

2
), respectively,

and are called covariant and contravariant. Their complex conjugation (denoted by dotting) is
defined as

ψȦ = (ψA)
∗, ψA = (ψȦ)∗, (3.3)

and their indices can be lowered and raised,

ψA = ǫABψB, ψȦ = ǫȦḂψḂ, ψA = ψBǫBA, ψȦ = ψḂǫḂȦ, (3.4)

using the antisymmetric matrix

ǫAB = ǫȦḂ = ǫAB = ǫȦḂ =


 0 +1

−1 0


 . (3.5)

This allows to define a Lorentz-invariant spinor product

〈φψ〉 = φAψ
A = φAǫ

ABψB = φ1ψ2 − φ2ψ1 = −〈ψφ〉,
〈φψ〉∗ = φȦψ

Ȧ = φḂǫḂȦψ
Ȧ = (φ1ψ2 − φ2ψ1)

∗ = −〈ψφ〉∗. (3.6)

Four-vectors

The four-vector kµ can be rewritten in the D(1
2
, 1
2
) = D(1

2
, 0)⊗D(0, 1

2
) representation as

KȦB = kµσµ,ȦB =


 k0 + k3 k1 + ik2

k1 − ik2 k0 − k3


 , (3.7)

where σµ,ȦB = (σ0,−σ), σ are the standard Pauli matrices, and σ0 = 11. The Minkowski
product between two vectors kµ and pµ is given by

2k · p = 2kµg
µνpν = KȦBP

ȦB, (3.8)

where the hermiticity of the σ matrices and the relations

σµ

AḂ
= σµ

ḂA
, σµ,ȦB = σµ,BȦ, σµ

ȦB
σν,ȦB = 2gµν, (3.9)
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have been used. The decomposition of KȦB into spinors reads for time-like vectors (k2 > 0)

KȦB =
∑

i=1,2

κi,Ȧκi,B with κi,A =
√
λini,A, (3.10)

where ni,A are the normalized eigenvectors and λi the eigenvalues, defined as

n1,A =


 e−iφ cos θ

2

sin θ
2


 , n2,A =


 sin θ

2

−e+iφ cos θ
2


 , λ1,2 = k0 ± |k|. (3.11)

Here θ and φ represent the polar and the azimuthal angles of k, respectively. In case of a
light-like vector (k2 = 0) the eigenvalue λ2 vanishes and

KȦB = κ1,Ȧκ1,B, κ1,A =
√
2k0n1,A. (3.12)

Spin-1
2
particles

The Dirac spinors Ψ transform in the direct sum representation D(1
2
, 0)⊕D(0, 1

2
) and can be

decomposed into a pair of covariant and contravariant spinors:

Ψ =


 φA

ψȦ


 . (3.13)

In particular, after solving the Dirac equation for massive particles, we obtain the solutions
Ψ = exp {∓ikx}Ψ(±)

k , where Ψ
(±)
k is defined, depending on the helicity σ, for the massive and

massless cases in Table 3.1.

Massless Massive

σ = + σ = − σ = + σ = −

IF Ψ
(+)
k,1 =


κ1,A

0


 Ψ

(+)
k,2 =


 0

κȦ1


 Ψ

(+)
k,1 =


κ1,A
−κȦ2


 Ψ

(+)
k,2 =


κ2,A
κȦ1




IA Ψ
(−)

k,2 =
(
κA1 , 0

)
Ψ

(−)

k,1 =
(
0, κ1,Ȧ

)
Ψ

(−)

k,2 =
(
κA1 ,−κ2,Ȧ

)
Ψ

(−)

k,1 =
(
κA2 , κ1,Ȧ

)

OF Ψ
(+)

k,1 =
(
0, κ1,Ȧ

)
Ψ

(+)

k,2 =
(
κA1 , 0

)
Ψ

(+)

k,1 =
(
−κA2 , κ1,Ȧ

)
Ψ

(+)

k,2 =
(
κA1 , κ2,Ȧ

)

OA Ψ
(−)
k,2 =


 0

κȦ1


 Ψ

(−)
k,1 =


κ1,A

0


 Ψ

(−)
k,2 =


−κ2,A

κȦ1


 Ψ

(−)
k,1 =


κ1,A
+κȦ2




Table 3.1: Helicity eigenstates for spin-1
2
massless and massive particles. σ is the helicity, IF

stands for incoming fermion, IA for incoming antifermion, OF for outgoing fermion, and OA
for outgoing antifermion.
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Spin-1 particles

We distinguish two cases:

- Massive particles:

They are described by three orthogonal polarization vectors, εµ±(k) and ε
µ
0 , that transform

under Lorentz transformations as four-vectors.

For incoming spin-1 particles the polarization vectors are

ε+,ȦB(k) =
√
2n2,Ȧ n1,B, ε−,ȦB(k) =

√
2n1,Ȧ n2,B,

ε0,ȦB(k) =
1

m
(κ1,Ȧ κ1,B − κ2,Ȧ κ2,B), (3.14)

while in the case of outgoing spin-1 particles they are

ε∗
+,ȦB

(k) =
√
2n1,Ȧ n2,B, ε∗−,ȦB

(k) =
√
2n2,Ȧ n1,B,

ε∗
0,ȦB

(k) =
1

m
(κ1,Ȧ κ1,B − κ2,Ȧ κ2,B), (3.15)

where ni,A and κi,A are defined in Eqs. (3.10) and (3.11), respectively, and m is the mass
of the particle.

- Massless particles:

In case of massless particles, the longitudinal polarization does not exist. For this reason
a new degree of freedom appears for εµ±(k) in the form of an arbitrary gauge. In more
detail, the polarization vectors read

ε+,ȦB(k) =

√
2 g+,Ȧ kB

〈g+k〉∗
, ε−,ȦB(k) =

√
2 kȦ g−,B

〈g−k〉
,

ε∗
+,ȦB

(k) =

√
2 kȦ g+,B

〈g+k〉
, ε∗−,ȦB

(k) =

√
2 g−,Ȧ kB

〈g−k〉∗
, (3.16)

where g±,A are arbitrary spinors, with 〈g±k〉 6= 0, called gauge spinors. Of course, gauge-
invariant quantities do not depend on the choice of g±,A. In our calculation the gauge
spinors

g±,A = gA = PAḂk
Ḃ =

∑

i=1,2

κi,A〈κik〉∗ (3.17)

have been chosen, and consequently

〈gk〉 = 2pk. (3.18)

Following the prescriptions listed above, we are now able to write down the Feynman rules
in terms of the WvdW formalism. In App. C, the propagators and the verteces used in this
work are listed. The calculation of the different matrix elements is described in the following
sections.
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Figure 3.1: LO diagrams for the process t(pt) → b(pb) f(pf) f̄
′(pf̄ ′).

3.2 Born Amplitudes

For the Born amplitude of the processes represented in Fig. 3.1, we need to define the different
spinors

Ψt =


φA

ψȦ


 , Ψb =

(
φ

′A, ψ′
Ȧ

)
, Ψf =

(
αA, βȦ

)
, Ψf̄ ′ =


α

′
A

β
′Ȧ


 , (3.19)

following Table 3.1. With some algebra (see App. C), the LO matrix element is

M(0) =
K

D0

〈ψ′β〉〈ψβ ′〉∗, (3.20)

with

K = 2
e2

2s2w
and D0 = (pt − pb)

2 − µ2
W . (3.21)

The triple scalar-fermion-fermion vertex is proportional to the fermion’s masses. In this thesis
the fermions stemming from the W -boson decay are considered as massless. For this reason
M(1) is zero.

Since the W boson is an unstable particle, a complex mass µW is used in the calculation
(see Sect. 2.3). The Born amplitude can be calculated taking the squared absolute value of the
LO matrix element M0, summed over all possible polarizations and colours (Nc = 1 for the
semileptonic decay and Nc = 3 for the hadronic decay), and taking the average over the initial
spin and colours:

∑
|M0|2 =

1

2
· 1
3
·Nc ·

∑

pol

∣∣M(0)
∣∣2 . (3.22)

3.3 Real corrections

The contribution given by the real corrections is presented in four different cases, depending on
the type of corrections (QCD for the emission of a gluon or EW for the emission of a photon)
and on the decay products of the W boson (leptonic or hadronic decay). In the following
we illustrate the analytical results of the amplitudes for the real emission (denoted by the
subscript 1). The issue of soft and collinear singularities appearing during the integration, and
the phase-space integration itself are described in more detail in Chaps. 4 and 5, respectively.
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Figure 3.2: Diagrams contributing to the process t(pt) → b(pb) f(pf) f̄
′(pf̄ ′) g(q) in lowest order.

QCD corrections to t(pt) → b(pb) νℓ(pν) ℓ(pℓ)

A gluon can be emitted either by the t or the b quarks, as shown in the first four diagrams of
Fig. 3.2, with f = νℓ and f̄

′ = ℓ+.
The matrix elements M(3) and M(4) are zero, due to the fact that the lepton and the

neutrino are massless, therefore only two matrix elements have to be calculated:

M(1) =
A

D1D2
〈ψ′β〉 [〈φβ ′〉∗〈ψ|λ|φ〉+ 〈ψβ ′〉∗〈ψ|λ|ψ〉 − 〈qβ ′〉∗〈ψ|λ|q〉 −mt〈β ′|λ|φ〉] ,

M(2) = − A

D2D3
〈ψβ ′〉∗ [〈φ′β〉〈φ′|λ|ψ′〉+ 〈ψ′β〉〈ψ′|λ|ψ′〉+ 〈qβ〉〈q|λ|ψ′〉 −mb〈φ′|λ|β〉] , (3.23)

where the spinors are defined in Eq. (3.19), and

D1 = (pe + pν)
2 − µ2

W , D2 = 2ptq, D3 = 2pbq, A = 2
e2

2s2w

√
4παs t

a, (3.24)
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with ta the colour factor, with
∑

a

tata = CF11 and CF =
4

3
. In Eq. (3.23) the spinorial product

〈ψ|λ|φ〉 = ψȦελ,ȦBφ
B (3.25)

is defined, mt and mb are the top and the bottom quark masses, and q is the gluon momentum.
To calculate the contribution given by the real amplitude we need to square the sum of the two
matrix elements,

∑
|M1|2 =

1

2
· 1
3
· 3 ·

∑

pol

∣∣M(1) +M(2)
∣∣2 . (3.26)

QCD corrections to t(pt) → b(pb)u(pu) d̄(pd)

For the hadronic decay of the W boson, the QCD corrections have to take into account not
only the emission of the gluon from the t and b quarks, but also the cases when the gluon is
emitted by the u and d̄ quarks (Fig. 3.2, with f = u and f̄ ′ = d̄). The matrix elements M(3),
M(4), M(7), and M(8) are zero, due to the φ u d̄ -vertex. Thus two further matrix elements
have to be calculated,

M(5) =
A

D4D5
〈ψ′β〉 [〈ψα′〉∗〈β ′|λ|α′〉+ 〈ψβ ′〉∗〈β ′|λ|β ′〉+ 〈ψq〉∗〈β ′|λ|q〉] ,

M(6) = − A

D5D6
〈ψβ ′〉∗ [〈ψ′α〉〈α|λ|β〉+ 〈ψ′β〉〈β|λ|β〉+ 〈ψ′q〉〈q|λ|β〉] , (3.27)

with A defined in Eq. (3.24), and

D4 = 2pdq, D5 = (pt − pb)
2 − µ2

W , D6 = 2puq. (3.28)

The final squared amplitude for the real emission of a gluon is

∑
|M1|2 =

1

2
· 1
3
· 9 ·

[
∑

pol

∣∣M(1) +M(2)
∣∣2 +

∑

pol

∣∣M(5) +M(6)
∣∣2
]
, (3.29)

where M(1) and M(2) are the same as in Eq. (3.23), for f = u and f ′ = d̄. The amplitude
of Eq. (3.29) is written as an incoherent sum of two different contributions, because their
interference is zero due to colour conservation.
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EW corrections to t(pt) → b(pb) νℓ(pν) ℓ
+(pℓ)

The same approach used for the QCD corrections can be applied in the EW case. Here the
possible diagrams are shown in Fig. 3.3 (with f = νℓ, f̄

′ = ℓ+ and excluding M(11)), and the
corresponding matrix elements are

M(1) =
QtB

D1D2

〈ψ′β〉 [〈φβ ′〉∗〈ψ|λ|φ〉+ 〈ψβ ′〉∗〈ψ|λ|ψ〉 − 〈qβ ′〉∗〈ψ|λ|q〉 −mt〈β ′|λ|φ〉] ,

M(2) = − QbB

D2D3

〈ψβ ′〉∗ [〈φ′β〉〈φ′|λ|ψ′〉+ 〈ψ′β〉〈ψ′|λ|ψ′〉+ 〈qβ〉〈q|λ|ψ′〉 −mb〈φ′|λ|β〉] ,

M(3) =
QeB

D4D5

〈ψ′β〉 [〈ψα′〉∗〈β ′|λ|α′〉+ 〈ψβ ′〉∗〈β ′|λ|β ′〉+ 〈ψq〉∗〈β ′|λ|q〉] ,

M(4) = − B

2D2D5

{〈ψ′β〉〈ψβ ′〉∗ [2〈φ|λ|φ〉+ 2〈ψ|λ|ψ〉 − 2〈φ′|λ|φ′〉 − 2〈ψ′|λ|ψ′〉 − 〈q|λ|q〉]

+〈β ′|λ|β〉 [−〈ψ′φ〉〈ψφ〉∗ + 〈ψ′φ′〉〈ψφ′〉∗ + 2〈ψ′q〉〈ψq〉∗]

− 〈ψ|λ|ψ′〉 [〈αβ〉〈αβ ′〉∗ + 〈α′β〉〈α′β ′〉∗ + 2〈βq〉〈β ′q〉∗]
}
,

M(5) =
B

2D2D5
〈β ′|λ|β〉 [mt〈ψ′φ〉+mb〈φ′ψ〉∗] ,

M(6) =M(7) = M(8) = M(9) = M(10) = 0. (3.30)

The triple scalar-fermion-fermion vertex is proportional to the fermion’s masses, i.e. the matrix
elements M(6−10) are zero. In Eq. (3.30), Qa is the charge of the particle a, the denominators
Di, with u→ νℓ and d̄→ ℓ+, have been defined in Eqs. (3.24) and (3.28), and

B = −2e
e2

2s2w
. (3.31)

The amplitude of the real EW corrections is therefore given by

∑
|M1|2 =

1

2
· 1
3
· 3 ·

∑

pol

∣∣∣∣∣

5∑

i=1

M(i)

∣∣∣∣∣

2

. (3.32)

EW corrections to t(pt) → b(pb)u(pu) d̄(pd)

This case is similar to the previous one. There is only one additional diagram contributing
(M(11) in Fig. 3.3, with f = u and f̄ ′ = d̄), whose matrix element is

M(11) = − QuB

D5D6

〈ψβ ′〉∗ [〈ψ′α〉〈α|λ|β〉+ 〈ψ′β〉〈β|λ|β〉+ 〈ψ′q〉〈q|λ|β〉] . (3.33)

The final squared matrix element is given by

∑
|M1|2 =

1

2
· 1
3
· 3 ·

∑

pol

∣∣∣∣∣

11∑

i=1

M(i)

∣∣∣∣∣

2

, (3.34)

where the matrix elements from (1) to (10) are described in Eq. (3.30), with f = u and f ′ = d̄.

28



M(1) :

t

pt q
W

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(2) :

t

pt

q

W

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(3) :

t

pt

q

W

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(4) :

t

pt

q

WW

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(5) :

t

pt

q

Wφ

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(6) :

t

pt

q

φW

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(7) :

t

pt q
φ

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(8) :

t

pt

q

φ

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(9) :

t

pt

q

φ

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(10) :

t

pt

q

φφ

b

pb

f

pf

f̄ ′

pf̄ ′

γ

M(11) :

t

pt q
W

b

pb

f

pf

f̄ ′

pf̄ ′

γ

Figure 3.3: Diagrams contributing to the process t(pt) → b(pb) f(pf) f̄
′(pf̄ ′) γ(q) in lowest order.
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3.4 Virtual corrections and counterterms

To calculate the virtual corrections to t(pt) → b(pb) f(pf) f̄
′(pf̄ ′), we need to evaluate the one-

loop contributions to the process. In case of QCD corrections the number of diagrams is small:
The gluon can be exchanged only between quarks belonging to the same generation (colour con-
servation). On the other hand, if one wants to calculate the EW corrections to the same process,
the number of diagrams largely increases, as can be clearly seen in Figs. 3.4, 3.5 and 3.61, mak-
ing the evaluation laborious and difficult. For this reason an automation is important. This can
be done, for example, using the fact that the virtual matrix element MV can be decomposed into
a finite number of standard matrix elements (SME) Mi multiplied by polarization-independent
form factors Fi [22],

MV =
∑

i

MiFi. (3.35)

The SME contain the information about the Dirac structure, the polarization, and the chirality
of the particles involved in the process, while the form factors incorporate all other factors
(propagators, couplings and tensors integrals). The SME appearing for the top-quark decay
width at the one-loop level are

Mσ,τ
1 =ū(pb)γαωσu(pt)ū(pf)γ

αωτv(pf̄ ′),

Mσ,τ
2 =ū(pb) 6pfωσu(pt)ū(pf) 6ptωτv(pf̄ ′),

Mσ,τ
3 =ū(pb)γαγβγδωσu(pt)ū(pf)γ

αγβγδωτv(pf̄ ′),

Mσ,τ
4 =ū(pb)γαγβ 6pfωσu(pt)ū(pf)γ

αγβ 6ptωτv(pf̄ ′),

Mσ,τ
5 =ū(pb)γα 6pfωσu(pt)ū(pf)γ

αωτv(pf̄ ′),

Mσ,τ
6 =ū(pb)ωσu(pt)ū(pf ) 6ptωτv(pf̄ ′),

Mσ,τ
7 =ū(pb)γαγβωσu(pt)ū(pf )γ

αγβ 6ptωτv(pf̄ ′), (3.36)

where ω± = 1±γ5
2

are the chirality projection operators (σ and τ are the chirality of the t quark
and the f fermion, respectively) and u(pt), ū(pf) and v(pf̄ ′) are the spinors of the incoming
and outgoing fermions or antifermions. Therefore, it is possible to implement the SME into a
code using the WvdW formalism and to automatize the calculation of the corresponding form
factors. For this purpose, we use an in-house code written by S. Dittmaier, which makes use
of the COLLIER library (see Ref. [86]) for the calculation of the one-loop integrals.

As stated in Sect. 2.2, the loop integrals comprise UV divergences. They cancel against the
UV divergences arising from the counterterms diagrams. The contribution of the counterterms
factorizes for the top-quark decay into the LO matrix element and a factor δct, which depends
on the final state and on the type of corrections:

Mct = M0 δct. (3.37)

1The diagrams containing a φff ′ vertex, with mf = mf ′ = 0, do not contribute to the process and are not
included in Figs. 3.4, 3.5 and 3.6.
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Figure 3.4: Virtual diagrams contributing to the process t(pt) → b(pb) f(pf) f̄
′(pf̄ ′).
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Figure 3.5: Virtual diagrams contributing to the process t(pt) → b(pb) f(pf) f̄
′(pf̄ ′).
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Figure 3.6: Virtual diagrams contributing to the process t(pt) → b(pb) f(pf) f̄
′(pf̄ ′).

In our processes δct reads

δQCD
ct,lept =

1

2
[δZt + δZb] ,

δQCD
ct,hadr =

1

2
[δZt + δZb + δZu + δZd] ,

δEWct,lept =2δZe − 2
δsw
sw

+
1

2
[δZt + δZb + δZee + δZν ] +

δµ2
W

s34 − µ2
W

−∆r,

δEWct,hadr =2δZe − 2
δsw
sw

+
1

2
[δZt + δZb + δZu + δZd] +

δµ2
W

s34 − µ2
W

−∆r. (3.38)

The IR divergences are treated using mass regulators, both for the soft and the collinear cases,
and cancel when the integrated real contribution is added. More details are given in Chap. 4.
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Chapter 4

The one-cutoff phase-space slicing
method

In the case of processes containing massless particles the calculation of loop diagrams gives rise
to terms proportional to ln(m2/Q2), where Q is the typical scale of the process, which diverge
in the limit of the mass m→ 0. These divergences are called mass or infrared (IR) divergences.
They cancel when the virtual contribution is added to the real one, after phase-space integration
and for sufficiently inclusive observables, according to the Kinoshita–Lee–Nauenberg (KLN)
theorem [87, 88].

The IR divergences can be classified in two different types: the soft and the collinear singu-
larities. In the virtual corrections, the soft singularities typically occur if a gluon or a photon
with a small momentum q is exchanged between the external particles with momenta pf , while
the collinear singularities arise in a loop diagram if a massless external particle splits into two
massless internal particles [89]. In the real corrections the singularities arise during the numer-
ical phase-space integration: If the momentum of the emitted massless particle is very small
(q → 0), the divergences are soft, otherwise, if the gluon/photon is radiated almost parallel to
the high-energetic fermion (2pfq → 0), the divergences are called collinear. The singularities
are regularized in this work through the so-called mass regularization [90,91], which introduces
an infinitesimal photon (gluon) mass1 mγ (mg) and small fermion masses2 mf . Such masses
appear in the intermediate steps of the calculation as logarithmic terms, which cancel after
combining virtual and real contributions. To isolate these mass singularities from the real cor-
rection we use an extension of the one-cutoff phase-space slicing method (OCSM) [37–41].

The main idea of the phase-space slicing method is to introduce technical cut parameters to
separate the resolved region of the real emission phase space from the unresolved region, which
contains the soft and collinear divergences. While the former part can be numerically integrated
by Monte Carlo methods, in the latter the matrix elements and the phase-space measure have
to be approximated to carry out part of the integration analytically. The separation between
the two regions can be performed in two different ways. One possibility is to apply two cuts:

1The gluon mass is needed and thus introduced here only for “QED-like”IR singularities, to avoid the issue
of the difference between the zero-mass and small-mass theories described in Ref. [92].

2After the introduction of a regulator mass, we will refer to the massless particle as a light particle.
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the first on the energy of the emitted gluon/photon, to isolate the soft divergences, and the
second on the angle between the gluon/photon and the emitting fermion, isolating the collinear
divergences. This method is known in the literature as the two-cutoff slicing [39, 93]. Another
procedure, the one-cutoff slicing method, isolates both types of singularities making use of only
one cut. This technique has the advantage to be Lorentz invariant and thus to be equally
applicable in any reference frame. Moreover, the OCSM is technically convenient, since, in
contrast to other standard procedures such as the dipole subtraction method [42–45], it offers
the possibility to avoid negative weights during the integration process (useful to generate
unweighted events with a Monte Carlo program). For these reasons, we base the calculation
performed in this thesis on the OCSM. The dipole subtraction approach has been instead
implemented in an independent calculation as a check of the results (see Sect. 6.1).

The OCSM has been extensively studied in the literature, in the massless [37,38] or massive
[39–41] cases. It should be noted that performing an expansion of the results obtained with
the full mass dependence is not feasible due to the hierarchy between the cut imposed by the
slicing method and the light fermion masses. This forbids to simply take the massless limit of
the massive case to deal with processes involving light particles (fundamental when using mass
regularization). Moreover, so far there is no prescription in the literature for the OCSM in the
particular case of a decay process with more than two particles in the final state.

To cover these lacks, in this work we developed an extension of the OCSM. Our method
employs the idea, described in Ref. [44] for the dipole-subtraction formalism, of using a function
that has the appropriate asymptotic behavior both in the soft and in the collinear limits. This
allows us to perform analytical integrations also for the cases of light particles. Moreover, we
take into consideration some boundary regions appearing only in the case of more than two
particles in the final state. The details are presented in the following sections.

4.1 Overview of the method

We consider the real emission of a massless vector boson from a generic process. In this section
only the photonic case is discussed, but this method can be easily extended to gluon emission.
A summary with the complete results used in this work is reported in Sect. 4.2.3.

We define the Lorentz-invariant quantity

sfγ ≡ 2pfq, (4.1)

where pf is the momentum of a fermion f and q is the photon momentum. Furthermore, the
resolution parameter ∆s, which is an arbitrary cut, is introduced to divide the phase space
into two regions, whose sum does not depend on ∆s. This property can be used during the
calculation as a check on correctness.

The correction given by the real emission of a photon is calculated by integrating the squared
matrix element |M1|2 (given in Sect. 3.3), summed over all photon polarizations λγ, over the
corresponding phase space dΦ1. It is possible to identify two different regions:

∫
dΦ1

∑

λγ

|M1|2 = IS + IH . (4.2)
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- The hard region, where sfγ > ∆s for all fermions f appearing in the process:

IH =

∫
dΦ1

∑

λγ

|M1|2
∏

f

Θ(sfγ −∆s). (4.3)

There are neither soft nor collinear singularities, and the integration can be performed
numerically via Monte Carlo methods (see Chapter 5).

- The singular region, where IS is defined: sfγ < ∆s for at least one of the fermions f .

If only one invariant sfγ < ∆s, the fermion f and the photon are collinear. If instead
at least two invariants are smaller than ∆s, the photon is soft. These two types of
divergences can overlap.

In the singular region some of the integrals are calculated analytically in the limit ∆s→ 0.
The details are presented in Sect. 4.2. The remaining integrals are integrated numerically,
as described in Sect. 4.3.

4.2 Singular region

Integrating the singular region analytically (IS in Eq. (4.2)), the main idea is to find a function
that has the same asymptotic behavior as the squared matrix element for the real corrections,
in the soft and collinear limits. This method, described in Ref. [44] for the dipole-subtraction
formalism, is adapted here to the OCSM.

When the emitted photon becomes soft (q → 0), the soft-photon approximation (see App.B)
can be used: The squared real matrix element becomes proportional to the square of the LO
matrix element M0,

∑

λγ

|M1|2 q̃→0
−e2|M0|2

∑

f,f ′

QfQf ′

pfpf ′

(pfq)(pf ′q)
, (4.4)

where Qf and Qf ′ are the charges of the fermions f and f ′, respectively, and e is the electric
unit charge. A similar factorization occurs in the case of a collinear photon emission, in the
limit of vanishing fermion masses

∑

λγ

|M1|2 p̃fq→0
Q2

fe
2gf,τ(pf , q)|M0|2. (4.5)

The function gf,τ depends on the spin-flip variable τ = ± and is different for incoming or
outgoing fermions. Its explicit form can be found in Ref. [44].

Taking advantage of this factorization property, we construct a function |Msub|2 such that

|Msub|2 ∼
∑

λγ

|M1|2 for q → 0 or pfq → 0. (4.6)

For this purpose we make use of the auxiliary functions gff ′,τ(pf , pf ′, q) of Ref. [44],

|Msub|2 = −e2
∑

f 6=f ′

τ=±

QfσfQf ′σf ′gff ′,τ (pf , pf ′, q)|M0(Φ̃0,ff ′)|2. (4.7)
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These functions are simple enough to be analytically integrated over the photon phase space
and have the appropriate asymptotic behavior both in the soft and in the collinear limits. We
consider in this work only the unpolarized case: We sum over the spins and obtain the radiator
function

gff ′ = gff ′,+ + gff ′,−. (4.8)

The sign factor in Eq. (4.7) is σf = +1 for incoming fermions and outgoing anti-fermions,
and σf = −1 for outgoing fermions and incoming anti-fermions. With this convention charge
conservation reads ∑

f

σfQf = 0. (4.9)

Note that the matrix elements on the left-hand side and those on the right-hand side of Eqs. (4.4)
and (4.5) are defined on different phase spaces (Φ1 and Φ0, respectively). For this reason we
need to apply a mapping that projects the momenta of Φ1 to Φ0, in such a way that the whole
phase space is spanned and the mass-shell relations are fulfilled. The projected momenta are
denoted by a tilde and span the phase space Φ̃0,ff ′ , which we label Φ̃0 for all pairs of fermions
ff ′ (the explicit mapping of Φ1 → Φ̃0 can be found in Sect. 4.3).

For the analytical phase-space integration, the factorization property of the integral
∫
dΦ1

in the singular limit is used: ∫
dΦ1 =

∫
dΦ̃0 ⊗

∫
d[q], (4.10)

where
∫
d[q] is connected to the photon phase space. It is then possible to rewrite

∫
dΦ1

∑

λγ

|M1|2 ∼
∫
dΦ̃0 |M0(Φ̃0)|2 S for pfq → 0 or q → 0, (4.11)

where
S = − α

2π

∑

f 6=f ′

QfσfQf ′σf ′Gff ′(P 2
ff ′) (4.12)

and

Gff ′(P 2
ff ′) = 8π2

∫
d[q] gff ′(pf , pf ′, q) ΘfΘf ′ . (4.13)

In the previous equations α = e2/(4π) is the fine-structure constant, P 2
ff ′ depends on the

momenta of the fermions f and f ′, and the cut functions are defined by

ΘfΘf ′ = Θ(sfγ−∆s)Θ(∆s−sf ′γ)+Θ(∆s−sfγ)Θ(sf ′γ−∆s)+Θ(∆s−sfγ)Θ(∆s−sf ′γ). (4.14)

The radiator functions gff ′ appearing in the definition of |Msub|2 (see Eq. (4.7)) are defined
only for pairs of fermions (called emitter and spectator following the idea of Ref. [44]). As a
consequence, the cuts of Eq. (4.14) identify the singular domain of the functions Gff ′(P 2

ff ′) only
for pairs of different fermions f and f ′, ignoring in which region of the phase space any other
fermion f ′′ appearing in the process is located. This means that the instance where sfγ > ∆s
and sf ′γ > ∆s is considered part of the hard region and it is not analytically integrated.
However, the case where sf ′′γ < ∆s, even though sfγ > ∆s and sf ′γ > ∆s, is by definition part
of the singular region where IS is defined and it is not taken into account when calculating
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Gff ′(P 2
ff ′). For this reason, we introduce another phase-space region, named quasi-soft region

(QS) in the following, that includes these kind of contributions:

IS =

∫
dΦ̃0 |M0(Φ̃0)|2 S + IQS. (4.15)

The integrand of the quantity IQS is calculated using the soft photon/gluon approximation and
it is splitted into various contributions to avoid double counting. Then a numerical integration
is performed, as described in more detail in Sect. 4.3.

Particular attention has to be paid while evaluating the collinear limit, as explained in
Refs. [44, 45]. Collinear singularities appear only in the case of small masses, which give rise
to terms of the form α ln(m2

f/Q
2). In our process only the collinearity with respect to the

final-state radiation occurs. For the EW corrections to the semileptonic top-quark decay width
we can distinguish two kinds of observables, depending on the type of fermion emitting the
collinear photon:

- Collinear-safe observables : The fermion f is a positron. Both the positron and the photon
are detected as a shower in the EM calorimeter of the experiments. Since it is impossible
to separate them if they are collinear, they are treated like a single quasi-particle of
momentum p̃f = pf + q (photon recombination [94]). This procedure guarantees that the
quantity

zff ′ =
pfpf ′

pfpf ′ + pfq
(4.16)

can be integrated over its whole range. Events that differ only in the value of zff ′ fill
the histogram bins in a way that is independent of zff ′ . The contribution of the form
α ln(m2

f/Q
2) cancels completely after adding the virtual corrections, as granted by the

KLN theorem.

- Non-collinear-safe observables : The fermion f is a muon and is detected in the muon
chambers, while the photon is detected in the EM calorimeter. This means that collinearly
radiated muons and photons can be experimentally distinguished introducing a depen-
dence on the variable zff ′ of Eq. (4.16). To make this dependence explicit, in our calcu-
lation the following splitting is introduced:

pf = zff ′ p̃f , pf ′ = p̃f ′ and q = (1− zff ′)p̃f . (4.17)

The previous equations define the momenta of the events associated with |Msub|2 of
Eq. (4.7) treated as (N +1)-particle events. These transformations allow to use selection
functions, such as event selections or θ-functions for cuts, which now implicitly depend
on zff ′ itself, constraining its integration.

In the integration soft singularities occur when zff ′ → 1. Following Ref. [45] we write
∫
dΦ1|Msub,ff ′(Φ1)|2 = − α

2π
QfσfQf ′σf ′

∫
dΦ̃0,ij

∫ 1

0

dz

×
{
Gff ′(P 2

ff ′)δ(1− zff ′) +
[
Ḡff ′(P 2

ff ′, zff ′)
]
+

}

× |M0(p̃f , p̃f ′)|2Θcut (pf = zff ′ p̃f , q = (1− zff ′)p̃f , pf ′ = p̃f ′) ,
(4.18)
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i

γ

jpj

pi

q

Figure 4.1: Generic diagram with a final emitter i and a final spectator j.

where Θcut is a step function acting on the (N + 1)-particles phase space. In the term in
the curly brackets on the right-hand side of Eq. (4.18) we have isolated the singularities,
employing the [...]+ prescription

Ḡff ′(P 2
ff ′, zff ′) = Gff ′(P 2

ff ′)δ(1− zff ′) + [Ḡff ′(P 2
ff ′ , zff ′)]+. (4.19)

This procedure simplifies the integration in the non-collinear-safe region. Gff ′(P 2
ff ′) cor-

responds to the quantity calculated in the collinear-safe case and [Ḡff ′(P 2
ff ′ , zff ′)]+ is a

regular term that can be calculated setting mγ = 0.

In case of an hadronic decay of the top quark, it is experimentally impossible to separate two
collinear partons. For this reason only the case of collinear-safe observables appears. It is,
however, important to define IR-safe jet observables, which are obtained by recombining the
collinear partons through a jet algorithms [95].

In the following sections we explicitly show how to calculate Gff ′(P 2
ff ′) and [Ḡff ′(P 2

ff ′ , zff ′)]+
for different pairs of fermions f and f ′, distinguishing between the possible combinations of
initial/final and spectator/emitter particles. We use the notation introduced in Ref. [44].

4.2.1 Final-state spectator and final-state emitter

In the case of a final-state spectator j and a final-state emitter i (Fig. 4.1), we introduce the
abbreviations

Pij = pi + pj + q, P
2

ij = P 2
ij −m2

i −m2
j −m2

γ , λij = λ(P 2
ij, m

2
i , m

2
j ), (4.20)

where
λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (4.21)

is the Källén function and

λij = P
4

ij − 4m2
im

2
j , for mγ = 0. (4.22)

The unpolarized radiator function is given by [44]

gij(pi, pj, q) =
1

(piq)Rij(yij)

[ 2

1− zij(1− yij)
− 1− zij −

m2
i

piq

]
, (4.23)
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where the following variables are used:

yij =
piq

pipj + piq + pjq
=

2piq

P
2

ij

, zij =
pipj

pipj + pjq
. (4.24)

Throughout this section, we refer to them using the shorthand notation y and z.

The photon phase space can be written as

∫
[dq(P 2

ij, y, z)] =
1

4(2π)2
P

4

ij√
λij

∫ y2

y1

dy (1− y)

∫ z2(y)

z1(y)

dz (4.25)

and consequently

Gij(P
2
ij) =

P
4

ij

2
√
λij

∫ y2

y1

dy (1− y)

∫ z2(y)

z1(y)

dz gij(pi, pj, q) ΘfΘf ′ . (4.26)

The boundary values of y and z are

y1 =
2mimγ

P
2

ij

, y2 = 1−
2mj(

√
P 2
ij −mj)

P
2

ij

,

z1,2(y) =
(1− y)(2m2

i + P
2

ijy)∓
√
y2 − y21

√
λijRij(y)

2(1− y)(m2
i +m2

γ + P
2

ijy)
, (4.27)

where

Rij(y) =

√
(2m2

j + P
2

ij − P
2

ijy)
2 − 4P 2

ijm
2
j√

λij
. (4.28)

In order to integrate Eq. (4.26), y and z have to fulfill the ΘfΘf ′ condition of Eq. (4.14), which
sets the following boundaries:

SOFT:

{
z > 1−∆z, for sjγ < ∆s,

y < ∆y, for siγ < ∆s,
(4.29)

COLLINEAR 1: γ collinear to i

{
z < 1−∆z, for sjγ > ∆s,

y < ∆y, for siγ < ∆s,
(4.30)

COLLINEAR 2: γ collinear to j

{
z > 1−∆z, for sjγ < ∆s,

y > ∆y, for siγ > ∆s,
(4.31)

where

∆y ≡ ∆s

P
2

ij

and ∆z ≡ ∆y

1− y
. (4.32)
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This means that the integral we need to calculate is of the form

Gij(P
2
ij) =

∫ yb

ya

dy

∫ zb(y)

za(y)

dz
P

2

ij√
λij

(1− y)

yRij(y)

[
2

1− z(1− y)
− 1− z − 2m2

i

P
2

ijy

]

=
P

2

ij√
λij

∫ yb

ya

dy

{
2

yRij(y)
ln

(
1− (1− y)za(y)

1− (1− y)zb(y)

)

+ (za(y)− zb(y))
(1− y)

yRij(y)

[
1 +

(za(y) + zb(y))

2
+

2m2
i

P
2

ijy

]}
, (4.33)

where the integration boundaries, ya, yb, za(y), and zb(y), will be discussed in the following
for each case. Sometimes it is convenient to use the result given in Eq. (4.10) of Ref. [44] for
the subtraction method, i.e. the total integration over the intervals [z1(y), z2(y)] and [y1, y2],
defined in Eq. (4.27):

G
(sub)
ij (P 2

ij) =
3

2
+
a23
2

+ ln

(
a33
m2

γ

m2
i

)
− 2 ln(1− a23) +

P
2

ij√
λij

{
ln(a1) ln

(
m2

γm
2
j

λija2

)

+ 4Li2

(
−
√
a2
a1

)
− 4Li2 (−

√
a1a2) + 2Li2(a1)−

π2

3
+

1

2
ln2(a1)

}
, (4.34)

where

a1 =
P

2

ij + 2m2
i −

√
λij

P
2

ij + 2m2
i +

√
λij

, a2 =
P

2

ij −
√
λij

P
2

ij +
√
λij

and a3 =
mi√

P 2
ij −mj

. (4.35)

Emitter i = b and spectator j, with mj → 0

Due to the small mass of the spectator, the hierarchy between the parameters is

m2
γ ≪ m2

j ≪ ∆s≪ m2
b , P

2
bj . (4.36)

With these conditions, y1 < ∆y < y2, z2 > (1−∆z) and (1−∆z) < z1 for y− < y < y+, where

y− =
m2

b∆y

P
2

bj

+O(∆y2), y+ = 1−∆y(1 +
m2

b

P
2

bj

) +O(∆y2), (4.37)

and y1, y2, z1 and z2 are defined in Eq. (4.27). Moreover we have y2 > y+ and

{
y− > ∆y, for P

2

bj < m2
b ,

y− < ∆y, for P
2

bj > m2
b .

(4.38)

For this integration two cases can be distinguished:
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Figure 4.2: Boundary of the integration for the case b-quark emitter and light fermion j spec-

tator, with ∆y = 0.1 and mb = 4.78GeV. In case a) we have P
2

bj = 28GeV2 < m2
b , while in

case b) we have P
2

bj = 40GeV2 > m2
b .

- P
2

bj < m2
b : To calculate the ΘfΘf ′ contribution we consider the massless limit mj → 0 of

the complete integration in Eq. (4.34),

G
(sub)
bj (P 2

bj) =
3

2
− π2

3
+ 2Li2

(
m2

b

P 2
bj

)
+ ln



mbm

2
γ

√
P 2
bj

P
4

bj




+ ln

(
m2

b

P 2
bj

)
ln


 m2

γ

mb

√
P 2
bj


+

m2
b

2P 2
bj

. (4.39)

We subtract to G
(sub)
bj (P 2

bj) the integral (c) between [y−, y+] and [z1, 1−∆z],

Gbj |(c)(P 2
bj) =

P
2

bj√
λbj

∫ y+

y−

dy

{
2

yRbj(y)
ln

(
1− (1− y)z1

1− (1− y)(1−∆z)

)

+ (z1 − (1−∆z))
(1− y)

yRbj(y)

[
1 +

(z1 + (1−∆z))

2
+

2m2
b

P
2

bjy

]}
(4.40)

=− π2

3
+ ln

(
m2

b

P 2
bj

)
ln

(
P 2
bjm

2
b∆s

2

P
8

bj

)
− 2Li2

(
−m2

b

P
2

bj

)

− ln2

(
m2

b

P
2

bj

)
+ ln




√
P 2
bj∆s

2m3
b

P
8

bj


+

m2
b

2P 2
bj

+
3

2
, (4.41)

which is the black area pictorially shown in Fig. 4.2 a). The final contribution for i = b,

the light fermion j and P
2

bj < m2
b case is

Gbj(P
2
bj) = 2 ln

(
mγP

2

bj

mb∆s

)
+ ln

(
m2

b

P 2
bj

)
ln


 P

4

bjm
2
γ

mb

√
P 2
bj∆s

2


 . (4.42)
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Figure 4.3: Boundary of the integration for the case light fermion i emitter and b-quark spec-

tator, with ∆y = 0.1 and mb = 4.78GeV. In case a) we have P
2

ib = 18GeV2 < m2
b , while in

case b) we have P
2

ib = 35GeV2 > m2
b .

- P
2

bj > m2
b : We proceed similarly to the previous case, subtracting from Eq. (4.39) the

integral (d) between [∆y, y+] and [z1, 1 −∆z] (the black area shown in Fig. 4.2 b)). We
find

Gbj(P
2
bj)|(d) = −π

2

6
+ln

(
m2

b

P 2
bj

)
ln

(
P 2
bj∆s

2

m2
bP

4

bj

)
+ln




√
P 2
bj∆s

2

mbP
4

bj


− 1

2
+
m2

b

2P 2
bj

+
2m2

b

P
2

bj

. (4.43)

The contribution for i = b, the light fermion j and P
2

bj > m2
b is

Gbj(P
2
bj) =2− π2

6
+ 2Li2

(
m2

b

P 2
bj

)
+ 2 ln

(mγmb

∆s

)
+ ln

(
m2

b

P 2
bj

)
ln


 P

4

bjm
2
γmb

P 2
bj

√
P 2
bj∆s

2


− 2m2

b

P
2

bj

.

(4.44)

Emitter i and spectator j = b, with mi → 0

The SOFT (Eq. (4.29)) and COLLINEAR 1 (Eq. (4.30)) conditions cover the domain [y−,∆y]
and [z1, z2], which we call (a). We have z1 < (1−∆z) for y > y− and z2 > (1−∆z) for y < y+,
where

y− =
m2

i

P
2

ib

∆y, y+ =
P

2

ib

m2
b

∆y, and

{
y+ < ∆y, for P

2

ib < m2
b ,

y+ > ∆y, for P
2

ib > m2
b .

(4.45)

Two different cases are encountered in the integration:

- P
2

ib < m2
b : To calculate the ΘfΘf ′ contribution (a) needs to be evaluated, as shown in

Fig. 4.3 a). To simplify the calculation, we first solve the integral for the region y ∈ [∆y, y2]
and z ∈ [z1, z2] (that we call (b)), where we can safely set mγ = 0,

Gib(P
2
ib)|(b) =

π2

3
+

1

2
ln

(
m2

im
4
γ

∆s3

)
− ln2

(
∆sP 2

ib

P
4

ib

)
+ ln

(
m2

iP
2
ib

P
4

ib

)
ln

(
m2

γ

√
P 2
ib

miP
2

ib

)
. (4.46)
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Here the substitution

x = y2 − y +

√
λibRib

P
2

ib

(4.47)

has been used. We then subtract Eq. (4.46) from the complete integral, i.e. Eq. (4.34),
which corresponds to the region (a) + (b):

G
(sub)
ib (P 2

ib) =
3

2
− π2

3
+ 4Li2

(
− mb√

P 2
ib

)
+ ln

(
mim

2
γ

(
√
P 2
ib −mb)3

)

+ ln

(
m2

iP
2
ib

P
4

ib

)
ln

(
m2

γ

√
P 2
ib

miP
2

ib

)
. (4.48)

The final result is given by

Gib(P
2
ib)|(a) =

3

2
− 2π2

3
+

1

2
ln

(
m2

im
4
γ

∆s3

)
− ln2

(
∆sP 2

ib

P
4

ib

)
+ ln

(
m2

iP
2
ib

P
4

ib

)
ln

(
m2

γ

√
P 2
ib

miP
2

ib

)
.

(4.49)

Until now we assumed collinear safety with respect to radiation off the lepton. In the
case of non-collinear-safe observables, particular attention has to be taken in the region
where the collinear photon is emitted by the light fermion (COLLINEAR 1 (C1)):

Gib(P
2
ib)|C1 =

P
4

ib

2
√
λib

[∫ y+

y−

dy (1− y)

∫ 1−∆z

z1

dz +

∫ ∆y

y+

dy (1− y)

∫ z2

z1

dz

]
gib(pi, pb, q).

(4.50)
We need to interchange the order of the integration of the previous equation to leave the
integration over z open. This allows us to get the extra term [Ḡib(P

2
ib, z)]+ described in

Eq. (4.18). The inversion of the parameterization of Eq. (4.50) reads




y1+ ∼ P
2

ib

m2
b

z for y <
mi

mb
,

y1− ∼ m2
i (1− z)

P
2

ibz
for y >

mi

mb
,

y2 ∼
P

2

ib

m2
b

(1−z) and y∆ ∼ 1− ∆y

1− z
, (4.51)

setting mγ = 0 and using

z1 ∼
m2

i

m2
i + P

2

iby
+
m2

b

P
2

ib

y, z2 ∼ 1− m2
b

P
2

ib

y, (4.52)

after the assumption

O
(
m2

i

P
2

ib

)
< y < ∆y. (4.53)

We define

Ḡi
ib(P

2
ib, z) =

P
4

ib

2
√
λib

∫ yb(z)

ya(z)

dy (1− y) gib (4.54)
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and identify four different contributions

Ḡib(P
2
ib, z) =





Ḡ(1)
ib (P 2

ib, z) with ya(z) = y1−(z), yb(z) = y1+(z), for z ∈ [z0, z−],

Ḡ(2)
ib (P 2

ib, z) with ya(z) = y1−(z), yb(z) = ∆y, for z ∈ [z−, zA],

Ḡ(3)
ib (P 2

ib, z) with ya(z) = y1−(z), yb(z) = y2(z), for z ∈ [zA, zB],

Ḡ(4)
ib (P 2

ib, z) with ya(z) = y1−(z), yb(z) = y∆(z), for z ∈ [zB, zC ],

(4.55)
where

z0 =2
mimb

P
2

ib

, z− =
m2

b

P
2

ib

∆y, zA = 1− m2
b

P
2

ib

∆y,

zB =1−∆y − P
2

ib

m2
b

∆y2, zC = 1−∆y − m2
i

P
2

ib

∆y2. (4.56)

It is possible to observe that the soft divergences appear at the endpoint z → 1, and that
zA ∼ zB ∼ zC ∼ 1. This means that Ḡ(3)

ib (P 2
ib, z) and Ḡ(4)

ib (P 2
ib, z) do not contribute to

[Ḡib(P
2
ib, z)]+. Consequently, for our purposes it is sufficient to calculate

Ḡ(1)
ib (P 2

ib, z) = 0 and Ḡ(2)
ib (P 2

ib, z) =
1 + z2

1− z
ln

(
z∆s

m2
i (1− z)

)
− 2z

1− z
. (4.57)

- P
2

ib > m2
b : In this case we need to add to Eq. (4.49) the quantity

Gib(P
2
ib)|(f) =

∫ y−

∆y

dy
2P

2

ib

y
√
λibRib(y)

ln

(
1− (1− y)(1−∆z)

1− (1− y)z2

)

=
π2

6
+ 2 ln

(
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b

P
2

ib

)
ln

(
P 2
ib

P
2

ib

)
+ 2Li2

(
−m2

b

P
2

ib

)
, (4.58)

which originates from the COLLINEAR 2 (C2) condition, as shown in Fig. 4.3 b).

Concerning the non-collinear-safe observables, the C1 contribution is given by

Gib(P
2
ib)|C1 =

P
4

ib

2
√
λib

∫ ∆y

y−

dy (1− y)

∫ 1−∆z

z1

dz gib(pi, pb, q). (4.59)

When inverted, leaving the integration over z open, Eq. (4.59) gives rise to

Ḡib(P
2
ib, z) =





Ḡ(1)
ib (P 2

ib, z) with ya(z) = y1−(z), yb(z) = y1+(z), for z ∈ [z0, z−],

Ḡ(2)
ib (P 2

ib, z) with ya(z) = y1−(z), yb(z) = ∆y, for z ∈ [z−, zD],

Ḡ(3)
ib (P 2

ib, z) with ya(z) = y1−(z), yb(z) = y∆(z), for z ∈ [zD, zC ],

(4.60)
where Ḡi

ib(P
2
ib, z) is defined in Eq. (4.54), y1−(z), y1+(z), y∆(z) in Eq. (4.51), z0, z−, zC in

Eq. (4.56) and
zD = 1−∆y −∆y2. (4.61)
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With the same arguments as in the case P
2

ib < m2
b , only

Ḡ(1)
ib (P 2

ib, z) = 0 and Ḡ(2)
ib (P 2

ib, z) =
1 + z2

1− z
ln

(
z∆s

m2
i (1− z)

)
− 2z

1− z
(4.62)

contribute to [Ḡib(P
2
ib, z)]+.

Summarizing, the soft+collinear contribution for the light fermion i and j = b is

Gib(P
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ib) =
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2
− 2π2

3
+
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2
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)
− ln2
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)
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{
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(
−m2

b

P
2

ib

)
+ 2 ln

(
m2
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P
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ib

)
ln

(
P 2
ib

P
2

ib

)}
, (4.63)

with the non-collinear-safe contribution given by

[Ḡib(P
2
ib, z)]+ =

[
1 + z2

1− z
ln

(
z∆s

m2
i (1− z)

)
− 2z

1− z

]

+

. (4.64)

Emitter i = u and spectator j = d and vice versa

In the case where the W boson is decaying hadronically, the photon can be emitted by both the
light quarks stemming from the decay (we refer to them as u and d). Gud(P

2
ud) and Gdu(P

2
du)

can be easily calculated taking the massless limit of the case of a light emitter i and j = b,
replacing i→ u and b→ d, and vice versa. The final result is

Gij(P
2
ij) =

3

2
− π2

2
+

1

2
ln

(
m2

im
4
γ

∆s3

)
− ln2

(
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P 2
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)
+

1

2
ln

(
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i

P 2
ij

)
ln

(
m4

γ

m2
iP

2
ij

)
, (4.65)

being P
2

ij = P 2
ij, and mi and mj the divergences regulators.

4.2.2 Final-state emitter and initial-state spectator, and vice versa

In the cases of a final-state emitter i and an initial-state spectator a, and of an initial-state
emitter a and a final state spectator i (represented on the left- and on the right-hand side of
Fig. 4.4, respectively), the following variables and abbreviations are used:

Pia = Pai = pi − pa + q, sia = sai = −P 2

ia = −P 2
ia +m2

i +m2
a +m2

γ > 0, (4.66)

and
λia = λai = λ(P 2

ia, m
2
i , m

2
a) = s2ia − 4m2

im
2
a. (4.67)

The radiator functions are [44]

gia(pi, pa, q) =
1

(piq)x

[ 2

2− x− z
− 1− z − m2

i

piq

]
,

gai(pa, pi, q) =
1

(paq)x

[ 2

2− x− z
−Ria(x)(1 + x)− xm2

a

piq

]
, (4.68)
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i

γ

a pa

pi

q

a γ

ipi

pa q

Figure 4.4: Generic diagram with a final-state emitter i and an initial-state spectator a on the
left, and with an initial-state emitter a and a final-state spectator i on the right.

where x and z are the shorthands for

xia = xai =
papi + paq − piq

papi + paq
, zia = zai =

papi
papi + paq

, (4.69)

and

Ria(x) =Rai(x) =

√
(−sia + 2m2

ax)
2 − 4P 2

iam
2
ax

2

√
λia

. (4.70)

The kinematic and angular constraints lead to the conditions x ∈ [x1, x2] and z ∈ [z1, z2], where





x1 =
sia

2ma(ma −
√
P 2
ia)
,

x2 = 1− 2mimγ

sia
,

and

z1,2(x) =
sia(1− x) + 2m2

ix∓
√

(1− x)2 − 4m2
im

2
γ

s2ia
x2
√
λiaRia(x)

2[(1− x)sia + (m2
i +m2

γ)x]
. (4.71)

The final integrals, which have to be calculated, are

Gia(P
2
ia) =

s2ia
2
√
λiaRia(x)

∫ x2

x1

dx

∫ z2(x)

z1(x)

dz gia(pi, pa, q) ΘfΘf ′ ,

Gai(P
2
ia) =

s2ia
2
√
λiaRia(x)

∫ x2

x1

dx

∫ z2(x)

z1(x)

dz gai(pa, pi, q) ΘfΘf ′ , (4.72)

where the regions contributing to ΘfΘf ′ (Eq. (4.14)) are

SOFT:




z > 1−∆z for saγ < ∆s,

x >
1

1 + ∆x
for siγ < ∆s,

(4.73)

COLLINEAR 1: γ collinear to i




z < 1−∆z for saγ > ∆s,

x >
1

1 + ∆x
for siγ < ∆s,

(4.74)
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COLLINEAR 2: γ collinear to a




z > 1−∆z for saγ < ∆s,

x <
1

1 + ∆x
for siγ > ∆s,

(4.75)

with

∆x ≡ ∆s

sia
, ∆z ≡ x∆x and x1 <

1

1 + ∆x
< x2. (4.76)

Emitter i = b and spectator a = t, and vice versa

For the final-state emitter i = b and the initial-state spectator a = t (and vice versa) we can
see that 1−∆z > z2. This means that we have neither SOFT (Eq. (4.73)) nor COLLINEAR 2
(Eq. (4.75)) contributions, due to the large mass of the top quark. The only contribution left
is given by the case where the photon is collinear to the b quark. Therefore we calculate the
integrals

Gbt(P
2
bt) =

sbt√
λbt

∫ x2

1
1+∆x

dx
1

Rbt(x)(1− x)

{
2 ln
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)
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(z1 + z2)

2
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2m2
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]}
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(mγmb

∆s

)
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3
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2
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(
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b + sbt)

m2
γλbt

)
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}
(4.77)

and

Gtb(P
2
tb) =

sbt√
λbt

∫ x2

1
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dx
1

Rbt(x)

{
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)
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)
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[
1
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1− z1

]}

= 2 ln
(mγmb
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)
− sbt√

λbt

{
2 ln(
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) ln
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)
+
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ln(c0b1) ln

(
b1
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)

− ln

(
sbt +m2

b +m2
t
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ln(b1) + ln(c0)− 2Li2(c0) + 2Li2(b1)

}
, (4.78)

using, respectively, Eq. (4.28) and Eq. (4.34) of Ref. [44], where we have identified (1−x0) with
∆x, in the limit ∆x→ 0, and

b1 =
2m2

b + sbt −
√
λbt

2m2
b + sbt +

√
λbt

, c0 =
sbt −

√
λbt

sbt +
√
λbt

. (4.79)

Emitter i and spectator a = t, with mi → 0

The mass of the emitter is small, we therefore consider the hierarchy

m2
γ ≪ m2

i ≪ ∆s≪ m2
t , sit (4.80)
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between the parameters. It is possible to show that 1−∆z < z2 for x > x3 and that 1−∆z > z1
for x < x4, where

x3 = 1− s2it∆x

m4
t

, x4 = 1− m2
i

sit
∆x, and x1 <

1

1 + ∆x
< x3 < x4 < x2. (4.81)

Only the SOFT (Eq. (4.73)) and COLLINEAR 1 (Eq. (4.74)) contributions survive. Therefore,
the integral that has to be calculated is

Git(P
2
it) =

sit√
λit

∫ x2

1−∆x

dx
1

Rit(x)(1− x)

{
2 ln
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)
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2
+

2m2
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(4.82)

=
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− ln2
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)
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(
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sit

)
. (4.83)

The contribution to the non-collinear-safe observables is obtained by interchanging the order
of the integrations of the COLLINEAR 1 region ,

Git(P
2
it)|C1 =

s2it
2
√
λitRit(x)

[∫ x3

1
1+∆x

dx

∫ z2

z1

dz +

∫ x4

x3

dx

∫ 1−∆z

z1

dz

]
git(pi, pt, q), (4.84)

and leaving the integration over z open. The only part that contributes to the plus distribution
is

[Ḡit(P
2
it, z)]+ =

[
s2it

2
√
λitRit(x)

∫ x1(z)

1
1+∆x

dx git(pi, pt, q)

]

+

=

[
1 + z2

1− z
ln

(
z∆s

m2
i (1− z)

)
− 2z

1− z

]

+

. (4.85)

Emitter a = t and spectator i, with mi → 0

Since the light particle is the spectator, we can extract the soft+collinear contribution from
Eq. (4.78), replacing b→ i and taking the limit mi → 0,

Gti(P
2
ti) = 2 ln

(
mγsit
mt∆s

)
− ln

(
sit +m2

t

m2
t

)
ln

(
m2

γs
2
it

mt

√
sit +m2

t∆s
2

)
. (4.86)

4.2.3 Summary of the singular contributions

We list in the following the results obtained performing the analytical integration described in
Eq. (4.12) for the various final states and corrections to the top-quark decay.
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- Leptonic decay, QCD corrections:
When the W boson is decaying leptonically, only the t and the b quarks can emit a
gluon. Thus the singular integral contributing to the first term on the right-hand side of
Eq. (4.15) is given by

S =
αs

2π
CF (Gtb +Gbt), (4.87)

where the colour factor is CF = 4
3
.

- Leptonic decay, EW corrections:
The photon can be emitted either from the t or the b quarks or from the charged lepton.
Following Eq. (4.12) we have

S = − α

2π
[−QtQb(Gtb +Gbt) +QtQℓ(Gtℓ +Gℓt)−QℓQb(Gℓb +Gbℓ)] . (4.88)

- Hadronic decay, QCD corrections:
In this case the gluon can be emitted from all the quarks appearing in the process. There
is no interference between the diagrams where the gluon is emitted by u or d and by t or
b. More specifically, due to colour conservation, the trace over the colour factors of the
interfering diagrams is zero. For this reason the singular integral reads

S =
αs

2π
CF [(Gtb +Gbt) + (Gud +Gdu)] . (4.89)

- Hadronic decay, EW corrections:
Any of the particles appearing in the process can emit a photon, therefore

S =− α

2π
[−QtQb(Gtb +Gbt) +QtQd(Gtd +Gdt)−QdQb(Gdb +Gbd)

−QtQu(Gtu +Gut) +QuQb(Gub +Gbu)−QuQd(Gud +Gdu)] . (4.90)
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Since the integrals Gff ′(P 2
ff ′) always appear in pairs, it is useful to summarize the results

in a more compact form:

Gtb +Gbt =2 ln
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γm
2
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)
+ 2− sbt√
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{
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}
, (4.91)
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, (4.92)

Gbi +Gib =
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, (4.93)

Gud +Gdu =3− π2 + ln
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mumdm
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)
− 2 ln2
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)
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1
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ln
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, (4.94)

where i = u , d , ℓ, depending on the W -boson decay mode (mi → 0), and c0 is defined in
Eq. (4.79).

4.3 Quasi-soft region

To integrate the singular region of the phase space, described in Eq. (4.15) by the integral IS,
we introduced in the previous sections the one-cutoff phase-space slicing method. We noticed,
however, that not all the domain of IS is covered by the integrals described in Eqs. (4.91)-(4.94):
The regions where sfγ is bigger than ∆s for a pair emitter-spectator, but smaller than ∆s for
a third fermion (the so-called quasi-soft region), have not yet been examined.

To better explain it, we consider the explicit example of t(pt) → b(pb) νℓ(pν) ℓ
+(pℓ) + γ(q).

This method can be easily extended to all other cases. Following Eqs. (4.15) and (4.88) for the
emission of a photon in a semileptonic top-quark decay, the singular integral reads

IS =
α

2π

∫
dΦ̃0 |M0(Φ̃0,ff ′)|2 [QtQb(Gtb +Gbt)−QtQℓ(Gtℓ +Gℓt) +QℓQb(Gℓb +Gbℓ)] + IQS.

(4.95)
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stγ < ∆s stγ > ∆s

sbγ < ∆s sbγ > ∆s sbγ < ∆s sbγ > ∆s

sℓγ < ∆s sℓγ > ∆s sℓγ < ∆s sℓγ > ∆s sℓγ < ∆s sℓγ > ∆s sℓγ < ∆s sℓγ > ∆s

Ftb + Fbt Ftb + Fbt Ftb + Fbt Ftb + Fbt Ftb + Fbt Ftb + Fbt IEW,lept
QS,1

Ftℓ + Fℓt Ftℓ + Fℓt Ftℓ + Fℓt Ftℓ + Fℓt Ftℓ + Fℓt IEW,lept
QS,2 Ftℓ + Fℓt IH

Fℓb + Fbℓ Fℓb + Fbℓ Fℓb + Fbℓ IEW,lept
QS,3 Fℓb + Fbℓ Fℓb + Fbℓ Fℓb + Fbℓ

Table 4.1: Different contributions to the real EW correction phase space for the process
t(pt) → b(pb) νℓ(pν) ℓ

+(pℓ).

The full phase space is integrated only if all the contributions shown in Table 4.1 are taken into
account, where

Fff ′ =
α

2π

∫
dΦ̃0 |M0(Φ̃0,ff ′)|2QfQf ′Gff ′. (4.96)

We emphasize that the functions Gff ′ have to fulfill the ΘfΘf ′ condition of Eq. (4.14). This
implies that, for example in the case stγ > ∆s and sbγ > ∆s for the pair emitter-spectator tb,
the quantity Ftb+Fbt = 0, ignoring the behavior of sℓγ . The contribution given by the quasi-soft
region if sℓγ < ∆s (in red in Table 4.1) is thus needed,

IEW,lept
QS,1 =

α

2π

∫
stγ ,sbγ>∆s
sℓγ<∆s

dΦ1|M0(Φ̃0)|2QtQb(gtb + gbt). (4.97)

Although its integral domain has support only in regions with a volume of O(∆s), there is
an enhancement in the integrand in the limit where stγ and sbγ are close to the border ∆s,
i.e. close to the soft limit. The soft-photon approximation (App. B) can therefore be used and
the sum (gtb + gbt) can be expressed by the eikonal factors, yielding

IEW,lept
QS,1 = − α

2π
QtQb

∫
stγ ,sbγ>∆s
seγ<∆s

dΦ1|M0(Φ̃0)|2
(

m2
t

(ptq)2
+

m2
b

(pbq)2
− 2ptpb

(pbq)(ptq)

)
. (4.98)

In this work the following generic mapping Φ̃0 is used:

p̃µf = pµf + qµ − yff ′

1− yff ′

pµf ′, p̃µf ′ =
1

1− yff ′

pµf ′, q̃ = 0, (4.99)

where
yff ′ =

sfγ
sff ′ + sfγ + sf ′γ

. (4.100)

The situation for the other two quasi-soft integrals is similar:

IEW,lept
QS,2 = +

α

2π
QtQℓ

∫
stγ ,sℓγ>∆s
sbγ<∆s

dΦ1|M0(Φ̃0)|2
(

m2
t

(ptq)2
− 2ptpℓ

(pℓq)(ptq)

)
,

IEW,lept
QS,3 = − α

2π
QbQℓ

∫
sbγ ,sℓγ>∆s
stγ<∆s

dΦ1|M0(Φ̃0)|2
(

m2
b

(pbq)2
− 2pbpℓ

(pℓq)(pbq)

)
. (4.101)
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The same procedure can be extended to the EW corrections of the hadronic decay

IEW,hadr =
6∑

i=1

IEW,hadr
QS,i ,

IEW,hadr
QS,1 =− α

2π
QtQb

∫
stγ ,sbγ>∆s
sdγ∨suγ<∆s

dΦ1|M0(Φ̃0)|2
(

m2
t

(ptq)2
+

m2
b

(pbq)2
− 2ptpb

(pbq)(ptq)

)
,

IEW,hadr
QS,2 =+

α

2π
QtQd

∫
stγ ,sdγ>∆s
sbγ∨suγ<∆s

dΦ1|M0(Φ̃0)|2
(

m2
t

(ptq)2
− 2ptpd

(pdq)(ptq)

)
,

IEW,hadr
QS,3 =− α

2π
QbQd

∫
sbγ ,sdγ>∆s
stγ∨suγ<∆s

dΦ1|M0(Φ̃0)|2
(

m2
b

(pbq)2
− 2pbpd

(pdq)(pbq)

)
,

IEW,hadr
QS,4 =− α

2π
QtQu

∫
stγ ,suγ>∆s
sbγ∨sdγ<∆s

dΦ1|M0(Φ̃0)|2
(

m2
t

(ptq)2
− 2ptpu

(puq)(ptq)

)
,

IEW,hadr
QS,5 =+

α

2π
QbQu

∫
sbγ ,suγ>∆s
stγ∨sdγ<∆s

dΦ1|M0(Φ̃0)|2
(

m2
b

(pbq)2
− 2pbpu

(puq)(pbq)

)
,

IEW,hadr
QS,6 =− α

2π
QuQd

∫
suγ ,sdγ>∆s
stγ∨sbγ<∆s

dΦ1|M0(Φ̃0)|2
(
− 2pupd
(puq)(pdq)

)
, (4.102)

where sfγ ∨ sf ′γ < ∆s stands for sfγ < ∆s or sf ′γ < ∆s.
The QCD corrections of the hadronic decay in the quasi-soft region are

IQCD,hadr =
2∑

i=1

IQCD,hadr
QS,i ,

IQCD,hadr
QS,1 =− α

2π

∫
stg,sbg>∆s
sdg∨sug<∆s

dΦ1|M0(Φ̃0)|2
(

m2
t

(ptq)2
+

m2
b

(pbq)2
− 2ptpb

(pbq)(ptq)

)
,

IQCD,hadr
QS,2 =− α

2π

∫
sug,sdg>∆s
stg∨sbg<∆s

dΦ1|M0(Φ̃0)|2
(
− 2pupd
(puq)(pdq)

)
. (4.103)

In case of QCD corrections to the leptonic decay this approach is not necessary, since there are
only two possible emitting particles.

The integrals listed in Eqs. (4.98), (4.101), (4.102), and (4.103) can be numerically inte-
grated, after applying appropriate mappings (see Chap. 5).
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Chapter 5

Phase-space integration

The numerical integrations of the amplitudes described in the previous chapters have been
performed with VEGAS [96], a program for multi-dimensional integration based on Monte Carlo
techniques. A brief overview of the VEGAS integrator is given in Sect. 5.1.

For the phase-space integration, we follow the methods and the notation introduced in
Refs. [9, 97]. They will be explained in a general way in Sect. 5.2, while a more detailed
description of the specific cases of the 1 → 3 and the 1 → 4 particle phase spaces will be
presented in Sects. 5.3 and 5.4, respectively.

5.1 VEGAS

VEGAS [96] is an algorithm for an adaptive multi-dimensional Monte Carlo integration, which
allows to integrate a function f(~x) over the n-dimensional unit cube Ω (0 ≤ x ≤ 1),

I =

∫

Ω

dnxf(~x). (5.1)

The integration proceeds as follows:

- The integrand is evaluated at N random points ~xi, forming a weighted average

I ≃ S =
1

N

N∑

i=1

f(~xi)

p(~xi)
, (5.2)

with an approximate uncertainty σ, where

σ2 =
1

(N − 1)N

N∑

i=1

f(~xi)
2

p(~xi)
− S2 (5.3)

and p(~xi) is the density of the random points.

- A cumulative estimate S̄ of the integrand is calculated,

S̄ = σ̄2
∑

α

Sα

σ2
α

, (5.4)
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after performing m estimates {Sα}mα=1. The approximate uncertainty in S̄ is

1

σ̄2
=
∑

α

1

σ2
α

, (5.5)

where σ2
α is described in Eq. (5.3).

- The χ2 per degree of freedom (dof),

χ2

dof
=

1

m− 1

m∑

α=1

(Sα − S̄)2

σ2
α

, (5.6)

is computed to check if the various estimates Sα are consistent within the errors.

An important issue is the choice of the random integration points: VEGAS tries to estimate the
shape of the function f(~x) through α iterations. During the first iteration, the algorithm uses a
grid to divide the integration volume into hypercubes, where it distributes the randomly chosen
points uniformly. During this procedure, it acquires information about the function, defining a
new adapted density

p′(~x) =
|f(~x)|∫

Ω
dn~xf(~x)

. (5.7)

In the subsequent iterations the integrator uses p′(~x) to sample the regions where the random
points become concentrated. This adaptive step allows to reduce σ2

α.
The VEGAS algorithm can in addition be employed, during the computation of the integral

of f(~x), to compute differential distributions.

5.2 Phase-space parameterizations

In order to evaluate the top-quark width Γn, the squared matrix element for n particles in the
final state (calculated explicitly in Chap. 3), has to be integrated over the entire phase-space
volume multiplied by the flux factor (see Eq. (3.2)). During the integration it is possible to
run into problematic regions which can cause numerical instabilities, e.g. the peaking behavior
of Breit-Wigner resonances and of the propagators of massless particles. The efficiency of the
Monte Carlo integration can be improved upon adapting the integration. This can be done
flattening the peaking structures of the integrand through suitable mappings that mimic its
behavior [97].

To explain how to construct the mappings, we first rewrite Eq. (3.2) as

Γn =

∫

V

dΦ ρ(pi(Φ))f(pi(Φ)). (5.8)

In the previous equation, V is the volume of the new set of variables, ρ is the density of points
in their phase space, pi(Φ) represents the relation between the phase-space variables Φ and the
momenta p1, ..., pn, and

f(pi(Φ)) = Nc
(2π)4−3n

2mt

∑
|M(pt; p1, ..., pn)|2. (5.9)
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We perform the phase-space integration with the VEGAS algorithm, which uses random numbers
ra ∈ [0, 1] (see Sect. 5.1) as variables. Therefore, we need to parametrize Φ in terms of r = (ra).
This can be done in the following way:

Γn =

∫ 1

0

dr
f(pi(h(r)))

g(pi(h(r)))
, (5.10)

assuming Φ = h(r) and g, which is the probability density of the events generated in the phase
space, defined as

1

g(pi(h(r)))
= ρ(pi(Φ))

∣∣∣∣
∂h(r)

∂r

∣∣∣∣
r=h−1(Φ)

. (5.11)

In practice the 1 → n particle phase space is decomposed into subsequent 1 → 2 decays, inter-
connected by intermediate particles, as described in the following.

First of all we consider an isotropic decay of a particle with momentum p∗ into two particles
of momenta p∗i and p

∗
j , and masses mi andmj , respectively. The star indicates that the particles

are in the rest frame of the decaying particle, with momenta

p∗ =




√
s̄ij

0

0

0



, p∗i =




s̄ij+m2
i−m2

j

2
√
s̄ij

0

0
λ(s̄ij ,m

2
i ,m

2
j )

2
√
s̄ij



, p∗j = p∗ − p∗i , (5.12)

where s̄ij = p∗2 = (p∗i + p∗j)
2 and λ is the Källén function defined in Eq. (4.21). The 1 → 2

particle phase-space integration can be written as

∫
dΦd(s̄ij, m

2
i , m

2
j) =

λ(s̄ij , m
2
i , m

2
j )

8s̄ij

∫ 2π

0

dφ∗
∫ 1

−1

d cos θ∗,

=
1

gd(s̄ij , m
2
i , m

2
j )

∫ 1

0

dr1

∫ 1

0

dr2, (5.13)

where the density is given by

gd(s̄ij, m
2
i , m

2
j) =

2s̄ij
λ(s̄ij , m2

i , m
2
j) π

, (5.14)

and φ∗ and θ∗ are azimuthal and the polar angles in the rest frame of the decaying particle,
respectively. These angles are parametrized as

φ∗ = 2πr1 and cos θ∗ = 2r2 − 1. (5.15)

The decay is isotropic, thus, we apply a rotation to orient the momenta of the outgoing particle
into a generic coordinate system

p′i = R(φ∗, cos θ∗) p∗i , (5.16)
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with the rotation matrix

R(φ∗, cos θ∗) =




1 0 0 0

0 cosφ∗ sin φ∗ 0

0 − sinφ∗ cosφ∗ 0

0 0 0 1







1 0 0 0

0 cos θ∗ 0 sin θ∗

0 0 1 0

0 − sin θ∗ 0 cos θ∗



. (5.17)

If p∗ 6= pt, one more rotation with R(φ, cos θ), and a boost are needed, so that the particle is
located along the axis of the previous 1 → 2 decay. The boost is described by the transformation


 p0

p


 = B(p0,−p)


 p′0

p′


 =


 γp′0 + bp′

p′ + b bp′

1−γ
+ bp′0


 (5.18)

with b = p/m, γ = p0/m and m =
√
p2.

To integrate the complete phase space, we define the Lorentz-invariant variables s̄ij = (pi + pj)
2

that are related to Eq. (4.1) by
s̄ij = m2

i +m2
j + sij. (5.19)

It is important to find the best way to map s̄ij , so that its density gs simulates the behavior
of the original integrand in the regions where the latter is large. This can be achieved by the
following transformation:

s̄max∫

s̄min

ds̄ij =

1∫

0

dr

gs(s̄ij(r), m2, s̄min, s̄max)
, (5.20)

where
1

gs(s̄ij(r), m2, s̄min, s̄max)
=
ds̄ij(r,m

2, s̄min, s̄max)

dr
, (5.21)

and s̄min and s̄max are the minimum and maximum values that s̄ij can reach depending on
the kinematics. In the previous equations we have identified the quantity h(r), introduced in
Eq. (5.10), with s̄ij.

For our purposes, we use two of the mappings proposed in Ref. [97]:

- Decaying particle with finite mass m and vanishing width Γ,

s̄ij = exp
[
r ln(s̄max −m2) + (1− r) ln(s̄min −m2)

]
+m2,

gs =
1

[ln(s̄max −m2)− ln(s̄min −m2)] (s̄ij −m2)
. (5.22)

- Decaying particle (vector boson V ) with mass m =MV and width ΓV 6= 0,

s̄ij =MV ΓV tan [y1 + (y2 − y1) r] +M2
V ,

gs =
MV ΓV

(y2 − y1) [(s̄ij −M2
V )

2 +M2
V Γ

2
V ]
, (5.23)
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pt
p2

s̄34

p1
t

b

f

f̄ ′

p3
p4

Figure 5.1: Diagram illustrating the phase-space mapping for the process t→ bf f̄ ′.

with

y1,2 = arctan

(
s̄min,max −M2

V

MV ΓV

)
. (5.24)

In the following paragraphs the different mappings will be described in more detail.

5.3 1 → 3 particle phase space

As an example we consider the mapping for the process t(pt) → b(p1) f(p3) f̄
′(p4). This can be

constructed by two consecutive decays, as shown in Fig. 5.1.
The 1 → 3 particle phase-space integral can be written as

∫
dΦ3 =

∫ s̄34,max

s̄34,min

ds̄34

∫
dφd(p

2
t , m

2
b , s̄34)

∫
dφd(s̄34, m

2
3, m

2
4). (5.25)

The fermions f and f̄ ′ form a lepton-neutrino pair if the decay is leptonic, or a quark-antiquark
pair in the case of a hadronic W decay.

√
s̄34 represents the virtuality of the W boson. In

both cases, these final-state particles are considered to be light. Thus s̄34,min = 0 and s̄34,max =
(mt − mb)

2. For the first decay, t(pt) → b(p1)W (p2), the top quark, which is assumed to be
unpolarized, is at rest and its decay is isotropic. Without loss of generality, the angles φ and θ
can be fixed to

φ∗
12 = 0 and cos θ∗12 = 1, (5.26)

and the density gd reads

gd(m
2
t , m

2
b , s̄34) =

2m2
t

πλ(m2
t , m

2
b , s̄34)

. (5.27)

For the second decay, W (p2) → f(p3)f̄
′(p4), we define

φ∗
34 = 2πr1 and cos θ∗34 = 2r2 − 1, (5.28)

and obtain

gd(s̄34, 0, 0) =
2

π
. (5.29)
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s̄34

s̄56

pt
p2
p1

t

f

f̄ ′
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g

b

p6
p5

Figure 5.2: Diagram illustrating the phase-space mapping for the process t→ bf f̄ ′ with a gluon
emitted by the b quark.

Since the square of the W -boson propagator is proportional to a Breit-Wigner distribution
(i.e. ΓW 6= 0), we map s̄34 as described in Eq. (5.23):

s̄34 =M2
W +MWΓW tan [y1 + (y2 − y1) r3] , (5.30)

where y1 and y2 are given in Eq. (5.24), and consequently

gs =
MWΓW

(y2 − y1) [(s̄34 −M2
W )2 +M2

WΓ2
W ]
. (5.31)

Finally, we can write the phase-space integral for the top width in terms of the parameters ra
needed in VEGAS,

Γ3(t→ bf f̄ ′) =
1

8(2π)3
Nc

2mt

∫ 1

0

3∏

a=1

dra
λ(m2

t , m
2
b , s̄34)

4m2
t

(y2 − y1)
[
(s̄34 −M2

W )2 +M2
WΓ2

W

]

×
∑

|M(pt; p2, p3, p4)|2. (5.32)

The only resonance appearing in this process is due to the W boson, which is flattened by the
mapping, allowing for an efficient and well-converging integration.

5.4 1 → 4 particle phase space

For the case of a 1 → 4 particle phase space, we refer to the process t → b f f̄ ′ + g/γ, where
a gluon or a photon is emitted. It is important to notice that the massless vector boson can be
emitted by different particles and that this changes the peaking structure of the integrand. For
this reason we consider the two phase-space mappings (PSM = 1, 2) described in the following.

- PSM = 1: t(pt) → b(p5) f(p3) f̄
′(p4) g(p6) where the boson (as an example we consider

a gluon) is emitted by the b quark, as represented in Fig. 5.2. The invariant masses of
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the two intermediate particles are s̄56 = p21 = (p5 + p6)
2 and s̄34 = p22 = (p3 + p4)

2. The
phase-space integral is

∫ (1)

dφ4 =

s̄56,max∫

s̄56,min

ds̄56

s̄34,max∫

s̄34,min

ds̄34

∫
dφd(pt, s̄56, s̄34)

∫
dφd(p1, m

2
b , m

2
3)

∫
dφd(p2, m

2
3, m

2
4),

(5.33)

where f and f̄ ′ are considered massless, and the superscript on the symbol of the integral
denotes the type of mapping. Following the OCSM (see Sect. 4.1), to integrate only over
the hard region, the momenta need to fulfil the conditions

sbγ = s̄56 − m2
b > ∆s, stγ = 2pt · p6 > ∆s. (5.34)

The former cuts are Lorentz invariant and can therefore be applied directly in the mapping
(boundary of the integration). We have s̄56,min = m2

b +∆s, s̄56,max = m2
t , s̄34,min = 0 and

s̄34,max = (mt −
√
s̄56)

2. The integration over the invariant mass of the W boson
√
s̄34

requires a Breit-Wigner mapping (Eqs. (5.30) and (5.31)).

The propagator of the b quark is proportional to 1/(s̄56 −m2
b)

2. Because of the coupling
structure, only the quantity 1/(s̄56−m2

b) develops a pole in the IR limit. Thus we rewrite

∫ m2
t

m2
b
+∆s

ds̄56
(s̄56 −m2

b)
=

∫ ln(m2
t−m2

b
)

ln(∆s)

d ln(s̄56 −m2
b)

=

∫ 1

0

dr1 ln

(
s̄56,max −m2

b

s̄56,min −m2
b

)
, (5.35)

and map s̄56 in a more efficient way, using Eq. (5.22), as

s̄56 = exp
[
r1 ln(s̄56,max −m2

b) + (1− r1) ln(s̄56,min −m2
b)
]
+m2

b ,

gs =
1

[ln(s̄56,max −m2
b)− ln(s̄56,min −m2

b)] (s̄56 −m2
b)
. (5.36)

The three decays can be linked following the same procedure described in Sect. 5.3.

Finally the complete phase-space integral can be written as

Γ
(1)
4 (t→ bf f̄ ′ + g/γ) =

1

64(2π)5
Nc

2mt

1∫

0

6∏

a=1

dra ln

(
m2

t −m2
b

∆s

)
(s̄56 −m2

b)
2

× λ(p2t , s̄56, s̄34)(y2 − y1)[(s̄56 −M2
W )2 +M2

WΓ2
W ]

s̄56MWΓWm2
t

∑
|M(pt; p3, p4, p5, p6)|2Θ∆s,

(5.37)

where

y1,2 = arctan

(
s̄56,min,max −M2

W

MWΓW

)
. (5.38)
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Figure 5.3: Diagram illustrating the phase-space mapping for the process t→ bf f̄ ′ with a gluon
emitted by the fermion f̄ ′.

In Eq. (5.37), Θ∆s is a function that ensures the right domain of integration, e.g. in the
hard region (Sect. 4.1) we have

Θ∆s =
∏

f

Θ(sfγ −∆s). (5.39)

For the quasi-soft region Θ∆s is defined case-by-case by the subscripts of the integrals
reported in Sect. 4.3. The variables ra are related to the kinematical quantities as follows:

s̄34 =M
2
W +MWΓW tan [y1 + (y2 − y1)r2] ,

φ34 =2πr3 and cos θ34 = 2r4 − 1,

φ56 =2πr5 and cos θ56 = 2r6 − 1. (5.40)

Moreover, we recall that
φ12 = 0, cos θ12 = 1, (5.41)

where φij and θij are the azimuthal and polar angles between particle i and particle j,
respectively.

This mapping is, in the case of the QCD correction for a leptonicW -boson decay, sufficient
to deliver a stable numerical integration, since the gluon can only be emitted by the b and
the t quarks. In all other cases the gluon/photon can be emitted by the light fermions,
too. Therefore, we need to define another mapping.

- PSM = 2: The boson is emitted by one of the light fermions.

Consider the process t(pt) → b(p5) f(p3) f̄
′(p4) g(p6), where the gluon is emitted by f̄ ′

(see Fig. 5.3). As in the previous case, we build the 1 → 4 phase space considering three
subsequent 1 → 2 decays and the invariants s̄23 = p21 = (p2+p3)

2 and s̄46 = p22 = (p4+p6)
2.

The phase-space integral is

∫ (2)

dφ4 =

s̄23,max∫

s̄23,min

ds̄23

s̄46,max∫

s̄46,min

ds̄46

∫
dφd(pt, s̄23, m

2
b)

∫
dφd(p1, s̄46, m

2
f)

∫
dφd(p2, m

2
f ′ , 0),

(5.42)
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wheremf andmf ′ are the vanishing masses of the final-state fermions, so that s̄23,min = ∆s,
s̄23,max = (mt −mb)

2, s̄46,min = ∆s, and s̄46,max = s̄23.

We parametrize, as in the previous case, the W -boson virtuality s̄23 following Eq. (5.23),
and the virtuality s̄46 of the emitting fermion f ′ following Eq. (5.22). Moreover, the cuts
sf ′g = s̄46 > ∆s (already implemented in the phase space) and sfg = 2p3 · p6 > ∆s are
imposed to identify the hard region, where IH is defined (Eq. (4.3)).

The optimized integral, in terms of the random numbers ra, reads

Γ
(2)
4 (t→ bf f̄ ′ + g/γ) =

1

64(2π)5
Nc

2mt

1∫

0

6∏

a=1

dra [ln(s̄23)− ln(∆s)] (s̄23 − s̄46) s̄46

× λ(p2t , s̄23, m
2
b)(y2 − y1)[(s̄23 −M2

W )2 +M2
WΓ2

W ]

s̄23MWΓWm2
t

∑
|M(pt; p3, p4, p5, p6)|2Θ∆s,

(5.43)

with

y1,2 = arctan

(
s̄23,min,max −M2

W

MWΓW

)
, (5.44)

and

s̄23 =M
2
W +MWΓW tan [y1 + (y2 − y1)r1] ,

s̄46 =exp {r2 ln(s̄46,max) + (1− r2) ln(s̄46,min)} ,
φ12 =0 and cos θ12 = 1,

φ23 =2πr3 and cos θ23 = 2r4 − 1,

φ46 =2πr5 and cos θ46 = 2r6 − 1.

Different mappings for the real corrections

We analyze now how to combine the different mappings in the specific cases of interest.

- QCD real corrections to the semileptonic decay: t(pt) → b(p5) νℓ(p3) ℓ
+(p4) g(p6).

The only diagrams contributing to this process are those in which the gluon is emitted by
the t and b quarks. It is worth to notice that the virtuality of the W boson is the same in
both diagrams, s̄34 = (p3 + p4)

2. This implies that in both cases we can flatten the Breit-
Wigner shaped propagator of the W -boson using the mapping PSM = 1, Eq. (5.33),
allowing for an efficient integration.

- EW corrections to the semileptonic decay: t(pt) → b(p5) νℓ(p3) ℓ
+(p4) γ(p6).

The photon can be emitted not only from the t and b quarks, but also from the charged
lepton and the W boson. When the photon is emitted by the b or t quark (as the gluon
in the QCD case), PSM = 1 leads to an appropriate mapping; when it is emitted by
ℓ+ or W+, instead, the second mapping (PSM = 2) is better suited. For this reason
we need a combination of the two mappings. This can been done using a partition of
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unity, i.e. rewriting the 1 → 4 particle phase-space integration as the sum of two integrals,
weighted by ratios of invariants (sbγ and sℓγ):

∫
dΦ4 =

∫ (1)

dΦ4
sℓγ

sℓγ + sbγ
+

∫ (2)

dΦ4
sbγ

sℓγ + sbγ
. (5.45)

This approach allows to disentangle the resonance structure, which then can be dealt
with separately. Thus, the EW corrections to the semileptonic decay read
∫
dΦ4

∑
|M(pt; p3, p4, p5, p6)|2 =

∫ (1)

dΦ4
sℓγ

sℓγ + sbγ

∑
|M|2+

∫ (2)

dΦ4
sbγ

sbγ + sℓγ

∑
|M|2.

(5.46)

- QCD real corrections to the hadronic decay: t(pt) → b(p5) u(p3) d̄(p4) g(p6).

For the real contribution, the gluon can be emitted by each of the four quarks involved in
the process. The matrix element is usually the sum of all possible contributions, but in
the specific case of QCD corrections, there is no interference term between the emission
from t/b and u/d, due to colour conservation. Therefore the real matrix element squared
can be decomposed, as described for Eq. (3.29), according to

∑
|M(pt; p3, p4, p5, p6)|2 =

∑
|Mt +Mb|2 +

∑
|Mu +Md|2, (5.47)

where Mi is the matrix element for the process where the gluon is emitted by the quark i.
This allows us to perform two independent integrations:

- t/b contribution: The integration presented in Eq. (5.37) (PSM=1) can be used.

- u/d contribution: The mapping PSM = 2 can be used twice, once for emitter d, as
described in Eq. (5.43) (we will refer to it as PSM = 2d), and once for emitter u,
upon suitable modifications, i.e. interchanging the u and d legs (PSM = 2u). The
gluon can be emitted from either particles, therefore both mappings have to be used
at the same time, similarly to the previous case.

Summarizing the real QCD contribution for the hadronic decay is given by
∫
dΦ4

∑
|M(pt; p3, p4, p5, p6)|2 =

∫ (1)

dΦ4

∑
|Mt +Mb|2

+

∫ (2d)

dΦ4
sug

sug + sdg

∑
|Mu +Md|2 +

∫ (2u)

dΦ4
sdg

sug + sdg

∑
|Mu +Md|2. (5.48)

- EW corrections to the hadronic decay: t(pt) → b(p5) u(p3) d̄(p4) γ(p6).

In this case the photon can be emitted by all the particles appearing in the process. The
combination of integrals used for a better performance during the integration is
∫
dΦ4

∑
|M(pt; p3, p4, p5, p6)|2 =

∫ (2u)

dΦ4
sdγ

suγ + sdγ

stγsbγ
stγsbγ + sdγsuγ

∑
|M|2

+

∫ (2d)

dΦ4
suγ

suγ + sdγ

stγsbγ
stγsbγ + sdγsuγ

∑
|M|2 +

∫ (1)

dΦ4
suγsdγ

stγsbγ + sdγsuγ

∑
|M|2.

(5.49)
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Chapter 6

Numerical results

In this chapter we present the numerical results for the NLO corrections to the top-quark partial
decay widths, and we compare them to an independent calculation, whose settings are described
in Sect. 6.1, and with the values obtained in the narrow-width approximation, calculated in
App. A. In Sect. 6.2 the input parameters of the calculation are listed, while the details of the
event selections are given in Sect. 6.3. The existence of a region where the corrections to the
top width are independent from the technical cut parameter ∆s, introduced when applying
the OCSM (Chap. 4), is proven at the beginning of Sect. 6.4. Then, a well-defined value of
∆s is chosen to get the final numbers. The calculation has been performed for the case of
a semileptonic, t → b νℓ ℓ

+, and a hadronic decay, t → b u d̄, and the integrated results are
presented together with various differential distributions in Sects. 6.4.1 and 6.4.2, respectively.
Finally, Sect. 6.5 shows a comparison of the theoretical total top-quark decay width with the
existent experimental measurements.

6.1 Second independent calculation

A second independent calculation of the top-quark width has been implemented by L. Basso
to cross check the results presented in this thesis. To produce the matrix elements and the
counterterms needed in the calculation it uses the combined packages FeynArts v3.6 [98] and
FormCalc v8.1 [99, 100]. The loop integrals, appearing in the virtual corrections, have been
numerically integrated with the COLLIER library [86], after being regularized with mass reg-
ularization parameters within the complex-mass scheme. The infrared divergences have been
treated using the dipole-subtraction formalism1 [42, 44, 45] and the resulting amplitudes have
been integrated by means of VEGAS. Furthermore, for the case of the EW corrections to the
semileptonic decay, a third independent calculation, also employing the subtractions formalism,
was performed by A. Huss. All results are in mutual agreement.

It is worth to mention that the application of the dipole-subtraction formalism for the second
independent calculation required the extension of the formalism to treat decay kinematics which
have not been considered in the literature in full detail so far. The respective subtraction terms
for both massless and massive final-state particles, as well as for the case of non-collinear-safe
observables, were developed in the context of the calculations presented in Refs. [46, 101, 102]

1For this reason, during the comparisons, the second calculation is labeled “subtr”.
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and were employed here. The new results are collected and presented in Ref. [47], together
with the technique based on the OCSM developed in this thesis for the 1 → n particle decay,
and the numerical results for the top-quark width.

6.2 Input parameters

The input parameters used in this work are taken from Ref. [103]. The Higgs-boson mass is

MH = 125.9GeV, (6.1)

and the on-shell values of the masses and the widths of the W and Z bosons are

MOS
W =80.385GeV, ΓOS

W = 2.085GeV,

MOS
Z =91.1876GeV, ΓOS

Z = 2.4952GeV. (6.2)

The latter are converted to the corresponding pole masses and widths following

MV =
MOS

V

cV
, ΓV =

ΓOS
V

cV
, where cV =

√

1 +

(
ΓOS
V

MOS
V

)2

and V =W,Z. (6.3)

In this calculation we consider only the top and the bottom quarks as massive, while all the other
fermions are considered massless. The massless fermions acquire nevertheless a fictitious mass
via the mass regularization procedure, as described in Chap. 4. Even though the integrated
result does not depend on the choice of those masses, we list for completeness the mass values
for all fermions:

mt =173.34GeV, mb = 4.78GeV,

mu =2.3MeV, md = 4.8MeV,

mc =1.275GeV, ms = 95MeV,

me =0.510998928MeV, mµ = 105.6583715MeV,

mτ =1.77682MeV, (6.4)

where mb is the value for the pole mass, using the two-loop conversion formula presented in
Ref. [103] and the value of mt is taken from Ref. [104]. As stated in Sect. 2.2 the Gµ-scheme,
with

Gµ = 1.1663787× 10−5GeV−2, (6.5)

has been used in this work. Consequently, inverting Eq. (2.45), we derive

α =

√
2s2wM

2
W

π
Gµ. (6.6)

For the QCD corrections, we fix
αs(MZ) = 0.119. (6.7)

The CKM matrix is chosen equal to the unit matrix.
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6.3 Event selection

The top quark can decay both hadronically and leptonically. Depending on the nature of the
decay products, they are seen in different sectors of the detector. In particular, the positron and
the photon can be detected by the electromagnetic calorimeter (ECAL), the muon is tracked
in the dedicated muon chambers, and the coloured objects (quarks and gluons) evolve into jets
and are finally detected into the hadronic calorimeter (HCAL). The b-jet can be efficiently iden-
tified using the b-tagging method2. The neutrino is a neutral and hardly interacting particle
and escapes the detection. Nevertheless, its presence can be inferred due to the total momen-
tum conservation. In a lepton collider, all components are deduced by requiring energy and
momentum conservation. In a hadronic collider, instead, only the transverse components are
directly measured. Because of this, the missing transverse momentum can be defined, where
missing pertains to the sum of the invisible particles. For the case under investigation (only
one invisible particle) it is possible to reconstruct the whole four-momentum of the neutrino by
imposing suitable kinematical constraints.

It is not always possible to distinguish the particles of the process or to separate them when
emitted collinearly. In this theoretical calculation, we try to be as close as possible to the
experimental situation. We distinguish three scenarios:

- EW corrections to t→ b νµ µ
+

If the muon emits a photon, the two particles can be experimentally isolated, even if they
are collinear, given that they are tracked in different parts of the detector. This means
that we have to deal with non-collinear-safe observables. On the theoretical side, the case
of a bare muon is thus treated following the procedure described in Sect. 4.2.

- EW corrections to t→ b νe e
+

If the photon is emitted almost collinearly to the positron or the b quark, they are ex-
perimentally indistinguishable and have therefore to be treated inclusively. This can be
done applying a photon-recombination procedure [94]:

1. Exclude from the event selection the photons with a rapidity3 yγ > 3. They are
considered part of the proton remnant.

2. If the photon passed step 1., define the quantities Rfγ =
√

(yf − yγ)2 + φ2
fγ , where

f = b, e+ and φfγ is the angle between the fermion f and the photon.

3. If min(Rbγ , Re+γ) is smaller than the radius parameter R, fixed in this work at
R = 0.1, recombine the two particles into a single object, identified with the fermion.

- QCD corrections to t→ b νℓ ℓ
+ and NLO corrections to t→ b u d̄

In these cases (some of) the final-state particles are indistinguishable. To define IR-safe
observables they need to be grouped into jets. The collection of rules in the following

2For our calculation we consider the b-jet as always identified (tagging probability equal to one).

3The rapidity is defined as y =
1

2
ln

(
E − pz

E + pz

)
, where E is the energy of the particle and pz is the component

of the momentum along the beam axis.
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allows us to define how close the coulored states must be to be considered part of the
same jet. It is the so-called jet-algorithm procedure [95]:

1. Calculate the distance dij, defined following the generalized anti-kt algorithm [105],
for every pair of particles i, j, and the quantity diB, for every parton i [106]:

dij = min
{
E−2

i , E−2
j

} 1− cos θij
1− cosR

, diB = E−2
i , (6.8)

using R = 0.6.

2. Find the smallest among the quantities defined in Eq. (6.8):

- If diB is the smallest, declare i to be a jet candidate, remove it from the list of
particles and return to step 1.

- If dij is the smallest, recombine the particles i and j into a single object and
return to step 1.

3. Stop when there are no particles left.

The jet containing the b quark is tagged as b-jet. In the following, we will refer as leading
jet to the jet candidate with the highest transverse momentum.

6.4 Numerical results for the top-quark decay width

When evaluating the NLO corrections, the calculation separates into two parts (see Sect. 4.1):
A hard region, where the amplitudes are numerically integrated over a 1 → 4 particle phase
space, and the remaining part, which is numerically integrated over the volume of a 1 → 3
particle phase space. The latter region includes the virtual and the counterterms contributions,
and the infrared region resulting from the real emission of a photon or a gluon. It is treated
using the extension of the OCSM illustrated in detail in Chap. 4.

To perform the NLO corrections to the top-quark decay width, we check, first of all, the
independence of the relative corrections, defined as δ = Γ(1)/Γ(0), from the technical cut pa-
rameter ∆s introduced by the OCSM. This is shown in Figs. 6.1 and 6.2 for the semileptonic
and hadronic decay, respectively. In the left panels, the soft contributions (in green) and the
hard contributions (in black) are presented as functions of ∆s. Their sum (in red) is almost
constant. Zooming in the total relative corrections, the right panels illustrate indeed that the
values are, for a certain range of ∆s, constant within the errors and that they agree with the
numbers calculated using the dipole-subtraction formalism (in blue). We stress that the OCSM
is valid only under the assumption of ∆s → 0, which means that large values of ∆s are not
consistent, as apparent from the QCD corrections. Furthermore, there are also lower limits to
the values of ∆s, as shown clearly for the EW corrections to the hadronic decay, due to stability
problems during the phase-space integration.

After finding the regions where the OCSM is valid, we fix the value of ∆s taken from the
plateau for the various types of corrections and final states. They are summarized in Table 6.1.

In the next sections, we present the numerical results for the top-quark width in the case of
a semileptonic, Sect. 6.4.1, and a hadronic decay, Sect. 6.4.2. Several differential distributions
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Figure 6.1: Relative QCD (top) and EW (bottom) corrections to the semileptonic top-quark
decay width, calculated with the OCSM, as a function of the cut parameter ∆s. On the left-
hand side, the different contributions are shown: soft in green, hard in black, and the sum in
red. On the right-hand side, the relative corrections are presented in comparison with the value
calculated with the subtraction formalism (“subtr”in blue).

QCD, lept EW, lept QCD, hadr EW, hadr

∆s (GeV2) 0.005 0.095 0.095 0.03

Table 6.1: Values of the cut parameter ∆s chosen to perform the calculation for the different
types of corrections and final states.

will be shown in a triple frame with the following conventions: The plot on top illustrates
the absolute value of the corrections, in the middle one the relative corrections (in percent),
calculated as δ = Γ(1)/Γ(0), are presented; the comparison (in percent) between the OCSM and
the dipole-subtraction method is given in the bottom frame, with

∆comp =
ΓNLO
OCSM − ΓNLO

subtr

ΓNLO
OCSM + ΓNLO

subtr

and ΓNLO = Γ(0) + Γ(1). (6.9)
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Figure 6.2: Relative QCD (top) and EW (bottom) corrections to the hadronic top-quark decay
width, calculated with the OCSM, as a function of the cut parameter ∆s. On the left-hand
side, the different contributions are shown: soft in green, hard in black, and the sum in red.
On the right-hand side, the relative corrections are presented in comparison with the value
calculated with the subtraction formalism (“subtr”in blue).

The integrated values calculated in this thesis are collected in Tables 6.2 and 6.3, together
with those obtained using the dipole-subtraction formalism and the NWA.

6.4.1 Numerical results for the semileptonic decay

The integrated LO and NLO values of the semileptonic top-quark decay width are collected
in Table 6.2. The LO decay width is Γ

(0)
lept = 0.1610645(3)GeV, with an NLO QCD correction

of ∼ −9.4% and an NLO EW correction of ∼ +1.3%. The results are presented in comparison
with those obtained using the dipole-subtraction formalism. Moreover, Table 6.2 reports the
results calculated in App. A using the NWA. The difference of the latter with respect to the
full results obtained in this thesis is ∼ 1.5% already at LO and it increases to ∼ 1.7% at NLO.
Furthermore, the QCD corrections to the semileptonic decay of the top quark have been already
calculated by Jezabek and Kühn in Ref. [16]:

Γ
(0)
JK = 0.161064527(1)GeV and ΓQCD

JK = 0.1459589618(9)GeV (−9.3786%). (6.10)
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OCSM subtr NWA

Γ
(0)
lept/GeV 0.1610645(3) 0.161062(2) 0.1635547 (+1.55%)

δ
(1),QCD
lept /% −9.379(3) −9.377(5) −9.377(1)

δ
(1),EW
lept /% 1.335(2) 1.3355(6) 1.4680(6)

ΓNLO
lept /GeV 0.148108(6) 0.148109(2) 0.1506133(2) (+1.70%)

Table 6.2: Top decay widths and relative corrections calculated for the semileptonic decay with
the input parameters listed in Sect. 6.2. The NWA values are calculated in Tab. A.1.

They are in perfect agreement with those presented in Table 6.2 4.

QCD corrections to t → b νℓ ℓ
+

In the following, the differential distributions for the QCD corrections are presented. The two
methods of calculation (OCSM and subtraction formalism) are in very good agreement, as
shown in the bottom frames. They reach a level of per mil in precision for all the observables
considered in this work.
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Figure 6.3: NLO QCD corrections to the semileptonic top-quark decay width as a function of
the energy (left) and of the transverse momentum (right) of the b-jet.

The first observable, in the left panel of Fig. 6.3, is the energy of the b-jet. It is calculated,
as every other observable presented in the following, in the top-quark rest frame. If we consider
an on-shell W boson, we have a 1 → 2 particle decay, and the energy of the b-jet can be
analytically derived by

Eb =
m2

t −M2
W +m2

b

2mt
. (6.11)

4A readjustment of the prefactor of the value in Ref. [16] is needed to be consistent with the CMS procedure

introduced in Sect.2.3: GF → Re(s2
w
)

s2
w

GF .
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This explains the peak at ∼ 70GeV of Fig. 6.3. The behavior of the corrections, negative
after the peak value and positive in the low-energy tails, is due to the gluon radiation: When
the gluon is emitted the energy of the other particles reduces. This effect fills the low-energy
tail, i.e. NLO configurations with low-energy events are more frequent than LO ones. For this
reason very high relative corrections at low Eb can be seen in the middle frame. They decrease,
however, enlarging the radius R of the cone in the jet algorithm, as shown in more detail for
the case of QCD corrections to the hadronic decay. The right-hand side of Fig. 6.3 illustrates
the transverse momentum of the b-jet. Due to the fact that the top-quark decay is isotropic,
we define pT,b with respect to an arbitrary-chosen axis. Also in this case there is a peak at
∼ 70GeV, with a correction of ∼ −50% in its proximity.
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Figure 6.4: NLO QCD corrections to the semileptonic top-quark decay width as a function of
the energy (left) and of the transverse momentum (right) of the lepton.
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Figure 6.5: NLO QCD corrections to the semileptonic top-quark decay width as a function of
the energy (left) and of the transverse momentum (right) of the neutrino.

In Figs. 6.4 and 6.5, the energy and the pT of the lepton and of the corresponding neutrino
are presented. In both cases, the relative corrections are almost flat at ∼ −10% in the regions
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Figure 6.6: NLO QCD corrections to the semileptonic top-quark decay width as a function of
the invariant mass of the b-jet and the lepton (left), and of the transverse mass of the lepton
and the neutrino (right).

where the decay probability is high. In the tails, instead, the corrections can reach up to
−35% (−50%) for the charged lepton (neutrino), because of the negligible value of the LO.

For the invariant mass of the b-jet and the lepton, we see on the left-hand side of Fig. 6.6
a broad structure, with an increasing correction (in absolute value), reaching −40% when ap-
proaching the kinematic limit. The transverse mass of the lepton and the neutrino5 is displayed
on the right panel. It peaks at the W -boson mass, with a width due to the inclusion of the full
off-shellness of the boson in this calculation. The QCD corrections do not have an impact on
the lepton’s and neutrino’s kinematic and have the constant value of −9%.

In Fig. 6.7 we show the cosine of the angle between the b-jet and the lepton (left), and
between the b-jet and the neutrino (right). The fact that the top quark is at rest implies a
almost back-to-back emission of the b-jet and of the products of the decay of the boosted W
boson, i.e. both cos θbℓ and cos θbν have a peak close to −1.

EW corrections to t → b νℓ ℓ
+

We consider now the EW corrections to the semileptonic top-quark decay width, for both the
processes t → b νµ µ

+ (“bare”) and t → b νe e
+ (“rec”). The comparison of the two methods

(OCSM and dipole-subtraction formalism) reaches a very good precision, as shown e.g. for the
case of the positron in the bottom frames. We thus plot, in the top and middle frames, only the
OCSM results. The discussion will focus on the comparison between the different final states.
We expect that differences will appear only in observables related to the leptons.

Figure 6.8 displays the energy (left) and the transverse momentum (right) of the b-jet. The
relative corrections reach in both observables only a few percents in the relevant kinematical
regions. The EW corrections are, as expected, much smaller than the QCD ones.

The energy and the transverse momentum of the leptons are displayed in the left and right
panels of Fig. 6.9, respectively. Here we can clearly distinguish between the two different final

5The transverse mass is defined as MT,ℓν =
√
2pT,ℓpT,ν(1− cos θℓν).
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Figure 6.7: NLO QCD corrections to the semileptonic top-quark decay width as a function of
the cosine of the angle between the b-jet and the lepton (left), and between the b-jet and the
neutrino (right).
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Figure 6.8: NLO EW corrections to the semileptonic top-quark decay width as a function of
the energy (left) and of the transverse momentum (right) of the b-jet.

74



 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

       

dΓ
/d

E
l [

G
eV

]

OCSM bare

OCSM rec

LO

-10
-5
 0
 5

 10
 15
 20
 25

       

δ 
[%

]

δα,bare
OCSM

δα,rec
OCSM

-0.3
-0.15

0
0.15

0.3

 20  30  40  50  60  70  80

∆ c
om

p 
[%

]

El [GeV]

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

        

dΓ
/p

T
,l 

[G
eV

]

OCSM bare

OCSM rec

LO

-15
-10
-5
 0
 5

 10
 15
 20

        

δ 
[%

]

δα,bare
OCSM

δα,rec
OCSM

-0.2
-0.1

0
0.1
0.2

 10  20  30  40  50  60  70  80

∆ c
om

p 
[%

]

pT,l [GeV]

Figure 6.9: NLO EW corrections to the semileptonic top-quark decay width as a function of
the energy (left) and of the transverse momentum (right) of the leptons.
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Figure 6.10: NLO EW corrections to the semileptonic top-quark decay width as a function of
the energy (left) and of the transverse momentum (right) of the neutrinos.

states. The effect of the corrections is enhanced for the muonic final state: The fact that the
observables are non-collinear safe implies mass-singular logarithmic terms contributing to the
final result.

The EW corrections to the energy and to the transverse momentum of the neutrinos are
presented in Fig. 6.10. Since the neutrino does not radiate photons, they have a constant value
of +1.5%, excluding the regions with the lower decay probability.

The differential distributions of the invariant mass of the b-jet and the leptons, and of the
transverse mass of the leptons and the neutrinos, are presented on the left and right panels of
Fig. 6.11, respectively. As in the previous cases, the corrections to the final state with the muon
are enhanced with respect to those calculated for the positron. The value of δ decreases for
Mbe from +6% to −4%, while for Mbµ it reduces from +8% to −10%. While for the QCD case
the corrections to MT,ℓν have a constant −9% value, in the EW case the emission of a photon
makes the probability of a top-quark decay higher for lower values of the transverse mass. For
this reason the positive relative corrections turn into negative in proximity of the peak. When
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Figure 6.11: NLO EW corrections to the semileptonic top-quark decay width as a function of
the invariant mass of the b-jet and the leptons (left) and of the transverse mass of the leptons
and the neutrinos (right).

the photon recombination is applied, the collinear photon is absorbed in the redefinition of the
final fermion. This makes the effect of the corrections milder for t → b νe e

+ than for the case
of a muonic decay.

In the left-hand (right-hand) side of Fig. 6.12 the cosine of the angle between the b-jet and the
lepton (neutrino) is shown. There is no evident difference between the results obtained with the
photon recombination (e+ emission) or applying Eq. (4.18) (µ+ emission). The photon is indeed
recombined only if collinear to the positron, i.e. it does not change the direction of the charged
lepton. The corrections have a minimum in the proximity of the peak (cos θbf ∼ −0.8), are
positive and are smaller than 2%. For comparison, the QCD corrections reach down to −12%.

6.4.2 Numerical results for the hadronic decay

We present in this section the results for the QCD and EW corrections to the hadronic
top-quark decay width. The integrated values obtained in this work are collected in Table 6.3
together with those calculated using the subtraction formalism. For each of the processes,
t → b ud̄ and t → b cs̄, the LO width is Γ

(0)
hadr = 0.48319351(5)GeV, with δ

(1),QCD
hadr ∼ −5.6%

and δ
(1),EW
hadr ∼ +1.3%. Moreover, we compared the OCSM values with those obtained with the

NWA, observing differences up to ∼ 2%.

As in the semileptonic case, also for the hadronic decay of the top quark we observe in
the differential distributions a very good agreement between the two methods employed for the
calculation (comparison shown in the bottom frames). In some observables we lost, however, one
order of magnitude in precision with respect to the corresponding semileptonic variables. This
is due to the complexity of the phase-space integration in case of a hadronic decay (the phase-
space has to be split in multiple integrations, as explained in Chap. 5) and to the implementation
of a jet-algorithm procedure.
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Figure 6.12: NLO EW corrections to the semileptonic top-quark decay width as a function of
the cosine of the angle between the b-jet and the leptons (left) and between the b-jet and the
neutrinos (right).

OCSM subtr NWA

Γ
(0)
hadr/GeV 0.48319351(5) 0.483199(6) 0.4906645 (+1.55%)

δ
(1),QCD
hadr /% −5.58(2) −5.589(2) −5.2779(1)

δ
(1),EW
hadr /% 1.2896(5) 1.2898(4) 1.4201(6)

ΓNLO
hadr /GeV 0.46248(9) 0.462425(1) 0.471736(3) (+2.00%)

Table 6.3: Top decay widths and relative corrections calculated for the hadronic decay with
the input parameters listed in Sect. 6.2. The NWA values are calculated in Tab. A.1.
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Figure 6.13: NLO QCD corrections to the hadronic top-quark decay width as a function of the
invariant mass of the b-jet and the leading jet, calculated with R=0.6 (left) and R=1 (right).
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Figure 6.14: NLO QCD corrections to the hadronic top-quark decay width as a function of the
energy (left) and of the transverse momentum (right) of the b-jet.

QCD corrections to t → bu d̄

For the QCD corrections to the hadronic top-quark decay width we start analysing the dis-
tribution of the invariant mass of the b-jet and the leading jet, displayed in Fig. 6.13. In the
upper frame on the left-hand side we notice that the absolute value of the distribution becomes
negative at Mbj ∼ 173GeV. This is of course an unphysical effect and can be interpreted as
follows. During the jet-algorithm procedure a radius of the cone R = 0.6 has been chosen
(value taken from the ATLAS analysis, e.g. see Ref. [107]). For a too low value of R, however,
recombination between the real and the virtual parts is not sufficiently inclusive and the IR
divergence leaves a trace as αs lnR corrections. This problem can be solved enlarging the cone,
e.g. R = 1, as shown on the right-hand side of Fig. 6.13. With a wider cone, there is indeed a
larger probability for the particles to be merged. In the case where all the final-state particles
(excluding the b quark) are combined into a single jet, the invariant mass Mbj reproduces the
top-quark mass value. This explains the appearance of a peak at Mbj = mt. It is of course
easier for the jet algorithm to cluster all jets (other than the b one) into a single merged object
starting from a 1 → 3 kinematics (as the LO) rather than at NLO. At NLO the presence of the
extra gluon is such that Mbj can populate regions less probable at LO. This in turns explains
the huge corrections in the middle frame of Fig. 6.13: The plotted Γ(1)/Γ(0) ratio explodes due
to the almost null value of the LO in the normalization.

The distributions obtained choosing R = 1 or R = 0.6 are compared also for the other
observables. The main difference is that the relative corrections induced by the larger radius
are milder than those obtained with R = 0.6, as justified by the inclusiveness argument. This
effect can be clearly seen in Fig. 6.14, where the QCD corrections to the energy and to the
transverse momentum of the b-jet are presented. In the low-energy tail the relative corrections
are very high, because of the normalization with the LO.

The energy of the leading jet, presented on the left-hand side of Fig. 6.15, receives positive
QCD corrections due to gluon radiation, that turn negative after the energy peak at ∼ 65GeV.
As a consequence, the shape of the NLO energy distribution is shifted to the left, more evidently
for R = 0.6. A similar effect can be seen for the transverse momentum of the leading jet.
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Figure 6.15: NLO QCD corrections to the hadronic top-quark decay width as a function of the
energy (left) and of the transverse momentum (right) of the leading jet.
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Figure 6.16: NLO QCD corrections to the hadronic top-quark decay width as a function of the
cosine of the angle between the b-jet and the leading jet.
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Figure 6.17: NLO EW corrections to the hadronic top-quark decay width as a function of the
energy (left) and of the transverse momentum (right) of the b-jet.
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Figure 6.18: NLO EW corrections to the hadronic top-quark decay width as a function of the
energy (left) and of the transverse momentum (right) of the leading jet.

Moreover, a difference between the two radiuses can be seen for the cosine of the angle
between the b-jet and the leading jet, as displayed in Fig. 6.16. Only for R = 1 a peak appears
in the bin close to cos θbj = −1. It represents the case of all final-state particles (b quark
excluded) merged into a single jet (more probable with a larger radius). In this calculation
the top quark is considered at rest and the b-jet is indeed back-to-back to the remaining decay
products.

EW corrections to t → bu d̄

As in the semileptonic case, the EW corrections to the hadronic top-quark decay width are
much smaller than the QCD ones and the differential distributions of the NLO corrections
follow closely the LO value. Due to the low value of the EW corrections, the choice of R, the
radius of the jet cone, does not substantially change the shape of the distributions. We use in
the following R = 0.6.
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Figure 6.19: NLO EW corrections to the hadronic top-quark decay width as a function of the
invariant mass (left) and of the cosine of the angle (right) of the b-jet and the leading jet.

Comparing the observables shown in Figs. 6.17 (Eb and pT,b), 6.18 (Ej and pT,j), and
6.19 (Mbj and cos θbj) with those presented for the QCD case for R = 0.6, we see that the
shapes of the EW corrections (middle frames) are very similar to the QCD ones. They are,
however, about one order of magnitude lower and remain positive. Nevertheless, no fundamen-
tal differences need to be underlined.

6.5 Total top-quark decay width

Collecting the results presented in the previous section, we can write the NLO (QCD+EW)
value of the partial decay width of the top quark. In the case of a semileptonic decay, for each
lepton generation, we have

Γ
(0)
lept = 0.1610645(3)GeV, ΓNLO

lept = 0.148108(6)GeV, (6.12)

while, for the hadronic decay, the partial width reads

Γ
(0)
hadr = 0.48319351(5)GeV, ΓNLO

hadr = 0.46248(9)GeV. (6.13)

The total LO and NLO top-quark decay width can be finally calculated, summing the results
in Eq. (6.12), for the three possible generations of leptons, to the values in Eq. (6.13), taking
into account also the hadronic decay t→ b c s̄. We obtain

ΓLO = 1.4495805(9)GeV and ΓNLO = 1.3693(2)GeV. (6.14)

Comparing the full off-shell results of Eq. (6.14) with the values obtained using the NWA in
App. A,

ΓLO
NWA = 1.5021850GeV (+3.63%) and ΓNLO

NWA = 1.38662(2)GeV (+1.26%), (6.15)

we see that the difference between the two predictions reaches up to ∼ 3.6% for the LO and
is +1.3% for the NLO corrections.
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From the experimental side, the most recent achievements on the top-width measurement
are the following:

- The direct top-quark width measurement in the lepton + jets channel of tt̄ events in
pp̄ collisions at CDF II (Tevatron), with an integrated luminosity of 8.7 fb−1 [32]. They
measured Γt = 2.21+1.84

−1.11GeV at 68% CL..

- The indirect measurement of D0 (Tevatron) [34]: Γt = 2.00+0.47
−0.43GeV for mt = 170GeV,

and at 95% CL.. They extracted the total width of the top quark, from the partial
decay width Γ(t → Wb) measured using the t-channel cross section for single-top-quark
production and from the branching fraction B(t → Wb) measured in tt̄ events using up
to 5.4 fb−1.

- The indirect measurement of CMS (LHC) [35]: They measured the ratio of the top-quark
branching fractions R = BR(t → W b)/BR(t → W q), with q = b, s, d, in the tt̄ dilepton
final state with proton-proton collision data at

√
s = 8TeV from an integrated luminosity

of 19.7 fb−1. This result has been combined with a previous CMS measurement of the t-
channel single-top-quark cross section [108] to determine the total top-quark decay width,
Γt = 1.36± 0.02(stat)+0.14

−0.11(syst)GeV, assuming mt = 172.5GeV.

A comparison between the theory results of Eq. (6.14) and the experimental values tells us
that there is good agreement. The large errors of the direct measurement performed by CDF
allows us only to confirm that the top-quark width is non-vanishing. For the D0 value only a
rough comparison is possible: The value has been indeed calculated under the assumption of
a top-quark mass mt = 170GeV, different from the updated value chosen in this thesis. The
top-quark width determined by CMS is more precise, but still not able to probe the level of
precision reached in this work.

The LHC will certainly improve the value of Γt, but not necessarily this measurement
will reach the theoretical precision. The main problem is that already now the error on the
measurement is dominated by the systematic uncertainty, mainly via the jet energy scale, and
it is yet not clear whether this important source of uncertainty can be significantly reduced. It
is part of the physics program of the future lepton colliders to study the top-quark properties.
The unique possibility to perform scans of the tt̄ production cross section around threshold
allows to measure the top-quark decay width with unmatched precision: The ultimate ILC
uncertainty is estimated to be around 34MeV, while the FCC-ee (formerly TLEP) in the so-
called “MegaTop”configuration, is confident to achieve an uncertainty of 11MeV after 5 years of
data taking [36]. The Compact Linear Collider (CLiC) will not improve this any further, since it
is expected to reach a precision of 220MeV by fitting the tt̄ cross section at

√
s = 500GeV [109].
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Chapter 7

Conclusions

The top quark plays a special role in the Standard Model and in its most popular extensions.
Due to its properties (the large mass, the short lifetime, the value of the Yukawa coupling, etc.),
it is a good candidate to test the SM predictions, to look for new physics and to deepen
our understanding of the mechanism of electroweak symmetry breaking. The top quark is
predominantly produced at the LHC through the processes such as tt̄ production and single
top production, which are therefore of large interest for the experimental measurements. In
order to achieve the necessary theoretical precision, it is mandatory to take into account the
decay of the top quarks and their radiative corrections. This entails a precise knowledge of the
top-quark decay width Γt.

To this aim, we have calculated the NLO QCD and EW corrections to the semileptonic
and to the hadronic top-quark decay widths, taking into account the off-shellness of the W -
boson. For this purpose we implemented an in-house program. The matrix elements have
been evaluated with the Weyl–van-der-Waerden spinorial formalism. The calculation of the
virtual corrections has been automatized through another in-house code which makes use of the
COLLIER library. We introduced counterterms following on-shell renormalization and included
the off-shell effects of the W boson employing the complex-mass scheme.

The IR singularities, induced by soft and collinear photon/gluon radiation, are treated using
mass regulators. In the context of this work, we have developed an extension of the one-cutoff
phase-space slicing method for the case of a decay process with more than two particles in the
final state. This technique allows to isolate the singularities from the real corrections, for the
cases of both massive and massless final-state particles. It consists in identifying two different
phase-space regions (a hard and a singular one) for the real emission of a photon or a gluon.
The former region has been integrated numerically over a 1 → 4 particle phase space, while the
latter has been further subdivided. In one part of the singular region we considered the soft
limit and we analytically integrated over the gluon/photon phase space. Later, we summed
the obtained results to the virtual and counterterm contributions, and we integrated over the
1 → 3 particle phase space. The remaining part of the singular region, the quasi-soft region, is a
boundary region whose integration is done using the soft-photon/gluon approximation. Another
possibility to deal with the IR singularities is the dipole-subtraction formalism, which has been
used to implement a second independent calculation. The dipole approach has, however, the
disadvantage to produce negative weights during the integration process, making a hypothetical
generation of unweighted events with a Monte Carlo program more difficult.
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The amplitudes have been numerically integrated by means of VEGAS, following the pre-
scriptions of the one-cutoff slicing method and adapting the integrals, e.g. splitting them into
different contributions.

The validity of the proposed method has been checked, in the case of the calculation of
a top-quark decay width, finding a region where the integrated results do not depend on the
introduced cut parameter ∆s. Thereafter we have fixed a certain value of ∆s to perform the
calculation.

We have listed the integrated results for the partial top-quark decay widths. In particular,
the QCD corrections to the semileptonic decay decrease the LO value by ∼ −9.4% and are
in agreement with the values already existent in the literature. Concerning the new results
obtained in this work, the EW corrections to the semileptonic decay are ∼ 1.3%. In the case
of a hadronic decay the QCD and EW corrections are ∼ −5.6% and ∼ 1.3%, respectively.
We have compared our values against the independent calculation performed using the dipole-
subtraction formalism. The results are in mutual agreement. Moreover, a comparison with the
values obtained using the narrow-width approximation has shown differences up to 2%.

Finally, after presenting differential distributions for the most interesting observables, we
have collected our results to obtain the total top-quark decay width Γt at NLO precision. A
comparison of Γt with the experimental measurements performed by D0, CDF, and CMS, shows
a good agreement, even though the precision up to now reached by the experiments is not yet
comparable with that of the new SM prediction. The experimental performance will certainly
improve in the future: Higher precision will be reached by the LHC in the forthcoming years
and by the future lepton colliders (ILC and FCC-ee) analyses, making the theoretical prediction
described above more important.

A precise knowledge of Γt will become also essential to perform theoretical NLO EW pre-
dictions involving off-shell top-quarks, e.g. NLO EW corrections to the W+W−bb̄ production,
which are not yet known. These kind of calculations need the top-quark width as an ingredient
and demand, for consistency, the same NLO accuracy for the value of Γt.

Furthermore, the program developed in this work for the calculation of the NLO corrections
to the top-quark decay width could be used as a basis for a Monte Carlo generator for top-quark
decays with unweighted events at NLO precision. Direct applications could be, for example,
an improvement to the calculation of the predictions for the tt̄+jets and the tt̄H channels via
the addition of a top-quark decay.
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Appendix A

Narrow-Width Approximation

The narrow-width approximation (NWA) is the simplest way to perform a calculation charac-
terized by the presence of an unstable particle with a decay width small compared to its mass,
even though it is limited in precision.

In the following, we will briefly describe the idea of the NWA, based on Refs. [81–83, 110], ap-
plied to the specific case of the top-quark decay, where the width of theW boson is ΓW ≪ MW .
Starting from the generic definition of an n-particles phase space, given in Eq. (3.2), and us-
ing the specific phase-space parameterization for the case n = 3, described in Sect. 5.3, the
top-quark decay width at LO reads

Γ(0)(t→ bf f̄ ′) =
(2π)−5

2mt

∫
ds̄34

∫
dφd(p

2
t , m

2
b , s̄34)

∫
dφd(s̄34, m

2
f , m

2
f ′)
∑

|M(pt; p1, p3, p4)|2,
(A.1)

with the momenta of the particles involved in the process described in Fig. A.1. In Eq. (A.1) the
virtuality of the W boson is represented by

√
s̄34. For small values of ΓW/MW , the dominating

diagrams are the resonant ones, whose matrix elements factorize as

M(pt; pb, pf , pf̄ ′)(res) = M(res)

t→bW→bff̄ ′ =
∑

λ

M(λ)
t→bW

1

s̄34 −M2
W + iMWΓW

M(λ)

W→ff̄ ′, (A.2)

where λ is the polarization vector of the W boson. After squaring the matrix element, a
Breit-Wigner-shaped propagator appears
∣∣∣∣

1

s̄34 −M2
W + iMWΓW

∣∣∣∣
2

=
1

(s̄34 −M2
W )2 +M2

WΓ2
W

˜ΓW /MW→0

π

MWΓW
δ(s̄34 −M2

W ). (A.3)

t

pt W

b

pb

f

pf

f̄ ′

pf̄ ′

Figure A.1: LO diagram for the process t(pt) → b(pb) f(pf) f̄
′(pf̄ ′).
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Equation (A.1) can be rewritten as

Γ
(0)
NWA(t→ bf f̄ ′) ˜ΓW /MW→0

(2π)−4

2mt

∫
ds̄34

2MWΓW
δ(s̄34 −M2

W )

×
∑

λλ′

∫
dφd(p

2
t , m

2
b , s̄34)M

(λ)
t→bW

(
M(λ′)

t→bW

)∗ ∫
dφd(s̄34, m

2
f , m

2
f ′)M(λ)

W→ff̄ ′

(
M(λ′)

W→ff̄ ′

)∗

=
(2π)−2

2mt

∫
dφ̂d(p

2
t , m

2
b , s̄34)M̂

(λ)
t→bW

(
M̂(λ′)

t→bW

)∗
× 1

ΓW

× (2π)−2

2MW

∫
dφ̂d(s̄34, m

2
f , m

2
f ′)M̂(λ)

W→ff̄ ′

(
M̂(λ′)

W→ff̄ ′

)∗
, (A.4)

where the hat on φ̂ and M̂ fixes the on-shell condition s̄34 = (p̂f + p̂f̄ ′)2 =M2
W . The rotational

invariance in the W -boson rest frame implies
∫
dφ̂d(s̄34, m

2
f , m

2
f ′)M̂(λ)

W→ff̄ ′

(
M̂(λ′)

W→ff̄ ′

)∗
=

2MW

(2π)−2
δλλ′ Γ(0)(W → f f̄ ′) (A.5)

and therefore

Γ
(0)
NWA(t→ bf f̄ ′) ˜ΓW /MW→0

Γ(0)(t→ Wb)× Γ(0)(W → f f̄ ′)

ΓW
, (A.6)

where ΓW is the experimental value of the W -boson width. Thus, in the NWA, the top-quark
partial width for the decay t→ b f f̄ ′ can be factorized into the partial decay width of t→W+ b
times the branching ratio of the W boson decaying into a pair of fermions, BR(0)(W → f f̄ ′):

Γ
(0)
NWA(t→ bf f̄ ′) ˜ΓW /MW→0

Γ(0)(t→Wb)× BR(0)(W → f f̄ ′). (A.7)

For the NLO we consider the corrected version

ΓNLO
NWA(t→ bf f̄ ′) ˜ΓW /MW→0

Γ(1)(t→Wb) · BR(0)(W → f f̄ ′) + Γ(0)(t→Wb) · BR(1)(W → f f̄ ′),

(A.8)

with ΓNLO = Γ(0) + Γ(1) and

BR(1)(W → f f̄ ′) =
ΓNLO(W → f f̄ ′)

ΓW

. (A.9)

The values calculated using Eq. (A.8) are compared with the full NLO calculation in Sect. 6.4.
Two-loops effects can be included in the following equation:

Γ
(2)
NWA(t→ bf f̄ ′) ˜ΓW /MW→0

Γ(1)(t→Wb)× BR(1)(W → f f̄ ′). (A.10)

The results obtained using the input parameters of Sect. 6.2 are listed in Table A.1. They
have been checked against an independent calculation implemented by L. Basso with the same
settings presented in Sect. 6.1, and against the analytic results presented in Ref. [20, 22]. The

difference
∣∣∣Γ(2)

NWA − Γ
(1)
NWA

∣∣∣ can be used as a conservative measure of uncertainty from higher

orders beyond NLO.
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Γ
(0)
NWA/GeV δ

(1),QCD
NWA /% δ

(1),EW
NWA /% ΓNLO

NWA/GeV ΓNNLO
NWA /GeV

t→W+ b 1.5021850 −9.377(1) 1.6843(1) 1.38662(2)

W → u d̄ 0.6810316 4.100(1) −0.26425(5) 0.70715(1)

BR (W+ → u d̄) 0.3266339 0.339161(6)

W+ → νℓ ℓ 0.2270105 −0.2163(2) 0.2265195(5)

BR (W+ → νℓ ℓ) 0.1088779 0.1086424(3)

t→ b u d̄ 0.4906645 −5.2779(1) 1.4201(6) 0.471736(3) 0.469828(3)

t→ b νℓ ℓ 0.1635547 −9.377(1) 1.4680(6) 0.1506131(2) 0.1506133(2)

Table A.1: Top-quark decay widths calculated in the NWA with the input parameters listed in

Sect. 6.2, and with δ
(1)
NWA =

Γ
(1)
NWA

Γ
(0)
NWA

and ΓNNLO
NWA = Γ

(0)
NWA + Γ

(2)
NWA.
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Appendix B

Soft-photon approximation

We consider the generic process, represented in Fig. B.1 (a), of an incoming fermion with
momentum pf , mass mf and charge Qf . The LO matrix element reads

M0 = A(pf)u(pf), (B.1)

where u(pf) is the spinor of the incoming fermion and A(pf) is the remaining part. If the
fermion emits a photon with momentum q and polarization vector ε (Fig. B.1 (b)) the matrix
element is

M(in)
1,s = A(pf − q)

i( 6 pf − 6q +mf )

(pf − q)2 −m2
f

(ieQf ) 6ε⋆u(pf). (B.2)

The soft-photon approximation is obtained neglecting all the terms proportional to q in the
numerator. After some algebra, one obtains

M1 = eQf
pfε

pfq
M0, (B.3)

where the Born matrix element M0 factorizes. The same result is obtained in the case of an
incoming vector line.

In case of an outgoing fermion or vector (generally labeled with i) the matrix element differs
from the incoming one by a sign:

M(out)
1,s = −eQi

piε

piq
M0. (B.4)

pf
f

(a)

pf

q

f

(b)

Figure B.1: Generic diagram with an incoming fermion f without (a) and with (b) a photon
emission.
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The radiation from an internal line does not lead to a singular contribution and thus can be
omitted in the soft-photon approximation, as proved in Ref. [111].

In general, the matrix element for the real emission of a soft photon is proportional to the
Born matrix element M0 as

M1 = −eM0

∑

i

(±Qi)ei(q), (B.5)

where the quantity

ei(q) =
piε

piq
(B.6)

is called eikonal factor. More details can be found in Ref. [22].
In QCD the scattering amplitudes can be decomposed as a product of a colour factor and

colour-ordered amplitudes. In case of a soft-gluon emission, the latter can themselves factorize
into an eikonal factor, similarly to the case of a soft-photon emission.
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Appendix C

Feynman rules

We list the Feynman rules needed in this thesis in the WvdW formalism, following Refs. [22,85].
The labels S, F , and V denote scalar, fermion and vector fields, respectively, while s = sw

and c = cw. All the momenta are considered as incoming. We use the ’t Hooft Feynman gauge.

� Feynman rules for propagators and counterterms

Propagators:

B k A i

k2 −m2
f

(
mfδ

B
A KAḂ

KȦB mfδ
Ȧ
Ḃ

)

AB CD −2iǫȦĊǫBD

k2 −M2
V

VV-counterterm:

AB CD −2iǫȦĊǫBD

[
δZW (k2 −M2

W )− δM2
W

)
]
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� Feynman rules for vertices

VFF-vertex:

CDB

A
1

2

ie


 0 C−

V f̄1f2
δĊ
Ḃ
δDA

C+
V f̄1f2

ǫȦĊǫBD 0




C+
γf̄ifj

=−Qf

[
δij

(
1 + δZe +

1

2
δZAA

)
+

1

2
(δZf,R

ij + δZf,R†
ij )

]
+ δijg

+
f

1

2
δZZA,

C−
γf̄ifj

=−Qf

[
δij

(
1 + δZe +

1

2
δZAA

)
+

1

2
(δZf,L

ij + δZf,L†
ij )

]
+ δijg

−
f

1

2
δZZA,

C+
Zf̄ifj

= g+f

[
δij

(
1 +

1

2
δZZZ

)
+

1

2
(δZf,R

ij + δZf,R†
ij )

]
− δijQf

1

2
δZAZ ,

C−
Zf̄ifj

= g−f

[
δij

(
1 +

1

2
δZZZ

)
+

1

2
(δZf,L

ij + δZf,L†
ij )

]
− δijQf

1

2
δZAZ ,

C+
W−d̄jui

=0,

C−
W−d̄jui

=
1√
2sw

[(
1 + δZe −

δsw
sw

+
1

2
δZW

)
+

1

2

∑

k

(δZd,L†
jk + δZu,L

ki )

]
,

C+
W+ūidj

=0,

C−
W+ūidj

=
1√
2s

[
Vij

(
1 + δZe −

δs

s
+

1

2
δZW

)
+ δVij

+
1

2

∑

k

(δZu,L†
ik Vkj + VikδZ

d,L
kj )
]
,

C+
W−l̄jνi

=0,

C−
W−l̄jνi

=
1√
2sw

δij

[
1 + δZe −

δsw
sw

+
1

2
δZW +

1

2
(δZ l,L†

ii + δZν,L
ii )

]
,

C+
W+ν̄ilj

=0,

C−
W+ν̄ilj

=
1√
2s
δij

[
1 + δZe −

δs

s
+

1

2
δZW +

1

2
(δZν,L†

ii + δZ l,L
ii )
]
, (C.1)

where

g+f = −sw
cw
Qf and g−f =

I3f − s2wQf

swcw
. (C.2)
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SFF-vertex:

B

A
1

2

ie


C

+
Sf̄1f2

δBA 0

0 C−
Sf̄1f2

δȦ
Ḃ




C+
Hf̄ifj

= − 1

2s

1

MW

[
δijmf,i

(
1 + δZe −

δs

s
+
δmf,i

mf,i
− δMW

MW
+

1

2
δZH

)

+
1

2
(mf,iδZ

f,R
ij + δZf,L†

ij mf,j)
]
,

C−
Hf̄ifj

= − 1

2s

1

MW

[
δijmf,i

(
1 + δZe −

δs

s
+
δmf,i

mf,i
− δMW

MW
+

1

2
δZH

)

+
1

2
(mf,iδZ

f,L
ij + δZf,R†

ij mf,j)
]
,

C+
χf̄ifj

= i
1

2s
2I3W,f

1

MW

[
δijmf,i

(
1 + δZe −

δs

s
+
δmf,i

mf,i
− δMW

MW

)

+
1

2
(mf,iδZ

f,R
ij + δZf,L†

ij mf,j)
]
,

C−
χf̄ifj

= − i
1

2s
2I3W,f

1

MW

[
δijmf,i

(
1 + δZe −

δs

s
+
δmf,i

mf,i
− δMW

MW

)

+
1

2
(mf,iδZ

f,L
ij + δZf,R†

ij mf,j)
]
,

C+
φ+ūidj

= − 1√
2s

1

MW

[
Vijmd,j

(
1 + δZe −

δs

s
+
δmd,j

md,j

− δMW

MW

)
+δVijmd,j

+
1

2

∑

k

(δZu,L†
ik Vkjmd,j + Vikmd,kδZ

d,R
kj )

]
,

C−
φ+ūidj

=
1√
2s

1

MW

[
mu,iVij

(
1 + δZe −

δs

s
+
δmu,i

mu,i
− δMW

MW

)
+mu,iδVij

+
1

2

∑

k

(δZu,R†
ik mu,kVkj +mu,iVikδZ

d,L
kj )
]
,

C+
φ−d̄jui

=− 1√
2sw

mu,i

MW
δij

[
1 + δZe −

δsw
sw

− δMW

MW
+

1

2
(δZd,L†

ii + δZu,R
ii )

]
,

C−
φ−d̄jui

=− 1√
2sw

md,j

MW
δij

[
1 + δZe −

δsw
sw

− δMW

MW
+

1

2
(δZd,R†

jj + δZu,L
jj )

]
,

C+
φ+ν̄ilj

= − 1√
2s

ml,i

MW

δij

[
1 + δZe −

δs

s
+
δml,i

ml,i

− δMW

MW

+
1

2
(δZν,L†

ii + δZ l,R
ii )
]
,

C−
φ+ν̄ilj

=0,

C+
φ− l̄jνi

=0,

C−
φ− l̄jνi

= − 1√
2s

ml,i

MW
δij

[
1 + δZe −

δs

s
+
δml,i

ml,i
− δMW

MW
+

1

2
(δZ l,R†

ii + δZν,L
ii )
]
. (C.3)
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VVV-vertex:

EFAB

CD
2

1
3 i

4
eCV1V2V3

[
ǫȦĊǫBD(K1 −K2)

ĖF + ǫĊĖǫDF (K2 −K3)
ȦB

+ ǫȦĖǫBF (K3 −K1)
ĊD
]

CAW+W− =1 + δZe + δZW +
1

2
δZAA − 1

2

c

s
δZZA,

CZW+W− = − c

s
(1 + δZe −

1

c2
δs

s
+ δZW +

1

2
δZZZ) +

1

2
δZAZ . (C.4)

SVV-vertex:

AB

CD
2

1

i
2
eCSV1V2

ǫȦĊǫBD

CHW+W− =MW
1

s

[
1 + δZe −

δs

s
+

1

2

δM2
W

M2
W

+
1

2
δZH + δZW

]
,

CHZZ =MW
1

sc2

[
1 + δZe +

2s2 − c2

c2
δs

s
+

1

2

δM2
W

M2
W

+
1

2
δZH + δZZZ

]
,

CHZA =MW
1

sc2
1

2
δZZA,

Cφ±W∓Z = −MW
s

c

[
1 + δZe +

1

c2
δs

s
+

1

2

δM2
W

M2
W

+
1

2
δZW +

1

2
δZZZ

]
−MW

1

2
δZAZ ,

Cφ±W∓A = −MW

[
1 + δZe +

1

2

δM2
W

M2
W

+
1

2
δZW +

1

2
δZAA
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VSS-vertex:
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[23] M. Jezabek and J. H. Kühn, “The Top width: Theoretical update,” Phys.Rev. D48,
pp. 1910–1913, 1993. arXiv:hep-ph/9302295 [hep-ph] .
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