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Preface

This PhD thesis is the culmination of several years of research done mainly at the Institute of

Physics of the University of Freiburg. This thesis is rather unusual in that it is split into two

disjoint parts, although both are concerned with physics. The first part was undertaken under

the supervision of Junior Professor David Gross with the collaboration of Christian Schilling,

Matthias Christandl, James Whitfield and Panagiotis Papanastasios. This part is concerned

with the quantum marginal problem for distinguishable particles and Fermions and aims to

provide an overview of it while giving some new results on the subject. It uses tools from

Quantum Information Theory and Symplectic Geometry in order to tackle the problem. As

the second part, it is a continuation of the research I began on my Bachelor and continued to

do during my Master’s. It was done in close collaboration with the University of Aveiro, my

main collaborator being Ricardo Dias, but it also counted with a minor collaboration of Bruno

António. This part is concerned, mainly, with the so called AB2 chains, an example of an

itinerant geometrically frustrated system, their electronic properties and transport properties.

It uses several tools from Condensed Matter. While this may be an unusual combination, it

allowed me to broaden my horizons without losing touch with the area where I came from:

Condensed Matter. It also allowed me to learn new subjects while still being quite productive,

since I was not forced to learn everything from scratch.

During the course of my research and while writing this thesis there were many ups and

downs, and life changing events for me. For instance I got married and became a father. I

couldn’t have made it without the support of my family, friends and colleagues. As such I

would like to thank my supervisor David Gross as without him I wouldn’t be here and this

thesis wouldn’t exist; my collaborators Christian Schilling, to whom I thanks for having read

the first part of this manuscript, Matthias Christandl, James Whitfield, Bruno António and

in particular Ricardo Dias, my former supervisor, collaborator and friend. Thank you for

being always there to chat not only about science but also about life in general and also

for reading the second part of this manuscript; my office colleagues and friends for the fun

times in the middle of desperate times Richard Küng, Johan Aberg, Rafael Chaves, Christian

v



vi

Majenz, Kinan Halabi, Robert Stierlen, Pagiotis Papanastasiou; all of my students for their

dedication, for their nice reviews of my work and for taking the time to let me teach them

and in turn let me learn how to teach; my friends, Lidia del Rio, for without her I wouldn’t

have met David, and wouldn’t have gone to Freiburg, Florian Hermanns for the music and

being always next door and keeping in touch after so many years, Telmo Coutinho for being

an awesome friend since we were little kids, Astrid de Wijn for the falafel moments and

sharing an office with me and thanks to Elisabeth Fraczek for being sane in the middle of so

much insanity, for introducing me to board games, and for being such a good friend even if

we’re far apart and many years have passed; and obviously I would like to thank all of my

family, in particular my parents, Vasco Manuel Dias Lopes and Anabela Baptista Campos de

Araújo Lopes, my brother Mário Cláudio de Araújo Lopes and my dear and truly awesome

wife Filipa Isabel Serra e Silva. Her support proved to be invaluable to maintain my mental

health during this time. In case I have forgotten somebody, please excuse me.
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Abstract

Quantum many-body systems present a formidable challenge to tackle either analytically or

numerically. As such any extra tools we can get to treat such systems are of utmost impor-

tance for practical applications. In the first part of this thesis, we address the pure univariate

quantum marginal problem, whose full solution has been found recently [1]. Such problem

asks for the possible eigenvalues of the one-particle reduced density matrices (1-RDMs) of a

globally pure state. It presents a deep insight into the local properties of many-body systems

and a possible tool for the simplification of the analysis of such systems. We present a simple

solution of the fact that whenever the spectrum of the 1-RDMs of a state, which are one

particle objects, is extremal, it leads to significant structural simplifications of the states that

can give rise to such 1 RDMs. In order to probe the physical relevance of such simplifications

we consider the problem in quantum chemistry. We address as well the marginal problem for

Fermions Fock space and characterized the mode and particle marginals. We show that for the

particle reduction there are no constraints in Fock space, unlike in the case of a fixed number

of particles. We consider also the mode marginals for free Fermions and fully characterize

it. Resorting to the Jordan-Wigner transformation the obtained characterization corresponds

exactly to the one known for a system of qubits. Finally we examine the computational com-

plexity of deciding from local spectral information whether many-body states are entangled

or not. We show that while it is true that few easily obtainable physical measurements may

be sufficient to witness many-body entanglement, the classical post processing of the obtained

data is, in principle, intractable in the sense that the problem is NP-complete. In the second

part of this thesis we study the electronic transport properties of geometrically frustrated sys-

tems, with special emphasis on the AB2 chain. We begin by studying it in the non interacting

case and proceed to give an exact solution in the strong coupling limit when considering inter-

acting spinless Fermions. We propose, as well, a method for constructing localized states in

non-interacting geometrically frustrated systems which leads to states which are highly local-

ized. We then study the conductance through the AB2 chain and show that localized states

in geometrically frustrated systems lead to rather interesting behavior in the two terminal

xiii



xiv Contents

electronic conductance through such systems. In particular in the absence of magnetic flux

these localized states act as filters of the zero frequency conductance peak (where we refer to

the frequency of an incident electron). The addition of magnetic flux changes the behavior of

the localized states in the conductance: some still filter the zero frequency peak while others

contribute to the appearance of a zero frequency peak, and as such the conductance profile

exhibits a zero frequency peak with a dip, which is a distinct fingerprint of the existence of

localized states. We finally propose a new method for calculating the conductance through

interacting clusters, and shown that it is in agreement with already well known methods. We

use it to calculate the conductance through interacting spinless AB2 chains. We show that

the non-interaction conductance profiles persist for small values of the interaction and that

some possibly expected conductance peaks are actually experimentally non-accessible due to

the flat band of the AB2 chain.
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Organization

This part is organized as follows. In Chapter 1 we introduce and state the quantum marginal

problem. In particular we focus on the univariate pure quantum marginal problem, which

will form the basis of this entire part. In Chapter 2 we give some examples of systems for

which the univariate pure quantum marginal problem admits a simple solution and introduce

some terminology and concepts that will be necessary in the following chapters. In Chapter 3

we give a constructive proof of the fact that whenever the spectra of one-particle reduced

density matrices (1-RDMs) is extremal its pre-image is not the entire Hilbert space but a

smaller subset, leading to significant simplifications of the corresponding wavefunctions. This

fact has been mentioned in the literature but no proof has been given. We not give a simple

proof but generalize it to the important case of degenerate 1-RDMs spectra. In Chapter 4

we probe whether or not one can apply the previously mentioned simplification to quantum

chemistry in order to improve the speed and accuracy of calculating ground states. We show

that arriving at clear conclusions is not simple and plagued by several complications. In

Chapter 5 we address the quantum marginal problem in Fermionic Fock space and show that

there are no non-trivial constraints on the spectrum of 1-RDMs in Fock space. We also fully

characterize the mode reduction in Fock space. In Chapter 6 we prove that deciding whether

or not a many-body system is entangled, using localizable entanglement as an entanglement

measure, from the spectra of its 1-RDMs alone is computational intractable (in the sense that

the general problem is NP-hard) and in Chapter 7 we conclude.
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Chapter 1
Introduction

In quantum mechanics, a quantum state is a bounded, linear and unitary trace Hermitian

operator ρ on an Hilbert space H. For simplicity we shall restrict our discussion to finite

dimensional quantum systems, dimH < ∞. In such case, this operator is usually known

as density matrix. In the particular case of a rank 1 density matrix, it can be written as

ρ = |ψ〉 〈ψ| , |ψ〉 ∈ H. In this case, |ψ〉 is called state vector.

An observable A is an hermitian operator A = A† on H. Hermiticity guarantees that such

operator is diagonalizable and that its eigenvalues are real. The importance of this lies in

the fact that quantum mechanics axiomatizes that the eigenvalues of such operator are the

possible outcomes of experimental measurements performed on the system.

Given the statistical nature of quantum mechanics, it is usual to deal with the expected

value of an observable: the average value one would obtain by performing a given measurement

on an ensemble of systems all prepared in the same quantum state ρ. Such expected value is

given by 〈A〉 = tr ρA.

Up to now we have not specified whether the system is composed or not of several particles,

modes, or other subsystems. Let us assume that it composed of N subsystems, which induces

a tensor product structure on our global Hilbert space: H = ⊗Ni=1Hi. Consider now an

operator AI that acts only non-trivially on a subset I ⊂ {1, . . . N} of our system. Then it

is a priori expected that we do not need information about the full state ρ to calculate the

expected value of AI . Hence we search for an operator ρI such that:

〈A〉 = tr ρA = tr ρIAI . (1.1)

Such operator, given by ρI = trcI ρ, where trcI denotes the trace over all subsystems in the

complement of I, is called a reduced density operator. The partial trace operator is the

quantum analogue of the classical marginalization in the following sense: consider n random

variables {x1, . . . xn} with joint probability distribution p(x1, . . . , xn). Let I ⊂ {x1, . . . xn}.

7



8 Chapter 1. Introduction

Then the marginal distribution of I is pI =
∑

Ic p(x1, . . . xn). The quantum analogue consists

of considering n particles in a state ρ, the analogue of the classical joint probability distribu-

tion p(x1, . . . , xn), and the partial trace ρI := trIc ρ, the analogue of the classical marginal

distribution pI . Hence ρI is also called a quantum marginal. We shall from now on use the

term quantum marginal and reduced density operator interchangeably. Whenever |I| = n,

the operator ρI is known as an n-RDM of ρ.

We can now ask the following question: given a set of n marginals ρI(i) , where the sets

I(i) may or not have empty intersection, are these marginals compatible (see Fig. 1.1)? By

compatibility we mean that these marginals all come from the same global state by tracing

out the appropriate parts

ρI(i) = trIc
(i)
ρ. (1.2)

Such problem, of determining the relation between global quantum states and their reductions

(a) Overlapping set of
marginals

(b) Non-overlapping set of
marginals

Figure 1.1: A set of quantum marginals can be either overlapping (a) or non-overlapping
(b). The overlapping case is in general QMA-Complete but the non-overlapping is potentially
computationally tractable.

is known as the quantum marginal problem. This problem arose originally in the quantum

chemistry community in the 1960s [2], where it is know as the N -representability problem.

Recently, due to the advent of quantum information theory there has been a resurgence in

the problem. This has lead to significant progress. On the one hand tools from (classical

and quantum) computational complexity theory have been employed to show that the most

general version of the problem is probably intractable, even for a quantum computer, for it is

QMA-Complete [3–5]. On the other hand it has been discovered that the so-called univariate

quantum marginal problem exhibits an extremely rich structure which can be completely

described, at least in principle [1,6–10]. The hardness results apply only to marginal problems

where the given density matrices act on overlapping regions, and it may very well be that

the univariate marginal problem is tractable (see Fig. 1.1). Indeed, in a celebrated paper [1],

Klyachko has identified the mixed one-body (univariate) marginal problem as the membership

problem for a certain moment polytope. More concretely, for a system of N particles in a state
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ρ, the map

µ : ρ 7→
(
ρ

(1)
1 , . . . ρ

(1)
N

)
(1.3)

with ρ
(1)
i the 1-RDM of the ith particle, is a moment map (see appendix A for a small

discussion of symplectic geometry and the moment map).

In the present text we shall only consider the pure univariate marginal problem where

one asks if a given set of 1-RDMs (hence univariate) is compatible with a globally pure state.

Note that the mixed version of this problem is trivial, for given a set of marginals ρ
(1)
1 , . . . ρ

(1)
N

there is always a global state from which these marginals can arise, namely ρ = ρ
(1)
1 ⊗ ρ

(1)
N .

In the univariate situation things simplify significantly. To begin with,in this case the set

of marginals is necessarily non-overlapping and one needs only to consider the spectra of

such 1-RDM as we show in an instant. Solutions to the one-body marginal problem have

been applied to the study of several problems. Examples include the qualitative analysis

of many-body ground-states [11, 12], entanglement theory [10, 13], and the study of generic

states [9].

In principle, Klyachko’s work gives rise to an algorithm for constructing the set of com-

patible density operators. However, the task remains extremely involved and very few closed-

formula solutions have been obtained. What is more, there is no formal proof that there

are (or not) efficient algorithms for solving this problem. For systems of n-qubits [6], several

low-dimensional cases with and without symmetry [1, 14, 15] and some SL-orbits [10, 13], a

complete characterization of the polytope has been obtained.

Note that if a set {ρ(1)
i }i, i = 1, . . . , n of one-particle density operators arises as the

reductions of a globally pure state, then the same is true for {Uiρ(1)
i U †i }i for any set of local

unitaries Ui. One may then use this unitary freedom to assume that all local densities are

diagonal with eigenvalues λ(i) = spec ρi ordered non-increasingly. Thus, the problem may be

phrased solely in terms of spectra: when can a set of vectors {λ(i)} appear as the eigenvalues

of the reductions of a pure quantum state? A compatible set of spectra for n systems of

dimension d each may naturally be embedded as ⊕ni=1λ
(i) into Rdn

+ . Due to the fact that

the map from a global state to its local reductions is a moment map [1] and due to Kirwan’s

convexity theorem [16], the set of points λ in Rdn
+ forms a convex polytope ∆, which can, e.g.,

be described as intersection of half-spaces. Assuming that these half-spaces coincide with the

facets of this polytope, which we will do from now onwards so we have a minimal description

of our polytope, it can be described in terms of the inequalities defining its facets

κ · λ+ κ0 ≤ 0 (1.4)

where κ is a vector normal to the facet F pointing outwards, as depicted in Fig. 1.2 and κ0

and offset, describing the Euclidean distance from the facet to the origin of the coordinate

system. We call this polytope spectral polytope and such inequality a spectral inequality.
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Figure 1.2: A half-space with normal vector κ and offset κ0 which coincides with a facet F
of a convex polytope ∆.

For the case of Fermions in particular it has been known for a long time that the anti-

symmetry of the Fermionic wavefunction while implying the Pauli’s exclusion principle, is

stronger than this principle alone. For a Fermionic system with a well defined number of

Fermions, the Pauli’s exclusion principle is equivalent to restricting the eigenvalues of the 1-

RDM to a value between 0 and 1 (when one normalizes the 1-RDM such that its trace equals

the total number of Fermions.). Anti-symmetry, on the other hand, implies extra constraints

on these eigenvalues. It has been shown fairly recently by Klyachko [15] that, for a globally

pure state, these constrains correspond to a convex polytope on the set of eigenvalues of the

1-RDM.

One of the reasons for the interest in quantum marginals is due to the following elementary

problem: given a quantum system described by an Hamiltonian H, the problem of finding

the ground state (GS) energy is a variational problem over the set of all states S, i.e.,

EGS = min
ρ∈S

tr (ρH) . (1.5)

Due to the curse of dimensionality this problem is clearly intractable for large systems (i.e.

consisting of a large number of sub-systems). However, given that all physical Hamiltonians

are two body Hamiltonians (at least outside the realm of high-energy physics [17]), we can

write H =
∑

i

∑
j>iH

i,j . In this case we have

EGS =
∑
i

∑
j>i

min
ρi,j

tr
(
ρi,jH

i,j
)

(1.6)

and obviously one only needs 2-RDMs to calculate the GS energy. We then have to minimize

over a considerably smaller subspace of states than the entire Hilbert space, which may lead

us to believe we have simplified our problem. We must now require, however, that all the ρi,j

correspond to partial traces of the same global system, i.e. that these reductions are com-
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patible with a global state ρ. Unfortunately in such problem we have, in general, overlapping

sets of reduced density matrices and the problem seems to be intractable in its generality. As

such, interesting as it may seem, we will not treat it here. Several authors have, however,

given considerable attention to this problem, commonly referred to as the 2-representability

problem [2,18,19]. Semidefinite programming algorithms based on some identified necessary

conditions for 2-representability (but not sufficient) show promising results in the calculation

of ground states in quantum chemistry [20].
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Chapter 2
Representing quantum marginals and some

fully characterizable situations

In this chapter we show how to represent the spectral polytope and review some results for

fully characterizable settings.

2.0.1 Representing the spectral polytope

Distinguishable particles

Consider an arbitrary pure state of n qudits, with different local dimensions |ψ〉 ∈ H = Cd1⊗
. . .⊗Cdn . Let {|xi〉}dixi=1 be a basis for the jth qubit subspace and let {|~x〉dixi=1 = |x1〉 . . . |xn〉}
be a basis for H. Then one can write, for a chosen orthonormal basis

|ψ〉 =
∑

x1,...xn

c~x |~x〉 , (2.1)

where ~x = (x1, x2, . . . xn), xi = 1, . . . di. Then, the density matrix corresponding to this state

is given by,

ρ =
∑
xi,x′j

c~xc̄~x′ |~x〉
〈
~x′
∣∣ (2.2)

where the bar denotes complex conjugate. From here it is a simple exercise to show that the

(k, l) element of the 1-RDM of the ith qudit is given by,(
ρ

(1)
i

)
k,l

=
∑
~x6=i

c~x|i=k c̄~x|i=l (2.3)

where we have used the shorthand notation
∑

~x6=i :=
∑

x1
. . .
∑

xi−1

∑
xi+1

. . .
∑

xn
and where

~x|i=b = (x1, . . . xi−1, b, xi+1, . . . xn).

For any given |ψ〉, it is always possible to choose the basis |~x〉 such that the 1-RDMs are

13
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diagonal, a choice that will impose conditions on the coefficients c~x. In the particular case of

qubits, these conditions are∑
~x6=i

c~x|i=1
c̄~x|i=2

= 0, ∀i = 1, . . . n (diagonality) (2.4)

In this chosen basis, the spectra of the ith 1-RDM will be given by

spec(ρ
(1)
i ) =

(
λ

(i)
1 , . . . , λ

(i)
di

)
λ

(i)
j =

∑
~x6=i
|c~x|2i=j = 〈j| tr\i ρ |j〉

(2.5)

where we use the notation tr\i to denote the partial trace over all subsystems except the

ith one. Note that due to the trace condition, tr ρ
(1)
i = 1, the spectrum of the ith 1-RDM

is representable by di − 1 real numbers. Note that due to the trace condition and positive

semi-definiteness of density operators one must have 0 ≤ λ
(i)
1 , . . . λ

(i)
di
≤ 1. Then, taking into

consideration all the 1-RDMs, their spectra give rise to a polytope of admissible spectra in

Rm
+ , m =

∑n
i di−n. For qubits, one can choose νj := λj1−λ

j
2 to represent the spectra and it is

a simple exercise to see that, in this case, product states map to the vertices of an hypercube

of side 1, centered at the origin. Specifically, in the case of 3 qubits, which plot is amenable

to human comprehension, one has

|000〉 → (1, 1, 1) |001〉 → (1, 1,−1)

|010〉 → (1,−1, 1) |011〉 → (1,−1,−1) (2.6)

|100〉 → (−1, 1, 1) |101〉 → (−1, 1,−1)

|110〉 → (−1,−1, 1) |111〉 → (−1,−1,−1)

We know that the admissible spectra will be inside of this cube, but it won’t necessarily be

Figure 2.1: The points which the product states map to.

the entire cube. In fact, as we will see shortly the result is more interesting than that. We

get a convex polytope if we intersect the image of the moment map (in our case, our partial
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trace) with the positive Weyl chamber 1, but not necessarily so if we don’t (c.f theorem 55,

chapter A). In Fig. 2.2 we plot the entire spectral polytope for 3 qubits for νi = λ
(i)
1 −λ

(i)
2 and

its intersection with the positive Weyl chamber, which we choose to be given by λ
(i)
j ≥ λ

(i)
j+1,

such that for qubits we have, inside the Weyl chamber, spec ρ
(1)
i = (λ

(i)
max, λ

(i)
min). As can be

seen, representing the entire polytope, a star shaped polytope, is not only redundant, but

much more complicated, as it is not convex, and hence cannot be represented as intersection

of half-spaces. As such whenever we talk about the spectral polytope, we alway refer to its

restriction to the above chosen positive Weyl chamber.

- 1 0
1

- 1
0

1
- 1

0

1

(a) Entire spectral poly-
tope

0
1

0

1
0

1

(b) Restricted to positive
Weyl chamber

Figure 2.2: The entire spectral polytope for 3 qubits (a), and its restriction to νi ≥ 0 (our
positive Weyl chamber) (b).

Note also that it is not difficult to see that one can write the spectral inequality

D = κ0 +
n∑
i=1

di∑
j=1

κi,jλ
(i)
j ≤ 0 (2.7)

as an expectation value 〈D̂〉ψ,

D̂ = κ01+
n∑
i=1

di∑
j=1

κi,j
[
1
i−1 ⊗ |j〉 〈j| ⊗ 1n−i

]
(2.8)

Fermions

For Fermions things are analogous to case of distinguishable particles, except that there is

only one 1-RDM. Let us begin by considering a Hilbert space of N Fermions and a one particle

Hilbert space H1 of dimension d, which we call modes (also known as orbitals in quantum

chemistry) H = ΛNH1 ⊂ (H1)⊗d, where ΛNV denotes the Nth exterior power of the vector

1A Weyl chamber is a concept from representation theory, and its definition can be found in any good book
on the subject, e.g. [21]. For our discussion, however, it is not important to be acquainted with the definition,
but simply to know that “restricting to the positive Weyl chamber” will introduce some constraints on our
spectra.
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space V [22]. From now onwards we make the following identification H1
∼= Cd. Let {|i〉i=1}d

be a basis for the single particle space Cd. Then a basis for the product space H⊗d1 is given

by {|i1〉 ⊗ . . .⊗ |iN 〉}di1,...iN=1. Let us define the antisymmetrizer

Definition 1. Let {|i1〉⊗ . . .⊗|iN 〉}di1,...iN=1 be a basis for H. The antisymmetrizer is a linear

operator A : H⊗N → ΛN (H) given by

A (|i1〉 ⊗ . . .⊗ |iN 〉) :=
1

N !

∑
π∈SN

επ |π(i1)〉 ⊗ . . .⊗ |π(iN )〉 (2.9)

where SN is the symmetric group of dimension N ! and επ is the completely antisymmetric

tensor, also called the Levi-Civita symbol, επ = επ(1),...π(p).

Based on the above definition let us also define the wedge product 2

Definition 2. The wedge product of |ψ〉 ∈ ΛNV, with dimension l and |φ〉 ∈ ΛMV with

dimension m is given by

|ψ〉 ∧ |φ〉 = A (|ψ〉 ⊗ |φ〉) (2.10)

In particular, a basis for H is given by {|i1〉 ∧ . . . ∧ |iN 〉}di=1. Such states are also called

Slater determinants. We note that the term Slater determinant appears to be more used

whenever one deals with the representation of wavefunctions in a position basis, in particular

in Chemistry [23]. We will, however, make use of the term often. An alternative to the wedge

product is to make use of second quantization [24]

a†i1 . . . a
†
iN
|0〉 = |i1〉 ∧ . . . ∧ |iN 〉 (2.11)

where a†i creates a fermion in the ith mode and |0〉 is the vacuum. Second quantization makes

it very easy to write the 1-RDM ρ(1) of a pure state |ψ〉 [2],

〈i| ρ(1) |j〉 = 〈ψ| a†iaj |ψ〉 (2.12)

Note that tr ρ(1) = N , with N the number of Fermions, which is the usual normalization in

quantum chemistry.

Consider now all possible N particles Slater determinants. Our wavefunction ca be ex-

panded as,

|ψ〉 =
∑

ci1,...,iN |i1〉 ∧ . . . ∧ |iN 〉 (2.13)

Analogous to what we have done for distinguishable particles, we can choose, for a given |ψ〉,
as single particle basis an eigenbasis of the 1-RDM. In the case of Fermions eigenvectors of the

1-RDM are often called natural orbitals, while eigenvalues are often called natural occupation

2It is common to define the wedge product as |ψ〉 ∧ |φ〉 =
(l +m)

l!m!
A (|ψ〉 ⊗ |φ〉) [22]
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numbers [23]). This basis induces a basis for the N particle Hilbert space. We call such an

expansion of |ψ〉 an expansion in natural orbitals. In this case,

ρ(1) =

d∑
i=1

λi |i〉 〈i| (2.14)

with λi the natural occupation numbers. Note that are m =
(
N
d

)
distinct Slater determinants

and that each Slater determinant maps to a point in a unit hypercube centered at the origin

(but not to all of them since there are only m Slater points against dN vertices), which we

call the Pauli hypercube. Note that the Pauli hypercube is independent of the number of

Fermions and only depends on the number of modes. Note also that the trace condition

implies that
∑

i λi = N , which defines an hyperplane which intersects the Pauli cube. The

moment polytope for the case at hand will further restrict our geometric object.

Identically to what we have done for indistinguishable particles, we impose λi ≥ λi+1,

such that the only Slater determinant mapping to a point in the positive Weyl chamber is

the ordered Slater state |1〉 ∧ |2〉 ∧ . . . ∧ |n〉, written in a basis of natural orbitals of |ψ〉.
As we have seen Pauli’s exclusion principle amounts to 0 ≤ λi ≤ 1, so we call the non-trivial

facets (those not coinciding with the boundary of the positive Weyl chamber) generalized Pauli

constraints or gPCs for short, since they strengthen Pauli’s exclusion principle [12].

We often represent spectral inequalities

D = κ0 +
d∑
i=1

κi (2.15)

by D = 〈D̂〉ψ ≤ 0, as done in [12] where

D̂ = κ01+
∑
i

κia
†
iai (2.16)

in a chosen basis of natural orbitals of |ψ〉.

2.1 Some fully characterizable settings

2.1.1 Indistinguishable particles

Bipartite systems

In the case of a bipartite system composed of parts A and B with local dimensions dA and

dB, respectively, the full characterization of the pure univariate marginal problem is trivial

due to Schmidt decomposition/ singular value decomposition.

Consider a pure state |ψ〉 ∈ H = HA⊗HB and let {|ui〉}dAi=1 and {|vi〉}dBi=1 be orthonormal
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basis for HA and HB, respectively. Then by Schmidt decomposition |ψ〉 can be written as [25]

|ψ〉 =
m∑
i=1

ci |ui〉 ⊗ |vi〉 , (2.17)

where m = min(dA, dB). Assume, without loss of generality that dB − dA = d, d > 0. Then

the 1-RDMs for our system, in the above chosen basis, are trivially

ρ
(1)
1 = diag(|c1|2, . . . |cdA |

2)

ρ
(1)
2 = diag(|c1|2, . . . |cdA |

2, 0, . . . , 0)
(2.18)

i.e. the spectra of the two 1-RDMs are identical up to some trailing zeros.

For the particular case of two qubits, dA = dB = 2. Then spec(ρA) = spec(ρB) =

(λmax, λmin).

n Qubits

Consider a system of n qubits. Let ρi = tr\i ρ and spec ρi = (λ
(i)
min, λ

(i)
max). Since λ

(i)
min +λ

(i)
max =

1 there is only one parameter describing the spectrum of each reduction. It has been proved

by Higuchi and Sudberry [6] that such reduced spectra must satisfy

λ
(i)
min ≤

∑
j 6=i

λ
(j)
min, ∀i. (2.19)

Conversely, a given spectra corresponds to a globally pure state only if it fulfills these condi-

tions.

One can restate this conditions by using instead the difference of the eigenvalues of the

1-RDMs, νi := λ
(i)
max − λ(i)

min, in which case we get

νi ≥
∑
j 6=i

νj − (n− 2), ∀i. (2.20)

Let us assume, without loss of generality that λ
(i)
min ≥ λ

(i+1)
min , i.e. we simply relabel qubits

such that the first one has the largest minimal 1-RDM eigenvalue, the second the second

largest and so on. Then the inequalities in (2.19) reduce to the the single inequality (plus

ordering),

λ
(1)
min ≤

n∑
i=2

λ
(i)
min (2.21)

Identically, if we assume µi ≥ µi+1, they reduce to the single non trivial inequality (plus

ordering)

νn ≥
∑
j 6=n

νj − (n− 2) . (2.22)
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The resulting polytope for 3 qubits, is plotted in Fig 2.3.
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Figure 2.3: Higuchi polytope for 3 qubits for λi = λmin
i . The black dot corresponds to the

local spectra of the product state |0〉 ⊗ |0〉 ⊗ |0〉.

2.1.2 Fermions

2 particles

We consider the case of two Fermions and d modes, H = Λ2(Cd) ⊂ Cd ⊗ Cd. Note that a

pure 2 Fermions state can be written as [26]

|ψ〉 =
d∑
i=1

ciu
†
iv
†
i |0〉 , (2.23)

where for d even {|vi〉 , |ui〉}d/2i=1 is an orthonormal basis for Cd and, identically, for d odd

{|vi〉 , |ui〉}(d−1)/2
i=1 ∪ {|w〉}. Let us then make the following correspondence, for d even

a†2i−1 = u†i

a†2i = v†i
(2.24)

for i = 1, . . . , d/2, while for d odd we consider

a†2i−1 = u†i

a†2i = v†i

a†d = w†

(2.25)

In this case, given the definition of 1-RDM, Eq. 2.12, and written the above basis, ρ is

diagonal. Its spectra is trivially always doubly degenerate, its eigenvalues being |ci|2 except

for potentially an unpaired eigenvalue equal to 0 whenever d is odd.
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Particle-hole duality

One fairly important result is that there is a relationship between the spectral polytopes in

ΛN (Cd) and Λd−N (Cd).

Lemma 3. Consider the Hilbert space H = ΛN (Cd) and let D(λ) define the facets of its

spectral polytope. Then the spectral polytope for H = Λd−N (Cd) is obtained from the previous

spectral polytope via the substitution λi → λd−i+1.

This lemma has been proven by Altunbulack [27]. Here we give a self contained proof of

this fact based on Hodge duality. To do so let us first define the Hodge start operator

Definition 4 (Hodge star operator). Let {|ei〉}di=1 be a basis for Cd. Then the Hodge star

operator, also known as Hodge dual, is a linear map ? : ΛN (Cd)→ Λd−N (Cd) given by

?
(
|ei1〉 ∧ . . . ∧ |eiN 〉 = εi1,...iN ;iN+1,...,id

∣∣eiN+1

〉
∧ . . . ∧ |eid〉

)
where εi1,...iN ;iN+1,...,id is the Levi-Civita symbol.

Since the dimension of both spaces is the same and the Hodge dual is injective when

restricted to a basis of ΛN (Cd), it is in fact an isomorphism. From the above, if we let a†i
be the second quantization creation operator related to the basis vector |ei〉, the Hodge star

operation can be cast into the form

?
(
a†i1 ∧ . . . ∧ a

†
iN

)
= εi1,...iN ;iN+1,...,ida

†
iN+1

∧ . . . ∧ a†id (2.26)

We define also ? 〈ψ| := (? |ψ〉)†. We are now in position to prove Lemma 3.

Proof. Let |ψ〉 ∈ H ∼= ΛN (Cd). Let {a†i |0〉}i=1 be a set of natural orbitals of |ψ〉. Obviously

|ψ〉 can be expanded in the many-particle basis constructed from this single particle basis,

|ψ〉 =
∑
i1,...iN

ci1,...iNa
†
i1
. . . a†iN |0〉 . (2.27)

Then the eigenvalues of the 1-RDM are given by, as seen before, λi =
∑

i1,...iN ,i∈{i1,...iN} |ci1,...,iN |
2.

Consider now the Hodge dual of |ψ〉,

? |ψ〉 =
∑
i1,...iN

|ci1,...,iN | ?
(
a†ii1

. . . a†iN |0〉
)

(2.28)

and let us calculate the 1-RDM for this state. ρ′ = (? 〈ψ|) a†iai (? |ψ〉). It is pretty obvious it
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is diagonal in the basis we have chosen, so we only need to consider the diagonal elements

λ′i =
∑

i1,...iN ,i 6∈{i1,...iN}

|ci1,...,iN |
2

= 1−
∑

i1,...iN ,i∈{i1,...iN}

|ci1...iN |
2 = 1− λi

(2.29)

The important thing to note now is that since the Hodge star is an isomorphism, it will map

all possible states of H into all possible states of H′ and the same with the spectral polytope.

Note also that if λi ≥ λi+1 then obviously 1−λi ≤ λi+1 such that then the spectra inequalities

of H can be transformed into those of H′ by λi → 1− λd−i+1.

Note that since the one and two fermion situations are trivial and due to the duality stated

above, the first non-trivial scenario occurs for 3 Fermions and 6 modes H = Λ3
(
C6
)
.

3 Fermions and 6 modes

The case H = Λ3
(
C6
)

is the lowest dimensional non-trivial Fermionic problem and has been

treated numerically by Dennis and Borland in 1972 [28]. Although they have failed to prove

analytically the necessity and sufficiency of the conditions, their efforts marked a step forward

in understanding the quantum marginal problem.

0

0.5

1

0 0.5 10

0.5
1

Figure 2.4: Dennis-Borland reduced polytope, along with the reduced Pauli cube. The black
point is the local spectrum of the ordered Slater point, which is (1,1,1,0,0,0), corresponding
to (0,0,0) in our reduced polytope.

The inequalities defining the moment polytope in this case are given by

λ1 + λ6 = λ2 + λ5 = λ3 + λ4 = 1

2− (λ1 + λ2 + λ4) ≥ 0
(2.30)
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Note that due to the 3 equalities, one can effectively represent the moment polytope in R3

making the Denis-Borland case the only non-trivial Fermionic case whose moment polytope

is plotable. In Fig. 2.4 we show a plot of this reduced polytope, along with a reduced Pauli

cube.



Chapter 3
One particle based simplification of a many

body wavefunction

As seen in the previous chapters the spectra of the 1-RDMs of a system of particles are subject

to a several constraints, which, in the case of Fermions, generalize Pauli’s exclusion principle.

The set of possible eigenvalues of the 1-RDMs of the system has been identified as a so-called

moment polytope. It has been mentioned in the literature [11] that states which eigenvalues

lie on the boundary of the spectral polytope exhibit a strongly simplified structure, but no

proof was given. Here, we derive this statement using only elementary methods, generalizing

(and in particular instances strengthening) the theory for the physically important case of

degenerate spectra.

3.1 Introduction

It is a long know fact that some particular forms of the 1-RDM(s) lead to a specific form

of the wavefunctions that can give rise to such 1-RDMs. As an example, let us consider a

Fermionic system with N Fermions and n modes/orbitals if the spectrum of the 1-RDM ρ(1)

is (1, ...1︸ ︷︷ ︸
n

, 0, ..., 0︸ ︷︷ ︸
n−N

) then the associated wavefunction has to be, up to a phase, |φ1〉 ⊗ . . .⊗ |φn〉

where |φi〉 is the ith eigenvector of ρ(1). For a system of N distinguishable particles, if all

1-RDMs have spectra (1, 0, . . . , 0), then the only wavefunction giving rise to such spectra

must be given by
∣∣φ1

1

〉
⊗ φN1 where

∣∣∣φji〉 is the ith eigenvector of the jth particle. Both these

examples correspond to a vertex on the corresponding spectral polytope. This may raise the

question of whether there are further simplifications or not if one lies on one of the facets of

the spectral polytope and if so, what simplifications are these. The answer turns out to be

affirmative and the simplifications for the case of non-degenerate spectra has been given by

Klyachko in [11]. However Klyachko has not given a proof for this simplification, which he

23
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calls “selection rule” 1.

Here we prove this fact and generalize it for the case of degenerate 1-RDMs. We also show

that while in general degeneracy weakens the “selection rule”, in some instances degeneracy

leads actually allows one to draw stronger conclusions than the non-degenerate case. An added

benefit of our approach is that it does not require knowing the spectral polytope globally,

which is a big plus since this polytope seems to be extremely difficult to calculate, in the

sense that there is not yet an efficient algorithm to do so (and there may never be one) [29]

(Michael Walter, personal communication, 2014).

To that effect we introduce two methods of deriving the “selection rule”. In the first

method we introduce, which we call tangent space method we begin by computing the full

tangent space at a given state |ψ〉. The tangent space which gives us the directions in which

we can, infinitesimally, change our state. By calculating the image of the tangent space under

the moment map, we readily obtain the directions in which we can move up to first order

in spectral space. Since, for a state with extremal local spectra we are not allowed, to first

order, to leave the corresponding facet of the spectral polytope, the image of the tangent

space under the moment map effectively coincides with our facet. As we prove, the spectra

of some particular basis vectors lie in the affine plane generated by our facet and these basis

vectors are the ones that are allowed to show up in the expansion of |ψ〉, effectively proving

the “selection rule”. The results obtained from this method are valid also in the case of

degenerate 1-RDMs. In the second method, which is simpler than the tangent space method,

we consider the imaginary time evolution (or mathematically speaking, the flow, hence the

name) of a state |ψ〉 generated by the operator D̂ as defined in Chapter 2. The average

value of D̂ changes due to this evolution, and as we prove it can either decrease or remain

constant. The important point that we prove, using perturbation theory, is that it that it

remains constant if and only if |ψ〉 is an eigenstate of D̂. This has consequences on the form

of |ψ〉. While this method is very elementary and allows us to prove the selection rule for a

non-degenerate case, we cannot extended it to a general degenerate case. However, given it

simplicity we were able to use it for proving a stronger statement in the non-degenerate case

for some particular situations.

3.2 Tangent space method

Let us consider a system of N particles with Hilbert space H. Our derivation works equally

well for a system of distinguishable particles or Fermions.

We shall focus solely on the pure state scenario. Such states correspond to the set P(H)

1We note that this terminology is unfortunately, not the best, as a selection rule already a precise meaning
in physics and chemistry, being a constraint on quantum transitions, which is certainly not the case here.



3.2. Tangent space method 25

of all normalized, rank-one projection operators (assumed Hermitian) on H:

P(H) =
{
|ψ〉 〈ψ|

∣∣ |ψ〉 ∈ H, 〈ψ|ψ〉 = 1
}
.

which are extremal points of the set of all states and are isomorphic to the projective Hilbert

space of H, a smooth manifold [30], which justifies our notation.

Let L(H) be the set of linear operators on H and let us consider the set of Hermitian/self-

adjoint (not necessarily local) operators if =
{
H ∈ L(H)|H = H†

}
and the set of traceless lo-

cal Hermitian operators embedded into L(H), ig =
{
h = ⊕ihi, hi ∈ L(Hi)|hi = h†i ∧ tr hi = 0

}
,

ig ⊂ if, where ⊕ denotes the Kronecker sum, A ⊕ B := A ⊗ 1 + 1 ⊗ B. In physical terms,

the set if can be thought of as the set of all possible N particle Hamiltonians while ig can

be thought of as the set of all (traceless) local 1-particle Hamiltonians acting on n parti-

cles. Alternatively, it may prove convenient to swap the word Hamiltonian for observables

in the previous sentence. Both of these sets have an associated Lie algebra structure. For

a system of n qudits with local dimensions di and defining d =
∏n
i=1 di we have f = u(d),

the Lie algebra of the unitary group U(d), and g = su(d1) ⊕ · · · ⊕ su(dn), the Lie algebra of

SU(d1)⊗ . . .⊗ SU(dn). For a system of N Fermions with single particle space of dimension

d, i.e. d orbitals/modes, the Hilbert space is ΛN (Cd) which will take to be embedded into

H =
(
Cd
)⊗N

and we have f = u(dn) and g = su(d) ⊕ . . . ⊕ su(d). Note that one reason

we choose to work with traceless operators is because su is a semisimple Lie algebra while u

is not, which makes su more “well-behaved” [31, Chapter 6]. We take as well f∗ to denote

the vector space dual to the Lie algebra f and connect them via the Hilbert-Schmidt inner

product, i.e. for 〈X,−〉 := tr [X−] ∈ f∗ for X ∈ f.

In the following discussion we take our manifold P(H) to be embedded into if∗. This will

make the following easier and cleaner.

Let us consider the linear map µ that maps Hermitian operators onto local, traceless

Hermitian operators, µ : if∗ → ig∗,

µ : H 7→
⊕
i

(
hi −

1

di
1di trH

)
(3.1)

with

hi = tr\iH (3.2)

with
⊕

represents the Kronecker sum. In the particular case where we restrict the domain

of µ to P(H) 2, µ is a moment map (cf. Appendix A). It maps pure states ρ =: |ψ〉 〈ψ| onto

their local spectra,

µ : ρ 7→
⊕
i

(
ρ

(1)
i −

1

di
1di tr ρ

)
, (3.3)

2This restriction is no longer linear since P(H) is not a linear space.
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with ρ
(1)
i = ρ(1) and di = d for Fermions. In other words, µ is just the partial trace operation,

where the reduced density matrices are still embedded into our global space of operators (up

to setting the trace to zero).

It will prove necessary to prove the following lemma regarding µ

Lemma 5. The linear map µ is a Hilbert-Schmidt projection operator, i.e. µ2 = µ, µ = µ†.

Proof. From the definition of µ it is obvious that µ2 = µ. Hence, we need only to prove

that µ is self adjoint with respect to the Hilbert-Schmidt inner product, i.e. (H,µ(K)) =

(µ(H),K), ∀H,K ∈ if, where (H,K) := tr HK is the Hilbert-Schmidt inner product. Let us

begin by expanding these operators in a product basis,

H = H i1,...,in
j1...,jn

|i1〉 〈j1| ⊗ . . .⊗ |in〉 〈jn| (3.4)

where ik = {1, . . . dk} and where we have used summation convention. Now,

(H,µ(K)) = trH i1,...,in
j1...,jn

|i1〉 〈j1| ⊗ . . .⊗ |in〉 〈jn|µ(K) (3.5)

Note that Kk = tr\k(K) = Ki1,...ik,...in
i1...jk...in

|ik〉 〈jk|. Hence we have

(H,µ(K)) =

n∑
k=1

trH i1,...,in
j1...,jn

|i1〉 〈j1| ⊗ . . .⊗Ak ⊗ . . .⊗ |in〉 〈jn| (3.6)

with

Ak =

[
K
i′1,...i

′
k,...i

′
n

i′1...j
′
k...i
′
n
− 1

di
δ
i′k
j′k

tr H

]
|ik〉

〈
jk|i′k

〉 〈
j′k
∣∣ (3.7)

So finally we get

(H,µ(K)) =
n∑
k=1

H i1,...ik...,in
i1...jk...in

[
K
i′1,...jk,...i

′
n

i′1...ik...i
′
n
− 1

di
δjkik tr H

]

=
n∑
k=1

[
H i1,...ik...,in
i1...jk...in

K
i′1,...jk,...i

′
n

i′1...ik...i
′
n
− tr H tr K

di

] (3.8)

Since this expression is invariant under H ↔ K, we have (H,µ(K)) = (µ(H),K), or µ =

µ†.

Also, for reasons that will be clarified in an instant, we will need to know the tangent

space at ρ to P(H), which is given by,

TρP(H) =
{
∂t|0 (|φ(t)〉 〈φ(t)|)

∣∣ 〈φ(t)|φ(t)〉 = 1, |φ(0)〉 = |ψ〉
}

=
{
|∂t|0φ(t)〉 〈ψ|+ |ψ〉 〈∂t|0φ(t)|

∣∣ 〈φ(t)|φ(t)〉 = 1, |φ(0)〉 = |ψ〉
} (3.9)
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Since 〈∂t|0φ(t)|ψ〉 = 0, we finally arrive at,

TρP(H) =
{
|φ〉 〈ψ|+ |ψ〉 〈φ|

∣∣ 〈φ|ψ〉 = 0
}

(3.10)

With respect to a basis containing |ψ〉 as its first element, the tangent space is

TρP(H) =

{(
0 φ†

φ 0

) ∣∣∣φ ∈ Cd−1

}
. (3.11)

Fig. 3.1 shows the geometry of our problem. Given the equation above it is not difficult to

show that the Hilbert-Schmidt projection Pψ : if∗ → TρP(H) can be written as

Pψ : H 7→ |ψ〉 〈ψ| (iH) + (iH)† |ψ〉 〈ψ| (3.12)

Let Adg : g → g g ∈ G defined by AdgX := g−1Xg,X ∈ g denote the adjoint action of

the group G on its Lie algebra g and let adX := ∂t|0 AdetX , X ∈ g denote its differential,

which for matrix Lie algebras (which is what we consider in our discussion) is simply given

by the the commutator, adX Y = [X,Y ], X, Y ∈ g. We let then, Ad∗g : g∗ → g∗, given by

Ad∗g := (Adg)
∗, denote the coadjoint action of the group G on the dual of its Lie algebra g∗.

We then have

Observation 6. For Hermitian H we have

∂t|0 AdeitH ρ = adiH ρ ∼= PψH, (3.13)

where we have identified g with its dual g∗ and hence made use of the adjoint action. 3.

(a) Pre-image of µ (b) Image of µ

Figure 3.1: Our original space and its image under µ.

Let us define igψ = {h ∈ ig| adih ρ = 0}, in a sense the group of local (albeit traceless)

symmetries of ρ, i.e. those observables h ∈ g such that [h, ρ] = 0.

3To be really precise we should have made use of the coadjoint action, since ρ ∈ g∗. We will however simply
identify g with its dual whenever necessary.
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The following lemma will be central to our discussion. It tells us that the infinitesimal

changes in the 1-RDMs are given by the annihilator of the local symmetries of ρ.

Lemma 7. It holds that

µ (TρP(H)) = ig0
ψ ⊂ ig∗ (3.14)

Proof. We begin by considering the embedding ig ↪→ if and identify our spaces with their

duals.

µ (Tρ) = range (µPψ)

= ker [(Pψµ)]⊥

= {h ∈ µ(if∗)|Pψh = 0}⊥

∼= {h ∈ ig| adih ρ = 0}0

(3.15)

where the complement is to be taken in ig∗ and where we made use of the fact that the

orthocomplement of the range of a linear transformation is the kernel of the adjoint transfor-

mation [32, Chapter II], that µ and Pψ are both projectors and the projection-flow relation,

Eq. (3.13).

Let t be a Cartan subalgebra of g, which in ig corresponds to a maximally commuting set

of local, traceless Hamiltonians, to which we refer to as maximal toral subalgebra 4. In other

words, to the diagonal matrices of ig, after an appropriate choice of basis. We then denote

this set of maximally commuting operators as it.

The following lemma will marks the difference between the case of non-degenerate 1-RDMs

and that of degenerate 1-RDMs

Lemma 8. Let ρ be a state such that µ(ρ) ∈ it∗. Then h ∈ igψ are diagonal except for the

blocks corresponding to degenerate subspaces of ρ
(1)
i . In particular, whenever all the 1-RDMs

are non degenerate, h ∈ it.

Proof. By definition, h ∈ igψ means that adih ρ = 0 this is equivalent to

Adeith ρ = ρ

Now, let A,B be two arbitrary linear operators with A = A1 ⊗ . . .⊗An a product operator.

Assume ABA−1 = B. In this case, given the definition of partial trace, we have the following

invariance

tr\iABA
−1 = Ai

(
tr\iB

)
A−1
i (3.16)

4This is true because we work only with semisimple Lie algebras here. su(d) is semisimple and its complex-
ification, sl(d,C) is semisimple as well [31] (Chapter 6), which means that the maximal toral subalgebra and
the Cartan subalgebra are actually identical
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Now, by the above, linearity and the definition of the moment map, this implies that

µ (Adeith ρ) = Adeith µ (ρ) (3.17)

which in turn, by definition, must equal µ(ρ). Hence µ(ρ) is invariant under the coadjoint

action of eith, or relaxing our notation since we are dealing with matrix Lie groups, [h, µ(ρ)] =

0. This in particular means that
[
hi, ρ

(1)
i

]
= 0.

These result implies that whenever ρ
(1)
i is non degenerate, hi is diagonal. Otherwise it

will only be block diagonal, each block having the same size as the corresponding degenerate

subspace of ρ
(1)
i . In the particular case where all 1-RDMs are non degenerate, h ∈ it.

We are now in position to make a small intermission and explain our line of thought. Note

that we can always find a basis in which the 1-RDMS are diagonal, and so they all commute.

Hence we take them to live in it. It will prove fruitful for our derivation to understand the

range of the differential of µ at ρ, but since µ is linear this is just the image of the tangent space

at ρ under the action of µ, i.e. range dρµ = µ(TρP(H)), and that is why we have previously

calculated the tangent space at ρ. We are interested in preserving our “diagonality” to first

order, i.e. we do not want to leave it. One justification for this is the following: The map

µ(ρ)∩ it 7→
(

spec ρ
(1)
1 , . . . ρ

(1)
N

)
is an isomorphism, but it is no longer so if we do not restrict to

the maximal toral subalgebra. Therefore talking about µ(ρ)∩ it or talking about the spectral

polytope is the same thing. Hence we consider the intersection µ(T|ψ〉〈ψ|P(H)) ∩ it. Then

from Eq. (3.17), if no 1-RDM is degenerate, it follows that igψ ⊂ it, i.e. the elements of gψ

are diagonal as well. It is however not necessarily so if there are degeneracies. That means

that if there are degeneracies it is not a priori obvious how to calculate the intersection of

the expression in lemma 7 with it.

Here, we make the crucial observation that the local symmetries of ρ, gψ should be used

to choose our maximal toral subalgebra, it, and consequently a local basis. In fact, let itψ be

any maximal toral subalgebra of igψ. Then the following lemma holds

Lemma 9. The set of commuting operators itψ can be extended to a maximal set of commuting

operators it of ig such that µ(|ψ〉 〈ψ|) ∈ it∗.

Proof. From lemma 8 we have that µ(|ψ〉 〈ψ|) commutes with igψ (again identifying ig with

its dual). From here it follows that {µ(|ψ〉 〈ψ|)} ∪ igψ is a set of commuting operators. One

can then choose it such that {µ(|ψ〉 〈ψ|)} ∪ igψ ⊂ it.

The following lemma is fundamental for the case of degenerate 1-RDMs,

Lemma 10. The annihilator of igψ intersected with a set of maximally commuting operators

of ig is equal to the annihilator of the set of maximally commuting operators of igψ intersected
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with the set of maximally commuting operators of ig, i.e.

ig0
ψ ∩ it = it0ψ ∩ it (3.18)

We will prove this lemma shortly. To do so let us define just a few more things.

Let t ∈ t and define the particular adjoint action adt : g → gC, adt : X 7→ [t,X], where

gC is the complexification of g then we have the following

Lemma 11. adt is a self adjoint operator with respect to the Hilbert-Schmidt inner product.

Proof.

tr
(

adt(X)†Y
)

= tr[t,X]†Y

= − tr[t,X†]Y

= trX†[t, Y ]

= trX† adt Y

(3.19)

hence we have ad†t = adt

We now note that t ∈ tψ is an endomorphism in gCψ and gC. As an Hermitian operator adt

can be diagonalized over a complex field, which explains why we consider the complexification

of g. Given that, we can then actually decompose gCψ as a vector space, in the following way

gCψ = tCψ ⊕α rψ,α (3.20)

where rψ,α are weight spaces of gCψ with respect to adt corresponding to eigenvalue α, that is

rψ,α = {g ∈ gψ | adt gψ = α(t)gψ, ∀t ∈ tψ}. (3.21)

From here it follows trivially that (since the orthocomplement of a direct sum is the intersec-

tion of orthocomplements) (
gCψ
)⊥

= tCψ ∩
⋂
α

r⊥ψ,α (3.22)

We note that t is contained in the joint 0-eigenspace of adt(g
C), t ∈ tψ and that rψ,α is an α

eigenspace and so we make the following observation

Observation 12. t ⊂ r⊥ψ,α.

We can now prove Lemma 10.
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Proof.

(
gCψ
)⊥ ∩ t =

(
tCψ
⋂
α

t

)
∩ t

= tCψ ∩ t

= tψ ∩ t

(3.23)

we also note that gCψ ∩ t = gψ and
(
gCψ

)⊥
∩ t = (gψ)⊥ ∩ t. and from here one has

ig⊥ψ ∩ it = it⊥ψ ∩ it (3.24)

Let

Hλ = {|x〉 ∈ H| ∀h ∈ it, h |x〉 = λw (h) |x〉} (3.25)

be a weight space associated with the weight λw : it→ C 5. Let also

H =
⊕
λw

Hλw (3.26)

be a decomposition of H into weight spaces. It is worthwhile to note that in this case, and

as long as there is no degeneracy, the weight spaces are all one dimensional and hence every

weight vector can be labeled by the corresponding weight |x〉 =: |λw〉.
For |ψ〉 ∈ H and the choice of a maximal toral algebra, let supp ρ be the set of weights

λw such that |ψ〉 has non-zero overlap with the associated weight spaces

supp ρ = {λw |PHwλ |ψ〉 6= 0}.

where PHλw = |λw〉 〈λw|.

Lemma 13. It holds that

µ
(
T|ψ〉〈ψ|P(H)

)
∩ it = span{µ(|λwi 〉 〈λwi |)− µ(

∣∣λwj 〉 〈λwj ∣∣) |
λwi , λ

w
j ∈ supp ρ}.

Proof. Let t ∈ it. Then t can be decomposed as t =
∑

i λ
w
i (h) |λw〉 〈λw|. On the other hand

we can write |ψ〉 =
∑

i|λwi ∈supp ρ ci |λwi 〉. From here it follows that [t, |ψ〉 〈ψ|] = 0 if and only if

5we use the superscript w to avoid confusion between weights and eigenvalues of 1-RDMs, even though
both will be shown to be related
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λwi (t) = λwj (t) for all λwi , λ
w
j ∈ supp ρ. Hence

itψ = {λwi − λwj |λwi , λwj ∈ supp ρ}⊥ ∩ it

= span{λwi − λwj |λwi , λwj ∈ supp ρ}⊥ ∩ it

where we made use of the fact that the intersection of orthocomplements is the linear span

of the orthocomplement. Taking the orthocomplement on both sides and using lemma 7 and

lemma 10 we arrive at

µ
(
T|ψ〉〈ψ|P(H)

)
∩ it = span{λwi − λwj |λwi , λwj ∈ supp ρ}.

Now, since λw(t) = 〈λw| t |λw〉 = tr |λw〉 〈λw| t, we use the natural pairing λw(−) := tr [ |λw〉 〈λw| −].

What is more, since t is local and traceless, tr [ |λw〉 〈λw| −] = tr [µ(|λw〉 〈λw|)−] and make

the identification. λw := µ[|λw〉 〈λw|]. We then get

µ
(
T|ψ〉〈ψ|P(H)

)
∩ it = span{µ(|λwi 〉 〈λwi |)− µ(

∣∣λwj 〉 〈λwj ∣∣) |
λwi , λ

w
j ∈ supp ρ}.

This important lemma tells us that the directions in spectral space in which we can move

whenever we perturb infinitesimally a state |ψ〉, are given by the linear span of the differences

of the image, under the moment map, of the weight vectors in the support of |ψ〉. As it

stands, it is valid for states which spectra lies either on the boundary or inside of the spectral

polytope. Since or objective is to prove the selection rule, valid for states with extremal local

spectra, we shall restrict our attention to states |ψ〉 such that µ(|ψ〉 〈ψ|) ∈ F , with F a facet

of the spectral polytope (as described above, talking about the spectra of the 1-RDMs, or

µ(|ψ〉 〈ψ|) is the same thing, hence we abuse notation an write µ(|ψ〉 〈ψ|) ∈ F when what we

actually mean is that the spectra of the 1-RDMs lie on a facet.) We then state, finally, the

main result of this section

Theorem 14. Let µ(ρ) ∈ F , where F is a regular facet (co-dimension 1) of the moment

polytope.

Then we have

supp ρ ⊂ aff F (3.27)

Proof of Theorem 14. If µ(|ψ〉 〈ψ|) ∈ F , then µ(|ψ〉 〈ψ|) +
[
µ(T|ψ〉〈ψ|P(H)) ∩ it

]
is an hyper-

plane contained in the affine hull of the facet F , for else we could move outside of the facet

(in state space that would imply actually leaving P(H), i.e. the set of pure states). Then by
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lemma 13 it follows that for any λwi ∈ supp |ψ〉 〈ψ|, µ(|λwi 〉 〈λwi |) must lie on the hyperplane

coinciding with the facet F .

From here it follows that if µ(|λwi 〉 〈λwi |), µ(
∣∣∣λwj 〉〈λwj ∣∣∣) ∈ aff F , κ(µ(|λwi 〉 〈λwi |)−µ(

∣∣∣λwj 〉〈λwj ∣∣∣) =

0. Applying this theorem to a facet F defined by a spectral inequality D(·) we obtain the

following physically relevant corollary

Corollary 15 (Selection rule for degenerate 1-RDMs). Let |ψ〉 be a state which spectra

saturates a spectral inequality D(·) ≤ 0. Then, expanding |ψ〉 =
∑

x cx |x〉 as in Eq. 2.8

and 2.16, where the basis |x〉 is taken to be constructed from the eigenbasis of the 1-

RDMs, there is a choice of eigenbasis (which is not unique in the degenerate sub-spaces)

such that

D̂ |~x〉 6= 0⇒ c~x = 0 (3.28)

3.3 Flow method

We give now an alternative and much shorter derivation of the selection rule based on per-

turbation theory for the non-degenerate case. We also present a strengthened result for the

degenerate case, for specific spectral inequalities.

Let H be a Hermitian operator and |ψ〉 a state vector. Let us now consider the family of

states that arise under the “imaginary time evolution” (in mathematical language, the flow)

of |ψ〉 under H:

|ψ(t)〉 :=
etH |ψ〉
‖etH |ψ〉 ‖2

. (3.29)

the one has

∂t|0 〈H〉ψ(t) = ∂t|0 tr

(
H

etH |ψ〉 〈ψ| etH†

tr etH |ψ〉 〈ψ| etH†

)
= trH2 |ψ〉 〈ψ|+ trH |ψ〉 〈ψ|H − 2

(
tr |ψ〉 〈ψ|H

)2

= 〈2H2〉ψ − 2〈H〉2ψ =: 2 Varψ(H).

(3.30)

Note that the variance is non-negative and vanishes if and only if |ψ〉 is an eigenvector

of H. Thus we conclude that the expectation value of H increases under the action of etH ,

unless we act on an eigenvector.

We can now formulate the following theorem

Theorem 16. Let |ψ〉 be a state vector whose 1-RDMs are diagonal with non-degenerate and

non-increasingly ordered eigenvalues λ, D a spectral inequality and D̂ be the diagonal operator
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associated with D as discussed in Chapter 2. Then

D(λ) = 0⇔ D̂ |ψ〉 = 0.

Proof. We prove it for Fermions. The case for distinguishable particles follows trivially by

using the appropriate definition of D̂.

Denote the ith diagonal element of the reduced density as di(t). First let us note that while

〈D̂〉ψ = D(λ), 〈D̂〉ψ(t) = κ0+
∑

i

∑
j κi,jd

(i)
j (t) (an expression valid for distinguishable particles

and fermions alike) does not equal, in principle, D(λ(t)). By first order non-degenerate

perturbation theory [33, Chapter II.2], the differential of an eigenvalue equals the differential

of the associated main diagonal element, i.e.

∂t|0λ(i)
j (t) = ∂t|0d(i)

j (t). (3.31)

It follows that

∂t|0
(
κ0 +

∑
i

∑
j

κi,jλ
(i)
j (t)

)
= ∂t|0

(
κ0 +

∑
i

∑
j

κi,jd
(i)
j (t)

)
(3.32)

= ∂t|0〈D̂〉ψ = 2 Varψ(D̂). (3.33)

Therefore, unless |ψ〉 is an eigenvector of D̂, the flow generated by D̂ will increase the value

of the inequality for small t. Thus, if |ψ〉 already attains the maximum, it must be in the

kernel of D̂.

From this theorem, we get the following important physical statement as a corollary

Corollary 17 (Non-degenerate selection rule). Let |ψ〉 be a state saturating a spectral in-

equality D. Assume also that the 1-RDMs of |ψ〉 are non degenerate. Then, expanding

|ψ〉 =
∑

x c~x |~x〉 as in Eq. 2.8 and 2.16, where the basis |~x〉 is taken to be constructed from

the eigenbasis of the 1-RDMs one has

D̂ |~x〉 6= 0⇒ c~x = 0 (3.34)

For Fermions, the above presented approach can, in some special situations be generalized

to degenerate cases. Consider a Fermionic state |ψ〉 with 1-RDM spectrum given by λ non-

increasingly ordered. For simplicity let us assume that ρ(1) has a single degenerate subspace,

V , of dimensionm with corresponding eigenvalues λl . . . λl+m−1, for fixed l. The generalization

to an arbitrary number of degenerate subspaces follows trivially from our approach. Let us

focus on a given spectral inequality D(λ) and assume that the given spectrum saturates it,

D(λ) = 0. Let Sm be the set of permutations that will act of the degenerate eigenvalues, i.e.
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A

C

B

Figure 3.2: Polytope ∆ and its reflection along the λ1 = λ2 axis Rλ1=λ2∆. Note that D2 ≤ 0
is a “valid inequality”not only for the polytope but also for the reflected one. As we will see,
point A may then admit a stronger selection rule. The same doesn’t happen with point B as
for example point C, violates inequality D1 ≤ 0.

inside of V . In some cases D(πλ′), ∀π ∈ Sm and for all non-increasingly ordered spectrum

λ′, remains a valid inequality (see Fig. 3.2), in the sense that D(πλ′) < 0. Let us make

the assumption that D(πλ′) < 0,∀π ∈ Si. We assume as well that there is a decreasingly

ordered spectrum λ (hence non-degenerate) such that D(λ) = 0, These assumption separates

the cases where our approach works and where it doesn’t. Whenever these assumptions fail,

the results form the next section apply. These assumption have implications on the form of

the normal vector κ as we will see shortly. First let us prove the following lemma

Lemma 18. Let λ ∈ Rm
+ be a vector with strictly decreasingly ordered entries. Then maxπ∈Sm κ·

πλ = κ↓ · λ. Moreover this solution is unique (up to reordering of degenerate components of

κ).

Proof. Let us begin by proving the casem = 2. In this case there are only two possibilities: the

maximum is attained either for κmaxλ1 +κminλ2 or for κminλ1 +κmaxλ2. Since by assumption

(κmax − κmin)(λ1 − λ2) ≥ 0, it follows that κ · λ ≤ κ↓ · λ. For an arbitrary m we can apply

the above procedure iteratively. Consider κ1λ1 + κ2λ2 + . . .. This sum can be be increased

by swapping κ1 and κ↓1, identically to what we have previously done. It can then be again

increased by swapping κ2 and κ↓2, and so on. This procedure achieves the maximum possible

value for the inner product and from here it follows that κi ≥ κi+1. The uniqueness follows

trivially (up to re-ordering of potentially degenerate components of κ).

We can now see what implications our previous assumptions have on the form of κ,

Lemma 19. Let Sm be the symmetric group of order m, λ an arbitrary non-increasingly

ordered Fermionic 1-RDM spectrum and D(λ) = κ0 + κ · λ ≤ 0 a spectral inequality. Let

πλ denote the action of π ∈ Sm on m contiguous coordinates of λ, λl, · · ·λl+m−1 for fixed l.
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Assume as well that there is a decreasingly (hence non-degenerate) ordered spectrum λ′ such

that D(λ) = 0. Then if D(πλ) < 0,∀π ∈ Sm it follows that ki ≥ ki+1, i = l, . . . l +m− 1.

Proof. Note that from our definition of spectral inequality, there is a spectrum λ′ that sat-

urates our spectral inequality, D(λ′) = 0, where as always, we assume the spectrum to be

non-increasingly ordered. Let V = {l, . . . , l +m− 1}. Then it holds that, for some π ∈ Sm

0 = D(λ′) = κ0 +
d∑
i=1

κiλ
′
i

≤ κ0 +
∑
i 6∈V

κiλ
′
i +
∑
i∈V

κ↓iλ
′
i = D(πλ′) ≤ 0,

(3.35)

where κ↓ denotes a reordering, in non-increasing order, of those components of κ which index

is contained in V and where we have used the fact that the maximum of κ · λ is obtained

whenever the components of κ are non-increasingly ordered (Lemma 18). Hence, it follows

that κi ≥ κi+1, i = l, . . . l +m− 1.

Theorem 20. Let |ψ〉 be a Fermionic state vector whose 1-RDMs are diagonal with non-

increasingly ordered eigenvalues, λ and degenerate eigenspaces Vi of dimension mi, D(·) a

spectral inequality which remains valid after disjoint permutation inside the subspaces Vi,

and D̂ any of the diagonal operator associated with D as discussed in Chapter 2. Assume

as well that the spectrum λ saturates D, D(λ) = 0, and that there’s a decreasingly (hence

non-degenerate) spectrum λ′ such that D(λ′) = 0 Then,

D̂ |ψ〉 = 0,∀D̂ (3.36)

Proof. Let to first order, di(t) = di + td̄i denote the perturbed diagonal element of the

perturbed 1-RDM and λ(t) = λi + tλ̄ the perturbed eigenvalues, obtained by application of

Eq. 3.29. Then by Schur-Horn’s theorem, applied to each degenerate space, we have

d̄Vi ≺ λ̄Vi (3.37)

where ~xV denote the restriction of the vector ~x to the subspace V . It means, geometrically,

that d̄Vi is contained in the convex hull of the points obtained by permuting all coordinates of

λ̄. A well known fact in linear programming is that the maximum of an objective function is

obtained at a vertex of the feasible region. Combining this with what was just stated above

we have that κVi · d̄i ≤ maxπ∈Smi κVi · πλ̄Vi . But from Lemma 19 we have that κi ≥ κi+1,

moreover, we know that maxπ∈Smi κVi · π
~λVi = κ↓Vi · λ̄Vi (Lemma 18) and hence we have

κVi · d̄Vi ≤ κVi · λ̄Vi (3.38)
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Note that for the non degenerate subspaces we have ∂t|0λi(t) = ∂t|0di(t). Then we have, to

first order

D(λ(t)) = D(λ) + t∂t|0D(λ̄) ≥ D(λ) + t
∑
i

d̄i

= D(λ) + 2tVar(D̂ψ)

(3.39)

Since, by assumption D(λ) = 0, and D(λ(t)) ≤ 0, we have Var(D̂ψ) = 0 and hence |ψ〉 must

be in the kernel of D̂.

From this theorem we get the following physical statement as a corollary

Corollary 21 (Fermionic strong degenerate selection rule). Let |ψ〉 be a Fermionic state

saturating a spectral inequality D(·) ≤ 0 for which there is a decreasingly (hence non-

degenerate) spectrum λ′ such that D(λ′) = 0. Assume also that the 1-RDM of |ψ〉 has

degenerate subspaces, Vi, of dimensions mi. Let Smi denote the symmetric group of order

mi which will act exclusively on the ith degenerate subspace and let D(λ) be a spectral

inequality which remains valid under permutations inside Vi, D(π1×π2× . . . λ) < 0,∀πi ∈
Smi. Then, expanding |ψ〉 =

∑
x cx |~x〉 as in Eq. 2.16, where the basis |x〉 is taken to be

constructed from an eigenbasis of the 1-RDM one has not only

D̂ |~x〉 6= 0⇒ c~x = 0,∀ D̂ (3.40)

but also that only Slater determinants for which either all mi natural orbitals for the

subspace Vi show up or none are allowed to have a non-zero coefficient in the expansion

above.

3.4 Some examples

For simplicity let us for a moment focus on the three qubit scenario, H =
(
C2
)⊗3

. Let

spec ρ(i) = (λ
(i)
1 , λ

(i)
2 ). From now on we make the identification λ(i) = λ

(i)
2 For states with

ordered local spectra, this is given by spec ρ(i) = (λ
(i)
max, λ

(i)
min). In this case the spectral

inequalities are given by Eq. 2.19. Such polytope can be embedded into R3. In this specific

case the Lie algebra g is su(2) ⊕ su(2) ⊕ su(2). The maximal toral subalgebra of g, t is

generated by iσz ⊕ iσz ⊕ iσz = iσz ⊗ 1⊗ 1+ 1⊗ iσz ⊗ 1+ 1⊗ 1⊗ 1⊗ σz. Then the weight

vectors of Eq. 3.25 are given by |λω〉 = |x1, x2, x3〉 , xi = 0, 1, i.e. product states, and their

image under the moment map by λ = (x1, x2, x3), xi = 0, 1.

Let us focus on one of the non-trivial facets of the polytope, i.e. one such that the 1-RDMs
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are non degenerate. Let us take the facet with affine hull given by

λ(2) − λ(1) − λ(3) = 0. (3.41)

If we choose a state ρ = |ψ〉 〈ψ| such that µ(ρ) ∈ F but its 1-RDMs are non-degenerate,

by Corollary 15 the support of ρ is contained in {(0, 0, 0), (0, 1, 1), (1, 1, 0)}. In such case the

structure of |ψ〉 is given by

|ψ〉 = c0,0,0 |0, 0, 0〉+ c0,1,1 |0, 1, 1〉+ c1,1,0 |1, 1, 0〉 (3.42)

in the basis of natural orbitals of ρ
(1)
i .

Let us now choose a state ρ such that µ(ρ) lies in the intersection between the non-trivial

boundary and the positive Weyl chamber (which means that at least one of the 1-RDMS is

degenerate), take for example a state whose 1-RDMs are given by

ρ1 = ρ3 =

(
3/4 0

0 1/4

)

ρ2 =

(
1/2 0

0 1/2

) (3.43)

Expanding our state as

|ψ〉 =
∑

i1,i2,i3=0,1

ci1,i2,i3 |i1, i2, i3〉 (3.44)

where, as before, |ij〉 is an eigenvector of the jth 1-RDM, it is easy to verify, that for this

specific spectra a valid pre-image of the moment map is given by,

c0,0,0 = −
√

3

2
√

2

c1,1,0 = c0,1,1 =

√
3

4

c1,0,0 = c0,0,1 =
1

4

c0,1,0 =

√
2

4

c1,0,1 = c1,1,1 = 0

(3.45)

which appears to have support on 6 weights, instead of the 3 we would expect when lying on

the facet and inside of the positive Weyl chamber (not on the boundary). However, performing
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the transformation

−
√

3

2
|0〉+

1

2
|1〉 → |0〉

1

2
|0〉+

√
3

2
|1〉 → |1〉

(3.46)

on the second qubit, we can bring |ψ〉 into the form

c0,0,0 =
1√
2

c0,1,1 =
1

2

c1,1,0 =
1

2

(3.47)

Let us see a similar example for Fermions. Consider the Dennis-Borland scenario H =

Λ3
(
C6
)
. In this case the spectral polytope is given by

λi + λ7−i = 1

D(λ) := λ1 + λ2 + λ4 − 2 ≤ 0
(3.48)

plus ordering λi ≥ λi+1. Consider now the state

|ψ〉 =
[
αc†1c

†
4c
†
5 +

√
|α|2 + |β|2c†1c

†
2c
†
3 + βc†2c

†
4c
†
6+

i
(
αc†1c

†
3c
†
5 +

√
|α|2 + |β|2c†1c

†
2c
†
4 + βc†2c

†
3c
†
6

)]
|0〉

(3.49)

with |α|2 > |β|2, written in an eigenbasis of its 1-RDM (natural orbitals). In this case the

spectrum of the 1-RDM is given by

λ = {(2|α|2 + |β|2, |α|2 + 2|β|2, |α|2 + |β|2, |α|2 + |β|2, |α|2, |β|2}). (3.50)

This state lies the intersection of the non-trivial facet, since we have D(λ) = 0, with the

positive Weyl chamber, since we have λ3 = λ4.

The support of this state is given by 6 Slater determinants and not the 3 we would expect

for the non-degenerate case. However, if we rotate the single particle basis according to

1√
2

(
c†3 + ic†4

)
→ c†3

1√
2

(
c†3 − ic†4

)
→ c†4

(3.51)

we end up with

|ψ〉 =
[
αc†1c

†
4c
†
5 +

√
|α|2 + |β|2c†1c

†
2c
†
3 + βc†2c

†
4c
†
6

]
|0〉 (3.52)
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which agrees with Corollary 15: whenever there is degeneracy of the 1-RDM, there is always

a basis in which the selection rule is valid.

We finally provide an example of the application of Corollary 21, the Fermionic strong

selection rule. Let us consider again the Dennis-Borland scenario and the spectrum λ =

(1, 2
3 ,

2
3 ,

1
3 ,

1
3 , 0). This spectrum saturates Eq. (3.48). Note that in this case, κ4 ≥ κ5, plus

we can find a valid strictly decreasing spectrum that saturates our inequality, e.g. ~λ′ =

(0.9, 0.8, 0.7, 0.3, 0.2, 0.1). Hence we expect that the results from Corollary 21 apply. In this

case the state |ψ〉 is supported by only eight Slater determinants (see e.g. [34]) which due

to λ6 = 0 reduces to those four Slater determinants which contain the natural orbital |1〉,
i.e. c†1c

†
2c
†
3|0〉, c

†
1c
†
2c
†
4|0〉, c

†
1c
†
3c
†
5|0〉 and c†1c

†
4c
†
5|0〉. Using the geometric picture for Fermionic

spectra λ which was explained and used in detail in [35] and the fact that the corresponding

1-RDM is diagonal with respect to{|i〉}6i=1 it is an elementary exercise to show that the most

general form for |ψ〉 is then given by

|ψ〉 =
1√
3

[√
2c†1c

†
2c
†
3 + eiϕc†1c

†
4c
†
5

]
|0〉 (3.53)

with some relative phase ϕ. Indeed, this expansion agree with Corollary 21 since both Slater

determinants that show up do contain either both degenerate orbitals |4〉, |5〉 or none of them.

3.5 Flowing in a given direction

While calculating µ(ρ) is a trivial endeavor, calculating an inverse for it µ(ρ)−1 is not (not

to mention it is not unique), and it is the entire difficulty of the pure univariate quantum

marginal problem. We present here a lemma that allows us from an arbitrary state |ψ〉 with

spectra λ to flow, up to first order, in any direction, say until we arrive at a spectra λ′ with

pre-image ρ′. This not only allows us to find a valid solution to µ(ρ′)−1 but also to find

whether or not λ is “far-away” from the facets of the spectral polytope. This will be made

precise in Chapter 4 but we present here our lemma since we feel like its presentation agrees

more with the spirit of this chapter.

Lemma 22. Let

X := (µPψ)+,

where the + denotes the Moore-Penrose pseudo-inverse. Then for every δ ∈ rangeµ,

∂t|0 µ(e−itXδψ) = δ.

Proof. We begin by noting that X = X†, since the operation of conjugation and transposition
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commutes with the Moore-Penrose inverse [36, Corollary (4.8.5.3)]. Then we can write

∂t|0 µ(e−itXδψ) = ∂t|0 µ(e−itX†δψ)

= µ
(

(iX)†δ |ψ〉 〈ψ|+ |ψ〉 〈ψ| iδ†X
)

Comparing with equation 3.12, one gets

µ
(

(iX)†δ |ψ〉 〈ψ|+ |ψ〉 〈ψ| iδ†X
)

= µPψ (µPψ)+ δ

= δ

where we have used the fact that δ = δ† since the range of µ is the set of local Hermitian

operators.

3.6 Conclusions

The general intractability of N particle systems means that any useful information one can

get locally is prized. Several works have demonstrated that local information alone can be

very useful in characterizing different scenarios. Here we have given a simple proof of the

already known fact that the extremality of the spectra of the 1-RDMs significantly reduces

the family of pure states that give rise to such spectra. We have also presented a proof of this

very simplification in the case of degenerate 1-RDMs and shown that in some particular cases

one can draw stronger conclusions than in the non-degenerate case something that, to the

best of our knowledge has never been addressed before. This paves the way for simplifying

calculations of ground states in physics and chemistry, something we will address in the

following chapter.
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Chapter 4
Pure univariate marginals and ground states

in quantum chemistry

Quantum chemistry concerns itself with the calculating of physical quantities of interest such

as energy, polarization, etc., for small quantum systems, usually molecules. Due to the fact

that an analytical solution of the Schrödinger equation is only possible for the Hydrogen atom,

this leaves us with little choice but to resort to numerical calculations in order to compute

these physical quantities of interest for other atoms and molecules. Such calculations usually

imply choosing a finite set of basis functions. To obtain good results, a very large basis

set might need to be used, which is computationally demanding. In this chapter we probe

whether the ground-state wavefunctions of small atomic systems have an extremal spectra

of its 1-RDMs. If such fact would prove true, we could then greatly simplify our numerical

calculations, for according to the results of the previous chapter only a small number of

coefficients of the expansion of the wavefunction in natural orbitals would be non-zero.

4.1 N-representability

In the quantum chemistry community the Fermionic quantum marginal problem is usually

known as the N-representability problem. Let us begin by considering an atomic system

composed of N electrons. In this case our Hilbert space H = HL ⊗HS where HL = L2(R3),

the space of square integrable functions on R3 is the orbital Hilbert space and HS = C2 is the

spin Hilbert space. Since it is numerically impossible to consider an infinitely large Hilbert

space, one considers the truncated Hilbert space H = ΛN
(
Cd
)

of N electrons and d orbitals
1 Very often one is interested in the electronic properties of the ground state of a given atom

or molecule. In order to calculate these properties one usually makes use of the so called

1These are usually not just spatial orbitals, but rather spin-orbitals, containing the spatial and spin degrees
of freedom.

43
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electronic Hamiltonian which is to be defined down below.

As in chapter 1, the density matrix for this Hamiltonian is given by ρ = |ψ〉 〈ψ| and the

1-RDM by

ρ(1) =
∑
i,j

〈ψ| a†iaj |ψ〉 a
†
i |0〉 〈0| aj (4.1)

where |0〉 is the vacuum and a†i , ai creation and annihilation operators respectively of a fermion

in mode i. We take {a†i |0〉}di=1 to be a basis for the single particle Hilbert space, which induces

a basis for the N-particles Hilbert space in the usual way. We consider as well a very special

basis: a basis of eigenvector of ρ(1) which we denote by {b†i |0〉}

ρ(1)b†i |0〉 = λib
†
i |0〉 (4.2)

Such states are called in quantum chemistry natural orbitals (with respect to state ρ) and

the eigenvalues of ρ(1), λi natural occupation numbers. One of the reasons such concepts are

used in quantum chemistry is because the basis of natural orbitals tends to give very good

convergence for some algorithms in quantum chemistry [23, 37]. We use such concepts here

because they make the following discussion easier. Note that 0 ≤ λi ≤ 1. Such restriction

is simply a restatement of the Pauli’s exclusion principle: each mode can have at most one

electron.

It must be stated that chemists very often use simply the result from Pauli’s exclusion

principle to calculate electronic properties of atoms and molecules, i.e. the Hartree-Fock

approximation. We expect that a knowledge of generalized Pauli constraints will allow us to

improve the results from a simple Hartree Fock calculation, without having to consider the

full Hilbert space, which would be unfeasible.

4.2 The electronic Hamiltonian

We let lower case indices refer to electrons while upper case indices to nuclei. Let MI denote

the mass of the Ith nuclei in units of the electron mass and ZI its charge. Let ri,j denote

the distance between the ith and jth electrons, ri,I the distance between the ith electron and

the Ith nuclei, and RI,J the distance between the Ith and Jth nuclei. The general Coulomb

non-relativistic Hamiltonian, written in position basis, for a system consisting of N electrons

and M nuclei is (see Fig. 4.1),

H =−
N∑
i=1

1

2
∇2
i −

M∑
I=1

1

2MI
∇2
I −

N∑
i=1

M∑
I=1

ZI
ri,I

+
1

2

N∑
i,j=1

1

ri,j
+

1

2

M∑
I,J=1

ZIZJ
RI,J

(4.3)
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Figure 4.1: Diagram showing the coordinates used. Electrons are depicted as small, yellow
circles while nuclei are depicted as large red circles.

Let us now consider the Born-Oppenheimer approximation (for more information check [23],

p. 43). In this approximation one considers the fast moving electrons to be moving in a

field of static ions. This approximation factorizes the total Hamiltonian into a nuclear an an

electronic Hamiltonian. We will only be concerned with the electronic part. The electronic

Hamiltonian is given by,

He = T + C (4.4)

where T contains one electron terms and C the two electron Coulomb interaction

T = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
I=1

ZI
ri,I

V =
1

2

N∑
i,j=1

1

ri,j

(4.5)

A bit on notation. We let |ψ〉 = |φ〉 ⊗ |σ〉 where |φ〉 is an orbital wavefunction and

|σ〉 = |↑〉 , |↓〉 denotes the spin. Then we call |ψ〉 a spin-orbital wavefunction. There are

several methods for (approximately) diagonalizing the electronic Hamiltonian. Some of these

methods such as coupled cluster [23] are non variational, and as such we don’t consider them

here. The fact that they are non-variational means that the obtained grounds state may in

fact be lower than the real one and the obtained spectra of the 1-RDM may have nothing to

do with the physical one. By using a variational method we expect that by increasing the

basis size, for example, we can increase convergence and get closer to the real wavefunction.

Probably the easiest method is the Hartree-Fock method/approximation. The Hartree Fock

approximation is a variational problem which consists in minimizing the expected value of

the electronic Hamiltonian over a set of Slater determinants (hence the approximation). The
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...
...

Figure 4.2: Electron levels

ground state energy of the electronic Hamiltonian is given by,

EGS = inf {〈Ψ|H |Ψ〉 | |Ψ〉 ∈ H, ‖ |Ψ〉 ‖ = 1} (4.6)

where

H = ΛN
(
L2(R3)⊗C2

)
(4.7)

with L2(R3) the square integrable functions in R3, is the full Hilbert space for our problem.

On the other hand, the Hartree-Fock energy is given by

EHF := inf {〈Ψ|H |Ψ〉 | |Ψ〉 ∈ SDN , ‖ |Ψ〉 ‖ = 1} (4.8)

where SDN is the set of Slater determinants, SDN ⊆ H. Note that in this case, the ground

state wavefunction obtained will be a single Slater determinant, |ψHF 〉 = |ψ1〉∧ . . .∧ |ψN 〉. In

this case, the total energy E equals the sum of the energies for each electron plus exchange

interactions. By optimizing over all spin-orbitals one can get a set of spin-orbitals with

increasing energy, |χ1〉 , |χ2〉 . . .. The Hartree Fock ground state is then |ψ〉 = |χ1〉∧ . . .∧|χN 〉.
We then say that orbitals 1 through N are occupied and this can be represented as in Fig. 4.2

which are the usual diagrams one encounters in chemistry.

4.3 Configuration Interaction

The configuration interaction method (CI), which is a post-Hartree Fock method, mean-

ing that it can be used after one has obtained optimized spin-orbitals using the Hartree

Fock method, takes into consideration electron electron interactions [23]. Consider a system

of N Fermions and let us assume that we have found the optimized Hartree-Fock orbitals

{|χ1〉 , |χ2〉 . . .} with corresponding energies {ε1, . . . ε2 . . .}, εi ≤ εi+1. In this case the Hartree-

Fock ground state is given by |ΨHF 〉 = |ψ1〉∧ . . .∧|ψN 〉. Then a basis for H is given by consid-

ering the set of N particle states consisting of the the Hartree-Fock ground state, plus single

excitations, obtained by exchanging one of the orbitals comprising the HF ground state by

another one, double excitations, and so on. That is {|ΨHF〉 , a†iaj |ΨHF〉 , a†ia
†
jalak |ΨHF〉 , . . .}.

Whenever one considers only single excitations, and diagonalizes the electronic Hamiltonian
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in this space, this is know as CI-S. If one considers instead single and double excitations

this is known as CI-SD. Finally whenever one considers all possible excitations this is known

as full-CI. In theory, diagonalizing the electronic Hamiltonian using full-CI give us an exact

result. In practice, however, one must work with a truncated basis and full-CI gives us an

exact result only up to truncation.

4.4 Spectral truncation

The concept of spectral truncation has been first mentioned and used by Klyachko [11] in the

analysis of whether a particular ground state of Lithium has or not an extremal value of the

eigenvalues of its 1RDM. This has been made precise by Schilling et al. in [12, 34]. The idea

is the following:

Lemma 23 (Schilling et al. [12]). Consider a state |ψ〉 ∈ ΛN
(
H(1)
d

)
, where H(1)

d is the single

particle Hilbert space, with local spectrum given by λ = (λ1, . . . , λd). Let now ΛN
′
(
H(1)
d′

)
with

N < N ′, d < d′ be another Hilbert space. Then there exist states |φ〉 ∈ Λn
′
(
H(1)
d′

)
with N ′ =

N+δN, d′ = d+δN+l, δN , l ≥ 0 with local spectrum given by λ′ = (1, . . . , 1︸ ︷︷ ︸
δN

, λ1, . . . λd, 0 . . . , 0︸ ︷︷ ︸
l

).

The importance of this idea steams from the fact that since it is terribly difficult to

generate the inequalities defining the spectral polytope for high-dimensional settings [29]

(Michael Walter, personal communication, 2014), one may need to resort to lower dimensional

settings, where such inequalities are available. It is also important to know the amount of

error one makes when using truncation. This is made precise by the following lemma

Lemma 24 (Schilling et al. [12]). Consider two many-body Fermionic Hilbert spaces, ΛN
(
H

(1)
d

)
and ΛN

′
(
H

(1)
d′

)
with N ′ = N + δN, d′ = d+ δN + l, δN , l ≥ 0. Every generalized Pauli con-

straint D′(·) ≤ 0 corresponding to ΛN
′
(
H

(1)
d′

)
relevant for the pinning analysis is given by

D′(λ′) = D(λtr) +O (λd′+1−l) +O (1− λδN )

where D(·) is a generalized Pauli constraint corresponding to ΛN
′
(
H

(1)
d′

)
and λ(tr) := (λδN+1, . . . λd′−l)

a truncated spectrum.

For a good reference on the concept of spectral truncation, as well as examples of its

usage, we refer the reader to [34].

4.5 Basis functions

In order to use full-CI and calculate numerically the ground state of the electronic Hamiltonian

one needs to introduce a truncated basis for the problem. A great computation effort comes
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from calculating the 2-particles integrals coming from Eq. (4.5). These can be simplified by

considering certain types of basis functions. We now review some of the common types of

basis functions used in quantum chemistry.

4.5.1 Common types of basis functions

Let r := xex + yey + zez, r := ‖r‖ =
√
x2 + y2 + z2. Then we can define the following

functions used to model atomic orbitals in quantum chemistry.

Definition 25. In quantum chemistry a Slater type orbital (STO) is a function given by

s(r, θ, φ) := Arn−1e−ζrYl,m(θ, φ) (4.9)

where A is a normalization constant, n the principal quantum number of the orbital, ζ

the orbital exponent and r, θ, ω the spherical coordinates of the electron with respect to the

nucleus. These basis functions have the advantage that they can describe wavefunctions with

a cusp at the nucleus, as for example the 1s orbital of Hydrogen [23]. However, the calculation

of Coulomb integrals of molecules is not so straightforward when one uses STOs. Therefore,

Gaussian basis functions are used instead:

Definition 26. In quantum chemistry, a Cartesian primitive Gaussian basis functions (PGBF)

also called a Cartesian Gaussian type orbital (GTO) is a function given by

gν(r, θ, ψ, ζ) := A(x− x0)k(y − y0)m(z − z0)ne−ζ(r−r0)2 (4.10)

where k+m+n = l, the orbital angular momentum number of the orbital(e.g. l = 0 for an S

type orbital), while r0 is the center of the Gaussian and A is simply a normalization constant

so that ‖g‖ = 1. ν = (k,m, n).

Definition 27. A Spherical PGBF is of the form

gν(r, θ, φ, ζ) := AYl,m(θ, φ)(r − r0)le−ζ(r−r0)2 (4.11)

where Yl,m are the spherical harmonics, l is the orbital quantum number and m = −l, . . . , l is

the magnetic quantum number. ν = (l,m).

From the above one can define

Definition 28. A contracted Gaussian basis function (CGBF) is a linear combination (con-

traction) of PGBF. It is given by,

Gν(r − r0) :=
∑
i

cigν(r, θ, φ, ζi) (4.12)

where the ci are called contraction coefficients and gν are PGBFs.
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A set of these functions is usually used to provide a basis for the orbital subspace of our

problem. CGBF are often used in order to simplify the calculation of the 1 and 2-particle

integrals even though they fail to have a cusp at the nucleus. One sacrifices this property in

order to simplify the calculations of the integrals and hence be able to use larger basis sets.

These are the type of basis functions we have used in the calculations done in this chapter.

4.6 Algorithm for atomic full-CI

We now give a brief account of the full-CI algorithm we have used to calculate the spectra of

the 1-RDMs. Our objective is to probe whether the ground state of atomic systems has an

1-RDM with extremal spectrum.

1. Choose a basis for the single particle Hilbert space

2. Calculate the kinetic and Coulomb integrals for the basis functions

3. Orthogonalize the basis

4. Calculate the Hamiltonian matrix in the orthonormalized basis using the rules described

in [23] and diagonalize it to obtain the exact ground state and ground state energy in

the truncated subspace

5. Calculate the 1-RDM and finally diagonalize it.

We will now describe the algorithm in more detail. Let us consider a system ofN Fermions.

1 - Choosing a basis

Choosing a basis is an important step when considering full-CI, for it is basically the only

approximation that one makes when solving the electronic Hamiltonian. One can use one

of several references and databases containing basis functions optimized for a given atomic

element. One example of such database is [38]. Let us consider a single particle orbital basis

{φi}Ki=i of size K. Then the basis for the single particle space is given by {|ψi〉}2Ki=i where

|ψk〉 = |φi〉 ⊗ |σj〉 with {|σj〉}2j=1 a spin basis.

2 - Kinetic and Coulomb integrals calculations

After choosing the basis one should calculate the 1-particle and 2-particle integrals for the

basis functions. Kinetic and Coulomb integrals have some symmetries that can be explored

in order to avoid the calculation of repeated integrals. Also, one of the facts to keep in mind

is that orbital basis functions used in quantum chemistry tend to be real (and here we assume

so), which also simplifies our calculations.
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Consider a single particle basis of dimension K For the one particle integrals we have

〈i|h |j〉 = 〈j|h |i〉 . (4.13)

where h represents the single-particle interaction for one electron, i.e.,

〈i|h |j〉 =

ˆ
d ~x1χi(~x1)

(
−1

2
∇2

1 −
M∑
I=1

ZI
r1,I

)
χj(~x1). (4.14)

Then, instead of calculating all matrix elements, one needs only to the matrix elements for

i ≤ j. That means that instead of having to calculate K2 integrals, one need only to calculate
K(K + 1)

2
integrals.

The two particle integrals

(〈χi| ⊗ 〈χj |) r−1
12 (|χk〉 ⊗ |χl〉) =

ˆ
dx1 dx2χi(x1)χj(x2)r−1

12 χk(x1)χl(x2) (4.15)

are invariant under the permutations:

i↔ j

k ↔ l

(i, j)↔ (k, l)

(4.16)

i.e., 23 = 8 identical expressions, so one needs only to calculate the matrix elements for

i ≤ j, k ≤ l, i ≤ k, j ≤ l, which reduces the number of integrals from K4 to K(K + 1)(K(K +

1)+2)/8. Things can be even further simplified for a lot of these integrals are necessarily zero

(see [23] for more details). After all these simplifications it remains to calculate the non-zero

integrals. The precise way of calculating these integrals depends on the form of the chosen

basis functions, and several packages available in the literature for the their calculation. In

our case we have decided to use PyQuante [39], which uses Gaussian basis functions, for its

simplicity

3 - Basis orthogonalization

Since the single particle orbital basis is, in general, not orthonormal, one should properly

orthonormalize this basis. Let us assume that it is normalized but not orthogonal. Then

its Gram matrix will be given by Gi,j = 〈ψi|ψj〉 and Gi,i = 1. Obviously, trG = K. Via

knowledge of this Gram matrix, one can orthogonalize directly the Kinetic and Coulomb

operators by using the following result

Theorem 29. Let {|χi〉}ni=1 denote an orthonormal basis of a vector space V obtained by the

Gram-Schmidt procedure on a non-orthonormal basis {|σ〉}ni=1 of V. Let A be an operator in
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V⊗p. Then the matrix representation of A in the orthonormal basis A(χ) is related to that in

the non-orthonormal basis A(σ) by,

A(χ) = R⊗pA(σ)RT
⊗p

(4.17)

where R = L−1 with L the Cholesky decomposition [40] of the Gram matrix of the non-

orthonormal basis.

Proof. Let {|χ〉ni=1} and {|σ〉}ni=1 denote an orthonormal and a non-orthonormal basis, re-

spectively, of a vector space V.

Also, let

Gi,j = 〈σi|σj〉 (4.18)

denote the Gram matrix of the non-orthonormal basis 1.

Let L be the invertible mapping from the orthogonal basis to the non-orthogonal basis,

|σi〉 = Lij |χj〉 (4.19)

where L is a lower diagonal matrix. Moreover, we have we have G = LL†. In fact, since G is

positive definite and L is a lower diagonal matrix, this is just the Cholesky decomposition of G,

which in this case, is unique. Consider an arbitrary linear operator A in V. Then the matrix

elements of A in the non-orthonormal basis, A
(σ)
i,j are related to those in the orthonormal basis

A
(χ)
i,j by

A(σ) = L−1A(χ)(L−1)T (4.20)

The case for higher order tensor follows trivially.

Hence one can orthonormalize the Kinetic and Coulomb tensors by doing,

T ′ = RTRT (4.21)

and

C ′ = (R⊗R)Cij;kl
(
RT ⊗RT

)
(4.22)

where R =
(
Cholesky(G)−1

)
and in this case T ′ and C ′ denote the matrix representation of

the kinetic and Coulomb operators in the original non-orthonormal basis.

4 - Hamiltonian matrix construction and diagonalization

Now that we have orthonormalized our single particle basis, we can proceed to calculate the

full Hamiltonian of the system. Note that a Slater basis constructed from these orthonormal

single particle basis functions provide an orthonormal basis for our N particle system of

1In Physics it is customary to call this matrix the overlap matrix.
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Element Used basis Calculated energy (Ha) Literature (Ha) |error order of magnitude|
Helium 6-31++G** - 2.887 36 - 2.903 72 [41] 10−2

Lithium 6-31++G** - 7.431 88 - 7.478 06 [42] 10−2

Beryllium 6-31++G** -14.616 63 -14.667 35 [43] 10−1

Table 4.1: Calculated energies using full-CI and Gaussian basis functions for several atoms
compared against some of the best values in the literature, calculated using different methods.

dimension
(

2K
N

)
. Using the rules in [23] for calculating matrix elements of an operator in an

orthonormal Slater basis, its very easy to construct our symmetric Hamiltonian matrix. Note

that since the majority of our integrals will be zero, the Hamiltonian matrix is expected to

be sparse.

All that remains of the Hamiltonian problem is to obtain its lowest eigenvalue and eigen-

vector using a suitable method like the Lanczos algorithm (which is implemented, for example,

in the ARPACK package).

5 - Calculation of the 1-RDM

One should now calculate the reduced density matrix. One way of achieving this is by working

with second quantization. In this case, one can use Eq. (2.12) to calculate the matrix elements

of the 1-RDM. Given our, now orthonormal, orbitals {χi}Ki=1 let {Sk} denote the N particle

basis constructed by forming all possible anti-symmetric products of our orbitals. Let a†i be

the second quantization creation operator that creates an electron in the ith orbital, i.e.

a†i |0〉 = |χi〉 (4.23)

Note that the ground state is already expanded in the N particle basis above, |ΨGS〉 =∑L
i=1 ci |Si〉, such that calculating the density matrix elements is now easy. In fact, aia

†
j |Sk〉 =

sk |Sl〉 where si = ±1. All that remains now is to calculate inner products, which are trivial

in the orthonormal N particle basis.

Finally one only needs to suitably diagonalize the density matrix, taking into that it is

symmetric.

4.7 Results

First let us note that since Helium only has two electrons, the spectral polytope is in this case

trivial (cf. chapter 1 ). Hence we are interested in studying from the Lithium atom upwards.

Using the method above, we have calculated the energy (see table 4.1) and the 1-RDM (see

appendix D) for Helium (for benchmark purposes), Lithium and Beryllium using well known

basis functions (our program can be obtained at https://github.com/aalopes/atomicCI ). As

can be seen the calculated energy is still very far from some of the best results in the literature

https://github.com/aalopes/atomicCI
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(obtained through different methods) and hence any analysis as to whether these ground states

have extremal 1-RDM spectrum or not makes no sense. We could still try, however, to make

this analysis, but since the eigenvalues of the 1-RDMs do not decay fast enough, we encounter

another problem. Let us look at Lithium, for example. If aim for a truncation error of order

10−6 we have to consider 11 eigenvalues, which means we truncate our scenario to Λ3(C11).

But for this case, a spectral polytope is not available, and hence we cannot proceed with

our analysis. An alternative to our approach would be to use the Hylleraas method. The

Hylleraas method is a variational method that allows one to find the ground state energy of

low number atomic systems with very high precision. Some of the best results in the literature

regarding the ground state of Helium, Lithium and Beryllium appear to have been obtained

by the Hylleraas method [41,43].

Unfortunately Hylleraas method is based on integrals containing the inter particle distance

[44, 45], and obtaining the 1-RDM from the minimization procedure seems to be unfeasible

by analytical methods. The usage of numerical methods seems also to be not so trivial, at

least if one is interested in keeping the high precision of Hylleraas. As such we have decided

to stay away from the Hylleraas method for our objective.

In order to help us we have requested the assistance of James D. Whitfield, an expert

in quantum chemistry who also works in quantum information. He has used commercial

software to calculate the 1-RDM of small atoms using CI methods. The results by him

obtained have not been qualitatively different to the ones we have obtained, suffering from

the same problems. Our conclusion is that the basis truncation error seems to be a big

problem. The kind of basis functions one uses in quantum chemistry are meant to be used

for molecules, not for high precision calculations for single atoms.

In order to address our small basis size we have requested the assistance from the group of

Prof. Dr. Markus Reiher which focus on the “development of theory and algorithms for the

calculation of electronic structures based on the first principles of quantum mechanics”. They

have not only used full-CI with an incredibly large number of basis sets (in the order of several

hundreds) but they have also performed calculations using density matrix renormalization

group (DMRG). The results per se (which we do not display here, since research is still

ongoing) are very good and the calculated energies are very close to the best results in the

literature, the absolute error magnitude being of order 1 × 10−4. Also by adding more and

more basis functions one does achieve energy convergence. However the problem is now that

since the single particle basis is extremely large, one needs to truncate the 1-RDM spectra to

make use of the available inequalities. Given the available results, we realized that no spectral

truncation was up to our standards and realized that one needs an alternative method for

deciding whether one has or not a state whose 1RDM spectrum is extremal. This may either

be by getting the inequalities defining the spectral polytopes for higher dimensional settings

(which seems currently to be unfeasible using state of the art algorithms [29] (Michael Walter,
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personal communication, 2014) or by finding alternative methods, such as the one we describe

in the next section.

Our problem has then shifted from the truncation of the single basis to a mathematical

one, of generating the inequalities defining high order spectral polytopes. After we have arrive

at the above-mentioned conclusions, Benavides-Riveros et al. [46] have published an article

where, using CI, they draw some conclusions on the extremality of the eigenvalues of the

1-RDM of the ground state of the Lithium atom. We find, however, that their results suffer

from the same problem as ours, namely lack of precision. More concretely, the energy by

them obtained has an error of the same order of magnitude as the one by us obtained.

4.8 Flow algorithm for Fermions

In this section, and based on the ideas exposed in Chapter 2 we develop an algorithm that

allows us to witness if a given local spectrum is close to a boundary of the spectral polytope.

We present this content in a less formal but more algorithmical point of view, rendering

it, we hope, more suitable for practical implementations.

Assume that we have numerical/experimental data in spectral space, λ ∈ Rd, for a system

of N Fermions and d modes and we don’t know he compatibility inequalities for the setting

at hand. We want to use numerical methods to find whether or not we are ∆ close to a face

of the moment polytope, where the notion of closeness will be introduced below.

We first write µ, as defined in Eq. 3.1, as a projection operator (that this is possible,

has been prove in Lemma 5). For that we need find a basis for the space of traceless, local

Hamiltonians. One possible orthogonal basis for this space is given by the d2 − 1 matrices

Sijx = Eij + Eji, i = 1, . . . d, j ≥ i (4.24)

Sijy = −iEij + iEji, i = 1, . . . d, j ≥ i (4.25)

SiZ =

√
2√

i+ i2
diag(1, · · · , 1,︸ ︷︷ ︸

k

−i, 0, . . . , 0), i = 1, . . . d− 1 (4.26)

where Ei,j is a matrix with a 1 in the ith row, jth column and zeros for all other elements.

Note that all the above matrices are normalized to 2 (in a Hilbert-Schmidt sense). For d = 2

the above basis reduce to the well known Pauli matrices.

Note that for our Hilbert space H = ΛN (Cd) µ is actually a superoperator. To make this

easier to implement, we work not on H but on L(H), the space of linear operators of H where

µ can be represented as a matrix. For that effect we vectorize our operators Sj , j = x, y, z.
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(a) 1-norm ball inside polytope (b) 1-norm ball outside polytope

Figure 4.3: Two possible scenarios when we flow from our randomly generated state to a
pre-image of the vertices of a 1-norm ball around our experimental spectrum λ. In (a) the
ball is completely inside the spectral polytope and we are able to flow to all vertices. In
(b) part of the ball is outside of the polytope and we are unable to reach all vertices (doing
so would imply flowing from a pure state to a non-pure one), hitting a facet of the spectral
polytope.

By doing that µ can be written as

µ =
1

2

 N∑
i=1

∑
j=x,y,z

∣∣∣1(i−1) ⊗ Sj ⊗ 1(n−i)
〉〈
1

(i−1) ⊗ Sj ⊗ 1(n−i)
∣∣∣
 (4.27)

Now, we will want to write µ as an operator on L(ΛNCd) and not on L(Cnd) for else the

matrix representation of µ will blow up exponentially. To do so, we make use of the “rules”

in [23, Chapter 2].

We now put a 1-norm ball of radius δ around λ which will have 2d vertices, λ
(i)
V , i =

1, . . . , 2d. We then choose a pure state at random ψR. Such state can be created by choosing

its coefficients on a Slater basis according to a uniform distribution and normalizing the final

state.

We wish now to make ψR flow in such a way that its image (under the moment map, i.e.

its local spectra) flows from λR to λ
(i)
V . To that effect, consider the flow of ψR in the direction

of X (see Lemma. 22)

ψR(t) = eitX(ρR−ρ
(i)
V )ψR (4.28)

with X = (µPψ)+. For t→ 0 we get (where ← means assignment)

ψR ← ψR + itXδψR (4.29)

following by re-normalizing ψR.

We iterate until we reach (or fail to do so in a given number of iterations), in spectral space,
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λV , updating |ψR〉 in every iteration according to Eq. (4.29). Note that, for implementation

purposes, we have chosen X to be an operator in L
(
ΛN (Cd)

)
such that the 1-RDMs ρR−ρ(i)

V

must be written as vectors in the same space. To do so, we embedA ∈ L
(
Cd
)

into L
(
ΛN (Cd)

)
in the following way: we begin by writing A →

∑N
i=1 1

(i−1) ⊗ A ⊗ 1(n−i) and then calculate

the matrix elements of A in ΛN (Cd) in a Slater basis in the same way we have done before

and then vectorize this matrix representation. Also note, that the 1-RDM of ψR will, in

principle, be non diagonal in our basis. In order to subtract both 1-RDMs, one should be

careful with the basis, since we want to work on the space of diagonal 1-RDMs, with non-

increasingly ordered spectra 2 Let U be a unitary that not only diagonalizes ρR but that

brings its spectrum into non-increasing order

ρdiag
R = UρRU

† (4.30)

Then one should do

ρdiag
R − ρV = U †

[
ρdiag
R − diag(λV )

]
U (4.31)

where diag(v) denotes a matrix with the vector v in its main diagonal.

One should repeat the procedure for all λ
(i)
V . Now, if we do reach a λV we know that it

must be inside the moment polytope (cf. 2). In this case, if we reach all λV , our 1-norm ball

must be inside the polytope and we know that λ is at least a distance δ away from a facet of

the polytope (and for large δ certainly not quasi-extremal or “quasi-pinned” [35]).

On the other hand if we don’t reach at least one of the λV we can’t say anything. It may

be that the point we could not reach is outside of the polytope or it may be that we are unable

to reach the point for some other reason, such as numerical instability, a non full-dimensional

tangent space, etc. . In Fig. 4.3 we show two possible scenarios.

Note that even though we have exposed this algorithm for Fermions, it works, with minor

modifications, for qudits as well. Unfortunately the above mentioned algorithm, since it

relies on the implementation of superoperators, requires matrix with m4 elements, m =

dim(ΛN (Cd)) =
(
N
d

)
which makes it impractical for even low dimensional scenarios. As an

example, consider n = 5, d = 10. In this case m = 252 and the matrix representation of µ

has ≈ 4× 109 elements. Assuming that we store these as 32-bits floating-point numbers and

taking into consideration that one would need twice the size for complex numbers, we would

need ≈ 30GiB of RAM just to store µ! 3

One way of modifying the algorithm is to consider the empirical flow:

|ψR(t)〉 = eit(ρR−ρ
(i)
V ) |ψR〉 . (4.32)

2Corresponding to t+, the positive Weyl chamber of the dual of the Lie algebra of the torus, in Eq. (A.27)
in Appendix A.

3Making no use of sparsity.
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In this case one is obviously not flowing in the optimal direction, but we may expect

that there will be some overlap with the right direction and that we will, eventually, flow to

our desired point. Note as well, that since there are no superoperators, but only operators

on ΛN (Cd), which means matrices as big as m = 2 instead of m4 Unfortunately numerical

tests showed that this flow tends to converge to the ordered Slater point. This means it will

get very close to most of the experimental points (since Hartree-Fock tends to be a good

approximation for many scenarios [47]), but it will not, in general, reach the precision we

need to make any sensible statement regarding the extremality of the 1-RDM spectra. The

author is still convinced, however, that the ideas here presented may be of use in deciding

the extremality of the 1-RDM spectrum for scenarios for which the spectral polytope is not

yet known.

4.9 Conclusions

The calculation of physical properties of molecules is of utmost importance for technological

applications in diverse areas such as biochemistry, biology, pharmaceutical areas, material

engineering, among others. If one could, at least in some instances, simplify the calculation

of ground states by knowing that such states have certain simpler structure than an arbitrary

state, this would be a terrific advance. Given that, we feel that it is important to know

whether ground states of the quantum chemistry Hamiltonian have corresponding 1-RDMs

with extremal spectra or not. We have concluded that using Full-CI and the standard basis

sets used in quantum chemistry results in truncation errors that are far too high to come up

with a conclusive answer. Using larger basis may indeed solve the truncation error issue but

it shifts the problem to another one: getting the inequalities defining the spectral polytope

for large settings which appears to be, at the moment, unfeasible.
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Chapter 5
Quantum marginals in Fock space

In this chapter we consider the univariate quantum marginal problem in Fock space. First we

show that two kinds of one particle reductions are possible: particle and mode, and proceed

to characterize these two reductions. We show, for example, that for the particle reduction

in Fock space, no constraints other than the Pauli’s exclusion principle are imposed on the

spectrum of the 1-RDM.

5.1 Introduction

When working in Fock space two types of reductions are possible: one can either trace out

modes or particles. To the best of our knowledge, two natural questions remain unanswered in

Fock space. The first and maybe the more natural asks what are the constraints on the spectra

of the 1-RDM when one considers a globally pure state. We prove in the next section that,

other than the Pauli constraints, no further constrains arise from anti-symmetry in Fock space.

Another question asks, for quasi-free Fermionic states (also know as Gaussian Fermionic

states), what is the set of allowed spectra of the single modes correlation (or covariance)

matrices. While this problem has been treated for bosons [48] it has, apparently, never been

treated for Fermions (perhaps owing to the greater importance of bosons to the quantum

optics community). In section III we treat this problem and give a full characterization of

the single mode correlation matrices spectra.

5.2 Fock space reductions

In this section we begin by addressing the types of reduction one can have in Fock space.

We begin with the very definition of Fock space.

Definition 30 (Fermionic Fock space). Let H1 denote a single particle Hilbert space de-

scribing n modes, i.e. dimH1 = n We then define the N particle Hilbert space H(N) as

59



60 Chapter 5. Quantum marginals in Fock space

H(N) := ΛNH1. Then the Fock space corresponding to n modes, Fn is defined as

Fn = ⊕∞i=0H(i) = ⊕ni=0H(i). (5.1)

In this picture Fock space is seen as a direct sum of Fock layers (a Fock layer is an exterior

power Λi(H1)))each corresponding to a different, but well defined, number of particles.

To proceed with our discussion we will need to make use of the so called second quanti-

zation

Definition 31 (Fermionic algebra). Let a†i be a linear operator in Fock space The following

relations define a Fermionic algebra {
ai, a

†
j

}
= δi,j1F ,

{ai, aj} = 0
(5.2)

as well as to define the vacuum state

Definition 32 (Vacuum state). A vacuum state for type a particles is a state |0a〉 such that

ai |0a〉 = 0 (5.3)

where ai is the annihilation operator for a type a particle in mode i.

Since we work exclusively with one type of particles in what follows we write |0〉 := |0a〉.
Consider now an arbitrary state in Fock space |ψ〉 ∈ Fn = ⊕ni=1ΛiCn. We can then extend

the our previous definition of 1-RDM 2.12 to an arbitrary state in Fock space. In this case,

and considering the direct sum decomposition of Fock space we can write |ψ〉 =
∑n

i=0 ci |ψi〉 ,
|ψi〉 ∈ ΛiCn, where we deal exclusively with normalized states and therefore

∑n
i=1 |ci|2 = 1.

We then obtain the following relation between the 1RDM of a Fock state and those of the

several Fock layers

γ =
n∑
i=0

|ci|2 ρ(1),(i). (5.4)

where ρ(1),(i) is the 1-RDM of |ψi〉.
In a way analogous to bosons, one can define Fermionic Gaussian states, c.f. [49]. In

doing so, one concludes that an n modes Fermionic state ρ is Gaussian if and only if its

corresponding correlation matrix M , an 2n× 2n skew-symmetric matrix is given by,

Mi,j =
i

2
tr (ρ [ci, cj ]) . (5.5)

By definition the density matrix ρj , obtained by tracing out all modes except the jth one is

given by the 2× 2 principal submatrix of M .
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5.3 Free Fermions Fock space particle marginal problem

In this section we treat the case of particle reductions in Fock space.

Let us define the set {(b1, . . . bn) |bi = 0, 1, bi > bi+1} We begin then by stating the trivial

lemma regarding states with a Slater determinant-like form in Fock space

Lemma 33. The spectra of all possible Slater determinants in Fock space Fn is given by Sn,

after re-ordering the eigenvalues in non-increasing order.

Proof. Consider |ψ〉 = c†i1c
†
i2
. . . c†iN |0〉 ∈ Fn. Then the spectrum of γ is identical to the

spectrum of ρ(N) and given by N 1’s and n − N 0’s. Moreover, if we order the spectrum

non-increasingly we obtain λ := spec γ = (1, . . . , 1︸ ︷︷ ︸
N

, 0, . . . , 0︸ ︷︷ ︸
n−N

). Considering all possible values

of N = 0, . . . n, spec γ = Sn for Slater determinants.

As an added result, we note that in an n-mode Fock space there are n different ordered

Slater states (an ordered Slater state is one which corresponding 1-RDM is ordered non-

increasingly).

We will need the following Lemma regarding our previously defined Fock space 1-RDM

Lemma 34. Let O be a one-body observable ρ = |ψ〉 〈ψ| a state in Fock space and γ =∑n
i=1 iρ

(1),(i), where ρ(1),(i) is the 1-RDM of the ith Fock layer. Then

tr
[(
⊕ni=1O ⊗ 1H⊗(i−1)

1

+ ...+ 1H⊗(i−1)
1

⊗O
)
ρ
]

= tr (Oγ) (5.6)

Proof. Since |ψ〉 ∈ Fn, it can be written as |ψ〉 =
∑n

i=0 ci |ψi〉 , |ψi〉 ∈ ΛiH1. Let us define

Oi := 1H⊗(i−1) ⊗O ⊗ 1H⊗(n−i−1) to keep our notation simpler. Then we have

tr [(⊕ni=1Oi) ρ] = 〈ψ| ⊕ni=1 Oi |ψ〉

=
n∑
i=1

n∑
j=1

c∗i cj 〈ψi| ⊕ni=1 Oi |ψj〉

=

n∑
i=1

|ci|2 〈ψi| ⊕ni=1 Oi |ψi〉

=
n∑
i=1

|ci|2 tr
(
Oρ(1),(i)

)
= tr (Oγ) ,

(5.7)

since ⊕ni=1Oi is block diagonal, each block being contained in a single Fock layer.

This proves that the definition of the 1-RDM given in Eq (5.4) makes sense.
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We will need as well the following lemma, regarding the geometry of the set of local spectra

in Fock space

Lemma 35. The non-increasingly ordered spectra of the 1-RDM γ in Fock space Fn is a

convex polytope.

Proof. To prove this we follow the discussion of [9]. Fn = ⊕ni=1ΛiH1 with H1 a single particle

Hilbert space. To begin with we consider the embedding ΛiH1 ⊂ (H1)i. We let single particle

observables act as ⊕ni=1O⊗ 1H⊗(i−1)
1

+ ...+ 1H⊗(i−1)
1

⊗O. This corresponds to the embedding

of Lie algebras induced by the map U 7→ ⊕ni=1U
⊗i. From Lemma 34, this embedding induces

a map ρ 7→ γ. It follows that the one-body Fock space marginal for Fermions amounts to

determining a moment map and hence the non-increasingly ordered spectra of γ forms a

convex polytope.

We can then state the following theorem regarding marginal constraints on Fock space.

Theorem 36. In Fock space there are no constraints on the spectra of the 1RDM other

than those imposed by the Pauli’s exclusion principle, i.e. for ρ ∈ Fn,

spec γ ∈ {(λ1, . . . , λn)}|λi ≥ λi+1, λi ∈ [0, 1]}. (5.8)

Proof. We define the Pauli polytope to be the set consisting of the Pauli constraints (occu-

pation numbers must be between 0 and 1),

Pn = {(λ1, . . . , λn)}|λi ≥ λi+1, λi ∈ [0, 1]}. (5.9)

Let us now consider the set Sn = {(b1, . . . bn) |bi = 0, 1, bi > bi+1}. Consider now the convex

hull of Sn,

convSn = {p0 (0, . . . , 0) + p1 (1, 0, . . . , 0)

+ . . .+ pn (1, . . . , 1) |
n∑
j=0

pj = 1}

= {

 n∑
j=1

pj ,

n∑
j=2

pj , . . . pn

 | n∑
j=0

pj = 1}.

(5.10)
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Consider an arbitrary point (λ1, λ2, . . . λn) ∈ Pn. Then, defining in Eq. (5.10),

pk = λk − λk+1,

λ0 := 1,

λn+1 := 0.

(5.11)

one has
n∑
j=k

pj = λk. (5.12)

It is easy to check that

n∑
j=0

pj =
n∑
j=0

λk − λk+1 = λ0 − λn+1 = 1. (5.13)

From here it follows that convSn = Pn.

Let Fn be the set of allowed spectra of the 1RDM in Fock space. As stated in Lemma 33,

Sn is the spectra of Slater states in Fock space. Hence it must be that Sn ⊂ Fn. Also, since

Pn is nothing more than the Pauli exclusion principle, which any Fermions must abide to, it

gives us an outer approximation to Fn and we must have Fn ⊂ Pn. Given that Fn is convex

(Lemma 35) and since we have convSn = Pn, and the chain of inclusions Sn ⊂ Fn ⊂ Pn, we

have Fn = Pn and we can readily conclude that Fock space there are no more constraints

other than the Pauli’s exclusion principle.

Something that is also interesting to note is that |Sn| = n+1 while Pn is a polytope embedded

in an n dimensional space. Hence Sn is the set of extreme points of Pn and Pn is a simplex.

Note that it is obvious that the argument above fails for the fixed-particle number scenario,

since in that case there is only one ordered Slater state and obviously convSn 6= Pn.

A consequence of Theorem 36 is that, unlike for the case of a well defined number of

Fermions discussed in Chapter 3, the extremality of the spectrum of the 1-RDM in Fock

space has no non-trivial structural implications in the form of the wavefunctions in Fock

space.

5.3.1 Gaussian Fermions particle marginal problem

We now review some results on free-Fermions and connected them to the Fock space marginal

problem.

Let us define our the single particle Hilbert space to be H = span
{
a†i |0〉 . . . a

†
n |0〉

}
. To

simplify our notation, we shall drop the vacuum state and make the following identification

H = span
{
a†i . . . a

†
n

}
. From here it follows that H∗ = span {ai . . . an}

Let us group the creation and annihilation operators into a column vector α, which we
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will call the Bogoliubov annihilation operator [50]

α =



a1

...

an

a†1
...

a†n


(5.14)

with α = H∗⊕H The Bogoliubov creation operator is defined to be the Hermitian conjugate

of the Bogoliubov annihilation operator

α† =
(
a†1 . . . a†n a1 . . . an

)
(5.15)

The Fermionic anticommutation relations, Eq. (31), then take the form{
αi, α

†
j

}
= δi,j1F ,

{αi, αj} = δi,j−n1F = si,j1F

(5.16)

where s ∈ End (H∗ ⊕H) has matrix form

s =

(
0 In

In 0

)
(5.17)

and satisfies

s = s−1,

s2 = I2n.
(5.18)

Obviously, just like normal Fermionic operators, it follows from Eq. (5.16) that the Bogoliubov

operators are nilpotent, (αi)
2 = 0.

We define the unitary Bogoliubov transformation to be given by

β = Tα (5.19)

with T ∈ End (H∗ ⊕H) the 2n× 2n matrix given by

T =

(
U∗ V ∗

V U

)
(5.20)

where U, V are n × n matrices. In order to ensure that this transformation is canonical, T
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must satisfy [50]

TsT T = s (5.21)

Note that seen as a 2× 2 block matrix, s swaps columns when it multiplies a 2× 2 block

matrix from the right, while it swaps lines when it multiplies such a matrix from the left.

Then, for a unitary Bogoliubov transformation, one has

T ∗ = sTs (5.22)

and Eq. (5.21) can be written as

TT † = 1 (5.23)

which is equivalent to the perhaps more usual relations [51]

UU † + V V † = 1, UV T + V UT = 0, (5.24)

U †U + V V ∗ = 1, UTV ∗ + V †U = 0. (5.25)

Note that in Condensed Matter one usually uses a particular Bogoliubov transformation,

sometimes called special Bogoliubov transformation [50]. See appendix C for more details.

The T matrices form a group, which is easily shown to be isomorphic to the orthogonal

group O(2n) as can be seen by considering the following similarity transformation,

O = UTU † (5.26)

with

U =
1√
2

(
In In

−iIn iIn

)
(5.27)

Clearly U † = U−1, hence it is unitary and the above transformation is indeed a similarity

transformation and T ∼= O. Now, O(2n) is a disconnected group composed of two connected

components, corresponding to det O = ±1. Hence, the Bogoliubov transformation forms

also a disconnected group with two connected components. Note now that the Bogoliubov

transformation T ∈ End (H∗ ⊕H) which acts by left multiplication on Bogoliubov creation

operators induces a unitary operator on Fock space, S ∈ Fn, which acts by conjugation on

these very same operators,

SαiS
† = (Tα)i (5.28)

Let us denote by O(even) the elements of the orthogonal group that are in SO(2n) and by

O(odd) the ones in O(2n)\SO(2n), and identically for T (even), T (odd) and S(even), S(odd). Then

we can write,

O(even) = eȮ (5.29)
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where Ȯ is an element of the Lie algebra of O(2n), Ȯ = −ȮT . Differentiating Eq. (5.26) one

gets

Ṫ = U †ȮU (5.30)

setting Ṫ = −iK we have,

T = e−iK (5.31)

with [50]

K = K†

KT = −sKs
(5.32)

We now want to find the S matrices defined above. Consider the ith element of the action

of T on α

(Tα)i =
(
e−iKα

)
i

=

( ∞∑
l=0

1

l!
(−iK)l α

)
i

(5.33)

Consider, for simplicity, the first order term iKα

−iKi,jαj =
i

2

(
−KT

j,iαj −Ki,jαj
)

=
i

2

(
(sKs)j,i αj −Kk,jδi,kαj

)
=
i

2

(
Kk,jsj,iα

†
k −Kk,jδi,kαj

) (5.34)

where we made use of Eq. (5.32) and the fact that sk,jαj = α†k Now, consider the relation,

[α†kαj , αi] = sj,iα
†
k − δi,kαj (5.35)

which is easily deduced, making use of Eq. (5.16). Hence, Eq. (5.34) can be written,

(−iKα)i = [1/2iα†Kα,αi] (5.36)

From here it is a simple exercise to check that

(Tα)i = αi +

[
1

2
iα†Kα,αi

]
+

[
1

2
iα†Kα,

[
1

2
iα†Kα,αi

]]
+ . . . (5.37)

Making use of Hadamard’s Lemma

eBAe−B = A+ [B,A] +
1

2
[B, [B,A]] + . . . (5.38)
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one readily arrives at

S = e1/2α†Kα. (5.39)

Now for Oodd, one can write

O(odd) = RO(even) (5.40)

where R is any reflection, det R = −1. Consider TR = U †RU . Then one has

T (odd) = TRe
−iK (5.41)

Consider now the particular reflection matrix

TR =

(
A B

B A

)
,

A =


0

−1
. . .

−1

 ,

B =


1

0
. . .

0



(5.42)

That this is a valid T matrix, is obvious since TRT
†
R = 1. That this is a reflection matrix is

easily seen by considering the determinant of partitioned matrices [52, Th. 1]

det TR = det
(
A2 −B2

)
= −1 (5.43)

The action of our particular TR on α is given by

α1 → αn+1

αn+1 → α1

αj → −αj , j 6= 1, n+ 1

(5.44)

This action can be mimicked in Fock space by by considering the unitary (and Hermitian)

operator S = α1 + α†1 = a1 + a†1,

SaiS
† =

a
†
1, i = 1

−ai, i 6= 1
(5.45)
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Hence we have

S(odd) = e1/2α†Kα
(
α1 + α†1

)
(5.46)

Note that independently of K, S(even) contains even powers of creation and annihilation

operators, hence the state S(even) |0〉 is always a linear combination of states lying in Fock

layers with an even number of particles. Likewise, S(odd) creates Fermionic states with an

odd particle parity. Note also, that since T and S are related by a continuous transformation,

the set of S operators is disconnected with two connected components.

The S operators act on the Fock vacuum to create a set of states, called quasi-free states

or Gaussian states, i.e. the states that can be obtained from a Bogoliubov transformation of

the vacuum,

ρfree = {|ψ〉 〈ψ| : |ψ〉 = S |0〉 ,AdmissibleS} (5.47)

At this point, we are interested in obtaining the 1-RDM for the quasi-free states. We

begin with the generalized 1-RDM

Definition 37 (Generalized one particle density matrix). For a globally pure state, ρ =

|ψ〉 〈ψ|, the generalized one particle reduced density matrix (generalized 1-RDM) for type α

Bogolyubons is defined as

Γi,j = 〈ψ|α†jαi |ψ〉 . (5.48)

To cast the generalized 1-RDM into matrix form let us first define the pair tensor, κ(a)

κ
(a)
i,j = 〈ψ| ajai |ψ〉 . (5.49)

By definition, κ = −κT , i.e., κ is skew-symmetric. In a change of the single particle basis, κ

transforms as a
(

2
0

)
tensor, unlike the 1-RDM, which is a

(
1
1

)
tensor.

In matrix form, we can write the generalized 1-RDM as

Γ(α) =

(
γ(α) κ(α)

−(κ(α))∗ 1− (γ(α))∗

)
. (5.50)

It is easily seen that that Γ is Hermitian, Γ = Γ†.

In a unitary Bogoliubov transformation (see Eq. (5.19)), we have

Γ(β) = TΓ(α)T †. (5.51)

T is unitary, thus Γ(β) ∼= Γ(α). Let us now consider the state |ψ〉 to be the Fock vacuum of

the operators b. It is then fairly obvious that we must have γ(β) = κ(β) = 0 and therefore

Γβ =

(
0 0

0 In

)
. (5.52)
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We then have that spec
(
Γ(α)

)
= spec

(
ηΓ(β)

)
=

n︷ ︸︸ ︷
0, · · · 0,

n︷ ︸︸ ︷
1, · · · , 1, which is the spectrum of the

generalized 1-RDM of a pure Gaussian state.

Let us now see how to relate the spectrum of the generalized 1-RDM to the spectrum of

the 1-RDM.

Now, from Eq. (5.51) and Eq. (5.20) it follows that

Γ(α) =

(
V V † V †U

U †V U †U

)
(5.53)

comparing with Eq. (5.50) we arrive at,

γ = V †V

κ = V †U
(5.54)

Now, note that Γ(α) =
(
Γ(α)

)2
which follows from the simple fact that Γ(β) =

(
Γ(β)

)2
trivially

and from Eq. (5.51).

One then has

(
V V † V †U

U †V U †U

)
=

(
V V †V V † + V †UU †V V V †V †U + V †UU †U

U †V V V † + U †UU †V U †V V †V + U †UU †U

)
(5.55)

And from here, considering Eq. (5.54), it follows that

γ − γ2 = κκ†

γκ = κγ∗
(5.56)

From here it is a simple exercise to see that eigenvalues of γ(α), an arbitrary Gaussian 1-

RDM, can only consist of an arbitrary number of 0s and 1s and doubly degenerate values in the

interval (0, 1). Since the map from the set of quasi-free states to the spectra of their 1-RDM

is continuous, we expect these spectra to be disconnected with two connected components.

5.3.2 Constraints and convexity of the local spectra

Let σ be an arbitrary free fermion state. As we have seen the spectrum of σ(1) consists of

an arbitrary number of 0’s and 1’s and doubly degenerate values in the interval [0, 1]. Let

us define the set G′n = (λ1, . . . , λn) with λi ∈ [0, 1] and λi ≤ λi+1, to be the (ordered) set of

allowed spectra for the one particle reduced density matrix σ(1) arising from a free fermion n

mode state.
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For n even, it is easy to see that one can write Gn as the following union of disjoint sets

Gn =
{(
l1, l1, l2, l2, . . . , ln/2, ln/2

)
| li ∈ [0, 1], li ≥ li+1,

}
t
{(

1, l1, l1, . . . , ln/2−1, ln/2−1, 0
)
| li ∈ [0, 1], li ≥ li+1

}
.

(5.57)

Note that the first set above contains all situations where the number of 1’s is even (and the

number of 0’s as well) while the second set contains all situations where the number of 1’s is

odd (and the number of 0’s as well). For n odd is is also easy to see that we can write Gn as

the following union of disjoint sets,

Gn =
{(
l1, l1, l2, l2, . . . , ln−1

2
, ln−1

2
, 0
)
| li ∈ [0, 1], li ≥ li+1

}
t
{(

1, l1, l1, . . . , ln−1
2
, ln−1

2

)
| li ∈ [0, 1], li ≥ li+1

}
.

(5.58)

Where the first set above contains all situations where the number of 1’s is even (and the

number of 0’s is odd) while the second set contains all situations where the number of 1’s is

odd (and the number of 0’s is even).

From the construction above it is obvious that Gn is disconnected with two connected

components as expected (except for the trivial case G0). Note also that the spectrum of the

1-RDM the vacuum state is trivially (0, . . . , 0). Hence, for n even,
{(
l1, l1, l2, l2, . . . , ln/2, ln/2

)}
correspond to the spectra of the states that are connected to the vacuum state while for n

odd, the equivalent is
{(
l1, l1, l2, l2, . . . , ln−1

2
, ln−1

2
, 0
)}

.

From its disconnectedness it follows that Gn is not convex. One could however expect,

based on the convexity results of the moment map, its components to be convex. This is

indeed the case, a fact that can be easily seen by using an approach identical to that used in

proving theorem 36 (which we don’t pursue here since it constitutes a simple exercise).

It is obvious that one has, Sn ⊂ G′n, with Sn the set of Slater determinants, and thus,

from the results of the previous section, the convex hull of the spectra of Gaussian states also

generates the entire spectra in Fock space. If Fig. 5.1 we plot the spectra of the 1-RDM for

Slatter, Gaussian and arbitrary states in a 2 and 3 modes Fock space.

5.4 Gaussian Fermionic mode marginal problem

In order to describe a Fermionic system consisting of nmodes, we consider 2n creation/annihilation

operators satisfying the canonical anti-commutation relations (CAR){
ai, a

†
j

}
= δi,j1 (5.59)
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Figure 5.1: Set of allowed local spectra for 2 and 3 modes. The spectra of ordered Slater
states are marked by black dots.

Identical to the way one goes from creation and annihilation operators to coordinate and

momentum ones for bosons, we make the following unitary transformation

c2j−1 = a†j + aj ,

c2j = −i
(
a†j − aj

)
.

(5.60)

These 2n operators correspond to Majorana operators, for they are Hermitian and satisfy the

CAR,

{ci, cj} = 2δi,j1. (5.61)

In a way analogous to bosons, one can define Fermionic Gaussian states, cf. [49]. In doing

so, one concludes that an n modes Fermionic state ρ is Gaussian if and only if its corresponding

correlation matrix (or covariance matrix) M , an 2n× 2n skew-symmetric matrix, is given by,

Mi,j =
i

2
tr (ρ [ci, cj ]) . (5.62)

Using equation (5.61) this can be cast into the form

Mi,j = i tr (ρcicj)− iδi,j . (5.63)
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Being a real skew-symmetric matrix, M can be brought into a block diagonal form under

the action O ∈ O(2n),

OMOT = ⊕nj=1

[
0 µj

−µj 0

]
. (5.64)

By definition the correlation matrix corresponding to the reduced density matrix ρj , obtained

by tracing out all modes except the jth one is given by the 2× 2 principal submatrix of M ,

Nj =

[
0 −νj
νj 0

]
=

[
M2j−1,2j−1 M2j−1,2j

M2j,2j−1 M2j,2j

]
(5.65)

with νj = i tr (ρc2j−1c2j). Given a correlation matrix M , in order to characterize all its 2× 2

principal submatrices we will make use of the following theorem

Theorem 38 (Skew-Symmetric Sing-Thompson [53, 54]). Let d = (d1 . . . dn) ∈ Cn arranged

such that |d1| ≥ . . . ≥ |dn| and let s = (s1 . . . sn) ∈ R such that s1 ≥ . . . sn ≥ 0. Then a 2n×2n

skew symmetric matrix exists with d1 . . . dn as its superdiagonal and s1, s1 . . . si, si . . . sn, sn

as its singular values if and only if

k∑
i=1

|dk| ≤
k∑
i=1

si, k = 1, . . . n,

n−1∑
i=1

|di| − |dn| ≤
n−1∑
i=1

si − sn.

(5.66)

In our case, first note that the set of singular values ofM is given by s = (µ1, µ1, . . . µk, µk, . . . µn, µn).

Without loss of generality we assume that µi ≥ µi+1 ≥ 0. Note now that the superdiagonal

elements of M are given by (−ν1, . . .− νn) We also assume, again without loss of generality,

that νi ≥ νi+1 ≥ 0. Hence, we can then make use of Theorem 38 to fully characterize M ,

k∑
i=1

νk ≤
k∑
i=1

µi, k = 1, . . . n,

n−1∑
i=1

νi − νn ≤
n−1∑
i=1

µi − µn.

(5.67)

Let us now connect these results with the marginal problem for qubits. Note that any

Gaussian state can be cast into the form (cf. [49], Eq. (19)),

ρ (µ1, . . . µn) =
1

2n

n∏
j=1

(I + iµic2j−1c2j) (5.68)
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with pure (Gaussian) states corresponding to µi = ±1. We can map these pure Gaussian

state into a qubit state using a Jordan-Wigner transformation (cf. Appendix E),

ρ (µ1, . . . µn) =
1

2n
⊗nj=1 (1− µiZj) (5.69)

which is always pure. In particular it is pure whenever µi = ±1, i.e. pure Gaussian states

map to pure qubit states under the J-W transformation. However it is clear that Eq. (5.69)

does not exhaust the set of all possible pure n qubit states. Therefore the set of all Gaussian

states does not map into the whole set of pure qubit states under the J-W transformation.

Let us now write νj making use of the J-W transformation (cf. appendix F),

νj = i tr (ρc2j−1c2j) = − tr (ρZj) . (5.70)

Now note that for a Gaussian state ρ, {Xj} = {Yj} = 0. To prove this we can make use of

Wicks’s theorem ( cf. [49], Eq. (17)),

tr ρipca1ca2 . . . cap = pfM |a1,...ap (5.71)

with 1 ≤ a1 ≤ ap ≤ 2n and M |a1,...ap is the p × p submatrix of M obtained by keeping only

the indicated rows and columns. Note that Xj and Yj are always a product of an odd number

of Majorana operators and according the Wick’s theorem the average value of expressions

involving an odd number of Majorana operators is the Pfaffian of an odd dimensional matrix,

which is 0 [55].

Then, we have, for a Gaussian state ρ with reductions ρi = tr\i ρ and reduced spectra

specρi = (λmin
i , λmax

i )

νj = λmax
j − λmin

j . (5.72)

Then, for pure Gaussian states, applying the J-W transformation to Eq. (5.67) we get an

inner approximation for the allowed local spectra of n qubits,

νn ≥
n−1∑
i=1

νi − (n− 2) (5.73)

which actually agree with the marginal constraints for a system of n qubits (cf. Chapter

1) [6].

5.5 Conclusion

In this chapter we have characterized the particle Fock space marginal problem and showed

that the 1-RDM in Fock space is not subject to any constraints, other than the Pauli’s

exclusion principle alone. This stands in sharp contrast to the fixed particle number case.
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We have also realized that the local spectra for Gaussian states does not form a convex

polytope, unlike one could have assumed a priori, and have pinpointed the reason to the

fact that the set of Gaussian states is disconnected. We have as well fully characterized the

correlation matrices of pure Gaussian states using the skew-symmetric Sing-Thomson theorem

and showed that Gaussian states are enough to generate the spectral polytope for the qubit

case, via the Jordan-Wigner transformation.



Chapter 6
Witnessing localizable entanglement from

local information

It has recently been observed [10] that in some instances, strong statements about multi-

particle entanglement can be deduced from single-site information alone. One of problems that

can be formulated concerns the presence of localizable entanglement : the entanglement that

can be localized (on average) between two separated qubits by performing local measurements

on the other qubits. In this chapter we analyze the computational complexity of this task.

We show that, while there are many efficiently solvable instances, the general problem is NP-

complete. This leaves us with the situation that few, easily obtainable physical measurements

may be sufficient to witness many-body entanglement, using localizable entanglement as a

measure of entanglement, but that the classical post-processing is intractable. To the best of

our knowledge, this is the first natural instance of a pure state entanglement problem that

has been proven to be hard.

6.1 Multipartite entanglement

Entanglement is perhaps the most radical departure from classical mechanics in the quantum

world. It is a purely quantum mechanical phenomenon and in entangled systems one can

observe correlations that are stronger than what is classically allowed. Entanglement is of

utmost importance in quantum information and computation since it is a necessary resource in

many well known protocols [25]. For a pure state of a two particle system |ψ〉 ∈ H = H1⊗H2,

a state is said to be separable if it can be written as

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 , |ψi〉 ∈ Hi. (6.1)

75
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Otherwise the state is said to be entangled. For an N particle system, the situation is not as

simple, for a pure state |ψ〉 ∈
⊗N

i=1Hi can be separable, fully/genuinely entangled or partially

entangled. In this case, a state is called genuinely entangled if it cannot be factorized with

respect to any possible bipartition of the system and separable (or fully separable) if it can

be written as a tensor product |ψ〉 = ⊗Ni=1 |ψi〉, where each tensor factor |ψi〉 is supported

only on the ith qubit.

Given that entanglement is concerned with the non local properties of physical states,

(in fact, entanglement is necessary but not sufficient for non-locality, cf. Werner state [56])

a sensible theory of entanglement should provide us with entanglement (equivalence) classes

that are invariant under local operations. These local operations can be simply local unitaries

(LU), local operations and classical communications (LOCC) or their stochastic counterpart,

stochastic local operations and classical communications (SLOCC) where local operations

have a given probability of succeeding. For each of these local operations, our theory of

entanglement should address the following questions [57]

• How many equivalence classes exist?

• How are these classes parametrized?

• How can we decide whether or not two states belong to the same class?

For bi-partitite qubit systems under LU operations, the Schmidt normal form

|ψ〉 = sin θ |0, 0〉+ cos θ |1, 1〉 (6.2)

gives us an answer to all the above questions. Our classes are parametrized by one parameter,

the Schmidt angle θ ∈ [0, π/2]. Two quantum states are LU equivalent if and only if their

Schmidt normal form coincides. This means that we have an infinite and continuous number

of equivalence classes. The situation for a multipartite system is much more complicated. If

we consider a system of N qubits it can be shown [57] that one needs at least 2N+1− 3N − 2

continuous real parameters to parametrize the sets of inequivalent pure states under the action

of UN (C) = (U(C))⊗N , i.e. under LU. One must stress that this bound exhibits exponential

growth. For a tri-partite system one needs at least 5 parameters to parametrize the set of

inequivalent (pure) states. This means that a general pure tri-partite cannot be cast in the

form,

|ψ〉 = sin θ |0, 0, 0〉+ cos θ |1, 1, 1〉 (6.3)

under the action of LU, unlike the bi-partite case.

Let us now turn our attention to SLOCC operations. Two states, |ψ〉 and |φ〉 are SLOCC

equivalents if |ψ〉 can be converted into |φ〉 by invertible local operations (and vice versa),

|ψ〉 = M1 ⊗ . . .⊗MN |φ〉 . (6.4)
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with Mi ∈ GL2(C), i.e., if |ψ〉 and |φ〉 lie in the same orbit of GL2(C)⊗ . . .⊗GL2(C). The

probability that a given SLOCC operation succeeds is given by the “length” of |φ〉 normalized

by the length of |ψ〉. If one is not concerned about this length and the phase of the resulting

state, but only about which states are equivalent, we can work with Mi ∈ SL2(C) instead.

Again, it can be shown [57], simply by parameter counting, that we need 2N+1 − 6N − 2

continuous real parameters to parametrize the set of inequivalent pure states under the action

of SL2(C), i.e. under SLOCC. For the bipartite and tripartite case, 2N+1−6N−2 is negative.

Therefore, we expect that instead of requiring a finite number of continuous parameters we

only need a discrete number of parameters to parametrize the set of inequivalent classes

under SLOCC. For the bipartite case, there are only two entanglement classes under SLOCC:

separable and entangled. This is actually equivalent to classifying the states by their Schmidt

rank which is 1 if and only if if the state is separable and 2 if and only if if the state is

entangled. Let us check this. By definition, an arbitrary pure state |ψ〉 for a system of two

qubits can be written as

|ψ〉 =
∑
i,j=0,1

ci,j |i, j〉 . (6.5)

Then, under an SLOCC operation given by operators (M1,M2), the coefficient matrix, [ci,j ] =:

C transforms as C ′ = M1CM
†
2 which in turn implies that the determinant of C is an invariant

under SLOCC and in this case its rank as well. The rank of C then defines two equivalence

classes: rank-1 states are separable while rank-2 states are entangled. For the case of three

qubits it can be proved that there are six SLOCC classes [58]: separable, three biseparable

classes with respect to all possible bipartitions, the GHZ class and the W class. For the

case of four qubits, we need at least 6 continuous real parameters to parametrize the set of

inequivalent classes and therefore the number of inequivalent classes under SLOCC is already

infinite.

Some examples of entanglement measures for multi-partite systems are [59]:

• The Schmidt measure (invariant under SLOCC)

• The geometric measure of entanglement (invariant under LU)

• The tangle - based on the hyperdeterminant (invariant under SLOCC)

• The relative entropy of entanglement

• The localizable entanglement

However, not all of these measures are entanglement monotones, i.e. positive functions that

vanish for separable states and that do not increase under LOCC. Namely the localizable

entanglement and the geometric measure of entanglement fail to be so. One can, however,

with minor modifications arrive at similar definitions that are indeed monotones [60–62].
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6.2 Entanglement polytopes

Experimentally determining the entanglement class of a state under SLOCC is highly imprac-

tical since it requires measuring a number of parameters exponential in the particle number.

Entanglement polytopes, originating on the work of Walter et al. [10] allows one to classify

multi-particle entanglement based on a linear number of locally accessible parameters. Be-

sides this property the method of entanglement polytopes is also robust against experimental

noise.

Let us consider a pure state ρ = |ψ〉 〈ψ| , |ψ〉 ∈ H =
(
C2
)⊗n

of n qubits. Its one body

reduced density matrices (1-RDM) are given by ρ
(1)
i = tr\i ρ with spectra (λ

(i)
min, λ

(i)
max). As

stated in Chapter 2, for each 1-RDM the spectrum must sum to one and one needs only

one parameter to characterize the spectrum of each 1-RDM. We take this parameter to be

λi := λ
(i)
min ∈ [0, 0.5]. As mentioned in Chapter 9, it has been shown by Higuchi et al. [6] that

for a pure state ρ its local spectra must satisfy the following compatibility inequalities

λi ≤
∑
i 6=j

λj , i = 1, . . . , n. (6.6)

which define a convex polytope (see Fig. 6.1a for a plot of this polytope for 3 qubits). For a

non-increasingly ordered spectra, which is what we will consider from here onwards, one only

needs to consider

λ1 ≤
∑
i 6=1

λi. (6.7)

We have seen that a pure state of n qubits ρ is called non-entangled or separable only if it

can be written as a tensor product ρ = ⊗ni=1ρ
(1)
i . Consequently ρ is separable if and only if

its 1-RDM are pure states. We call ρ bi-separable if it can be factorized into two pure states,

such that ρ = ρ1 ⊗ ρ2, with ρi supported in system Si, such that S1 t S2 = {1, . . . n}. In this

case, each of these states should, independently, satisfy Higuchi’s inequalities,

λ1 ≤
∑

1 6=i∈S1

λi,

λk ≤
∑

k 6=i∈Sc1

λi
(6.8)

where we have taken, without loss of generality, the largest λi to be in the first set and

λk = maxi∈Sc1 λi.

What Walter et al. did was to associate to every entanglement class the collection of

eigenvalues of the 1-RDM of the states in the closure of that class. This gives us, surprisingly, a

convex polytope which is called entanglement polytope. In Fig. 6.1 we plot all the entanglement

polytopes for 3 qubits. These polytopes provides us a local criterion for witnessing global

multi-particle entanglement in the following way: if the spectra of the 1-RDM of a pure
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state |ψ〉 does not lie in an entanglement polytope ∆C , then that state does not belong to

entanglement class C,
(λ1, . . . λN ) 6∈ ∆C ⇒ |ψ〉 6∈ C. (6.9)

What is very important is that, unlike SLOCC classes of which there’s an infinite number of

them for systems consisting of more than three qubits, there are always only finitely different

entanglement polytopes.
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Figure 6.1: Higuchi polytope (a) and the entanglement polytopes for a tripartite system (b)
- (e).

6.3 Witnessing localizable entanglement

The polytope method described in the previous section provides us a natural way of witnessing

many-particle entanglement, as we shall see, namely localizable entanglement (LE) [63,64]. It

can be shown, however, that the task of witnessing LE from local spectral information alone
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is NP-complete. Before showing this, let us first review the concept of LE and prove some

statements regarding it.

The LE of a state ρ is the maximal amount of entanglement that can be created, on

average, between two particles at positions a and b by performing local measurements on the

other particles. To make this more precise, consider a system of n qubits described by a pure

state ρ = |ψ〉 〈ψ| ( in fact one does not need to work exclusively with qubits or pure states, but,

for simplicity, we will restrict ourselves to this scenario). Consider a local measurementM on

all qubits except the ath and the bth one. This local measurement consists of measurement

operators Ms, s = 1, . . . ,m such that,∑
s

M †sMs = 1,

ps = trM †sρMs

(6.10)

where ps give us the probability of obtaining outcome s. Moreover, since the measurement is

local, these measurement operators are a tensor product of measurements on all qubits except

the ath and the bth ones,

Ms = ⊗ni 6=a,b |φsi 〉 〈φsi | (6.11)

with |φi〉 supported on the ith qubit. The two body reduced density matrix of the ath and

bth qubits after obtaining the measurement outcome s is

ρa,bs = tr\{a,b}

(
1

ps
M †sρMs

)
. (6.12)

Given this, we define the average entanglement between qubits a and b under measurement

M to be,

LM,E
a,b (ρ) :=

∑
s

psE
(
ρa,bs

)
(6.13)

where E is a suitable two qubit entanglement measure. The localizable entanglement between

qubits a and b is defined to be the largest average entanglement between these two qubits [64]

LEa,b(ρ) = sup
M
LM,E
a,b (ρ). (6.14)

We wish now to prove that for a pure state |ψ〉, the LE between two qubits is positive if

and only if these qubits belong to the same non-separable partition of |ψ〉.

In order to do so, let us consider a system of n qubits in a pure state |ψ〉 ∈ H = ⊗ni=1H(i)

with H(i) ∼= C2. We aim to prove (without loss of generality) that whenever qubits 1 and

n belong to a non factorizable partition of |ψ〉, LE1,n > 0. Let us start by considering a bi-

partition of the system, I ⊂ {1 . . . n}, H = H(I) ⊗H(Ic) with dimH(I(c)) = 2|I
(c)|. Note that

|ψ〉 may or may not factorize with respect to this partition. Given our partition, |ψ〉 can
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be seen as a linear map from I to its complement in the following way: let |α〉 ∈ H(I) and

〈ψ|α〉 = 〈β| ∈ H∗(Ic), then we define the following linear map

ψ̃I |α〉 := 〈ψ|α〉 = 〈β| , (6.15)

where ψ̃I ∈ L(H(I),H∗(Ic)).

Lemma 39. Let |ψ〉 be a pure n qubit state, I ⊂ {1, . . . , n} and ψ̃I ∈ L(H(I),H∗(Ic)) a linear

operator defined as in Eq. (6.15). Then rank ψ̃I > 1 if and only if |ψ〉 does not factorize with

respect to partition I.

Proof. A rank r operator X ∈ L
(
HA,H∗B

)
has decomposition,

X =
r∑
i=1

〈vi| 〈wi| (6.16)

with |wi〉 ∈ HA, 〈vi| ∈ H∗B, as its smallest decomposition, where the size of the decomposition

is measured in the number of terms involved. In our case, this implies that |ψ〉 =
∑r

i=1 |vi〉⊗
|wi〉. Clearly |ψ〉 only factorizes with respect to partition I if and only if rank ψ̃ = 1 (note

that rank ψ̃ = 0⇔ ψ̃ = 0 and then one must have |ψ〉 = 0).

Consider now a local measurement on the ith qubit, |φi〉 ∈ H(i). Then, we can see that,

Lemma 40. For fixed i (i.e. fixing the qubit we are measuring),

Vi =
{
〈ψ|φi〉 | |φi〉 ∈ H(i)

}
⊂ ⊗nj 6=iH∗

(j) (6.17)

Vi is a vector space with dimV ≤ 2n−1.

Proof. Define,

〈χ| =: 〈ψ|φi〉 ,〈
χ′
∣∣ =:

〈
ψ|φ′i

〉
.

(6.18)

Then α 〈χ| + β 〈χ′| = 〈ψ| (α |φi〉+ β |φ′i〉) ∈ V given that α |φi〉 + β |φ′i〉 ∈ H(i). Also, take

|φi〉 = 0. Then 〈ψ|φi〉 = 0 ∈ V . The dimension follows trivially from the embedding.

Let us now define a bi-partition I ⊂ {1, . . . n} \ {i}. For 〈χ| ∈ Vi =
{
〈ψ|φi〉 | |φi〉 ∈ H(i)

}
⊂

⊗nj 6=iH∗
(j), a post-measurement function, let χ̃I : HI → H∗Ic , defined as in (6.15) (which,

given Lemma 40, is well defined). Let us define the set of “bad” vectors with respect to

partition I to be

BI = {〈χ| ∈ V | rank χ̃I ≤ 1} , (6.19)
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i.e. those functionals that, according to Lemma 39, factorize with respect to partition I. We

wish now to show that BI has a “low dimension” (this will be made precise down below) when

compared to V , which would prove that we can always find “good” measurements |φi〉 (in

physical terms, a “good” measurement is one that, applied to a non bi-separable state, results

in a non bi-separable state). First consider our measurement |φi〉. It can be expanded in the

computational basis. Neglecting normalization, we can characterize it by a single complex

parameter λ ∈ C,

|φi〉 = |0i〉+ λ |1i〉 . (6.20)

Then for an arbitrary χ̃I , we have χ̃I = χ̃0
I + λχ̃1

I . Let M
(2)
k (A) be a 2 × 2 minor of a finite

dimensional operator A, indexed by k. Note that there are finitely many distinct minors. We

then have the following,

M
(2)
k (χ̃0 + λχ̃1) = 0, ∀k ⇔ rank (χ̃0 + λχ̃1) ≤ 1. (6.21)

M
(2)
k (χ̃0 + λχ̃1) is a polynomial in λ, therefore either it is identically zero, or it has a finite

number of roots, Rk =
{
λ ∈ C|M (2)

k (χ̃0 + λχ̃1) = 0
}

. From (6.19) we have,

|BI | = | ∩k Rk|. (6.22)

We then have that BI is finite unless all minors M
(2)
k (χ̃0 + λχ̃1) are identically zero. Let us

assume for now that the set BI is always finite, and relegate the possibility of BI being infinite

dimensional for latter. If we now consider all possible partitions of the finite dimensional set

I, we can consider the global “bad” set B = ∪IBI . If all BI are finite, we have that B, being

the union of a finite number of finite sets, is also finite and the complement of BI in V is an

open and dense subset of V . What if one of the BI is actually infinite? Then the following

lemma applies:

Lemma 41. Fix i and let I ⊂ {1, . . . , n} \ {i} and I ′ ⊂ {1, . . . , n} such that I ′\ {i} = I Let

χ̃jI , j = 0, 1 : HI → H∗Ic, defined as above. If all M
(2)
k (χ̃0 + λχ̃1) are identically 0, then |ψ〉

factorizes with respect to partition I ′.

Proof. According to Eq. (6.21) if M
(2)
k (χ̃0 + λχ̃1) = 0, ∀k then rank χ̃ ≤ 1 for an arbitrary χ̃

(which by Lemma 39 implies that the post measurement state is separable). If rank χ̃ = 0,

then χ̃ = 0 is the null operator and |ψ〉 = 0. Let’s then treat the case rank χ̃ = 1. In this

case, we can write χ̃ = 〈uI | 〈vIc | for a |uI〉 ∈ H(I) and 〈vIc | ∈ H∗(I). This in turn implies

the decomposition, χ = 〈uI | 〈vIc | =
〈
ψ|φ(i)

〉
. Note that fixing I, we have two possibilities

for the set I ′. Either i ∈ I ′ or i ∈ I ′c. Let us consider that i ∈ I ′. Then, expanding

〈ψ| ∈ H∗(I′) ⊗H∗(I′
c) we get,〈

ψ|φ(i)
〉

=
∑
kl

ckl

〈
αk|φ(i)

〉
〈βl| = 〈uI | 〈vIc | (6.23)
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with 〈αk| ∈ H∗(I
′) and 〈βk|H∗(I

′c). The only way we can satisfy this, for all
∣∣φ(i)

〉
is if 〈ψ|

factorizes with respect to partition I ′. The situation is identical when i ∈ I ′c.

Note that we applied the above arguments for the case where we perform a measurement

only on the ith qubit. However, if we perform successive measurements one qubit at a time,

for all qubits except qubit 1 and n, we find the following

Lemma 42. Let |ψ〉 be a pure state of n qubits not bi-separable with respect to any possible

partition. Then the localizable entanglement between any two qubits is non zero.

Proof. Let us assume, without loss of generality that we want to find the localizable entan-

glement between qubits 1 and n. Also, without loss of generality we assume we measure the

remaining qubits in increasing order, i = 2, . . . n−1. Then by our results above, there’s always

a dense ”good” set of measurements such that the state after measurement is non-biseparable

(note that lemma 41 asserts that in case the set of “bad” measurements is non-finite, |ψ〉
must be separable, which violates our assumption). We can repeat this procedure, until we

have measured all but qubits 1 and n. The resulting two qubits state is then entangled, and

by the definition of localizable entanglement Eq. (6.14), LE1,n(ρ) > 0.

We finally arrive at one of our main result of this section

Theorem 43. Let |ψ〉 be a pure state of n qubits then the localizable entanglement between

qubit a and b vanishes if and only if these qubits belong to the same non-separable partition

(tensor factor) of |ψ〉.

Proof. Let qubits a and b belong to different tensor factors of |ψ〉. The the localizable entan-

glement between these two qubits is obviously zero, since local measurements cannot create

entanglement. Now let these two qubits belong to the same tensor factor of |ψ〉. If |ψ〉 is not

bi-separable with respect to any bipartition, then by Lemma 42 the localizable entanglement

between qubits and b is non zero. If, on the other hand |ψ〉 is bi-separable, it can be written

as |ψ〉 = |ψI〉 ⊗ |ψIc〉, where we can take, without loss of generality, a, b ∈ I and |ψI〉 not

bi-separable. Then measurements in |ψIc〉 do not affect qubits in I while for |ψI〉, since it

is bi-separable then, according to Lemma 42, the localizable entanglement between qubits a

and b is non zero.

Consider then our pure n qubit state |ψ〉. With local spectra λ = (λ1, . . . λn). Given

one of the qubits, call it a, to Alice and the other, b, to Bob. We would like to answer the

following question: looking at local spectral information alone, can we certify that a and b

are part of one genuinely entangled subsystem?

For that, let us consider the following related computational problem,
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Figure 6.2: A pure bi-separable n qubits state |ψ〉. If Alice holds one qubit and Bob another
one, they are either in the same tensor product of |ψ〉 or in two different ones.

BISEP-AB

INSTANCE: A set of n + 2 numbers λ1, . . . λn, a, b satisfying λi ∈ [0, 0.5], λi ≥ λi+1,

λ1 ≤
∑n

i=2 λi.

QUESTION: Is there S1 ( S = {1, · · · , n}, 1 ∈ S1 such that λ1 ≤
∑

16=i∈S1
λi and

λk ≤
∑

k 6=i∈Sc1
λi, λk = maxi∈Sc1 λi with λa ∈ S1 and λb ∈ Sc1?

If BISEP-AB is false, then we have that qubits a and b must belong to the same tensor fac-

tor of |ψ〉 and according to Theorem 43 are therefore entangled (using LE as our entanglement

measure), i.e. BISEP-AP is a witness for LE.

We now proceed to show that deciding BISEP-AB is NP-complete. To do so, let us first

state a well known problem, which will form the basis for our reduction.

PARTITION

INSTANCE: A set of m positive non-increasingly ordered integers , called weights,

ω1, . . . ωm.

QUESTION: Is there A ⊆ B = {1, . . . ,m} such that
∑

i∈A ωi =
∑

i∈Ac ωi ?

This is a very well known problem in Computational Complexity, shown by Karp to be

NP-complete in his famous list of ”21 NP-complete Problems” [65, 66]. We note that in

the original problem the weights were not taken to be ordered. However, the ordering can

obviously be achieved in polynomial time, and as such it does not affect our complexity

results.

Let us now define a similar problem which we will use to prove the NP-hardness of BISEP-

AB.
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Q-PARTITION

INSTANCE: A set of m positive non-increasingly ordered rationals, called weights ,

ω1, . . . ωm.

QUESTION: Is there A ⊆ B = {1, . . . ,m} such that
∑

i∈A ωi =
∑

i∈Ac ωi ?

Lemma 44. Q-PARTITION is NP-complete

Proof. (1) It is obvious that Q-PARTITION ∈ NP.

(2) Given that PARTITION, a well known NP-complete problem [65], is a particular in-

stance of Q-PARTITION, we have that Q-PARTITION is NP-hard (PARTITION ≤P Q-

PARTITION).

Given (1) and (2), Q-PARTITION is NP-complete.

We are now in position to prove the following theorem

Theorem 45. BISEP-AB is NP-complete

Proof. (1) It is fairly obvious that BISEP-AB ∈ NP.

(2) Consider a general instance of Q-PARTITION, Q-PARTITION(ω1, . . . , ωm). If ω1 >∑m
i=2 ωi then there is no way of satisfying Q-PARTITION. This can obviously be checked in

polynomial time. We now proceed to show that every instance of Q-PARTITION, such that

ω1 ≤
∑m

i=2 ωi reduces, polynomially, to an instance of BISEP-AB. To do so, let us establish

the following definitions,

λ1 := λ2 :=
1

2ω1m

(
m∑
i=1

ωi
2

)
,

λi :=
ωi−2

2ω1m
, i = 3 . . . , n,

n := m+ 2,

a := 1,

b := 2.

(6.24)
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Using these definitions we have

m∑
i=2

ωi ≥ ω1,

m∑
i=1

ωi ≥ 2ω1,

1

2ω1m

(
m∑
i=1

ωi
2

)
≥ λ3,

λ1 = λ2 ≥ λ3.

(6.25)

Given this, which also implies λ1 ≤
∑n

i=2 λi, and since λi ∈ [0, 0.5], i = 1, . . . , n and λi ≥
λi+1, i = 3, . . . , n by construction, then the set {λ1, . . . , λn, a = 1, b = 2} is a valid instance of

BISEP-AB. Consider our original BISEP-AB problem, deciding whether there exists an S1 (
S = {1, . . . n} with 1 ∈ S1 such that λ1 ≤

∑
16=i∈S1

λi and λk ≤
∑

k 6=i∈Sc1
λi, k = argmaxi∈Sc1λi

with λa ∈ S1 and λb ∈ Sc1. Note that given our choice of a = 1 and b = 2 we are effectively

forcing k = 2.

Then we have

λ1 ≤
∑

16=i∈S1

λi,

λ2 ≤
∑

26=i∈Sc1

λi.
(6.26)

Now, using Eq. (6.24) we can transform this into

1

2ω1m

 m∑
j=1

ωj
2

 ≤ ∑
16=i∈S1

ωi−2

2ω1m
,

1

2ω1m

 m∑
j=1

ωj
2

 ≤ ∑
26=i∈Sc1

ωi−2

2ω1m
.

(6.27)

Taking B = {1, . . . , n} and A = {j ∈ B|j + 2 ∈ S1}, then A ⊂ B and its complement in B is

Ac = {j ∈ B|j + 2 ∈ Sc1}. Using this fact, we can write

1

2ω1m

∑
j∈B

ωj
2

 ≤∑
j∈A

ωj
2ω1m

,

1

2ω1m

∑
j∈B

ωj
2

 ≤ ∑
j∈Ac

ωj
2ω1m

.

(6.28)
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Now, using the fact that
∑

j∈B • =
∑

j∈A •+
∑

j∈Ac •,∑
j∈B

ωj
2
≤
∑
j∈A

ωj ,∑
j∈B

ωj
2
≥
∑
j∈A

ωj
(6.29)

which means that ∑
j∈B

ωj
2
≤
∑
j∈A

ωj ≤
∑
j∈B

ωj
2

(6.30)

and consequently ∑
j∈Ac

ωj =
∑
j∈A

ωj . (6.31)

Which proves that any instance of Q-PARTITION of such that ω1 ≤
∑m

i=2 ωi, reduces to a

particular instance, BISEP-AB(λ1, . . . , λn, a, b), of BISEP-AB. Given that all other instances

of Q-PARTITION can be decided in polynomial time, we have Q-PARTITION ≤P BISEP-

AB. Given (1) and (2), we have that BISEP-AB is NP-complete.

We have then the tantalizing situation that even though we can, in principle, witness localiz-

able entanglement from a small number of local measurements, the classical post processing

of the data is, given current algorithms, intractable. In Appendix 12.1 we give an overview

of several related physical problems and their computational complexity, including their re-

lationship to BISEP-AB.

6.4 Comparing the computational complexity of classical and

quantum marginals

This section is a bit disconnected from what has been discussed above. Here we show an in-

stance of a natural problem that is solvable in the Quantum Mechanical setting but intractable

(in a computational complexity sense) in the classical scenario.

6.4.1 Classical

Consider an alphabet χ = {1, . . . d} and a string over this alphabet, x ∈ χ⊗n. Consider now

the joint probability mass function P1,2(x1, x2) where x1 and x2 are n and m length strings,

respectively, with each character drawn at random from the alphabet χ, according to the
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marginal probability mass function

P1(x1) =
∑

x2∈χ⊗n
P1,2(x1, x2)

P2(x2) =
∑

x1∈χ⊗m
P1,2(x1, x2)

(6.32)

Now, imagine we forget about labels and simply order the values of the joint and the

marginals probabilities mass function non-increasingly, denoting them by P ↓1,2, P
↓
1 , P

↓
2 respec-

tively.

We now ask the following question: When are P ↓1 , P ↓2 compatible with a global (joint)

P ↓1,2, in the sense that they come from marginalizing P ↓1,2? That is, we seek an answer to the

following computational problem

C-MARG

INSTANCE: Three sets P ↓1,2, P ↓1 , P ↓2 , with |P ↓1 | = n, |P ↓2 | = m and |P ↓1,2| = nm such that

the elements of any of these sets are in the interval [0, 1] and the sum of the elements in any

set sums to 1.

QUESTION: Is there a probability mass function P1,2(x1, x2) whose non-increasingly or-

dered version is given by P ↓12 such that its marginals P1(x1) and P2(x2) have as ordered

versions P ↓(1) and P ↓(2) respectively?

We now proceed to show that deciding such problem is NP-hard.

Lemma 46. C-MARG is NP-complete

Proof. (1) It is obvious that C-MARG ∈ NP.

(2) Consider the following particular case of our problem: Let |P ↓1 | = |P ↓2 | = n, |P ↓1,2| = n2.

Assume also that P ↓1 =
(
λ

(1)
1 , λ

(2)
2 , 0, . . . 0

)
with λ

(1)
1 = λ

(2)
2 . Hence one must have, P ↓1 =(

λ
(1,2)
1 , λ

(1,2)
2 , . . . , λ

(1,2)
2n , 0, . . . , 0

)
. Let B =

{
λ

(1,2)
1 , λ

(1,2)
2 , . . . , λ

(1,2)
2n

}
. Then P ↓1 can only arise

as a marginal from P ↓12 if there exists B1 ⊂ B such that λ
(1)
1 =

∑
b∈B1

b =
∑

b∈Bc1
b = λ

(2)
2 ,

which is simply the PARTITION problem. Hence our compatibility problem is NP-hard.

Given (1) and (2), our problem is NP-complete.

6.4.2 Quantum

We now consider the quantum analogue of the above classical problem.

Consider a bipartite quantum state ρAB ∈
(
C2
)dA ⊗ (C2

)dB , not necessarily pure. Then,

by purification it can be converted into a pure tripartite state ρABC = |ψ〉 〈ψ| , ψ ∈ CdA ⊗
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CdB ⊗CdC , such that trC ρABC = ρAB. Note that | spec ρi| = di and | spec ρAB| = dAdB. In

this case the following holds

Lemma 47 ( [67]). Let λ be the non-increasingly ordered spectrum of ρAB and λ̃ the non-

increasingly ordered spectrum of its partial trace ρA. Then for every k ∈ {1, . . . , dA} the

inequality
k∑
i=1

λ̃i ≤
dBk∑
i=1

λi (6.33)

must hold.

For a proof see [67]. Moreover, for dA = 2 the equations in lemma 47 are sufficient to

characterize the relationship between the spectrum of ρAB and that of ρA [67, Theorem 4.5].

In this case we only have the trivial inequalities

λ̃1 ≤
dB∑
i=1

λi

λ̃1 + λ̃2 ≤
dB∑
i=1

λi

(6.34)

And the problem of deciding if (spec ρ↓12, spec ρ↓1, spec ρ↓2) are compatible, is in P.

6.4.3 Conclusion

To the best of our knowledge, no natural instance of a pure state entanglement problem

been shown before to be hard. Here we have shown that while it is easy to obtain the

physical measurements for deciding whether two qubits are entangled or not in a localizable

entanglement sense, processing the outcome in order to decide if this qubits are entangled

is, in its generality, hard in a computational complexity sense. We have also given a curious

example of a situation where deciding a given quantum problem is easy but not its classical

analogue.
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Chapter 7
Concluding remarks

The quantum marginal problem, despite its physical relevance and potential applications has

remained in the dark for quite long. The solution obtained for Klyachko for the univariate

quantum marginal problem has been a major breakthrough. We have provided here a simple

proof that extremality of the eigenvalues of the 1-RDMs leads to structural simplifications of

the possible wavefunctions associated with such 1-RDM. We have also provided the solution

for the case when the 1-RDMs are degenerate, a case that, as far as we know, has not been

treated previously and have computed the structural simplifications such case leads to. As we

have discussed, such structural simplifications can prove to be useful for practical applications

as for example the calculation of ground states. Therefore it is important to know if these

structural simplifications are stable under small perturbation. To discuss the relevance of

this extremality of eigenvalues of 1-RDMs we have undertaken a study of its relevance in

the context of quantum chemistry: whether or not it could prove useful in the calculation of

ground states of atomic and molecular systems. As we have seen answering this question is

not a simple endeavor, for it is plagued by several problems: choosing the right method for

the calculation of ground states, the high dimensionality necessary to achieve a good precision

and ultimately the inability to examine a large number of systems and generalize our results.

We have also addressed the quantum marginal problem in Fock space and characterized

the mode and particle reductions. We have shown that for the particle reduction there are

no constraints in Fock space. We have also, in order to achieve our goal, characterized the

reductions of free Fermions, and show that interestingly the spectra of free Fermions does

not form a convex polytope as one could at first expect, based on the convexity properties

of the moment polytope. We have pinpointed the problem to the fact that the set of free

Fermions is not connected, a simple but still interesting fact. We have also considered the

mode reductions for free Fermions and fully characterized it, resorting to the skew-symmetric

Sing-Thompson problem. Resorting to the Jordan-Wigner transformation the obtained char-

acterization corresponds exactly to the one known for a system of qubits.
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At last we have examined the computational complexity of deciding from local spectral

information whether many-body states are entangled or not, using a specific measure of

entanglement: localizable entanglement. We have seen that while it is true that few easily

obtainable physical measurements may be sufficient to witness many-body entanglement, the

classical post processing of the obtained data is, in principle, intractable in the sense that the

problem is NP-complete.



Part II

Electronic and conductance

properties of geometrically

frustrated systems
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Organization

This part is organized as follows. In Chapter 8 we introduce preliminary background regarding

tight-binding quantum rings. This background will prove useful for when we discuss the AB2

chain in the following chapters. In Chapter 9 we present a detailed study of the the itinerant

AB2 chain, a prime example of the family of itinerant geometrically frustrated systems. We

study not only the non-interacting AB2 chain but also the AB2 chain in the presence of

nearest-neighbor interactions. In Chapter 10 we study the two-lead electronic conductance

through non-interacting AB2 chains and draw conclusions which should be applicable to

identical flat-band frustrated systems. In Chapter 11 we introduce a new method for the

calculation of the two-lead electronic conductance through interacting clusters. In Chapter 12

we study the two-lead electronic conductance through interacting spinless AB2 chains using

the method developed in the previous chapter and comparing our results against the non-

interacting case and in Chapter 13 we conclude.
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Chapter 8
Preliminary background

In this chapter we review some known results regarding discrete quantum rings. We are

primarily interested in the energy dispersion of quantum rings and the modification introduced

in the system by the presence of flux via the Aharonov-Bohm effect. These results will form

a basis for studying the AB2 chain further ahead, which is simply a chain of quantum rings.

8.1 Quantum rings

Even though one can consider continuous quantum rings, we are mainly interested in discrete

ones, for discrete systems are what we will treat in the next chapters. Let us then consider

a translational symmetric quantum ring consisting of N sites as depicted in Fig. 8.1. Using

the tight binding approximation its Hamiltonian can be written as,

H = −t
N∑
j=1

c†j+1cj + c†jcj+1. (8.1)

By transforming the operators into Fourier/momentum space,

c†k =
∑
j

eikjc†j , (8.2)

and using the orthogonality relation (valid for periodic boundary conditions),∑
j

eij(k−q) = δk,qN, (8.3)

the Hamiltonian is diagonalized. Its eigenvalues are given by,

εk = −2t cos(k), k =
2πn

N
, (8.4)
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Figure 8.1: A tight-binding quantum ring.

where,

n =


−N

2
,−N

2
+ 1, · · · , N

2
− 1 , N even

−N − 1

2
,−N − 1

2
+ 1, · · · , N − 1

2
, N odd

(8.5)

so that k belongs to the first Brillouin zone (FBZ).

Let us now introduce a magnetic flux through the ring and perpendicular to it, for example

the one generated by an infinite solenoid. Let us also consider that the flux pierces a region

where the amplitude of the wavefunction of the system tends to zero. Since the probability

of an electron encountering the magnetic flux is basically zero, one could argue, on classical

grounds, that since no force is exerted on the electrons nothing happens. One way of putting it

is the following: Consider that the electrons are highly localized such that their wavefunction is

only non-zero on the ring. Then, classicaly this would mean that the electrons are constrained

to move along the ring, and as such, since the magnetic field outside the solenoid is non-

existent, the Lorentz force on the electrons is zero as well.

However, as demonstrated by Ehrenberg and Siday and latter by Aharonov and Bohm,

[68, 69] the requirement of gauge invariance implies that the phase of the wavefunction of

an electron circulating through the ring is affected and therefore, although no magnetic field

acts directly on the system, its properties are in fact affected by the magnetic flux. This is a

simple consequence of the non locality of quantum mechanics.

Note that experimentally it is certainly impossible to have an infinite solenoid, and as such

some magnetic field will ”leak” out of the solenoid. Also one cannot guarantee with certainty

that the electron’s wavefunction is absolutely zero in the solenoid, but one can approximate

these conditions to a very high degree [70].

Let us look at the Aharonov-Bohm effect in more detail. The wavefunction of the electron

when the ring is threaded by the magnetic flux, ψB(θ), is related to its wavefunction in zero
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field, ψ0(θ), by,

ψB(θ) = exp

[
i
q

~

ˆ
~A · d~l

]
ψ0(θ), (8.6)

where θ is the angular position on the ring. Assuming that we have an infinite solenoid of

area S inside our ring and perpendicular to its plane, with magnetic field ~B = B0ẑ inside the

solenoid, where B0 is constant, and zero outside, means that one can choose the magnetic

vector potential outside the solenoid to be

A =
φ

2πr
θ̂ (8.7)

One can readily confirm that the curl of this vector potential vanishes,

~B = ~∇× ~A = 0 (8.8)

and that it satisfies Stoke’s theorem

‹
S

~B · d ~S =

ˆ
∂S

~A · d~l. (8.9)

Then after a loop, the wavefunction of the electron is,

ψB(2π) = ψB(0)ei2πφ/φ0 , (8.10)

where φ0 = h/q is the quantum of flux. From now on we will make 2πφ/φ0 → φ, where φ is

now the reduced flux. Therefore, if the electron loops around the ring once, its wavefunction

must acquire a phase given by the reduced flux. This can be inserted in our tight binding

Hamiltonian by using the so called twisted boundary conditions,

H = −t
N−1∑
j=1

(
c†j+1cj + c†jcj+1

)
− t
(

eiφc†Nc1 + e−iφc†1cN

)
. (8.11)

Performing the gauge transformation,

c†j → e−iφ/Njc†j (8.12)

our Hamiltonian can be written in the translational invariant form,

H = −t
∑
j

eiφ/Nc†j+1cj + e−iφ/Nc†jcj+1, (8.13)

where the flux has now been spread equally throughout all hops. As before, due to its

translational invariance, the Hamiltonian is immediately diagonalized by transforming it into
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Fourier space, its one particle eigenvectors being given by,

c†k |0〉 =
∑
j

eikjc†j |0〉 , (8.14)

and the associated eigenvalues being,

εk = −2t cos

(
k − φ

N

)
. (8.15)



Chapter 9
Study of the AB2 chain

In this chapter we introduce the AB2, an example of a geometrically frustrated system. The

exact diagonalization of the spinless AB2 chain is presented in the limiting cases of infinite

or zero nearest-neighbor Coulomb interaction for any filling and in the presence of magnetic

flux. Without interactions, the AB2 chain has a flat band even in the presence of magnetic

flux. A simple construction of the localized states that generate the flat bands both in the

presence and absence of flux is presented and generalized to arrays of ABn quantum rings.

The flat band generates a plateau in the ground-state energy as a function of filling (for fillings

between 1/3 and 2/3). A restricted Hartree-Fock study of the V/t versus filling phase diagram

has been carried out. For finite V , the mean-field ground-state energy increases in relation to

the independent Fermions ground-state energy, but remains negative for fillings lower than

2/3. For filling larger than 2/3, it becomes approximately linear reflecting the existence of

nearest-neighbor occupied sites. In the mean-field phase diagram, a uniform density phase is

found at low filling. For filling larger than 1/3, one of the mean-field solutions for the density

difference between A sites and B and C pairs of sites disappears (due to Pauli’s exclusion

principle). The validity of the mean-field approach is discussed taking into account the exact

results in the limiting cases.

We also discuss whether the strong coupling t-V AB2 chain is a Luttinger liquid (LL). We

argue that while for low filling, the low energy properties of t-V AB2 chain can be described

by the spinless Luttinger Hamiltonian, for filling near or larger than 2/9, the AB2 set of

eigenstates and eigenvalues becomes a complex mix of the sets of eigenstates and eigenvalues

of LLs with different sizes, fillings, boundary conditions, and LL velocities.

9.1 Introduction

The field of itinerant geometrically frustrated electronic systems has attracted considerable

interest in the last two decades [71–100]. A simple example of a geometrically frustrated lattice
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is the AB2 chain, also designated by diamond chain or bipartite lozenge chain [71–74,76]. This

is a quasi-one-dimensional system consisting of an one-dimensional array of quantum rings.

Such system can be used to model ML2 (metal-ligand) chains [101] and azurite [72] and can

be generalized to molecular systems displaying similar topology [102]. Also, given nowadays

nanofabrication techniques, such as electron beam lithography, a diamond chain-like system

can, in principle, be built from scratch [75]. A particular feature of the band structure of

these frustrated systems is the presence of one or several flat bands in the one-particle energy

dispersion, which reflect the existence of localized eigenstates of the geometrically frustrated

tight-binding Hamiltonian [71–93].

The ground states of the Hubbard model for an AB2 geometry are well studied [71–74,76]

as well as for other frustrated lattices such as the sawtooth chain [89], the Kagome chain [89],

etc. Some of these frustrated lattices fall onto the category of the cell construction lattices

proposed by Tasaki [77–81] or the category of line graphs lattices proposed by Mielke [82–85].

The approach followed in some of these studies relies in the fact that the Hubbard interaction

is a positive semidefinite operator and is limited to cases where the lowest band is a flat band

or the chemical potential is fixed at the flat-band energy [71]. The frustrated systems have

usually been studied in the absence of flux [74, 76, 91]. In the case of AB2 Hubbard chain,

the flux dependence of the ground-state energy has been studied but again only for chemical

potential fixed at the flat band energy [71]. Many different ground states are possible in the

AB2 Hubbard chain, leading to a great variety of properties such as flat-band ferromagnetism

or half-metallic conduction, depending on the values of filling, interaction or magnetic field

[71].

The case of spinless Fermions in a AB2 lattice, taking into account nearest-neighbor

Coulomb interaction, is simpler than the Hubbard model due to the absence of spin de-

grees of freedom. We will designate the respective Hamiltonian for such system by t-V

AB2 Hamiltonian. The t-V model, in its strictly one-dimensional version (1D), can be

mapped into the anisotropic Heisenberg model (more precisely, the XXZ or Heisenberg-Ising

model) by the Jordan-Wigner transformation [103], whose Bethe ansatz solution has long

been known [104, 104–106]. For quasi-1D models such as the one here discussed, a Bethe

ansatz solution is not possible. However, a Jordan-Wigner transformation into the XXZ AB2

chain should be possible using the extension of the Jordan-Wigner transformation to two

dimensions which has been discussed by several authors [107–111]. In the case of a square

lattice, this transformation requires the introduction of a gauge field which in contrast to the

one-dimensional case affects the energy spectrum [108–110]. In particular, the strong-coupling

limit of the repulsive t-V model under a Jordan-Wigner transformation is mapped into the

strongly anisotropic antiferromagnetic Heisenberg model. During the last years, many studies

of the antiferromagnetic Heisenberg model in geometrically frustrated lattices have been car-

ried out [72,74,87,88,91,94–97,100,112]. Under high magnetic fields but below the saturation
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field, the ground states of these frustrated magnetic systems consist of localized and indepen-

dent magnons created in a ferromagnetic background. As a consequence of these localized

magnons, quantized plateaus have been found in the respective magnetization curves [97].

9.2 The AB2 chain

In Fig. 9.1(a), a diamond ring is shown with a magnetic flux φ threading each diamond

plaquette and a magnetic flux φi threading the inner ring. The inner sites in Fig. 9.1(a) are

denoted as C sites and the outer sites as B sites. Note that there are two ways to close the

linear AB2 chain shown in Fig. 9.1(b), either by leaving the B sites or the C sites in the

interior of the ring. The two situations are physically equivalent and therefore we will assume

that we have closed our ring so as to leave the C sites as inner sites. The system may be

pictured as two rings, an outer one and an inner one, as shown in Fig. 9.1(a), so that an

electron traveling through the outer ring sees an effective flux φo while and electron traveling

through the inner ring sees a different effective flux φi. It will prove itself useful to introduce

an auxiliary flux φ′ such that

φo = φ′ +Nc
φ

2
,

φi = φ′ −Nc
φ

2
,

(9.1)

where Nc is the number of cells of the diamond ring. In the case of zero φ′, both effective

fluxes still remain non-zero if φ is nonzero. In this case, the Peierls phase can be equally

distributed in each plaquette, restoring the translational invariance in each ring as shown in

Fig. 9.1(b). For φ = 0 or π, the lattice is invariant in the “flip” of one plaquette (so that B

and C sites exchange places), reflecting a local Z2 symmetry [113].

Considering nearest-neighbor Coulomb interactions and particle hoppings, the t-V Hamil-

tonian for an AB2 chain with Nc unit cells (or diamonds) is

H = H0 + V
∑
j

(
nAj + nAj+1

) (
nBj + nCj

)
, (9.2)

where V is the value of the interaction and

H0 =− t
Nc∑
j=1

[
eiφo/2Nc(A†jBj +B†jAj+1)

+ e−iφi/2Nc(C†jAj +A†j+1Cj)
]

+ H.c.

(9.3)

Here we have chosen a gauge such that the Peierls phases are equally distributed in the inner

ring and in the outer ring.
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A
C

A

B

(a)

...... A

B

C

(b)

Figure 9.1: (a) The AB2 chain consists of an one-dimensional array of diamond rings. Under
magnetic field, each diamond ring is threaded by a magnetic flux φ and the inner star is
threaded by a flux φi. This system can be pictured as an outer ring with flux φo and an inner
ring with a flux φi. (b) The diamond chain when φ′ = 0.

9.3 Tight-binding limit

For simplicity, we will assume a flux configuration such that φ′ = 0 in this section. The

general case is considered at the end of this section. The tight-binding Hamiltonian for AB2

chain with Nc cells is

H =− t
Nc∑
j

A†j

(
eiφ/4Bj + e−iφ/4Cj

)
+A†j+1

(
e−iφ/4Bj + eiφ/4Cj

)
+ H.c.

(9.4)

Employing the transformations(
b†j
c†j

)
=

1√
2

(
e−iφ/4 eiφ/4

−ie−iφ/4 ieiφ/4

)(
B†j
C†j

)
, (9.5)

the system may be mapped into an Anderson-like model as depicted in Fig. 9.2. Its Hamil-

tonian is given by
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A b

c

... ...

Figure 9.2: The Hamiltonian of the diamond chain threaded by an arbitrary flux can be
mapped into a non-interacting periodic Anderson-like model with a basis of three sites per
unit cell and with hopping amplitudes controlled by magnetic flux.

H =− t1
∑
j

b†jAj − t2
∑
j

b†jAj+1

− t3
∑
j

c†jAj+1 + H.c.,
(9.6)

where

t1 =
√

2t, (9.7)

t2 =
√

2 cos(φ/2)t,

t3 =
√

2 sin(φ/2)t.

We note that the possibility of mapping a chain Hamiltonian into a periodic Anderson model

has been already explored by Gulácsi et al by mapping the triangular-chain Hamiltonian into

a periodic Anderson model [114]. In our case, when the flux is either zero or π, one has

localized eigenstates, which lead to flat bands in the energy dispersion (see Fig. 9.4). For

zero flux the system becomes a tight-binding ring of A and b sites with independent c sites

(see Fig. 9.2), having plane-wave eigenstates in the ring and localized eigenstates at c sites,

as depicted in Fig. 9.3(a). On the other hand, for φ = π, the system behaves as a set of

Nc independent systems with three sites and all the eigenstates are localized as depicted in

Fig. 9.3(b) [114]. The eigenvalues for an arbitrary value of flux are given by

εflat = 0,

ε± = ±2t
√

1 + cos(φ/2) cos(k).
(9.8)

In Fig. 9.4, the dispersion relation for several values of flux is shown. The flat band εk = 0

is omitted since it is not modified by the presence of flux. We introduce here the Fermionic

operators f †k , a†k and d†k, which create electrons in the single-electron bands, more precisely,

f †k creates a particle with momentum k on the top band, a†k on the flat band, and d†k on

the bottom band. The eigenstates creating operators are given by linear combinations of the

creation operators on sites A, B and C, and for the flat band, the expression of the creation
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......

(a)

......

(b)

Figure 9.3: Eigenstates of the tight-binding AB2 chain for (a) φ = 0 and (b) φ = π. For zero
flux, itinerant (red dashed line) as well as localized eigenstates (blue dotted line) are present.
For φ = π, all states are localized [114].
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Figure 9.4: Dispersion relation of the diamond chain for different flux values (we have omitted
the flat band εk = 0 since it is not affected by the flux). For φ = π, all bands are flat reflecting
the local Z2 symmetry of the Hamiltonian.

operator is rather simple,

a†k =
1√

1 + cos (φ/2) cos(k)

[
cos (φ/4− k/2)B†k

− cos (φ/4 + k/2)C†k

]
.

(9.9)

As can be concluded from the above results, the diamond chain presents always a flux

independent dispersionless band and is gapless for zero flux. At finite flux a gap opens

between the bottom and the top bands. This gap is given by ∆ε = 4t
√

1− cos(φ/2), while

the bandwidth of the system is W = 4t
√

1 + cos (φ/2).

In Fig. 9.4, it can be observed that for k = π/2, two flux independent eigenvalues appear.

This condition is only fulfilled if the number of unit cells is a multiple of four, Nc = 4n with n

integer. We should also note that the system is 2π periodic on the flux when Nc is even and

4π periodic when Nc is odd. A flux of 2π interchanges the energies of the dispersive states
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with k = 0 and k = π. These two values of momenta are allowed when Nc is even. The value

k = π is forbidden when Nc is even and the period of the system is 4π on the flux.

The eigenvalues for an arbitrary value of flux φ′ are obtained following similar steps and

the energy-dispersion relations become

εflat = 0,

ε± = ±2t
√

1 + cos(φ/2) cos(φ′/Nc + k).
(9.10)

The insertion of an extra flux φ′ in the AB2 chain only translates the energy-dispersion relation

by φ′/Nc and therefore does nothing to the flat band. This result is expected since it is similar

to what is observed in 1D quantum rings. One can use φ′ to control the momentum for which

the top/bottom band reach its maximum/minimum energy.

9.4 Density of states, filling and ground-state energy

Let us consider the thermodynamic limit (k continuous) and calculate the density of states

(DOS) of the tight-binding AB2 chain. The DOS of the flat band is a Dirac-delta function

at ε = 0. The dispersive bands are one-dimensional bands and the combined DOS of the two

dispersive branches can be written as

D(ε)± =
1

πt

∣∣ε′∣∣ 1√
cos2(φ/2)− (ε′2 − 1)2

, (9.11)

when ε belongs to the energy intervals associated with the dispersive bands and where ε′ =

ε/2t. The full DOS of the system is therefore, D(ε) = D±(ε) + δ(ε).

Filling is defined as the number of electrons N per site, ρ = N/Ns = N/3Nc, where Ns

is the number of sites. Due to the symmetric nature of the energy spectrum and since each

band can accommodate one electron per unit cell, we know that half filling occurs for EF = 0.

Since the flat band contains Nc states then when ρ ∈ [1/3, 2/3] one has EF = 0. If EF lies

on the bottom band we have

ρ =
1

3

ˆ EF

εb,min

D−(ε) d ε, (9.12)

where εb,min = −2
√

2t cos(φ/4) is the bottom of the band and where the factor of 1/3 is due

to the fact that the integral of the DOS over a band is one and each band contributes equally
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Figure 9.5: Ground state energy in the thermodynamic limit as a function of filling for several
values of flux. EGS remains constant when filling the flat band, ρ ∈ [1/3, 2/3] achieving its
minimum value in that interval for φ = π. For φ = π, EGS has linear behavior in ρ, since all
bands are flat.

to the DOS. Using Eq. (9.11) we have,

ρ =
1

6π

arctan

 ε′b,min√
cos2(φ/2)− ε′2b,min

−
arctan

 E′F√
cos2(φ/2)− E′2F

 ,
(9.13)

where

ε′b,min =
(εb,min

2t

)2
− 1,

E′F =

(
EF
2t

)2

− 1.

(9.14)

If, on the other hand, EF lies on the top band, one can use the symmetry of the density of

states to write ρ = 1− ρh, where

ρh =
1

3

ˆ −EF
εb,min

D−(ε) d ε, (9.15)

is given by Eq. (9.13).

Given the preceding results, we are able to calculate the ground-state energy of the system

as a function of filling. The ground-state energy is given by

EGS =

ˆ EF

Emin

D(ε)εd ε, (9.16)
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while Eqs. (9.13) and (9.14) give us the relation between the Fermi energy and the filling.

For a general value of φ there is no simple analytical expression and the ground-state energy

should be calculated numerically. However, when φ = π it is very simple to derive an exact

result, given that the system only has three energy levels, ε = 0,±2t and that each can take

Nc electrons. In this case, the ground-state energy per unit cell while the bottom band is not

fully filled is given by EGS = −2tN/Nc = −6tρ. At ρ = 1/3 the bottom band gets fully filled

and from ρ = 1/3 to ρ = 2/3 we are filling the middle band whose energy is ε = 0. Therefore,

EGS = −2t, ρ ∈ [1/3, 2/3]. For ρ > 2/3 we start filling the upper band, whose energy is

ε = 2t. In this situation the ground-state energy is given by EGS = 6t(ρ− 2/3)− 2t.

In Fig. 9.5 we plot the ground-state energy as a function of filling for several values of

flux. As can be seen for ρ ∈ [1/3, 2/3] the ground-state energy remains constant since we are

filling the flat band εk = 0. The ground-state energy is obviously even around εk = 0.5 due

to the symmetric nature of the dispersion relation. We also see that for ρ 6∈ [1/3, 2/3] the

dependence of the ground-state energy on the filling departs from its linear behavior when

φ 6= π.

9.5 Flat bands and localized states for arrays of quantum rings

It is well known that the single-particle flat band eigenstates of a geometrically frustrated

lattice can be written as a set of localized eigenstates which are translated versions of the

same state |ψloc〉. This single-particle state is non-zero in a small lattice region and it is an

eigenstate of the tight-binding Hamiltonian (a zero energy eigenstate in the case of the AB2

chain). This means that if we write the eigenstate as |ψloc〉 =
∑

i aic
†
i |0〉, where i runs over all

lattice sites such that ai 6= 0, then
∑

i triai = εar = 0, where r can be any site in the lattice

such that ar = 0, tri is the hopping constant between sites r and i and ε is the kinetic energy

of the state. In the particular case of AB2 chains, ε = 0 and the restrictions on sites i and r

can be lifted, i.e.,
∑

i triai = εar = 0, where i runs over all lattice sites and r is any site of

the lattice. We propose a particular perspective (but equivalent) for the case of any array of

quantum rings similar to the AB2 chain which easily allows us to identify the localized states

in the absence or presence of flux. Let us also assume for now that the array is such that

the shared sites between consecutive rings are directly opposite, and therefore the number of

sites in each ring is even.

For zero flux, φ = φo = φi = 0, all energy levels of the tight-binding ring are doubly

degenerate with exception of the lowest and highest energy levels (k = 0 and k = π) and

the respective eigenstates have opposite momenta, reflecting the time-reversal symmetry of

the Hamiltonian. In the particular case of the AB2 chain, the respective ring has four sites

and there is only one degenerate level corresponding to zero energy. Subtracting the states

of opposite momenta, one obtains a standing wave with nodes at i = 0 and i = Nr/2 (ring
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sites are numbered clockwise from i = 0 to i = Nr − 1). For Nr > 2n with n > 2 one

has more than one flat band. More precisely, one has Nring/2 − 1 flat bands with energies

εn = −2t cos(2πn/Nr) with n = 1, . . . , Nr/2 − 1. Since these nodes coincide with the sites

shared by consecutive rings, one can say that for these standing wave states, the ring becomes

uncoupled to the rest of the chain. Furthermore, if Nr > 2n with n > 2 the standing waves

may have more than two nodes and more complex lattices can have such localized states. Note

however that the nodes position must be an integer. We conclude that in order to find flat

band eigenstates of arrays of quantum rings, one may construct standing waves such that the

nodes coincide with sites shared between different quantum rings. For instance, for Nr = 8,

a square lattice is possible as shown in Fig. 9.8.

These arguments agree with the results obtained for the AB2 chain. For φ = φo = φi = 0,

one has a†k = [B†k −C
†
k]/
√

2, which can be Fourier transformed to obtain a†i = [B†i −C
†
i ]/
√

2.

The single-particle state a†i |0〉 is a localized eigenstate in cell i with zero energy.

Let us consider now φ = 0 but φo = −φi 6= 0. Then the tight-binding constants in

one ring become tj,j+1 = e−iφo/2Nc·jt, for j = 0, . . . , Nr/2 − 1 and tj,j+1 = eiφo/2Nc·jt, for

j = Nr/2, . . . , Nr − 1 so that the total Peierls phase is zero reflecting the fact that φ = 0. A

simple gauge transformation

c†j → ei
φo
2Nc
·jc†j , j = 0, . . . , Nr2

c†j → ei
φo
2Nc
·(Nr−j)c†j , j = Nr

2 + 1, . . . , Nr − 1

restores the translation invariance with a zero Peierls phase and the previous construction of

localized states can be applied. Therefore, the same flat bands will be present. In the case

of the AB2 chain, the flat-band states will have the form a†i |0〉 = e−i
φo
2Nc [B†i −C

†
i ]/
√

2|0〉, but

the phase term is obviously irrelevant.

Let us address now the case of φ 6= 0 but φ′ = 0 (the case with φ′ 6= 0 is obtained following

the same steps after a gauge transformation as explained for the φ = 0 case). When φ 6= 0,

eigenstates of the tight-binding ring with opposite momenta k and −k do not have the same

energy (see Fig. 9.6) and therefore the standing wave obtained from the subtraction of these

states is not an eigenstate of the tight-binding Hamiltonian of the ring. One can overcome

this difficulty considering two consecutive rings and following a certain path in those rings

such that the total Peierls phase in that path is zero as shown in Fig. 9.7. If one constructs

standing waves for a ring of 2Nr sites with the additional condition of extra nodes at sites

Nr/2 and 2Nr − Nr/2 (sites A and B in Fig. 9.7), this state can be folded (making site A

overlap with site B) to give an eigenstate of the two rings threaded by flux with nodes at

the extremities. Note that the larger ring has non-zero Peierls phases associated with each

hopping but the total phase is zero. So after a gauge transformation to eliminate these phases,

the states of opposite momenta are degenerate and the standing wave is an eigenstate of the

Hamiltonian of the two rings. Again, one or more flat bands are possible depending on the
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Figure 9.6: Dispersion relation of a tight-binding ring with eight sites: (a) without flux; (b)
threaded by a magnetic flux φ = π/5. For zero flux, states k and −k are doubly degenerate
(with the obvious exception of k = 0 and k = π). When φ 6= 0, the eigenstates of the tight-
binding ring with opposite momenta k and −k do not have the same energy reflecting the
loss of time-reversal symmetry.

size of the quantum ring.

The gauge transformation for the larger ring will be

c†j → ei
φo
2Nc
·jc†j , j = 0, . . . , Nr2

c†j → ei
φo
2Nc
·(Nr−j)c†j , j = Nr

2 + 1, . . . , Nr

c†j → e−i
φo
2Nc
·(j−Nr)c†j , j = Nr + 1, . . . , Nr + Nr

2

c†j → e−i
φo
2Nc
·(2Nr−j)c†j , j = Nr + Nr

2 + 1, . . . , 2Nr − 1

where the sites have been numbered clockwise in the larger ring. In the case of the AB2

chain, after the gauge transformation the localized state (not normalized) will be (c†1 − c
†
3 +

c†5 − c
†
7)|0〉, which, inverting the gauge, transformation corresponds to the state [e−i

φo
2Nc (c†1 −

c†3)+ei
φo
2Nc (c†5−c

†
7)]|0〉. This state written in terms of the operators of the AB2 chain becomes

[e−i
φo
2Nc (B†j−C

†
j+1)+ei

φo
2Nc (B†j+1−C

†
j )]|0〉 or equivalently [e−i

φ
4 (B†j−C

†
j+1)+ei

φ
4 (B†j+1−C

†
j )]|0〉.

These are exactly the localized eigenstates obtained Fourier transforming Eq. (9.9),

2eik/2
√

1 + cos (φ/2) cos(k)a†k =

[eiφ/4 + e−i(φ/4−k)]B†k − [ei(φ/4+k) + e−iφ/4]C†k.
(9.17)

Note that these localized states may overlap in real space, that is, they constitute a basis of the

subspace of localized states but not an orthogonal basis. Such impossibility of constructing

orthogonalized Wannier states for certain lattices with flat bands under a uniform magnetic

field has been mentioned before [115].

As an example of application of the previous arguments, we show in Fig. 9.8 the localized

states for the Lieb lattice. It is known that this lattice displays a flat band for zero and finite
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Figure 9.7: In the presence of flux, considering two consecutive rings and following first the
continuous path (in red) and then the dotted path (in black) the total Peierls phase in that
path is zero (the path is clockwise for the left ring and counter-clockwise for the right ring).
If one constructs standing waves for a ring of 2Nr sites with the additional condition of extra
nodes at sites A and B, this state can be folded to give an eigenstate of the two rings threaded
by flux with nodes at the extremities and at site A.
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Figure 9.8: Localized states in the case of the Lieb lattice with or without magnetic flux. The
introduction of magnetic flux extends the localized state to two plaquettes. These plaquettes
are equivalent to the quantum rings discussed in the text and the localized state is a standing
wave with nodes in the plaquettes vertices.

magnetic flux. Aoki et al. have found the respective localized state for zero flux as well as by

inspection a localized “elongated ring state” for finite flux [115]. The zero flux localized state

agrees with the one shown in Fig. 9.8, but our localized state for finite flux shown in Fig. 9.8 is

considerably more compact than the “elongated ring state” of Ref. [115]. We expect that the

previous arguments can be applied to other lattices that fall onto the Lieb lattice category,

that is, bipartite lattices with different numbers, nA and nB, of A and B sublattice sites

in a unit cell [116]. Another example of simple application is the Bc class superhoneycomb

lattice [115]. Again our argument justifies the fact that the flat band in this system remains

flat for finite magnetic field.

9.6 Mean-field results for general V

In this section, we present a mean-field study of the t-V AB2 chain taking into account nearest-

neighbor Coulomb interaction. The results obtained must be interpreted with caution, having
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in mind the known drawbacks of this approach. One of these drawbacks is the fact that this

approach neglects thermal fluctuations, which as stated by the Mermin-Wagner theorem

prevent long range order at finite temperature. In this section, only the zero-temperature

case is addressed, so one avoids this problem. Even at zero temperature, the mean-field

approach overestimates the existence of an ordered phase, since quantum fluctuations oppose

the emergence of an ordered phase and these quantum fluctuations are particularly strong in

quasi-1D systems. Note however that the ground state of quasi-1D systems may in fact be

ordered despite these quantum fluctuations.

When considering nearest-neighbor Coulomb interactions, we will be interested on the

density of particles at A, B and C sites. We assume the particle density on site X to be the

average number of particles per number of unit cell, ρX = NX/Nc. We also assume that the

particle density at B and C sites is the same. Let ρ denote the total particle density,

ρ =
ρA + 2ρB

3
, (9.18)

where ρA and ρB are the particle densities at A and B sites respectively. We then have

0 ≤


ρ

ρA

ρB

 ≤ 1. (9.19)

In this situation, the interaction part of the mean-field Hamiltonian can be written as

Hint = 2V
∑
j

[
2ρBn

A
j + ρAn

B
j + ρAn

C
j

]
− 4NcρAρB. (9.20)

While there is no simple expression for the mean-field dispersion relation for general φ, a

simple expression exists for zero flux,

εflat = 2V ρA,

ε± = V (ρA + 2ρB)±
√

8t2 cos2(k/2) + ∆2
V ,

(9.21)

where ∆V = V (ρA − 2ρB). Again, a flat band is present, but its energy level depends on the

density at sites A.

We define the order parameter as the excess of density at the A sites,

∆ρ =
ρA − 2ρB
ρA + 2ρB

. (9.22)

Due to the equivalence of the B and C sites, we regard our system as being a dimerized system

consisting of two alternating types of sites: A sites and BC pseudo-sites. Note however that

this picture is to be interpreted with caution since BC pseudo-sites are not real sites and can
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Figure 9.9: V/t versus filling mean-field phase diagram for the spinless diamond chain con-
sidering nearest-neighbor Coulomb interactions and Nc = 128. For ρ < 1/3 we can have a
uniform density phase (∆ρ = 0) or a phase with excess of density at A or BC pseudo-sites
(∆ρ > 0 or ∆ρ < 0, respectively). For ρ > 1/3, Pauli’s exclusion principle breaks the symme-
try between A and BC pseudo-sites. A uniform density phase is not possible anymore and the
density of particles can no longer be situated only at A sites. It can however, for ρ < 2/3, be
situated only at BC pseudo-sites. For ρ > 1/3, due to Pauli’s exclusion principle, the density
of particles is required to be spread among A and BC sites and for ρ = 1 the order parameter
is ∆ρ = −1/3, which implies a uniform density of particles between the real A, B and C sites.

accommodate twice as many electrons as A sites. One must note that in a general situation

we have ∆ρ ∈ [−1, 1]. Since 0 < ρA, ρB < 1, then for ρ > 1/3, ∆ρ is limited to the interval

[−1,∆ρmax], where ∆ρmax lies in ] − 1, 0[ and whose value decreases with increasing ρ. For

the same reason, for ρ > 2/3, ∆ρ is limited to ] − 1,−1/3], and not only the upper limit of

∆ρ decreases with increasing ρ, but also the lower limit of ∆ρ increases with increasing ρ.

For ρ = 1 we have ∆ρ = −1/3, corresponding to an equal density of particles on every site

(the only possible state when the system is completely filled).

The phase diagram of the system is depicted in Fig. 9.9. a uniform density phase can exist

only for a filling ρ < 1/3. For ρ < 1/3, starting in the uniform density phase, by increasing

the interaction we are able to localize an excess of electron density at A sites or at BC

pseudo-sites, both situations being symmetric. By further increasing the interaction we are

able to localize all the Fermions at A sites or at BC pseudo-sites where both situations remain

symmetric. As a consequence the order parameter ∆ρ can be double valued for these values

of filling. In the region 1/3 < ρ < 2/3 one no longer can localize the full electrons density at

A sites while one can at BC sites and therefore although the Hamiltonian treats A and BC

pseudo-sites equally, Pauli’s exclusion breaks the symmetry between A and BC pseudo-sites,

lowering the symmetry of the system. Consequently, for ρ > 1/3, the order parameter can
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Figure 9.10: Order parameter as a function of filling for V/t = 0.5, 3 and 20 and Nc = 200.
The changes of slope of the order parameter indicate the phase transitions. Note that the
absence of a positive solution of ∆ρ for ρ > 1/3 reflects the fact that the A and BC pseudo-
sites may be occupied by one and two Fermions, respectively. As a consequence, for ρ < 1/3
the order parameter can be double valued since we are able to localize all Fermions at A sites
(∆ρ > 0) or at BC pseudo-sites (∆ρ < 0). Since for ρ > 1/3 we can no longer localize all
Fermions at A sites, the order parameter can no longer be positive.

no longer be double valued. In the region ρ > 2/3, again due to Pauli’s exclusion principle,

one is not able to fully localize the density of electrons even at BC pseudo-sites and only one

phase remains.

In Fig. 9.10, the order parameter as a function of filling is shown for V/t = 0.5, 3 and 20

and Nc = 200. The changes of slope of the order parameter indicate the phase transitions.

The absence of a positive solution of ∆ρ for ρ > 1/3 reflects the fact that the A and BC

pseudo-sites may be occupied by one and two Fermions, respectively.

In Fig. 9.11, we show the ground-state energy per site as a function of ρ for V/t = 0, 1, 3

and 20 and Nc = 200, obtained in the mean-field approach. For finite V , no flat region appears

and the minimum energy is shifted to lower filling. Recalling Eq. (9.21), one concludes that a

constant term 3V ρ2 is added to the non-interacting ground-state energy when ∆ρ = 0, which

shifts the minimum energy to lower ρ when V is small (∆ρ = 0 for low ρ). The ground-state

energy remains negative for ρ < 2/3. For ρ > 2/3 and large V , the ground-state energy is

almost linear in the filling with a large slope, since nearest-neighbor pairs are being created.

9.7 The AB2 chain in the strong-coupling limit V →∞

Making t/V a small parameter, one drives the t-V AB2 model into the so-called strong-

coupling limit. There are two equivalent ways to reach this limit, either increasing V or

reducing t. If t = 0, the Fermions are localized and all states with the same number of pairs

of nearest-neighbor occupied sites,
∑

i(n
A
j +nAj+1)(nBj +nCj ), are degenerate. This degeneracy

is much lower compared with the ground-state degeneracy of the U/t → ∞ Hubbard AB2
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Figure 9.11: Ground state energy per site as a function of ρ for V/t = 0, 1, 3 and 20 and
Nc = 200, obtained in the mean-field approach. For finite V , no flat region appears and
the minimum energy is shifted to lower filling. The ground-state energy remains negative for
ρ < 2/3. For ρ > 2/3, the ground-state energy is almost linear in the filling with a large
slope, since nearest-neighbor pairs are being created.

model. This degeneracy is lifted if t/V is finite and up to first order in t, the eigenvalues

are obtained diagonalizing the Hamiltonian within each of the degenerate subspaces. The

Hamiltonian within each subspace is obtained using the Gutzwiller projection operators Pl,

which project onto the subspace with l pairs of nearest-neighbor occupied sites. The set of

eigenstates and eigenvalues of l = 0 subspace of this model can be determined as we will show

below, relying at least for some of the eigenstates in the knowledge of the solution of the t-V

chain [117].

In order to simplify the comparison between the t-V chain and the AB2 chain, we number

the sites in a different way, using odd numbers for A sites and even numbers for B and C

sites.

Let us also define the operator nhi = (1 − c†ici) where c can be an operator A, B or C.

In the strong-coupling limit V/t � 1, we obtain for the ground state subspace (l = 0) the

projected Hamiltonian with φ = 0 (but φi = φo 6= 0)

P0HP0 = −t
∑
j odd

eiφo/2Nc

 ∏
i ε Pj

nhi ×A
†
j(Bj+1 + Cj+1) +

∏
i ε Pj+1

nhi × (B†j+1 + C†j+1)Aj+2

+H.c.

where Pj is the set of sites nearest-neighbors of the pair of sites j and j + 1 (excluding

these sites) and the product of hole occupation numbers reflects the condition that a nearest-

neighbor pair of occupied sites is not created when a particle hops.

Again, we emphasize that states belonging to subspaces with l 6= 0 pairs of nearest-

neighbor occupied sites will be discarded since their energy is of the order of V .

Let us consider two consecutive sites and therefore, nearest neighbors of each other. Con-

sidering the subspace with l = 0, there are three possible configurations for this pair of sites,
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Figure 9.12: (a) Two-particle localized state and one-particle (b) itinerant and (c) localized
state involving B and C sites. The filled and empty circles indicate occupied and unoccupied
sites respectively. Gray circles indicate bonding (+) and anti-bonding (-) occupations. The
particles in (a) are localized due to the interaction (V/t = ∞) and in (c) due to geometric
frustration. In (b), the particle is free to hop to the neighboring A sites.

which we will call links and they are (h p); (p h); (hh) where p stands for an occupied site and

h for an empty one. The total number of these links in the AB2 chain is given by

Nhp +Nph +Nhh = 4Nc (9.23)

and Nhp = Nph. Note that unlike the case of the t-V chain, the number of links Nhp and Nhh

in the strong coupling AB2 chain is not a conserved quantity.

9.7.1 Basis

Let us consider a unit cell of the AB2 chain (which has three sites, A, B and C). The set of

states for this cell correspond to five possible configurations in what concerns the particles

distribution : i) zero particles with all sites being unoccupied; ii) one particle which may be at

site A,B or C. The states with just one particle either at site B or site C can be combined to

give a bonding and an anti-bonding state [see Fig. 9.12(b) and Fig. 9.12(c)]. The anti-bonding

state is a localized state as discussed in previous sections. The bonding state is a itinerant

state; iii) two particles which must be at sites B and C in order to avoid a nearest neighbor

occupied pair of sites [see Fig. 9.12(a)]. These particles are also localized particles because if

they hopped, a state with a nearest neighbor occupied pair of sites would be created.

Let us consider now the case of N particles in a AB2 chain with Nc unit cells. Let us define

the operators B†+,i = (B†i + C†i )/
√

2 and B†−,i = (B†i − C
†
i )/
√

2. Note that the product of

these two operators creates two particles, one at site Bi and the other at site Ci as expected.
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Using this new basis, the Hamiltonian can be rewritten in a simpler form

P0HP0 = −
√

2t

Nc∑
j=1

eiφo/2Nc

∏
i ε Pj

nhi ×A
†
jB+,j+1 (9.24)

+
∏

i ε Pj+1

nhi ×B
†
+,j+1Aj+2

+ H.c.

One could be tempted to say that the localized states play no role in this simplified Hamil-

tonian since only the B†+,j operator appears, but that would be incorrect. A basis for the

ground state subspace (l = 0) can be constructed from states of the form

|Ψ〉 =

NBC∏
i=1

B†αiC
†
αi

NB−∏
j=1

B†−,βj

NB+∏
n=1

B†+,γn

NA∏
m=1

A†µm |0〉 (9.25)

where the sets {α}, {β}, {γ}, {µ}, {α ± 1}, {β ± 1}, {γ ± 1} and {µ ± 1} have no common

elements in order to satisfy the l = 0 condition and NBC , NB− , NB+ and NA, are respectively

the number of localized pairs of Fermions at sites B and C, of antibonding localized Fermions,

of itinerant bonding Fermions and of itinerant Fermions at A sites, so that 2NBC + NB− +

NB+ + NA = N . Due to the projection condition, the localized Fermions created by the

B†−,j and B†+,jB
†
−,j operators act creating open boundaries for the hoppings of Fermions. The

Hamiltonian mixes states with different configuration for the A†j and B†+,j products but the

part relative to the localized Fermions remains always the same. In Fig. 9.13, we illustrate

this.

The diagonalization of the Hamiltonian given by Eq. (9.24) is achieved by first distributing

the localized Fermions (if any) and then solving the remaining problem for the itinerant

Fermions which move in regions confined by the localized particles, leading to a factorized

form of the eigenstates, |itinerant Fermions〉 ⊗ |localized Fermions〉. The eigenvectors and

eigenvalues of the 1D t-V model for twisted boundary conditions as well as open-boundary

conditions can be obtained by use of the Bethe ansatz, but an equivalent but simpler algebraic

solution is known in the strong-coupling limit. In the following, we shortly review the main

results of the algebraic solution.

9.7.2 Itinerant states

Let us consider first the case when no particle is localized. In this case, the model becomes

equivalent to the t-V chain apart from a renormalization of the hopping constant (t→
√

2t).

The solution of the t-V chain relies in recognizing that the condition l = 0 leads to a conser-

vation of the number of links Nhp and Nhh so that the tight-binding term only exchanges the

position of these links [117]. Interpreting the (hp) links as non-interacting particles hopping
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Figure 9.13: (a) State with localized as well as itinerant particles; (b) Open boundary region
where the itinerant Fermions in the state given in (a) may move. Note that the open boundary
regions terminate always at B and C sites. (c) Corresponding state of the linear lattice.

in a chain where the empty sites are the (hh) links, the solution is attained. Since the total

number of (hh) and (hp) links is L̃ = L−N , the effective chain is reduced in relation to the

real t-V chain. Note that L is the number of sites in Fig. 9.13(c), after the mapping to a 1D

chain. The fact that the tight-binding particles occupy two sites of the real t-V chain leads

to a twisted boundary condition which is dependent on the momenta of the tight-binding

particles and the eigenvalues are given by [117]

E({k̃}, P ) = −2
√

2t
N∑
i=1

cos

(
k̃i −

P

L̃
− φ

L

)
(9.26)

with k̃ = ñ · 2π/L̃, and P = n · 2π/L, with ñ = 0, . . . , L̃− 1 and n = 0, . . . , L− 1. The set of

pseudo-momenta {k̃} and P must satisfy the following condition

P
L

L̃
=

N∑
i=1

k̃ (mod 2π). (9.27)

The mapping of this solution of the t-V chain (with even number of sites) into the AB2 chain

without localized particles is direct, with odd sites corresponding to A sites and even sites to

sites B and C (which will be unoccupied or in a bonding configuration).

9.7.3 Localized states

Let us consider now a state where localized particles are present. Then one has one or more

open boundary regions that terminate always in B and C sites as shown in Fig. 9.13, i.e., the

number of sites is odd (the Bi and Ci sites count as one site). The solution for the itinerant

particles in one open-boundary region is rather simple [118]. Again, a mapping to a system

of free Fermions in a reduced linear lattice is possible in a similar way, thinking of (hp) links

hopping in a background of (hh) links, but it is simpler to state as in [118, 119] that the

positions ĩ of particles in the reduced chain are given by the relation ĩ = i−Ni where i is the
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position of the particle in the t-V 1D lattice and Ni is the total number of particles between the

initial site and site i. The number of sites of the reduced chain is L̃ = L−N + 1. The energy

contribution of these itinerant Fermions is Ea = −2
√

2t
∑Na

i=1 cos(ki) with k = πn/(Nred + 1)

and n = 1, 2, . . . , Nred. Note that in the same state, and according to the distribution of the

localized Fermions, several confined regions may be present.

9.7.4 Ground state

The contribution of localized Fermions to the energy of a given state is zero, but that does

not necessarily imply that the ground state will always correspond to the minimum number

of localized Fermions. As an example, let us consider ρ = 1/3. An eigenstate for this

filling is
∏2Nc−1
m odd A

†
m|0〉. The respective energy is zero since this state corresponds to having

the itinerant fermion band completely filled, so that the positive kinetic energies balance the

negative kinetic energies. In this case, it is possible to construct lower energy eigenstates with

localized fermion pairs (created by the operator B†iC
†
i ), which allow room for the itinerant

Fermions to move and therefore lower the total kinetic energy.

This competition between itinerant and localized states will in fact start to occur at lower

filling, ρ = 2/9, since at this filling, the reduced chain is half-filled and therefore positive

kinetic energy states will start to be filled when adding additional itinerant particles. In order

to lower the energy, one wants to keep the number of itinerant Fermions just below half-filling

and to have the maximum possible length for the reduced lattices where the itinerant particles

move. Noting that a localized pair forbids the presence of particles in the two neighboring

A sites, one concludes in order to maximize the number of sites available for the itinerant

Fermions these localized pairs should gather in a single cluster.

The ground-state energy is obtained from Eq. (9.26) for fillings less than 2/9. If N is odd,

all single-particle states with pseudo-momentum k̃ between ±2π/L̃ · (N − 1)/2 are occupied

and
∑
k̃ = 0. Therefore,

Eodd
GS = −2

√
2t

sin
(

πN
2Nc−N

)
sin
(

π
2Nc−N

) cos

(
φ

2Nc

)
(9.28)

If N is even, all states with k̃ between −2π/L̃ · (N − 2)/2 and 2π/L̃ · N/2 or between

−2π/L̃ ·N/2 and 2π/L̃ · (N − 2)/2 are occupied and
∑
k̃ = ±π/L̃ ·N/L. So,

Eeven
GS = −2

√
2t

sin
(

πN
2Nc−N

)
sin
(

π
2Nc−N

) cos

(
π − φ
2Nc

)
(9.29)

In the thermodynamic limit, the difference in the last two expressions becomes irrelevant and
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Figure 9.14: (a) Ground state energy as a function of filling of the AB2 chain in the strong-
coupling limit V = ∞ and with Nc = 6. The curves are the analytical results given by
Eqs. (9.28), (9.29) and (9.31) and the dots are the energy levels obtained by numerical diag-
onalization of the V = ∞ AB2 chain. (b) Ground state energy in the thermodynamic limit
as a function of filling in the strong-coupling limit V =∞. The transition between a metallic
and an insulating ground state occurs exactly at ρ = 2/9 and the minimum energy is obtained
when ρ ≈ 0.2.

one can write
Eitin

GS

Nc
= −2

√
2t

π
(2− 3ρ) sin

(
πρ

2
3 − ρ

)
(9.30)

For filling larger than 2/9, it is energetically favorable to have localized pairs of Fermions in

consecutive unit cells so that only one region exists for itinerant Fermions, with 2Nc−2NBC−1

sites and the respective reduced lattice will have L̃ = 2Nc−N sites. The number of itinerant

Fermions is Nitin = N − 2NBC . The number of BC localized pairs is such that the band for

the itinerant Fermions in the respective reduced lattice is as near as possible from half-filling,

so that NBC = Int(3N/4 − Nc/2) + 1 or NBC = Int(3N/4 − Nc/2). In the thermodynamic

limit, one can write Nitin = Nc − N/2 and one has a closely packed localized cluster with

length equal to NBC/2 = 3N/8−Nc/4.
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The ground-state energy in this case is

Eloc
GS = −2

√
2t cos

[
π

2
· Nitin + 1

2Nc −N + 1

] sin
[
π
2 ·

Nitin
2Nc−N+1

]
sin
[
π
2 ·

1
2Nc−N+1

] (9.31)

which for a large AB2 chain simplifies to

Eloc
GS

Nc
= −2

√
2t

π
(2− 3ρ), (9.32)

where ρ = N/3Nc. Since this ground state is localized, no magnetic flux dependence is

present. Note that for N = 2Nc−1 the reduced lattice has only one site and the only possible

energy is zero. Also for N = 2Nc, one has a Wigner crystal like state with NBC = Nc and

zero energy. Also for N = 2Nc − 2, the reduced lattice has two sites and and the number of

itinerant Fermions is zero or two, therefore the only possible energy is zero.

The density in the compact cluster of BC localized pairs present in the ground state for

ρ ≥ 2/9 has density equal to 2/3, while the region available for the movement of the itinerant

Fermions has constant densityNitin/(
9
2Nitin−1) which for largeNitin is approximately constant

and equal to 2/9. So as one increases the filling in the AB2 chain, one is reducing the length

of a phase with lower density and increasing the size of the higher density phase.

Phase separation has been observed in other 1D and 2D Hamiltonians [120, 121]. In the

1D t-J model, phase separation occurs for J/t = 2.5 − 3.5, with the system divided into an

electron-rich region and a hole-rich region [121]. An open-boundary Heisenberg model rules

the dynamic of spin degrees of freedom of the electron-rich phase. Particularly relevant to

our study of the AB2 chain is the phase separation of the anisotropic Heisenberg model or

XXZ model, which can be mapped onto the 1D t-V model. In this case, phase separation

corresponds to the appearance of the ferromagnetic phase in the XXZ model [122]. The

anisotropy constant of the XXZ model, ∆ = J‖/J⊥ under the Jordan-Wigner transformation

becomes ∆ = −V/2|t| and for both models the phase separation occurs for ∆ ≥ 1 [122, 123],

that is, phase separation occurs for attractive nearest-neighbor interaction (ferromagnetic

interaction). In the t-V AB2 chain, we have shown that phase separation occurs for strong

repulsive interaction. Note that a spinless fermion in the t-V model corresponds to an up-

spin in XXZ model while a hole corresponds to a down-spin, and therefore the lower and

higher density phases of the AB2 chain correspond to different magnetization regions of the

antiferromagnetic XXZ AB2 model.

9.7.5 Luttinger liquid description

One of the most interesting points concerning the t-V AB2 chain is the following: is the

t-V AB2 chain a Luttinger liquid? That is, can the low energy excitations of this model
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be described as bosonic charge density fluctuations governed by the harmonic Hamiltonian

[122,124,125]

HLL = vS
∑
q

|q|b†qbq +
π

2L
[vN (N −No)

2 + vJJ
2]? (9.33)

In the LL Hamiltonian, N , J , L, vN , vJ , and vS are, respectively, the particle number,

current number, system length, particle velocity, current velocity, and sound-wave velocity.

One is easily tempted to calculate these Luttinger liquid parameters from the previous strong

coupling results, obtaining for large L and for ρ < 2/9,

vN =
1

π

∂2(ET /L)

∂(N/L)2
=

36
√

2t

(2− 3ρ)3
sin

(
3πρ

2− 3ρ

)
(9.34)

vJ = π
∂2(ET /L)

∂(φ/L)2
=

9(2− 3ρ)t

2
√

2
sin

(
3πρ

2− 3ρ

)
(9.35)

vS =
√
vNvJ =

9
√

2t

2− 3ρ
sin

(
3πρ

2− 3ρ

)
(9.36)

where ρ = N
L and vN , vJ , and vS are respectively the particle, current, and sound velocities.

Note that N/L = 3ρ/2 since L = 2Nc. These are results similar to those obtained for

the strong coupling t-V ring [118, 119] in the thermodynamic limit. The Luttinger liquid

parameter
1

Kρ
= e−2ψ = vN/vS =

4

(2− 3ρ)2
(9.37)

determines the anomalous correlation exponents and is filling dependent reflecting the reduc-

tion of the effective size of the chain with filling.

For filling larger than 2/9, the ground state has the localized pairs of Fermions in a

compact cluster so that only one region exists for itinerant Fermions, with 2Nc − 2NBC − 1

sites and the respective reduced lattice will have L̃ = 2Nc−N sites. One again is tempted to

describe the low energy behavior of this system of itinerant Fermions in this open-boundary

lattice using as above a LL description. With open boundaries, one loses the translation

invariance but it has been shown by several authors that an open-boundary bosonization

can still be carried out [126–130]. Many of these studies of LLs with open boundaries were

motivated by the fact that the introduction of a single local impurity in a Luttinger liquid

breaks the 1D system in two parts, at least in what concerns the low energy properties of the

system [131,132]. There is a clear analogy between the role of these local impurities and the

localized Fermions in the AB2 chain. For very large L, one expects the solution of the system

to become less dependent on the boundary conditions and therefore the LL velocities are the

same as those of an equivalent system with periodic boundary conditions at the same filling

and with the same lattice size (since the LL exponents are dependent on filling). But we have

seen that the filling in this open-boundary region is constant and equal to 2/9, and since the
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LL velocities depend only on filling, one obtains

vN =
243t

8
√

2
, vJ = 3

√
2t, vS =

27t

2
√

2
, e−2ψ =

9

4
. (9.38)

Note that this ground state is Nc degenerate due to the translation invariance of the phase

separation boundaries.

The missing point in the previous analysis is that the LL Hamiltonian does not describe

the excitations of ground state that involve the creation of an additional localized anti-bonding

fermion or an additional localized BC pair of Fermions. However this is only important if

these excitations are low energy states. In a qualitative picture, the strong coupling AB2

chain can be described as if there were a flat band at zero energy with Nc two-level sites.

This is similar to the noninteracting case, but now the number of localized Fermions in such

flat band is twice as many. For ρ� 2/9, the creation of a localized anti-bonding fermion or a

localized BC pair of Fermions implies an excitation energy of the order of t and for energies and

temperatures much less than this value, the LL description is valid. As the filling approaches

2/9, these excitations become low lying (since the Fermi level goes to zero) and must clearly

be taken into account in the low temperature description of the system. In this situation,

even at very low temperature, the low energy AB2 set of eigenvalues becomes a complex mix

of the sets of eigenvalues of LLs with different sizes, fillings, boundary conditions, and LL

velocities. Despite these remarks, one should note that the strong coupling LL velocities do

indeed characterize the correlations that do not involve the creation of additional anti-bonding

states or additional localized BC pairs of Fermions. For example, a two-point ground-state

correlation involving only A sites such as the Green’s function restricted to A sites.

For ρ > 2/9, the compressibility

1

κ
=

1

L

∂2E0(ρ)

∂ρ2
(9.39)

is infinite due to the linear behavior of the ground-state energy. This is the expected behavior

of a phase separated ground state and is known to occur also in the t-J model as well as in

the XXZ model [123]. In these models, the compressibility diverges as (∆c − ∆)−1 as one

approaches the phase separation critical value (which is ∆c = 1 in the case of the attractive t-V

chain) by increasing the interaction constant [123]. The compressibility can also be calculated

from the LL relation

κ =
2Kρ

πvs
. (9.40)

In the XXZ model (or in the equivalent attractive t-V model), the compressibility diverges

since the sound velocity vanishes and the Luttinger parameter Kρ diverges as ∆→ ∆c. From

the last two relations, one easily concludes that as the filling in the AB2 approaches 2/9, the

compressibility does not diverge, since the curvature of the plot of E(ρ) in Fig. 9.14(b) does
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not vanish just below ρ = 2/9 or equivalently, neither the sound velocity vanishes nor the

Luttinger parameter Kρ diverges as ρ→ 2/9.

For ρ < 2/9, the current velocity gives the charge stiffness at zero temperature [133,134]

Dc =
1

2

∂2(ET /L)

∂(φ/L)2
|φc=0 . (9.41)

For ρ ≥ 2/9, the charge stiffness is zero reflecting the open boundaries condition for the

itinerant Fermions and consequent zero dependence of the energy levels on magnetic flux. This

discontinuity of the Drude weight at the phase boundary is known to occur in other 1D models

with phase separation [123]. In this case, the current velocity should correspond to a very small

frequency peak in the optical conductivity since it is known that the open-boundary condition

shifts the spectral weight associated to the Drude peak to a finite frequency peak [135].

9.8 Implications for the extended Hubbard AB2 model

In this section, we discuss the relevance of the results obtained for the t-V AB2 model for

the spinful extended Hubbard model in the AB2 geometry and in the strong-coupling limit

U � t and U � V .

First, let us recall the known facts about the strong coupling Hubbard model in a ring

[136–140] and in a 1D chain with open-boundary conditions [141]. The extended Hubbard

Hamiltonian for a ring with L sites is given by

H = −t
∑
i

(c†iσci+1σ + c†i+1σciσ)

+U
∑
i

ni↑ni↓ + V
∑
i

nini+1, (9.42)

where the creation (annihilation) of an electron at site i with spin σ is denoted by c†iσ (ciσ)

with niσ being the number operator niσ = c†iσciσ and ni = ni↑ + ni↓. When t = 0, all states

with the same number Nd of doubly occupied sites and the same number
∑

σσ′ Nσσ′ of nearest-

neighbor occupied sites are degenerate, where Nσσ′ is the total number of nearest-neighbor

pairs with spin configuration σσ′. The eigenvalues of the extended Hubbard model in the

atomic limit are given by E(Nd, {Nσσ′}) = Nd ·U +
∑

σσ′ Nσσ′ · V . Here we will only address

the low energy subspace of the strong-coupling limit where Nd = 0 to make this discussion

simpler.

If we consider the Hubbard ring with t � U , but V = 0, one has the so-called Harris-

Lange model [142] and the model eigenfunctions can be written as a tensorial product of

the eigenfunctions of a tight-binding model of independent spinless Fermions in the ring

(where the spinless Fermions are the electrons deprived of spin) and the eigenfunctions of
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an Heisenberg model (with exchange constant J = t2/U) for the spins of the electrons in a

reduced chain [136–140]. The spinless Fermions ring is threaded by a fictitious magnetic flux

φ = qs generated by the spin configurations in the reduced Heisenberg chain (where qs is the

total spin momentum) and the eigenvalues to order t are given by

E(k1, . . . , kNh+Nd) = 2t

Nh∑
i=1

cos
(
ki −

qs
L

)
, (9.43)

where ki = (2π/L)ni, ni = 0, . . . , L− 1 are the momenta of the holes in the spinless ring.

The nearest-neighbor interaction is obviously independent of spin of the electrons that

occupy nearest-neighbor sites and it is easily introduced in the previous picture so that for

U � t and U � V , the Nd = 0 spectrum of the Hubbard model to the order of t is that of

interacting spinless Fermions in a ring threaded by a fictitious magnetic flux φ = qs (since the

nearest-neighbor repulsion between electrons leads to an nearest-neighbor repulsion between

spinless Fermions), that is, the extended Hubbard model in a ring in the limit U → ∞ has

the energy dispersion of the spinless t-V chain. The only effect of spin in this limit is the

generation of a fictitious flux and the increase of degeneracy.

If now we consider the strong coupling Hubbard chain with open-boundary conditions,

the solution is even simpler. As stated in Ref. [141], for ρ < 1, the physics of the model is

the same as that of a spinless tight-binding model. In fact, the electrons hop along the chain

but the spin configuration of the electrons remains always the same and becomes irrelevant

for the determination of the eigenvalues of the model. The different spin configurations only

contribute to the degeneracy of the energy levels. The same reasoning as above can be

followed and one concludes that the extended Hubbard chain with open-boundary conditions

and in the limit U � t and U � V has the same energy spectrum as the t-V chain with

open-boundary conditions.

Let us now consider the extended Hubbard model in the AB2 geometry,

H = H0 + V
∑
j

(
nAj + nAj+1

) (
nBj + nCj

)
+ U

∑
i

(nAi↑n
A
i↓ + nBi↑n

B
i↓ + nCi↑n

C
i↓), (9.44)

where

H0 = −t
∑
σ

Nc∑
j=1

[
eiφo/2Nc(A†jσBjσ +B†jσAj+1σ) (9.45)

+ e−iφi/2Nc(C†jσAjσ +A†j+1σCjσ)
]

+ H.c.

We consider the limit U →∞ where no doubly occupied sites are possible.
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In the AB2 geometry, we can not state as we did for the Hubbard chain that for V = 0

the model can be mapped into a system of spinless Fermions in a tight-binding AB2 chain

threaded by fictitious magnetic flux generated by the spin configuration momentum. The

reason is that in the case of the Hubbard chain, only hoppings at the boundaries generate

a different spin configuration and all the different configurations generated can be obtained

from one of them applying a circular permutation operator [136–140]. However, in the AB2

geometry, besides the circular permutation of the spin configuration due the hoppings at the

boundaries, additional spin mixing can also be generated by electrons hopping along one

plaquette (which circularly permute a subset of two or three spins). However, this additional

exchange process requires the existence of an occupied nearest-neighbor pair of sites in that

plaquette as an intermediate step. Therefore, as V is increased, this exchange process is

inhibited.

Let us therefore address the extended Hubbard AB2 model in the limit t � V � U . In

this case the additional plaquette exchange does not occur. We show below that the low

energy spectrum of this model, that is, the set of eigenvalues corresponding to eigenstates

with no doubly occupied sites and no occupied nearest-neighbor pair of sites will be the same

as that of the t-V AB2 model in the limit t � V , but with enlarged degeneracy just like

for the extended Hubbard ring in the strong-coupling limit. The picture behind this result

will be a mix of the pictures presented for the Hubbard ring and for the Hubbard chain with

open-boundary conditions.

First we show that the itinerant and localized states of the extended Hubbard AB2 model

remain the same as those of the strong coupling t-V AB2 model in what concerns the charge

distribution, but now one has a considerable larger set of states due the spin degrees of

freedom. We adopt the same basis as that of the previous section, but now spin must be

considered, that is, the bonding and anti-bonding states have a spin degree of freedom. In

the previous section we have shown that two type of localized Fermions could occur: i) one-

particle localized states corresponding to a single particle in one plaquette in a standing wave

state, which obviously remains localized if the particle has spin; ii) two-particle BC localized

states induced by the large nearest-neighbor repulsion. The spinless localized pair maps into

four localized BC pairs with different spin configurations which again remain localized due

to the large nearest-neighbor repulsion. Concerning the itinerant particles, the Hamiltonian

does not alter the spin of the bonding states as the particles hop along the AB2 chain.

Therefore, we can construct the eigenstates of the extended Hubbard AB2 model in the

limit case t � V � U in an equivalent way to that followed in the previous section. If no

localized particles are present, the extended Hubbard AB2 model in the limit case t� V � U

can be mapped into the extended Hubbard ring in the same limit and the energy levels are
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given by

E({k̃}, P ) = −2
√

2t

N∑
i=1

cos

(
k̃i −

P

L̃
− qs + φ

L

)
(9.46)

where k̃i and L̃ have the same definition as for the t-V ring in the strong-coupling limit, qs has

the same definition as for the Hubbard chain and φ is a external magnetic flux (but keeping

a zero flux in each plaquette). In the thermodynamic limit, the effect of the fictitious and

external fluxes becomes irrelevant.

If localized particles are present, they create open boundary regions where itinerant elec-

trons (in bonding states when at sites B and C) will move according to the extended Hubbard

AB2 model in the strong-coupling limit. Each of these open boundary systems has a fixed

number of particles and can be mapped as above into the extended Hubbard chain in the

same limit, but now with open-boundary conditions. In this case, as stated before, the spin

configuration is irrelevant and contributes only to the degeneracy of the energy levels which

are exactly those described in the previous section for the spinless t-V AB2 model with open-

boundary conditions. Since the energy levels in the thermodynamic limit are the same as

those of the t-V AB2 model in the strong-coupling limit, phase separation will also occur in

the extended Hubbard AB2 ring and precisely at the same filling. This exact correspondence

required the strong-coupling limit and was obtained only for the low energy subspace. Higher

energy subspaces involve the presence of occupied nearest-neighbor pairs of sites or of double

occupancies, but a similar approach can in principle be followed again with a mapping to

higher energy subspaces of the extended Hubbard chain.

For intermediate values of the nearest-neighbor interaction V , the mapping is no longer

exact, but qualitatively the features described for the t-V AB2 chain should be expected in

the extended Hubbard AB2 chain (with U � t and U � V ). For example we expect a similar

evolution for the ground-state energy with decreasing V , but with different evolution of filling.

Note that the ground-state energy for non-interacting electrons (with spin) as a function of

filling has the same form of Fig. 9.5, but the spin degeneracy of the single-particle eigenvalues

implies that the filling values as well as the ground-state energy must be multiplied by two.

This is equivalent to distributing spinless particles among two independent AB2 chains.

9.9 Conclusions

As mentioned in the introduction, the 1D anisotropic Heisenberg model (the XXZ model) can

be mapped using the Jordan-Wigner transformation into the 1D spinless t-V model (with an

additional “chemical potential” term, which can also be interpreted as an on-site energy). The

ground state filling of the t-V model is related to the ground state magnetization of the XXZ

model, which can be controlled by the application of an external magnetic field to the XXZ

model. This external field does not change the eigenstates of the XXZ model, but creates
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an additional chemical potential term in the t-V model which allows to control the filling of

the ground state. A ferromagnetic Heisenberg interaction means that the spinless Fermions

attract each other while an antiferromagnetic exchange implies a repulsive interaction between

nearest-neighbor spinless Fermions. A Jordan-Wigner transformation is also possible in quasi-

1D or 2D lattices (see Ref. [143] for a review), and in particular, the XXZ AB2 model in

the strongly anisotropic limit can be mapped into the strong coupling t-V AB2 model with

additional phase factors which are nonlocal (and therefore usually treated in a mean-field

approach) [143]. We have not gone into the details of the transformation of the XXZ AB2

model into the t-V AB2 model (which would require the determination of the phase factors

and the introduction of the on-site energy terms), but some conclusions can be drawn on

general arguments. First, one-magnon localized states in the strongly anisotropic XXZ ABn

model corresponding to standing waves in a t-V ABn array will exist since no additional

phase factors appear when only one spinless fermion is present (only one spin flip). Also,

states with several spin flips corresponding to localized magnons in different plaquettes are

also eigenstates since the XX term of the XXZ model gives a zero contribution in the regions

between the localized magnons (since all spins are aligned). So the one-particle localized

states in the t-V AB2 model correspond to localized and independent magnons created in a

ferromagnetic background, which have been observed in frustrated magnetic systems under

high magnetic fields but below the saturation field [97]. Second, independently of the phase

factors, the two-particle localized BC particles will remain the same because the nearest-

neighbor interaction obtained in the Jordan-Wigner transformation retains the same form

as in the 1D case, and since these two particles are completely localized, the phase factors

are irrelevant. Furthermore, these localized particles create open boundary regions for the

itinerant Fermions independently of the phase factors. So, we expect a similar behavior of

the XXZ AB2 model in the strongly anisotropic limit to the one here described for the strong

coupling t-V AB2 model. Such two-particle localized states in the strong coupling t-V AB2

model correspond to localized pairs of magnons in the the XXZ AB2 model in the strongly

anisotropic limit.

The results presented in Sec. IV for single-particle states in ABn lattices may also be

relevant to Josephson junction arrays (with the same geometry) both in the quantum limit

and in the high capacitance (classical) limit. It is known that a Josephson junction AB2 chain

with half a flux quantum per plaquette exhibits a highly degenerate classical ground state

reflecting the completely flat energy bands of the AB2 tight-binding model for this value of

flux [113]. The tunneling of Cooper pairs between the different superconducting islands in an

AB2 geometry can also be described using a bosonic tight-binding AB2 model. Furthermore,

in the high-capacitance limit, the charging energy due to the electrostatic interaction within

each (large) superconducting island can be neglected and the Hamiltonian becomes a classical

XY model, H = −J
∑
〈ij〉 cos(φi − φj − Aij) , where φi is the superconducting phase of the
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island i, J is the Josephson coupling and Aij is the phase shift due to the presence of an

external magnetic field, obtained from the integral of the vector potential along the path

from i to j. This Hamiltonian can be mapped into a one-particle tight-binding model with

the same geometry and under the same magnetic flux [144]. In most geometries, the minimum

energy phase configuration of the Josephson junction array will be obtained from the state

of minimum energy of the tight-binding model (if this state is homogeneous). In the most

general case, the Hamiltonian can be interpreted as the mean energy of a phase vector and

the stable phase configuration of the Josephson junctions array is obtained minimizing this

energy and this minimization may imply mixing tight-binding states of different bands.

Let us now compare the exact results of the strong coupling AB2 chain with the mean-

field results. Comparing Figs. 9.11 and 9.14 (b), one concludes that the mean-field results

overestimate the interaction energy contribution for ρ < 2/3. Basically, within the mean-field

approach the low energy band increases its energy with increasing V , missing the fact that

itinerant states are possible, which avoids the positive energy contribution of the nearest-

neighbor interaction as found in the strong-coupling limit. The mean-field results are qualita-

tively correct in what concerns the energy interval for the ground-state energy for ρ < 2/3. In

Fig. 9.11, one can see that the ground-state energy remains negative even for large V in the

density range 0 < ρ < 2/3. The minimum of the ground-state energy as a function of filling

shifts continuously to lower filling in contrast with the V = ∞ result where such minimum

occurs at ρ ≈ 0.2. Also the large slope for ρ > 2/3 agrees with the fact that for such fillings

nearest-neighbor pairs are present and such states have infinite energy when V =∞.

To conclude, in this chapter the spinless AB2 chain with nearest-neighbor Coulomb inter-

actions has been studied for any filling and taking into account magnetic flux. In the case

of independent Fermions, a simple construction of the localized states that generate the flat

bands both in the presence and absence of flux has been found and generalized for 1D or 2D

arrays of quantum rings. The V/t versus filling phase diagram of the AB2 chain was obtained

using a mean-field approach. The dependence on filling of the mean-field ground-state energy

agrees qualitatively with the exact ground-state energy for infinite V . The ground-state en-

ergy for infinite nearest-neighbor repulsion has a quantum critical point at filling 2/9 where

a metal-insulator transition occurs. This transition reflects the phase separation between a

high density phase (ρ = 2/3) and a low-density phase (ρ = 2/9) that occurs at fillings larger

than 2/9. Such phase separation occurs because the infinite nearest-neighbor repulsion leads

to the appearance of two-particle localized states (besides the one-particle localized states

due to the topology of the AB2 chain). These localized states create open boundary regions

for itinerant carriers and in order for these itinerant Fermions to have only negative kinetic

energy, phase separation becomes favorable. At low filling, the low energy properties of t-V

AB2 chain can be described by the spinless Luttinger Hamiltonian, but for filling near or

larger than 2/9, the AB2 set of eigenvalues becomes a complex mix of the sets of eigenvalues
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of LLs with different fillings, boundary conditions, and LL velocities. If the itinerant Fermions

have spin, but a very strong on-site repulsion is present (that is, in the case of the extended

Hubbard model in the strong-coupling limit U � V � t), the energy-dispersion relation to

the order of the hopping integral remains the same as that of the spinless AB2 model in the

presence of a flux and phase separation occurs at the same filling.
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Chapter 10
Conductance through a non interacting AB2

chain

In this chapter we consider the electronic conductance through a non-interacting AB2 chain

in a two terminal scenario. We consider different placements of the conducting leads and

different values of the threading flux. We show the presence of a zero frequency dipped peak

in the conductance which is a fingerprint of the localized states of the AB2 chain and which

should be present in systems exhibiting identical geometry. The work here contained has been

published in [145].

10.1 Introduction

The conductance through molecular devices, nanowires and other nano systems has been ex-

tensively studied both theoretically and experimentally. Nano transport phenomena such as

Coulomb blockade [146], conductance quantization [147], resonant tunneling [148], quantum

interference, Aharonov-Bohm oscillations in the conductance [69, 149] are now well under-

stood.

The conductance fingerprints of localized states, however, induced by the topology of a

nanocluster [71–76, 78, 82, 87, 89–100] has never been addressed as far as we know. Do these

localized states inhibit the electronic transport through the cluster or is the conductance in-

different to their existence? The answer is rather complex and unexpected. Here we show

that in the case of the AB2 ring (which is an example of the family of itinerant geometrically

frustrated electronic systems [71–76,78,82,87,89–100]), these localized states act as zero fre-

quency conductance absorbers for zero magnetic flux, but surprisingly generate a dipped zero

frequency conductance peak when magnetic flux is applied. Similar features should be ob-

served in the conductance through other elements of the family of the itinerant geometrically

frustrated electronic systems of the Lieb lattice kind, that is, systems which display localized

135
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states with nodes in their probability density as was addressed in 9.

10.2 Exact diagonalization of the AB2 chain and localized states

In order to address the phenomena of coherent transport through an AB2 ring, we consider

a two terminal set up of one-dimensional (1D) tight-binding leads coupled to the AB2 ring,

as depicted in Fig. 12.1. Our results are easily generalized to the case of 3D leads as long as

only one site of each lead contacts the cluster. We shall often focus on the case where the

number of cells of the AB2 ring, Nc, is equal to 4, and assume that each plaquette is threaded

by an identical magnetic flux, φ.

Figure 10.1: The AB2 ring is connected at sites L and R, to semi-infinite tight binding leads
via a hopping amplitude t′. Except where otherwise stated, the hopping amplitude of the
leads is taken to be the same to that of the star, t. Here it is shown the situation for Nc = 4,
a particular case we will study in detail. The magnetic fluxes threading the plaquettes and
the inner ring are respectively φ and φi.

(a)

(b)

(c)

Figure 10.2: (a) In the absence of magnetic flux, rewriting the Hamiltonian in the basis of
antibonding BC−, bonding BC+ and A states, one obtains a tight-binding ring of sites A
and bonding BC sites (with hopping constant

√
2t) and a ring of decoupled anti-bonding BC

states. (b) The hopping term from the left lead to a B site of the AB2 ring, in the basis of
antibonding BC, bonding BC and A states, becomes tL/

√
2. (c) For a incident particle with

energy ω = −2t cos(k), an extra transverse hopping ta to a dangling site effectively modifies
the on-site energy of site j to εj = t2a/ω.
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The Hamiltonian of the full system is given by

Hring +Hleads +HLR, (10.1)

where Hleads is the Hamiltonian of the isolated leads, assumed to be semi-infinite,

Hleads = −t
∞∑
j=1

∑
σ=↑,↓

|aj,σ〉 〈aj+1,σ|

+ |a−j−1,σ〉 〈a−j,σ|+ H.c.,

(10.2)

where |aj , σ〉 is a lead Wannier state at site j and with spin σ. j ∈ (−∞,−1] correspond to

left lead states while j ∈ [1,∞) correspond to right lead states. Hstar is the Hamiltonian for

an AB2 chain with Nc unit cells (cf. Eq. 9.3),

Hring = −t
Nc∑
j=1

∑
σ=↑,↓

eiφo/2Nc(|Aj,σ〉 〈Bj,σ|+ |Bj,σ〉 〈Aj+1,σ|)

+ e−iφi/2Nc(|Cj,σ〉 〈Aj,σ|+ |Aj+1,σ〉 〈Cj,σ|) + H.c.,

(10.3)

where |Aj,σ〉, |Bj,σ〉, |Cj,σ〉 correspond to states on A, B and C sites, respectively, of the jth

cell/plaquette, with spin σ. Here we have chosen a gauge such that the Peierls phases are

equally distributed in the inner ring and in the outer ring. In Fig. 10.1, an AB2 ring is shown

with a magnetic flux φ threading each plaquette and a magnetic flux φi threading the inner

ring. The magnetic flux enclosed by the outer ring is φo = φi + 4Ncφ/4 and we introduce an

auxiliary flux φ′ such that φo = φ′ + 2Ncφ/4, φi = φ′ − 2Ncφ/4. The inner sites in the AB2

ring of Fig. 10.1 are denoted as C sites and the outer sites as B sites. Spinal sites are denoted

as A sites. The hybridization between the AB2 ring and the leads is given by

HLR = −
∑
σ=↑,↓

tL |a−1,σ〉 〈XL,σ|+ tR |a1,σ〉 〈XR,σ|+ H.c., (10.4)

where tL,R are the hopping amplitudes coupling the leads and the star and X stands for an

A, B or C site depending on where the left (L) and right (R) contacts are. Since we don’t

consider spin-spin interactions, each spin channel is independent and we disregard spin in the

rest of our discussion, without any loss of generality.

As seen in chapter 9, without interactions the tight-binding AB2 chain has a flat band

even in the presence of magnetic flux (Fig. 10.3 displays the dispersion relation of the nearest

neighbor AB2 chain for several values of the plaquette threading flux). The eigenvalues for
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Figure 10.3: Dispersion relation of the AB2 ring for φ′ = 0 and several values of φ. Note that
a gap opens between the localized band and the itinerant bands when there is a finite flux.
Also, for φ = π all bands are flat, and therefore, all states are localized.

an arbitrary value of flux were found to be

εflat = 0,

ε± = ±2t
√

1 + cos(φ/2) cos(φ′/Nc + k),
(10.5)

where k is the momentum.

Localized states associated with the flat band can be written in the most compact form

as standing waves in one (in the absence of magnetic flux) or two consecutive plaquettes

(in the presence of magnetic flux). In the particular case of zero flux, localized states are

simply the anti-bonding combination of the B and C states, BC−j = (|Bj〉 − |Cj〉)/
√

2, and

itinerant states in the AB2 ring are linear combinations of A and bonding BC+ states, BC+
j =

(|Bj〉+ |Cj〉)/
√

2. Rewriting the Hamiltonian in the basis of antibonding BC−, bonding BC+

and A states, one obtains a tight-binding ring of sites A and bonding BC sites (with hopping

constant
√

2t) and a ring of decoupled anti-bonding BC states, as shown in Fig. 10.2a.

The number of localized states is equal to the number of rhombi and in the presence of

flux, if written in the most compact form (each localized state taking place in two consecutive

plaquettes) they form a non-orthogonal set of states. Orthogonalization of these set of states

implies that the extension of the localized states ranges from two consecutive plaquettes to

the complete ring (see Fig. 10.4e), except for φ = 0 and for φ = π (in this case, the orthogonal

localized states occupy only two consecutive plaquettes). This will imply a clear difference in

the conductance when compared with the zero flux case. Note that a gap opens between the

localized band and the itinerant bands when flux is present.

Assuming φ′ = 0 to simplify, the non-orthogonal localized states are of the form (|Bj〉 −
ei
φ
2 |Cj〉) + (ei

φ
2 |Bj+1〉 − |Cj+1〉) where the sites have been numbered clockwise in the AB2

ring, that is, j indexes the plaquettes in the AB2 ring.

Since the localized states have nodes at the A sites, we can write these localized states

indicating only the one-particle state amplitudes at the pairs of B and C sites of the AB2 ring,
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(a) φ = 0 (b) Ferromagnetic (c) Antiferromag-
netic

(d) Two cells periodic flux

......

......

......

...

......

......

......

...

Gram

Schmidt

(e) Localized states orthonormalization

Figure 10.4: (a), (b) and (c): Localized states for AB2 chains without flux and threaded
by ferromagnetic or anti-ferromagnetic flux, respectively. For simplicity the states are not
normalized and we only draw the cells where the wavefunction is non-zero. (d) Localized
states for N = 2, where N is the periodicity in the flux (in terms of number of cells). (e)
Our non-orthonormal basis of localized states, occupying two cells, can be transformed into
an orthonormal basis where they occupy, 1, 2, . . . Nc cells, via the Gram-Schmidt procedure.

that is, we can write the localized state as a list with 2Nc entries (b1, c1 . . . , bn, cn), where bj

and cj are, respectively, the value of the wavefunction on site Bj and Cj . Then our localized

states are,

|ψj〉 =
1√
4

0, . . . , 0, 1︸︷︷︸
bj

,−e−iφ/2︸ ︷︷ ︸
cj

, e−iφ/2︸ ︷︷ ︸
bj+1

, −1︸︷︷︸
cj+1

, 0, . . . , 0

 (10.6)

Note that for φ = 0, we have for |ψj〉 that bj = bj+1 and cj = cj+1, and and for φ = π,

〈ψj |ψj+1〉 = 0. There are many possible ways of constructing an orthogonal basis for the

subspace of localized states. Our results for the conductance are obviously independent of
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this choice. We simply use the Gram-Schmidt orthogonalization, starting with the basis

|ψ1〉 =
1√
4

(
1,−e−iφ/2, e−iφ/2,−1, 0, . . . , 0

)
,

|ψ2〉 =
1√
4

(
0, 1,−e−iφ/2, e−iφ/2,−1, 0, . . . , 0

)
,

...

|ψNc〉 =
1√
4

(
e−iφ/2,−1, 0, . . . , 0, 1,−e−iφ/2

)
.

(10.7)

For such a basis we have

〈ψi|ψj〉 = δi,j +
cosφ/2

2
(δi−1,j + δi+1,j) . (10.8)

For simplicity, let us define the support of a wavefunction, denoted by supp, to be those site

where the wavefunction is non-zero. Then we have supp |ψj〉 = {Bj , Cj , Bj+1, Cj+1}.
Let {|φj〉}Ncj=1 denote the orthonormalized basis after the G-S procedure, defined by the

recursive expression,

∣∣φ′j〉 = |ψj〉 −
j−1∑
i=1

〈φi|ψj〉 |φi〉 ,

|φj〉 =

∣∣∣φ′j〉√〈
φ′j |φ′j

〉 . (10.9)

We focus on φ 6= π (for in that case, the basis is already orthonormalized) and begin

by making |φ1〉 = |ψ1〉, which implies suppφ1 = {B1, C1, B2, C2}. Then |φ′2〉 = |ψ2〉 −
〈φ1|ψ2〉 |φ1〉. In this case, since 〈φ1|ψ2〉 6= 0, suppφ2 = {B1, C1, B2, C2, B3, C3}. We then

have |φ′3〉 = |ψ3〉 − 〈φ2|ψ3〉 |φ2〉 − 〈φ1|ψ3〉 |φ1〉. Note that |φ1〉 and |ψ3〉 have disjoint support,

hence 〈φ1|ψ3〉 = 0. Also, 〈φ2|ψ3〉 ∝ 〈ψ2|ψ3〉 6= 0. Since supp |ψ3〉 = {B3, C3, B4, C4} and

suppφ2 = {B1, C1, . . . B3, C3}, and since, there is no destructive interference on sites B3 and

C3 (it is a simple exercise to show this), suppφ3 = {B1, C1, . . . B4, C4}. Continuing the above

procedure we finally arrive at

supp |φj〉 = {B1, C1, . . . Bj+1, Cj+1}. (10.10)

and therefore the extension of the orthogonalized localized states (constructed this way) ranges

between two consecutive plaquettes and the full AB2 ring. This is illustrated schematically

in Fig. 10.4e.

However, as we have already mentioned, one has two exceptions:
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i) for φ = 0, the states |αj〉 = (0, · · · , 0, 1︸︷︷︸
bj

, −1︸︷︷︸
cj

, 0, · · · , 0) already constitute an orthog-

onal set of localized states for φ = 0 as stated in the previous paragraph;

ii) for φ = π, 〈ψj |ψj+1〉 = 0 are orthogonal and in this case the range of the localized

states in their most compact form is just two plaquettes.

There are many possible ways of constructing an orthogonal basis for the subspace of local-

ized states. It must be stressed that our results for the conductance are obviously independent

of this choice.

Using the construction for localized states presented in chapter 9, it is easy to extend

some of the results here presented to geometries other than the AB2 geometry. To make

this more concrete let us give some examples. Let us start by considering an AB2 chain

with an arbitrary number of cells. Assume, for now, that the flux through each cell has the

same value, a situation we call ferromagnetic (shown in Fig. 10.4b). Then, localized states

occupying only two cells can be found for an arbitrary value of flux (albeit non orthogonal,

except when φ = π), while for zero flux one can find localized states occupying only one cell as

shown in Fig. 10.4a. Now consider a situation where the magnetic flux through each plaquette

is symmetric to the one threading its neighboring cells, a situation we call anti-ferromagnetic.

Then a similar state to the situation above can be found as is shown in Fig. 10.4c. For this

particular case, using this construction, we can find localized states that occupy two cells.

However, these states form an orthonormal basis only for φ = π and for the ferromagnetic

flux situation, as can be readily seen calculating the overlap between neighboring states. Let

|ψj〉 be the state localized in the jth and (j + 1)th cells. For the ferromagnetic situation the

overlap between neighboring states is 〈ψj+1|ψj〉 =
cos(φ/2)

2
while for the anti-ferromagnetic

situation one has 〈ψj+1|ψj〉 = −1

2
. Note that this flux threading each cell is not necessarily

an external flux, since it may be generated by the spin of an atom/molecule, embedded into

the chain as is the case of some coper oxide systems, namely CuO4 chains [150,151].

If the flux through each plaquette is distinct, but repeats every N cells (Fig. 10.4d shows

the situation for N = 2), one can also use the same construction to find localized states. In

this case however, one must consider 2N adjacent cells instead of 2, as before, and we will

find a localized states that extend through 2N cells. As before, these are not necessarily

orthonormal, but can be made so by using Gram-Schmidt orthonormalization. In the ex-

treme case, where there is no periodicity, translational invariance is obviously broken and our

procedure will give us an extended state instead. A particular case of the N = 2 situation,

with φ1 = 2φ2 has been studied in [152].
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10.3 Conductance through a non interacting AB2 ring

In this section we discuss the conductance through the AB2 ring. We will begin by addressing

the case without magnetic flux. Since we do not consider two-particle interactions in this

chapter, the transmission probability |t(ω)|2 for an incident particle with momentum k and

energy ω = −2 cos(k) can be calculated using quantum scattering theory [153], and is given

by the following expression [154],

|t(ω)|2 = 4t2Lt
2
R sin2 k|〈R|[εkÎs −Hs

+ eik
(
t2L|L〉〈L|+ t2R|R〉〈R|

)
]−1|L〉|2, (10.11)

where the inverse is to be found within the subspace of the cluster sites (in our case, the

AB2 ring) positions and Îs is the identity operator in that subspace. This equation includes

the effect of the coupling of the ring to the leads as modifications of the on-site energies of

sites L and R. If the conductance is normalized by the conductance of an ideal one dimen-

sional system, G0 = e2/π~, then the conductance is given by the transmission probability

at the chemical potential. [155]. In what follows, we will always deal with this normalized

conductance, i.e., transmission probability.
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Figure 10.5: Normalized conductance through the AB2 ring as function of the energy of
the incident electron (or chemical potential of the leads) and as function of Vgate for several
positions of the leads. The positions of the leads are shown on the top figures. We show beside
the AB2 circuits, figures of equivalent systems which have exactly the same conductance
profiles. Parameters: tL = tR = 0.3t.

In Fig. 10.5, we show several profiles of the conductance through the AB2 ring with four

unit cells as function of the energy of the incident electron (or chemical potential of the leads)

or as function of a potential Vgate applied to the AB2 ring. These profiles correspond to

certain positions of the leads which are shown at the top of the Fig. 10.5a, Fig. 10.5b and
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Figure 10.6: The conductance through the AB2 ring (or a linear ring) in the absence of flux
and with opposite contacts at sites A is the same as for a linear chain (shown in the top figure,
where the larger, red sites replace the AB2 ring). In (b), one has the conductance for the
particular case of 2t1/

√
2 = 2t0 = tL = tR = 1 in units of t and one sees that the central cluster

(corresponding to the AB2 ring) becomes transparent to an incoming particle for energies
around zero, i.e., the bond with hopping constant t1 acts as a monoatomic anti-reflection
coating between the regions with hoppings t and t0. Deviations of the hopping constants
from the previous values introduce oscillations in the conductance for energies around zero,
as shown in (a) and (c) (where t1/

√
2 = t0 = .4 and t1/

√
2 = t0 = .7, respectively).

Fig. 10.5c. In these figures we also include diagrams of equivalent systems, that is, systems

that exhibit exactly the same conductance profiles as the AB2 ring.

In the case of Fig. 10.5a, the leads are connected to sites A, therefore the anti-bonding

BC ”sites” can be ignored since they are completely decoupled from the leads. The remaining

”ring” of sites A and bonding BC sites form a tight binding ring. Therefore, if the contacts

are sites A, the conductance is exactly the same as that of the equivalent tight-binding ring

(with hopping constant
√

2t). [156] For small coupling between the leads and the AB2 ring,

the conductance has peaks when the chemical potential coincides with any of the system

eigenvalues of the AB2 ring, due to resonant tunnelling. These peaks have the Breit-Wigner

shape. In Fig. 10.5a, three peaks A, B and C are observed in G(Vgate) in a potential interval

corresponding to the bandwidth of the leads (the chemical potential of the leads is equal to

zero). The same peaks should also be observed in the G(ω)-plot of Fig. 10.5a where Vgate = 0

and the chemical potential (or equivalently the energy ω of the incident particle) is varied

from the bottom of the leads band to the top. However peaks A and B are absent because

they correspond to the bottom and top energies of the leads bands and the particle velocity

is zero for these energies.

If the left contact is a site B or C (let us assume it is a site B) and the right contact is a site

A, as in the case of Fig. 10.5(b), the conductance profile is the same as that of a tight-binding
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ring but with the ω = 0 peak absent. This absence reflects the fact that the hopping term

from the left lead to a B site of the AB2 ring, in the basis of antibonding BC−, bonding BC+

and A states, becomes a hopping between the left lead and a bonding state bonding BC+

and a hopping to a localized state BC−, both with a smaller hopping constant tL/
√

2. Since

this localized state is decoupled from all other states of the ring, it only leads to a reflected

wave back into the left lead. For ω = 0, this reflected wave interferes destructively with the

incident wave and one can say the localized state BC− acts as a conductance absorber for

frequencies close to ω = 0 (in close analogy with λ/4 sound absorbers). The absence of the

ω = 0 peak can also be explained in the following way. The hopping to the BC− ”site” is a

”dangling bond”. If one considers a linear chain with a dangling site as shown in Fig. 10.2c

(with hopping constant ta to the dangling site), then the equation for the wavefunction

amplitude ψa at the dangling site of a particle with energy ω = −2t cos(k) is ωψa = −taψj .
Substituting ψa in the the equation for the wavefunction amplitude at site j, ψj , one has

ωψj = −tψj−1 − tψj+1 + (t2a/ω)ψj , therefore the dangling site effectively modifies the on-site

energy of site j to εj(ω) = (t2a/ω). When ω = 0, the on-site energy becomes infinite and one

has zero conductance at ω = 0. The peaks A and C in Fig. 10.5(b) have a reduced amplitude

compared to those in Fig. 10.5a due to the difference in paths in the upper and lower arms

of the ring.

If both the left and right contacts are sites B (or C) as shown in Fig. 10.5(c), an analogous

reasoning applies and the system is equivalent to a linear ring connected to leads but with

two dangling sites, one at the end of each lead. Again, localized states act as a filter of the

ω = 0 peak.

In the case of Fig. 10.5a, the remaining ”ring” of sites A and bonding BC sites can be

mapped onto a linear chain since the leads are coupled to opposite A sites. In this case,

the leads define an axis of symmetry of the diamond ring and the anti-bonding combinations

of an A (or bonding BC) site with the one obtained by reflection in this axis of symmetry

are decoupled from the contact sites, or equivalently, the tight-binding hoppings from the

contact sites generate a bonding combination of the nearest-neighbor bonding BC ”sites” and

this bonding combination couples only to the bonding combination of A sites. So, for the

purpose of calculating the conductance across the AB2 ring, it is enough to consider the linear

sequence of these bonding states (see the top diagram in Fig. 10.6 where the cluster of larger,

red sites replaces the AB2 ring). In Fig. 10.6b, one has the conductance for the particular

case of 2t1/
√

2 = 2t0 = tL = tR = 1 in units of t, that is, we have three regions with different

hopping constants t, t0 and t, separated by single hoppings of constant t1. The central

cluster (and therefore also the AB2 ring) becomes transparent to the incoming particle for

energies around zero. Deviations of the hopping constants from the previous values introduce

oscillations in the conductance for energies around zero, as shown in Fig. 10.6a and Fig. 10.6c,

where the dome of minima of the conductance oscillations is below one.
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Figure 10.7: (a) Conductance as a function of the frequency of the incident particle for an
AB2 ring of 16 plaquettes, φ = π/2, and several positions of the leads contacts. For this
flux value, only localized states contribute significantly to the ω = 0 conductance peak. (b)
Maximum of the conductance as a function of the flux for 16 plaquettes. For leads contacts
at B1-C2 and φ = π, the peak value of the conductance is 0.25, since in this case the AB2 is
mapped onto the cluster of Fig. 10.9a with equal values of the hopping constants. For leads
at B1-C1 it is zero for φ = π, since the left and right leads couple to orthogonal states which
do not overlap. The oscillations at low flux reflect dependence of the inner magnetic flux φi
and disappear as the gap between the itinerant bands and the localized states grows with
increasing flux.

This result can be explained with an analogy with a quarter wavelength anti-reflection

coating [157], that is, the bond with hopping constant t1 acts as a monoatomic anti-reflection

coating between the regions with hopping constant t and t0. A anti-reflection coating generates

an additional reflected wave which is out of phase with the first reflected wave and therefore

partially cancels the reflection. If the refraction index of the coating is the geometric mean of

the refraction indices of the materials to the left and right of the coating, nc =
√
nleftnright,

the transmittance becomes one when the wavelength of incident wave, λ, is such that the

thickness of the coating is an odd multiple of the λ/4. This can be translated into our

problem in the following way. The relation nc =
√
nleftnright can be written as nc/nright =√

nleft/nright which is equivalent to a relation between velocities vright/vc =
√
vright/vleft. The

ratio between velocities in our system for energies close to zero is approximately the ratio of

hopping constants and the previous relation becomes t1/t0 =
√
t/t0. So perfect transmission

occurs when 2t1/
√

2 = 2t0 = t (as in the case of Fig. 10.6b) and when λ/4 is equal to one

interatomic distance (which we have assumed to be one), that is, for k = π/2 or equivalently,

energy ω = −2t cos(k) equal to zero.

When magnetic flux is present, a gap opens between the flat band and the itinerant bands

of the AB2 ring. The conductance peaks corresponding to energies of itinerant states follow

the behavior of the conductance peaks of a linear ring and we do not address them here

(see [156]). The behavior of the conductance for energies close to ω = 0 (which is determined
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Figure 10.8: Logarithm of the conductance for 16 cells and φ = π/2 around ω = 0, for all the
inequivalent lead positions such that one of the leads is on a B site and the other on a C site.

only by the localized states of the AB2 ring when flux is finite and the coupling between the

leads and the cluster is small) is rather unusual. A zero frequency dipped conductance peak

is observed despite the fact that the energies of the itinerant states of the ring are far from

this zero frequency peak. This is shown in Fig. 10.7a for the case of an AB2 ring with 16

unit cells and for φ = π/2. This dipped peak only occurs if the contact sites are sites B or

C (otherwise the peak is absent) and shows distinct behavior as function of the positions of

the contact sites and as function of the magnetic flux. As shown in the inset of Fig. 10.7a,

the peak maximum decays quasi-exponentially as a function of the contact sites distance,

except for the first two distances, where the conductance peak maximum remains the same.

Such behavior is also visible in Fig. 10.8 where the logarithm of the conductance for small

frequencies of an incident particle is plotted for several inequivalent positions of the leads.

The dependence with flux of the maximum of the conductance peak shows rather peculiar

behavior depending on the position of the contacts. In Fig. 10.7b, we show the maximum of

the ω = 0 conductance peak as a function of the flux threading each plaquette, φ, for several

choices of contacts positions. When the contacts are the sites B1 and C1 (see the labeling

of the sites in the inset of Fig. 10.7a), the maximum starts at one, oscillates for small φ and

goes smoothly to zero as φ approaches π. The oscillations near φ = 0 reflect the contribution

to the conductance of the itinerant states which oscillates as a consequence of the Aharonov-

Bohm effect due to the varying flux threading the inner region of the AB2 ring (an uniform

field was applied to the AB2 cluster). These oscillations disappear as φ grows due to the

larger gap between the itinerant bands and the ω = 0 energy. Note that localized states do

not ”feel” this inner flux, that is, their energy is independent of this field and therefore do

not contribute to an Aharonov-Bohm effect. When the contacts are the sites B1 and C2,

contrasting behavior occurs and the maximum approaches zero when φ is small and tends to

0.25 when φ goes to π. For larger distance between contacts, the graphs of the maximum

of the ω = 0 conductance peak exhibit dome-like profiles (see Fig. 10.7b(b)), with the peak
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Figure 10.9: (a) The coupling of the leads to the localized states of the AB2 ring in the presence
of flux is described by the top diagram where one has dangling sites connected to the left
(right) lead representing the localized states which have finite wavefunction amplitude at site
L (R), but zero amplitude at site R (L). The system on top is equivalent to the bottom system
consisting of only one L, R and LR localized states. (b) Whenever all hopping constants in
the bottom system are equal, the maximum of the conductance is 0.25 regardless of their
value. Due to the dangling sites, the conductance always goes to zero at zero frequency.

maximum growing from near zero when φ is small, reaching a maximum value and decreasing

to zero when φ approaches π.

These results can explained recalling our previous discussion of the extension of localized

states when the flux is finite. Since this extension ranges from two unit cells to the full

ring, and ignoring the itinerant states of the ring which are energetically far from the ω = 0

energy region, the conductance is only finite if one has localized states that extend from the

left contact to the right contact in the AB2 ring. More precisely, we can divide the localized

states in the following way: states I that extend from the left contact to the right contact, that

is, that have finite wavefunction amplitudes at the sites L and R of the AB2 ring; states II that

have finite wavefunction amplitudes at the site L but not at the site R of the AB2 ring; states

III that have finite wavefunction amplitudes at the site R but not at the site L of the AB2 ring;

states IV that have zero wavefunction amplitudes at both the sites L and R of the AB2 ring.

Note that the choice of basis for the subspace of localized states influences the number of states

in each of these groups, but the explanation for the conductance results remains the same.

The larger the extension of the localized states, the smaller the wavefunction amplitude at

the contact sites, and consequently the smaller the effective hopping between the extremities

of the leads and the localized state. So, our system is equivalent to that displayed in the top

diagram of Fig. 10.9a. The hopping constants between the leads (smaller, red spheres) and

the localized states (larger, black spheres) are in general different but all these hopping can be

simplified and the system can be reduced to that shown in the bottom diagram of Fig. 10.9a.
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In fact, several dangling sites (states II) contribute to the on-site energy of the site at the end

of the left lead and t1 is the hopping constant that generates an on-site energy equal to the

sum of the on-site energies generated by the dangling sites at the left lead. The same goes

for t4. The effect of the localized states of the type I can also be reproduced with a single

site but with different hopping constants to the left lead and to the right lead. In Fig. 10.9b,

we show the conductance through this simplified system. If t2 = t4 = t, without the dangling

sites, we would have perfect transmittance for any energy of the incident electron. The effect

of the dangling sites is the creation of the dip at ω = 0 as one can see in Fig. 10.9b (red solid

curve). If t2 and t3 are rather smaller than t and no dangling site is present (t1 = t4 = 0),

a peak appears at ω = 0 of width proportional to t2 (assuming t2 = t3). The effect of the

dangling sites in this case is again the introduction of the dip at the center of this peak. If the

width of the dip becomes larger than that of the peak, the dipped peak maximum becomes

small.

One can now explain the behavior displayed in Fig. 10.7b. One should recall that the

non-orthogonal localized states are of the form

(|Bj〉− ei
φ
2 |Cj〉) + (ei

φ
2 |Bj+1〉− |Cj+1〉). The overlap between consecutive localized states

is equal to cos(φ/2)/2, so it is zero whenever φ = π, and 1/2 when φ = 0 (the latter

value implies that shorter and orthogonal localized states can be found of the form BC−j =

1/
√

2(|Bj〉 − |Cj〉)). We consider only the mean evolution of the conductance, that is, the

dependence of the conductance remaining if the oscillations due to the Aharonov-Bohm effect

are removed. This behavior consists of the following: if the contacts are the sites B1 and C1,

the maximum of the conductance is one for zero flux and with increasing magnetic flux, the

conductance decreases and becomes zero for flux equal to π. Note that for φ = π, the localized

states, |ψj〉 = 1/2 |(Bj〉− i |Cj〉) + (i |Bj+1〉− |Cj+1〉, are orthogonal and both leads couple to

only two of these states, |ψ1〉 and |ψNc〉. That is, we have only two states of type I and all other

localized states are of type IV. The transport through the cluster is given by the transfer terms

to these localized states of the form 〈ψ1|H |0〉 which collected (omitting the hopping terms

in the leads) give rise to (−tL/2) |0〉 [〈ψ1|+ i 〈ψNc |] + (−tR/2) |N + 1〉 [−i 〈ψ1| − 〈ψNc |] + H.c.

But [〈ψ1| + i 〈ψNc |] and [−i 〈ψ1| − 〈ψNc |] are orthogonal bras, therefore the left and right

leads are effectively decoupled and the transmittance is zero. A similar reasoning can be

followed when φ approaches zero. In this case the leads couple to only one localized state,

BC−1 = 1/
√

2(|B1〉 − |C1〉), that is, we have one state of type I and no dangling sites, so the

transmittance approaches one.

If the contacts are the sites B1 and C2, the maximum of the conductance is zero for zero flux

and, with increasing magnetic flux, the conductance increases and becomes 1/4 for flux equal

to π. The fact that the conductance maximum approaches zero as φ goes to zero is common

to all other contact possibilities with exception of the previous one and reflects a similar

argument, that is, the left lead couples to only one localized state, BC−1 = 1/
√

2(|B1〉 − |C1〉)
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and the right lead couples only to one other localized state which is orthogonal to the former,

and consequently the transmittance is zero. The fact the conductance goes to 1/4 when the

flux goes to π can also be justified as before, collecting the transfer integrals and one has

(−tL/2) |0〉 [〈ψ1|+ i 〈ψNc |] + (−tR/2) |N + 1〉 [−〈ψ1| − i 〈ψ2|] + H.c., and this corresponds to

the bottom diagram displayed in Fig. 10.9b with t1 = itL/2, t4 = −itL/2, t2 = tL/2, and

t3 = tR/2. Since we considered tL = tR, all these hopping constants are equal in absolute

value and therefore the conductance is equal to 1/4 in agreement with what is shown in

Fig. 10.9b. Note that the phase terms are irrelevant at the dangling sites.

If one of the contacts is the site B1 and the other is a Cj site with j 6= Nc, 1, 2, the maximum

of the conductance goes to zero as the flux goes to zero and with increasing magnetic flux, the

conductance increases, reaches a maximum (this maximum becomes smaller as the distance

between contacts increases) and goes again to zero when the flux approaches π, reflecting the

fact that the orthogonal localized states are all two unit cells long.

10.4 Conclusions

We have shown that localized states in itinerant geometrically frustrated electronic systems

generate rather striking behavior in the two terminal electronic conductance. In the absence

of magnetic flux, the localized states act as a filter of the zero frequency conductance peak

(we suggested an analogy with λ/4 sound absorbers), if there is a finite hopping probability

between the leads contact sites and the localized states. In contrast, when magnetic flux is

present, some localized states contribute to the appearance of a zero frequency conductance

peak while other localized states act as a conductance absorber, and as a consequence, the

conductance exhibits a zero frequency peak with a dip.

We have shown that such different roles of the localized states are due to the fact that

the presence of magnetic flux implies that any orthogonal basis of the subspace of localized

states is composed of localized states with variable extensions (ranging from two unit cells

to the complete ring, in the case of the AB2 ring). Such peculiar dipped peak fixed at the

localized states energy, even when magnetic flux is varied, is a distinct fingerprint of the

existence of localized states in itinerant geometrically frustrated electronic systems. Further-

more, depending on the distance between contact sites, different profiles for the maximum

of the dipped conductance peak as function of the magnetic flux have been obtained, and

this implies that the two terminal conductance can be used as a probe of the localized states

spatial dependence.
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Chapter 11
Derivation of a conductance formula for an

interacting cluster

In this chapter we derive a conductance formula, akin to the Jagla-Balseiro approach [158], for

the conductance through interacting clusters. The work here contained has been published

in [159].

11.1 Introduction

The signatures of electronic interactions in the conductance through nanosystems has drawn

a great deal of attention in the past few years. Many conductance studies have addressed the

interaction effects using the method of non-equilibrium Keldysh Green functions. [160,161] In

this approach, one assumes non-interacting leads and the non-equilibrium current is obtained

as a function of the exact propagators of the interacting cluster (including the contribution

of the leads).

When the coupling between the non-interacting leads and the interacting cluster is small,

a simpler approach by Jagla and Balseiro [158] which requires only the determination of the

Green’s functions of the decoupled interacting cluster can be used. This approach maps the

scattering through the interacting cluster into a Landauer-type formula which relates the

electrical resistance to the one-particle scattering properties of an effective impurity. Note

however that this approach does not capture the correlation effects that lead to the Kondo

phenomena.

In this chapter, a new method (that reproduces the results in Jagla’s and Balseiro’s ap-

proach) for the two-terminal conductance through interacting clusters is proposed. This

method relies in the approximation that despite interacting with other particles in the scat-

tering region, the incident particles remain independent in the leads. This assumption allows

us to work in a reduced Hilbert space and the conductance is obtained from the solution of a

151
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system of M+2 coupled linear equations (avoiding the need to calculate Green’s functions),

where M is the number of cluster states with one particle more or less relatively to the ground

state of the cluster.

11.2 Notation

Let us begin by fixing our notation. We let c†i |0L,R〉 denote the one-particle Wannier state of

the leads corresponding to a particle at site i (with |0L,R〉 being the vacuum state of the left

or right lead) and |GS(N)〉 denote the ground state of the cluster with N particles. Whenever

we consider the tensorial product of three states, |·〉 ⊗ |·〉 ⊗ |·〉, the first state is a left lead

state, the second one is right lead state and the last one a cluster state.

11.3 Description of our method

We consider a cluster with sites L and R connected to left and right leads respectively. We

consider these leads to be described by a one-dimensional tight binding model and to be

weakly coupled to our cluster as depicted in Fig. 11.1. The Hamiltonian of the full system is

given by

H = HC +Hleads +HLR (11.1)

where HC is the Hamiltonian of the isolated cluster (an AB2 ring, in the case of Fig. 10.1),

Hleads is the Hamiltonian of the isolated leads, assumed to be semi-infinite,

Hleads = −t
∞∑
j=1

(a†jaj+1 + a†−j−1a−j) + H.c., (11.2)

and the hybridization term is

HLR = −tLa†−1XL − tRa†1XR + H.c. (11.3)

where tL and tR are the hopping amplitudes coupling the leads and the cluster and X†L and

X†R create an electron on site L and R, respectively, of the cluster. For simplicity, we have

assumed spinless Fermions, but our approach can be generalized to the spinful case as well

as to a multi-terminal configuration.

Let us discuss first the non-interacting case. In this case, each energy value in the band

continuum of the semi-infinite leads is twice degenerate. If tL = tR = 0, and assuming

incoming particles only from one lead, this corresponds to states where an incoming particle

is totally reflected in the left lead or in the right lead. When tL, tR 6= 0, the presence of the

cluster leads to a certain mix of these states (again assuming incoming particles only from

one lead). In fact, apart from the cluster, this particle wave function with energy in the
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Figure 11.1: An interacting cluster with Ns sites connected to two semi-infinite tight-binding
leads at sites L and R (L,R ∈ {1, . . . Ns}).

Figure 11.2: Non-interacting cluster obtained in our method. The onsite energies εαi (εβj )
are determined from the one-particle (one-hole) excitations of the interacting cluster and the

hopping terms t
L/R
αi (t

L/R
βj

) are given by the overlap between the interacting N particle ground

state and the one-particle (one-hole) excitations of the interacting cluster with N + 1 (N − 1)
particles. See the next section for the exact expressions of these parameters.

band continuum of the semi-infinite leads remains a combination of incident, reflected and

transmitted plane waves. Eigenstates with energies outside the band continuum are localized

states in the cluster. Note that this is valid for any value of tL and tR if the cluster is finite

and the leads are semi-infinite, and this can be understood noting that any finite localized

term in the Hamiltonian is an infinitesimal perturbation in the plane wave basis, if the leads

are infinite.

When interactions are present in the cluster, we assume that the same occurs, that is,

that the presence of the interacting cluster will merely mix the non-interacting one-particle

states of the left and right leads with same energy state and that particles in the leads

remain independent despite interacting with other particles in the scattering region (this

is also implicit in Balseiro’s approach) and therefore we can study the transmission of a

single incoming particle following a Landauer-like procedure. Furthermore, the cluster state

remains the same as in the decoupled situation when the incoming particle is far from the

cluster since the number of particles in the cluster is fixed by the chemical potential in the

leads (we consider an infinitesimal chemical potential difference between the leads). Therefore

the incoming particle will arrive at the contact site, with the cluster at its interacting ground

state, and in order for transmission to occur the system must be able to have a transition into

the state where a particle is at the right contact site and the cluster is again in the ground

state.
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There are two possible paths for such transition, one path involving an intermediate state

with N + 1 particles in the cluster and zero particles in the leads and another path involving

an intermediate state N − 1 particles in the cluster and one particle at site 0 and one particle

at site Ns + 1, where Ns is the number of sites of the cluster (see Fig. 11.1). This reasoning

allows us to work in a reduced Hilbert space and the conductance is obtained from the

solution of a system of M + 2 coupled linear equations, where M is the number of cluster

states with one extra particle or one less relatively to the ground state of the cluster. So, we

reduce the determination of the conductance through an interacting cluster to a one-particle

transmission problem through a non-interacting cluster but with hopping constants and local

energies determined taking into account the interacting cluster. The analytical details of this

approach can be found in the next section. The relation between the transmission probability

and the conductance is given by the usual Landauer formula [162].

In Fig. 11.2, we show the non-interacting cluster obtained using our method, with M

decoupled sites, with different onsite energy and connected to the leads with renormalized

hoppings constants. The onsite energies are determined from the one-particle (one-hole) exci-

tations of the interacting cluster and the hopping terms are given by the overlap between the

interacting N particle ground state and the one-particle (one-hole) excitations of the inter-

acting cluster with N − 1 (N + 1) particles. Note that these onsite energies and renormalized

hoppings do not depend on the energy of the incident particles (as in Jagla’s and Balseiro’s

approach [158], but only on the number of particles in the ground state of the cluster. Note

also the exchange of the indices L and R in the case of hoppings to β sites, reflecting the fact

that transmission of an incoming particle through these states involves first a particle hop

from the cluster to the right lead and second, the hopping of the incoming particle from the

left lead to the cluster.

One can ask what happens when the ground state of the interacting cluster is degenerate.

Some authors have avoided this problem assuming the existence of a small perturbation that

lifts the ground state degeneracy [163]. Depending on this perturbation, some conductance

peaks may however disappear from the conductance profile. Here we use a different approach.

Since we are addressing the differential conductance at zero temperature, the chemical poten-

tial of the cluster is well defined, and the distribution of cluster states at finite temperature

will be given by the density operator for the grand canonical ensemble,

ρ =
e−β(H−µ)

tr e−β(H−µ)
(11.4)

and the average current will, consequently, be given by

〈I〉 := tr ρI. (11.5)
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At zero temperature, the sum will be over only ground states

〈I〉 =

∑
i

〈
E

(i)
G.S.

∣∣∣ I ∣∣∣E(i)
G.S.

〉
∑

i

〈
E

(i)
G.S.|E

(i)
G.S.

〉 (11.6)

such that the average conductance is simply the arithmetic mean of the conductances for

each ground state. This way, all conductance peaks associated with the several ground states

will be present in the conductance profile. However, note these peaks may have the height

reduced due to the averaging, if their are associated with only one ground state. Even if every

ground state generates a certain conductance peak, the peak may have a different width for

each cluster ground state (due to different values of the effective hopping to these states,

see Fig. 11.2) and the averaging will generate a peculiar non-Lorentzian peak with a sharper

maximum.

11.4 Derivation of our conductance formula

As explained before we study the transmission of a single incoming particle through the

interacting cluster following a Landauer-like procedure assuming that the particles in the

leads remain independent despite interacting with particles in the cluster. Furthermore, the

number of particles in the cluster is fixed by the chemical potential in the leads and the

electrons in the lower energy states of the cluster do no tunnel to the leads due to the Pauli’s

exclusion principle. Let us assume that the chemical potential is adjusted so that the ground

state of the cluster has exactly N electrons. Considering this simpler problem of a single

particle in the leads and N particles in the cluster, one is lead to the conclusion that when

the particle in the leads is far from the cluster, the ground state of the cluster is the same

as that of the decoupled system. Also, the incoming particle will be in a plane wave state

(since these are eigenstates of the leads Hamiltonian and we take the hybridization to be

small). So, when the incoming particle is far in the left lead (j � 0), the particle+cluster

eigenfunction for a certain energy ωk +EGS(N) will be a combination of a incident plane wave

with a reflected plane wave due to the cluster(
eikj + ψre

−ikj
)
c†j |0L〉 ⊗ |0R〉 ⊗ |GS(N)〉 , (11.7)

while when the particle is far in the right lead (j � N + 1) one has a transmitted component

|0L〉 ⊗ ψteikjc†j |0R〉 ⊗ |GS(N)〉 . (11.8)

The previous expressions of the eigenstate with energy ωk +EGS(N) can be extended to j ≤ 0

and j ≥ N + 1, respectively, applying the induction method starting from these far away
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components [as for the non-interacting case (Appendix 10), cf. Eq. (H.8)] using,

ωkψj = −ψj+1 − ψj−1, (11.9)

That is, solving successively the previous matrix equation, we can get closer to the cluster,

starting from the j → −∞ and j →∞ cases.

There are two possibilities for the transmission of the incoming particle through the cluster,

one involving an intermediate state with N + 1 particles in the cluster and zero particles in

the leads and another involving an intermediate state N − 1 particles in the cluster and one

particle at site 0 and one particle at site Ns + 1. Taking into account the above discussion,

we restrick our analysis to the following subspace of states

c†j |0L〉 ⊗ |0R〉⊗ |GS(N)〉 , j ≤ 0

|0L〉 ⊗ c†j |0R〉⊗ |GS(N)〉 , j ≥ N + 1

|0L〉 ⊗ |0R〉⊗
∣∣N + 1(n)

〉
c†0 |0L〉 ⊗ c

†
N+1 |0R〉⊗

∣∣N − 1(m)

〉
(11.10)

where
∣∣N + 1(n)

〉
represents all cluster states with N + 1 particles and

∣∣N − 1(m)

〉
represents

cluster states with N − 1 particles. The reduced Hilbert space implies that when the particle

in the leads is far from the cluster, the ground state of the cluster is the same as that

of the decoupled system, which is a valid approximation given that we assumed that the

hybridization between the leads and the cluster is small.

Let us now write the full form of the eigenstate with energy ωk + EGS,N , not forgetting

that we are working in a restricted subspace (we are in fact, simply expanding this state in

terms of the basis for our subspace, using the knowledge we have of how the eigenstate on

the leads must look like)

|ψk〉 =
∑
j≤0

(
eikj + ψre

−ijk
)
c†j |0L〉 ⊗ |0R〉 ⊗ |GS(N)〉+

∑
j≥N+1

ψte
ikj |0L〉 ⊗ c†j |0R〉 ⊗ |GS(N)〉

+
∑
n

αn |0L〉 ⊗ |0R〉 ⊗
∣∣N + 1(n)

〉
+
∑
m

c†0 |0L〉 ⊗ c
†
N+1, |0R〉 ⊗ βm

∣∣N − 1(m)

〉
(11.11)

where
∣∣N + 1(n)

〉
denotes the nth eigenvector of the cluster Hamiltonian when it has N + 1

particles and identically for
∣∣N − 1(m)

〉
. Let us now look at the Hamiltonian matrix equations
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which involve VLR. For c†0 |0L〉 ⊗ |0R〉 ⊗ |GS(N)〉 we have(
ωk + EGS(N)

)
ψ0c
†
0 |0L〉 ⊗ |0R〉 ⊗ |GS(N)〉 =− ψ−1c

†
0 |0L〉 ⊗ |0R〉 ⊗ |GS(N)〉

− tLc†0 |0L〉 ⊗ |0R〉 ⊗
∑
i

(
αicL

∣∣N + 1(i)

〉)
− tRc†0 |0L〉 ⊗ |0R〉 ⊗

∑
j

(
βjc
†
R

∣∣N − 1(j)

〉)
+ EGS(N)ψ0c

†
0 |0L〉 ⊗ |0R〉 ⊗ |GS(N)〉 .

(11.12)

We emphasize that we work in a restricted subspace where only one state with N particles

in the cluster is available, the ground state, so a projector is implicit in the previous equation.

The degenerate ground state case can be treated by using the Gibbs state as described in

section 11.3. Given this, and through some straightforward calculations we can arrive at

ωkψ0 + ψ−1 =− tL
∑
n

αn 〈GS(N)| cL
∣∣N + 1(n)

〉
− tR

∑
m

βm 〈GS(N)| c†R
∣∣N − 1(m)

〉
=−

∑
n

(
tLαn(N)

)∗
αn −

∑
m

(
tRβm(N)

)∗
βm

(11.13)

Now, for |0L〉 ⊗ ⊗ |0R〉αn
∣∣N + 1(n)

〉
after some calculations we get

(ωk + EGS(N)− Eαn)αn =− tLψ0

〈
N + 1(n)

∣∣ c†L |GS(N)〉 − tRψN+1

〈
N + 1(n)

∣∣ c†R |GS(N)〉

=−
(
tLαn(N)

)
ψ0 −

(
tRαn(N)

)∗
ψN+1

(11.14)

For c†0 |0L〉 ⊗ c
†
N+1 |0〉 ⊗ βm

∣∣N − 1(m)

〉
we get

(ωk + EGS(N)− Eβm)βm = + tLψN+1

〈
N − 1(m)

∣∣ cL |GS(N)〉 − tRψ0

〈
N − 1(m)

∣∣ cR |GS(N)〉

=−
(
tLβm(N)

)∗
ψN+1 −

(
tRβm(N)

)
ψ0

(11.15)

Finally for |0L〉 ⊗ c†N+1 |0〉 ⊗ |GS(N)〉 we have
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ωkψN+1 + ψN+2 =− tR
∑
n

αn 〈GS(N)| cR
∣∣N + 1(n)

〉
+ tL

∑
m

βm 〈GS(N)| c†L
∣∣N − 1(m)

〉
=−

∑
n

(
tRαn(N)

)
αn −

∑
m

(
tLβm(N)

)
βm

(11.16)

Note we have introduced the parameters

tLαn(N) = tL
〈
N + 1(n)

∣∣ c†L |GS(N)〉 , (11.17)

tRαn(N) = tR 〈GS(N)| cR
∣∣N + 1(n)

〉
, (11.18)

tRβm(N) = tR
〈
N − 1(m)

∣∣ cR |GS(N)〉 , (11.19)

tLβm(N) = −tL 〈GS(N)| c†L
∣∣N − 1(m)

〉
. (11.20)

Defining

εαn(N) = Eαn − EGS(N), (11.21)

εβm(N) = Eβm − EGS(N), (11.22)

one concludes that Eqs. 11.13, 11.14, 11.15 and 11.16 correspond to the Hamiltonian matrix

equations of the effective system shown in Fig. 11.2.

The solution of this set of M + 2 equations (that is, Eqs. 11.13, 11.14, 11.15 and 11.16)

allows us to determine ψt and ψr. Note that ψ0, ψ−1, ψN+1 and ψN+2 are given by expressions

ψj =
(
eikj + ψre

−ikj
)

for j ≤ 0 and ψj = ψte
ikj for j ≥ N + 1 and are functions of ψr and ψt,

therefore we have M + 2 variables. The transmission probability is then given by the square

of the absolute value of the ratio between the amplitude of the outgoing wave ψt and the

amplitude of the incident wave (which we have assumed to be 1).

11.5 Application of our method for a simple scenario

In this section we consider the simple situation, depicted in Fig. 11.3, of a single site connected

to semi-infinite leads with Hamiltonain given by

H = HC +Hleads +HLR (11.23)
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-1
... ...

10 2 3

Figure 11.3: A single site connected to two infinite leads by different hopping constants to
those of the leads.

with

HC = ε1c
†
1c1

Hleads = −t

 −1∑
j=−∞

c†j+1cj + H.c

− t
 ∞∑
j=2

c†j+1cj + H.c


HLR = −tL

(
c†1c0 + H.c

)
− tR

(
c†2c1 + H.c

) (11.24)

Let us now calculate the transmittance through this system using the method we have

developed in the previous section. For that we simply need to make use of Eqs. (11.13-11.16)

In this simple case we have the following

α1 = ψ1

β1 = 0

Eα1 = ε1

(11.25)

and our equations reduce to

ωkψ0 + ψ−1 = −tLψ1

(ωk − ε1)ψ1 = −tLψ0

ωkψ2 + tψ3 = −tRψ1

(ωk − ε1)ψ1 = −tRψ2

(11.26)

These correspond directly to Eqs. (H.11-H.14) in Appendix H whenever there is only one site

in the quantum ring. For the simpler situation ε1 = 0, tL = tR = t1, we can easily calculate

an analytical expression for the transmittance, which is given by

T = |ψ2|2 =

∣∣∣∣∣∣∣∣∣
i
∂ωk
∂k(

t2

t21
− 1

)
ωk + i

∂ωk
∂k

∣∣∣∣∣∣∣∣∣
2

(11.27)

for ωk = −2t cos(k). For more complex scenarios, without interaction, a direct comparison
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between the conductance equations of this chapter and the ones of 10 is not possible as in

the first case we make use of eigenvectors of the cluster, while in the latter we make use of

localized cluster states (which coincides for a single cluster site). Our method is, however,

exact in the limit of no interactions, and the two methods will always produce the same

results. We have also performed numerical studies for the case of interacting rings and the

AB2 chain, which have shown that our method produces results identical to the one in [163],

the difference between the two methods being negligible.

11.6 Conclusions

In this paper, a new method for the determination of the two-terminal differential conductance

through an interacting cluster has been presented and applied to the case of the conductance

of spinless Fermions through an AB2 ring considering nearest neighbors interactions. This

method is exact in two limits: (i) vanishing interactions; (ii) vanishing coupling between leads

and cluster, and its main approximation is the assumption that particles in the leads remain

independent and therefore the system can be reduced to a simpler problem of one incoming

particle which interacts with N particles in the cluster. This simpler problem can studied

in a truncated Hilbert space and in this space, it can mapped exactly into the problem of

the transmission of an incoming particle through a non-interacting cluster of M independent

sites (where M is the number of cluster states with one particle more or less than the ground

state of the cluster).

The simplicity of our method allows simple generalizations to more complex situations

(which are apparently not trivial in Jagla and Balseiro’s method) such as: i) the multi-

terminal case, where an incoming particle from a lead can be transmitted into several leads

connected to the cluster. This situation is described adding several equations of the type

of Eq. (11.16) to the system of equations; ii) the transmission of entangled pairs. In this

case, a similar truncation of the Hilbert space can be followed, considering a single incoming

pair in the left lead and allowing for interactions only in the cluster. This problem will be

addressed in a future work. Eqs. (11.13-11.16); iii) the transmittance of magnons through

magnetic nanoclusters coupled to ferromagnetic spin chains. A Jordan-Wigner transformation

or a Matsubara-Matsuda transformation allows one to map the transport of magnons into

the problem of the transport of one spinless particle through a nearest-neighbor interacting

nanocluster (assuming Heisenberg interactions in the cluster). The work here contained has

been published in [159].



Chapter 12
Conductance through interacting spinless

AB2 chains

In this chapter we study the conductance through the AB2 for a two terminal set-up in

the presence of interactions. We show that for the conductance thorough an interacting

AB2 chain one has that the non-interacting conductance profiles persist for small values of

the interaction, with a small shift of the peaks and a small splitting of the peaks (when

degeneracy is present in the non-interacting limit). We also see that some conductance peaks

are not present due to a particle number jump (observed for any value of the interaction)

that occurs as the gate potential is varied and that can be associated with the flat band of

the AB2 ring when interactions are absent.

12.1 Conductance in the AB2 chain

In this section, we apply the method described in section II (and detailed in appendix A)

to the study of the conductance through an AB2 ring (see Fig. 12.1). Recently, we have

shown that due to the existence of one-particle localized states in this ring (consequence of

the geometrical frustration), the conductance through the non-interacting AB2 ring displays a

peculiar dipped conductance peak at zero frequency. Here, we discuss the effect of the nearest-

neighbor interactions on the presence of this peak as well as effects due to a particle number

jump [due to the existence of a flat band when no interactions are present (see appendix B),

but that persists when interaction is taken into account] which occurs as a gate voltage Vg is

varied.

In Fig. 12.1, an AB2 ring is shown with a magnetic flux φ threading each plaquette and

a magnetic flux φi threading the inner ring. The inner sites in the AB2 ring of Fig. 12.1 are

denoted as C sites and the outer sites as B sites. Spinal sites are denoted as A sites. The

number of unit cells (or plaquettes) is denoted Nc. Therefore, the magnetic flux enclosed

161
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......

Figure 12.1: The diamond star is connected at sites L and R, to one-dimensional semi-
infinite tight binding leads via hopping amplitudes tL and tR. Each plaquette is threaded by
a magnetic flux φ while the inside ring is threaded by a magnetic flux φi.

by the outer ring is φo = φi + 4Ncφ/4 and we introduce an auxiliary flux φ′ such that

φo = φ′ + 2Ncφ/4, φi = φ′ − 2Ncφ/4.

The Hamiltonian for an AB2 chain with Nc unit cell is

HC = H0 + V
∑
j

(
nAj + nAj+1

) (
nBj + nCj

)
, (12.1)

where V is the value of the interaction and

H0 = −t
Nc∑
j=1

[
eiφo/2Nc(A†jBj +B†jAj+1)

+ e−iφi/2Nc(C†jAj +A†j+1Cj)
]

+ H.c.

(12.2)

where A†j creates a particle at the spinal site of the unit cell j of the AB2 ring, and B†j and C†j
creates a particle at the edge sites (see Fig. 12.1). Here we have chosen a gauge such that the

Peierls phases are equally distributed in the inner ring and in the outer ring of the AB2 ring.

By introducing a gate voltage in our cluster one needs to modify the cluster Hamiltonian,

HC → HC − eVgN .

In the case of a transport experiment, the AB2 ring is connected to particle reservoirs and

one needs to know the ground state of the AB2 ring as function of the chemical potential.

The phase diagram of an AB2 ring with four unit cells (as in Fig. 12.1) as a function of

the chemical potential and of the interaction is displayed in Fig. 12.2a for zero flux and in

Fig. 12.2b for flux per plaquette equal to π/2.

For zero flux, the phase diagram Fig. 12.2a shows a particle number jump to a high density

state, from 3 particles to 8 particles (or better, from Nc-1 to 2Nc). It is interesting to note

that the cluster is never at half-filling or close to it. As that is the situation corresponding

to the largest Hilbert subspace, the fact that one can neglect these states means that our

computational effort is reduced. This particle jump can be associated with the existence of

zero energy localized states (due to the geometric frustration of the AB2 chain) when V/t
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Figure 12.2: Phase diagram of the AB2 ring connected to a particle reservoir as a function of
the chemical potential and the interaction for the particular case Nc = 4 and (a) zero flux or
(b) flux per plaquette φ = π/2. The white and black lines delimit areas of different number
of particles on the ground state while the density plot gives us the magnitude of the second
derivative of the ground state energy with respect to the flux φ′ at φ′ = 0 (proportional to
the the charge stiffness). The numbers indicate the number of particles in the ground state.
The results were obtained using forward differences and a step size of dφ = π × 10−4.

is zero (see appendix B), so that a small chemical potential shift around µ = 0 implies the

immediate fill of the respective flat band (which separates two bands of itinerant states).

Curiously this particle jump survives for any value of V/t. This is not obvious since we do

not expect the states of the flat band to remain localized when V is finite, if the lower itinerant

band is full.

In Fig. 12.2 we also show as a density plot the charge stiffness at zero temperature (or

better, the curvature of the ground state energy) as a function of the chemical potential and

of the interaction. As first stated by Kohn, [133, 164] in 1D systems the charge stiffness at

zero temperature can be obtained from the ground state energy dependence on the magnetic

flux and this allows one to distinguish an ideal insulating state from a ideal metallic one. In

the case of the AB2 ring, the change of boundary conditions is related to the variation of flux

φ′ and the charge stiffness is given by

Dc = Nc
∂2E(µ, V )

∂φ′2

∣∣∣∣
φ′=0

(12.3)

where E(µ, V ) is the many body ground state energy of the AB2 ring with chemical potential

µ and interaction V and φ′ is equivalent to the flux threading a normal quantum ring. At

zero temperature one expects Dc = 0 for an insulating state and D > 0 for a metallic one.

Note that for fixed φ, a derivative in order to φ′ is the same as a derivative in order to φi or
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φo.

In Fig. 12.2a one can see that while an increase in V has a small impact on the charge

stiffness for most values of µ, for 8 particles, a small increase in the interaction immediately

turns the system into an insulator. This reflects the fact that for 8 particles in the cluster

and strong interaction, the ground state corresponds to a Wigner crystal configuration, with

all B and C sites occupied (all particles are localized due to the interaction).

When the magnetic flux threading the AB2 plaquettes is π/2, the phase diagram (Fig. 12.2b)

displays an additional region corresponding to 4 particles in the AB2 ring, and the particle

number jump occurs between from 4 to 8 particles. This region becomes narrower as the

interaction grows and disappears for V/5 ∼ 1. The existence of this region is justified by the

fact that a finite flux φ through each plaquette induces a gap between the itinerant bands

and the localized band when V/t = 0. Therefore one has a finite chemical potential interval

(corresponding to this gap), where the lower itinerant band is completely full. This behavior

remains for finite values of the interaction as long as the interaction is small compared with

the gap. This doesn’t happen for φ = 0 since in that case the energy of highest level of the

lower itinerant band is zero and coincides with the flat band.

As expected, the conductance profiles obtained using the method of section II reflect

closely these phase diagrams, with some peculiarities that we describe below. Fig. 12.3 shows

conductance peaks for a fluxless AB2 chain with conducting leads contacting sites B and C

of the same unit cell, as a function of the gate potential. In Fig. 12.3 as well as in Figs. 12.4

and 12.5, we show the conductance profiles with fixed number N of particles in the cluster

(top curves) as well as the observable conductance profile (bottom red curve) which takes

into account the transitions in cluster particle number given by the thick blue curve. The

conductance profiles with fixed N are shifted in order to show clearly the observable regions

in each of them. Whenever the ground state is degenerate we use the averaging procedure

described in section 11.3. The chemical potential of the leads is assumed to be 0.

For V/t = 0.1 (see Fig. 12.3a), the conductance profiles are very similar independently

of the particle number in the cluster. This reflects the fact that without interaction, the

conductance profiles are the same independently of the number of particles in the cluster and

the effect of the small interaction is to shift slightly the peaks and partially lift the degeneracy

of the cluster Hamiltonian, therefore splitting some peaks. We observe that the zero frequency

dipped peak (discussed in detail in chapter 10) survives for small V/t, but slightly shifted in

frequency. For V/t = 1 (see Fig. 12.3b), this dipped peak is absent, but a trace of this peak is

still observed at point A of the bottom profile of Fig. 12.3b. This trace appears to be a very

asymmetric peak since it is the union of two tails due to the particle number jump. In the case

of Fig. 12.3c, we show the conductances profiles for V/t = 100 and we see that a conductance

peak is not necessarily associated with the energy of the particle number jump. This just

means that the jump occurs before the ground state with 3 particles becomes degenerate with
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the ground state with 4 particles.

In Fig. 12.4, we show the conductance profiles in the case of a flux per plaquette φ = π/2

(created by an uniform magnetic field). All other parameters are the same as in Fig. 12.3.

These conductance profiles reflect the existence of the N = 4 region in the phase diagram of

Fig. 12.2b by showing an additional conductance peak when V/t is less than 5.

A peculiar feature of the conductance profiles with fixed N shown in Figs. 12.3 and 12.4

is presence of peaks of height 0.5. This is a consequence of the degeneracy of the ground state

with N particles and of the existence of a conductance peak for only one of the degenerate

ground states. Since we average the conductance over the possible ground states, this leads

to a lower height conductance peak associated with transition N → N + 1. Note that this

average does not occur when the transition occurs in the direction N + 1→ N and this leads

to a non-Lorentzian peak as observed in the bottom curve of Fig. 12.3b (peak B).

The strong coupling limit solution given in chapter 9 also indicates that for small particle

number the AB2 ring should behave as a renormalized ring with hopping
√

2t and reduced

length equal to 2Nc/3. Fig. 12.5 shows a comparison of the conductance peaks for an incident

particle with k = π/2 as a function of the gate voltage for an AB2 ring and for the corre-

sponding renormalized linear ring with leads at opposite A sites for an interaction V = 100t.

As expected, the conductance profiles of the two are almost identical. However the linear ring

does not have jumps in particle number as the gate potential is varied. Note that the jump

from 3 to 8 particles in the AB2 ring can be considered similar to the transition from 3 to 4

particles in the linear ring (every other site occupied in the ring and every pair of B and C

sites occupied in the AB2 ring), but the latter leads to a conductance peak while the former

may not, as explained above. Also, the transition from 3 to 8 in the AB2 ring occurs much

earlier.

12.2 Conclusion

The main results obtained in our study of the conductance features due to interactions in

the AB2 ring are: (i) the non-interacting conductance profiles persist for small values of the

interaction, with a small shift of the peaks and a small splitting of the peaks (when degeneracy

is present in the non-interacting limit); (ii) some conductance peaks are not present due to

a particle number jump (observed for any value of the interaction) that occurs as the gate

potential is varied and that can be associated with the flat band of the AB2 ring when

interactions are absent.
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Figure 12.3: Conductance as function of -eVg for several values of the interaction constant,
(a) V/t = 0.1, (b) V/t = 1 and (c) V/t = 100, with contacts at sites B and C of the same unit
cell and for zero flux. The conductance profiles for fixed particle number in the cluster are
shown as well as the observable conductance (bottom red line) obtained taking into account
the particle number transitions (blue thick line, right axis).
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Figure 12.4: Conductance profiles in the case of a flux per plaquette φ = π/2 (created by an
uniform magnetic field). All other parameters are the same as in Fig. 12.3. An additional peak
corresponding to the transition between 3 and 4 particles is present for small and intermediate
V/t, but absent for large V/t.
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Figure 12.5: Conductance profile as a function of the gate voltage for: (a) an AB2 ring with
Nc = 4, V = 100, ω = 0 and tL = tR = 0.3t with contacts at opposite sites A; (b) the
equivalent linear ring, with the same parameters but ring hoppings renormalized as t→

√
2t

and leads contacts at opposite sites.



Chapter 13
Concluding remarks

The electronic properties of mesoscopic systems and the conductance through such systems are

of utmost for future nano-technological applications. In particular due to the miniaturization

of current electronics. Geometrically frustrated systems in particular exhibit very interesting

and fundamental phenomena. The AB2 chain as a prime example of such systems exhibits

very interesting properties: a flat band independently of the magnetic flux threading each

plaquette, a gap that opens up when flux is applied, among others. The quasi-unidimensional

characteristic of the AB2 chain allows behavior which would be non-existent in 1D systems

while still rendering it amenable to exact solutions even in the presence of interactions, as for

example in the strong coupling limit of the t-V model. In this case, as we have seen, it can

be mapped into a 1D system, and can be solved using a variety of techniques such as Dias

method [117] or Bethe Ansatz. Via a Jordan-Wigner transformation, the t-V AB2 system

can in be mapped onto a XXZ AB2 system and so our itinerant spinless results for the AB2

chain are also relevant for non-itinerant spinful AB2 chains. In particular the strong coupling

limit of the t-V AB2 chain can be mapped into an XXZ AB2 chain in the strong anisotropic

limit. We have also performed a restricted Hartree-Fock study of the AB2 chain and shown

that for a strong interaction the results obtained agree qualitatively with the exact results

obtained in the strong coupling limit.

Our study of the AB2 chain has led us to propose a method for constructing localized

states in non-interacting geometrically frustrated systems which leads to states which are

highly localized. We believe that this intuitive and simple method can be of use in studying

the effects of localized impurities (since a highly localized basis is, in this case, a ”better”

basis than a not so localized one).

We have also shown that the localized states in geometrically frustrated systems lead to

rather interesting behavior in the two terminal electronic conductance through such systems.

Without magnetic flux, these localized states act as filters of the zero frequency conductance

peak (where we refer to the frequency of an incident electron). The addition of magnetic
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flux changes the behavior of the localized stats in the conductance: some still filter the zero

frequency peak while others contribute to the appearance of a zero frequency peak, and

as such the conductance profile exhibits a zero frequency peak with a dip. This dip is a

distinct fingerprint of localized states and as we have shown its height varies as a function

of the distance between contacts. We thus expect that conductance dips can be used as an

experimental probe of the spatial dependence of localized states.

We have proposed a new method for calculating the conductance through interacting

clusters, and shown that it is in agreement with already well known methods. Our method is

exact in two limits: whenever the interactions in the cluster vanish or whenever the coupling

between leads and cluster vanish. We have finally used this method for the calculation of

the conductance through AB2 chains. We have shown that the non-interaction conductance

profiles persist for small values of the interaction and that some expected conductance peaks

are actually experimentally non-accessible due to the flat band of the AB2 chain.
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Appendix A
A digression on symplectic geometry and

the moment map

In this chapter we discuss preliminary background useful to the understanding of quantum

marginals. Particularly important is the moment map, which we will briefly introduce. For

this, notions of differential geometry and symplectic geometry are necessary. Given that many

physicists are not acquainted with these mathematical tools (including the author himself

before starting to work on this subject), we thought it would make sense to start from the

very beginning.

In what follows we will always deal exclusively with finite dimensional spaces, except if

otherwise stated. This makes the discussion much easier, preventing the need to delve into

functional analysis and without greatly diminish the applicability of our results. Our main

references for this section are [165] and [22]. We provide other references where appropriate.

The material here contained is not in any sense complete, and we therefore refer the reader

to the above mentioned references for extra material and for proofs.

A.1 Symplectic vector spaces

Consider a vector space V over a field K of characteristic different from 2. Consider now a

bilinear form on V , ω : V × V → K. If this bilinear form is skew-symmetric, i.e.

ω(v1, v2) = −ω(v2, v1), v1, v2 ∈ V (A.1)

and non-degenerate,

ω(v1, v2) = 0, ∀v1 ∈ V ⇒ v2 = 0 (A.2)

then this bilinear form is called a symplectic form. Note that these conditions immediately

imply that the quadratic form ω(v, v) is 0. The tuple (V, ω) is called a symplectic vector space.
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Canonical vector space Rn R2n

Bilinear form
Symmetric
Non-degenerate

Skew-symmetric
Non-degenerate

Canonical matrix form

(
1p

−1k

) (
0n 1n

1n 0n

)
Table A.1: Comparison between inner product and symplectic spaces. We always assume
non-degeneracy.

In a given basis, the symplectic form can be represented as a matrix Ω and the above

equations can be written as

vT1 Ωv2 = −vT2 Ωv1

vT1 Ωv2 = 0, ∀v1 ∈ V ⇒ v2 = 0
(A.3)

That is the same as to say that such matrix must be skew-symmetric and invertible (non-

singular).

It is a simple result that a necessary condition for an n× n skew-symmetric matrix to be

invertible is for n be even. Hence symplectic vector spaces are always even dimensional. The

canonical symplectic space is taken to be R2n. Using the canonical basis the symplectic form

takes the form,

Ω =

(
0n 1n

1n 0n

)
(A.4)

which is that of a symplectic matrix, i.e. a transformation which leaves the symplectic for

unchanged, ω(Ωv1,Ωv2) = ω(v1, v2). Refer to table A.1 for a simple comparison between inner

product an symplectic spaces. These give rise, respectively, to Riemannian and symplectic

manifolds.

A.2 Symplectic manifolds

In order to talk about symplectic manifolds we need some notions of manifolds and differential

geometry which we will now introduce.

A.2.1 Smooth manifolds

In what follows we deal exclusively with smooth manifolds. Informally a (smooth) manifold M

is a set of points connected to each other smoothly and that locally looks like Euclidean space.

An hyperplane, an n-sphere and an n-torus are all examples of manifolds. A double cone, a

plane with a line intersecting it and anything with kinks is not a manifold (see Fig. A.1).
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(a) Sphere (b) Plane

(c) Double cone (d) Plane and line

Figure A.1: Example of manifolds (sphere, plane) and not manifolds (double cone, line inter-
secting a plane)

More formally consider a point m ∈ M and a neighborhood Um of this point. For M to

be an l dimensional manifold, there must exist a bijective continuous function φ : Um → Rl

which maps Um to to a neighborhood of φ(m) ∈ Rl. The tuple (Um, φ) is called a coordinate

chart.

Consider now another chart ψ : Vm′ → Rl and consider the composite function, called a

transition map, ψ◦φ−1 : φ(Um∩Vm′)→ ψ(Um∩Vm). We assume that either Um∩Vm′ ,= ∅, in

which case we call the charts non-overlapping or that ψ◦φ−1 possesses derivatives of all orders

(hence we call our manifold smooth). A collection of charts that covers the entire manifold

and that are smooth between themselves is called a smooth atlas, A = {(Ui, φi) : M = ∪iUi}.
It then makes sense to define a manifold to be a set M with an atlas A, (M,A). We are now

in position to define precisely a smooth manifold

Definition 48 (Smooth manifold). A smooth manifold M is a manifold for which all tran-
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sition maps are smooth, i.e., class C∞.

A.2.2 Maps between manifolds, curves and tangent vectors

Consider two manifolds M and N . Consider a map between these two manifolds ψ : M → N .

Such map is smooth if for every chart (UM , φM ) in M and every chart (UN , φN ) the map

φN ◦ψ ◦φ−1
M is smooth wherever it is defined. Such map is called a coordinate expression of ψ.

If the map ψ is smooth and a bijection with smooth inverse, then it is called a diffeomorphism.

Two manifolds for which there exist a diffeomorphism between them are called diffeomorphic.

If N = R then ψ is called a function on M and we will denote it by f . The space of

smooth functions on M will be denoted by F(M). If instead one takes M = R, ψ is called a

curve on N and will be denoted by γ.

Let γ : [−t, t] → M be a curve on M with m = γ(0). Then we can define the action of

this curve on a function f ∈ F(M) by γ(f) := ∇t|t=0f(γ(t)) : R → R. Two curves γ1 and

γ2 are called equivalent if ∀f ∈ F (M), γ1(f) = γ2(f). We then define the equivalence class

of curves through p, [γp] = {γ′ : γ(f) = γ′(f)∀f ∈ F , γ′(0) = p}.
A tangent vector at m is defined to be an equivalence class of curves through p. We define

then the tangent space TmM at m to be the set of all tangent vectors at p. The tangent space

is a vector space with the same dimension as that of the manifold. If we embed the manifold

into Rl+1 then the situation is very similar as that from extrinsic calculus. A basis for the

tangent space at a point m is given by

{∂i|m}li=1 . (A.5)

In the same way one defines a tangent space of M at m, Tm, M one can define its dual,

the cotangent space T ∗m. The elements of the cotangent space are called one-forms. In vector

space terms, a one-form is merely a linear functional over a vector space. A basis for the

cotangent space at a point m is given by

{
di|m

}l
i=1

(A.6)

And we have

di|m∂j |m = δij . (A.7)

A.2.3 Tangent and cotangent bundle, vectors fields

The tangent and cotangent spaces are defined locally on M . By collecting all the tangent

spaces of M , this gives rise to the tangent bundle of M , TM

TM = ∪m∈MTmM (A.8)
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Likewise the union of all cotangent space of M gives rise to the cotangent bundle of M ,

T ∗M = ∪m∈MT ∗mM (A.9)

The space T ∗M is the dual of TM and it can be shown that these have dimension 2l where

l is the dimension of M .

With the definition of tangent and cotangent bundles we can define the notion of vector

field

Definition 49 (Vector Field). A vector field on a manifold M is an assignment of a tangent

space to every point m ∈ M . More formally a vector field is a map X : M → TM such that

X(m) = X|minTmM . The collection of all vector fields on M is denoted by X(M).

The notion of one-form fields is analogous except one needs to swap TM for T ∗M . From

there we can easily define the notion of a tensor field of any degree.

A vector x at a point m ∈ M can act on a function f ∈ F(m), x : f ∈ F(m) → R.

Extending this definition pointwise, one can define the action of a vector field on an arbitrary

function on M , (X(f)) (m) := Xm(f) = x(f), f ∈ F . Vector fields are linear mappings that

satisfy Leibniz rule

linearity : X(αf + βg) = αX(f) + βX(g)

Leibniz : X(fg) = (X(f)) g + (X(g)) f
(A.10)

One can also prove the following important relationship (see next section for the definition

of the differential d)

X(f) = d f(X). (A.11)

A.2.4 Differential and pullback of a map

Let ψ : M → N be a smooth map between manifolds. Then there is an induced map

ψ∗ = dψ : TM → TN called the differential or the pushforward of ψ, since it pushes vectors

from TM to TN . There is yet another induced map ψ∗ : T ∗N → T ∗M called the pullback

of ψ, given that it pulls one-forms from T ∗N to T ∗M . See Fig. A.2 and A.3 for a graphical

depiction of these maps

Since tensors are built from products of the tangent and cotangent space, the pullback

and the pushforward (of a diffeomorphism) can be used to transform tensor fields from M to

N or vice-versa.

Obviously the question is, why go through all this when everything was so easy on Rn?

One reason is physical. If the manifold is something like the universe, we cannot expect it to

be embedded into something else, as it is per definition everything. The other is mathematical,
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Figure A.2: Pushforward of a smooth map.

Figure A.3: Pullback of a smooth map.

since some quantities of interest are independent of the embedding, such as the Gauss intrinsic

curvature defined in the Theorema Egregium of Gauss [166, Chapter 3].

A.2.5 Exterior calculus and differential forms

Let us begin by defining the concept of differential form

Definition 50 (Differential form). Let M be a manifold and m ∈M with Λpm(M) the space

of antisymmetric tensors of rank p on the cotangent space of M at m, T ∗mM , Λpm(M) ⊂
(T ∗mM)⊗p. Then a differential p-form ω is a mapping ω : M → ΛpM such that ω(m) ∈ ΛpmM .

The direct sum of the space of antisymmetric tensors of rank p = 0, . . .dimM

Λ(M) =
dimM⊕
p=0

ΛpM (A.12)

is called the exterior algebra over M .

Having defined differential forms we are now in position to define the exterior derivative

Definition 51 (Exterior derivative). Consider a p-form ω ∈ Λp(M) and a q-form ν ∈ Λq(M).

Let d : Λp(M)→ Λp+1(M) be a map satisfying

1. (linearity) d (ω + ν) = dω + d ν whenever p = q
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2. (nilpotency) (d)2 = 0

3. (uniqueness) d agrees with the differential of smooth functions, d f = ψ∗f, f ∈ F(M)

4. (antiderivation) d(ω + ν) = dω ∧ ν + (−1)pω ∧ (d ν)

The exterior derivative is also known in the literature as Cartan derivative. It is important

to note that it can be proved that exterior derivative as defined above, exists and is unique.

Note that from the definitions above, a function f ∈ F(M) is a 0-form and we have

Λ0M = F .

A form ω such that dω = 0 is called closed while a form ω such that ω = d ν with ν a

differential form, is called exact. Given the nilpotency of the differential operator, it follows

trivially that an exact form is closed.

A.3 Flow, Lie derivative and the interior derivative

The flow on a given set X is a group action Φ : X × I → X, I ⊂ R such that for x ∈ X and

t, t′ ∈ R and defining Φt(x) := Φ(x, t) one has

Φ0(x) = Id

Φt(x)Φt′(x) = Φt+t′(x)
(A.13)

forming a one-parameter group of transformations. We call a flow complete if the map above

is defined for any t, I = R. In the case X = M , with M a manifold we talk of a flow on a

manifold.

Note that a flow defines a vector field and likewise a vector field defines a flow. As such

we use the notation Φt
X to denote the flow associated with the vector field X such that

d Φt
X(m)

d t
= X(Φt

X(m)) (A.14)

Having defined the flow we can now define the important Lie derivative of a tensor field

T in the direction of a vector field X.

LXTm =
d

d t
|t=0(Φt

X)∗TΦtX(p) (A.15)

In the particular case of the Lie derivative of a vector field Y in the direction of the vector

field X one has

LXY = [X,Y ], (A.16)

where [·, ·] is a Lie bracket.

Note that the exterior derivative gives us a (p+1)-form from a p-form while the Lie

derivative gives us a p-form from a p-form. In contrast with the exterior derivative we define
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the interior derivative, also know as interior product, as a map that gives us a (p-1)-form

from a p-form

Definition 52. Let X be a vector field and let ω be a p-form on a manifold M . Then the

map interior derivative or interior product of the vector field X, ιX : Λp(M) → Λp−1(M)

given by

ιXω (X1, . . . Xp−1) = ω (X,X1, . . . Xp−1) (A.17)

and ιXω = 0 whenever ω ∈ Λ0(T ∗M).

We now state several relationships between the three derivatives we have introduced: the

exterior, Lie and interior derivatives. Let ω ∈ Λp(M) be a differential p-form, f ∈ Λ0(M) a

function and X ∈ X (M) a vector field. Then one has the following relationships between the

three derivatives defined above

1. (Cartan’s identity) LXω = ιX dω + d ιXω

2. ιX d f = LXf

3. Lf(X)ω = f(LXω) + d f ∧ ιXω

Cartan’s identity, in particular, is of utmost importance in symplectic geometry

A.3.1 Symplectic manifold

As we have defined above, the tangent spaces of a manifold M are vector space. As such we

can equip them with a symplectic form as defined in section A.1 to turn them into symplectic

vector spaces. Demanding this form to be closed, we arrive at the notion of a symplectic

manifold. Symplectic manifolds are crucial for classical mechanics as the classical phase

space is a sympelctic manifold. Also in quantum mechanics a symplectic structure is present.

Definition 53. A symplectic manifold is a manifold M with a 2-form ωm : TmM×TmM → R

such that

1. ωm is a symplectic form ∀m ∈M

2. ω is a closed form, dω = 0

For the canonical situation M = R2n, the 2 form

ωc =

n∑
i

d pi ∧ d qi (A.18)

is symplectic. According to the very important Darboux’s theorem, any symplectic form ω

on a manifold M of dimension m is locally isomorphic to the canonical one ωc for R2n.
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Consider an Hilbert space H with Hermitian inner product (· , ·) : H × H → C. Now

consider v1, v2 ∈ H. Then we can decompose (v1, v2) = (v1, v2)Re+i(v1, v2)Im with (v1, v2)Re,

(v1, v2)Im ∈ R. Then, given the skew-symmetry of the Hermitian inner product, (v1, v2) =

(v2, v1), and that (v2, v1) = (v1, v2) = (v1, v2)Re− i(v1, v2)Im, the real part of the Hermitian

inner product gives us a symmetric form while the imaginary part gives us a skew-symmetric

form. It follows trivially that this skew-symmetric form is actually a symplectic form (i.e.

non degenerate). Hence the Hilbert space of quantum mechanics gives rise naturally to a

symplectic manifold 1 [167].

We need only one extra piece of information. Consider a manifold M , a non-degenerate

bilinear form on M, ω : TM × TM → R and a vector field X ∈ X(M) on M . We then define

the flat map [ : TM → T ∗M as,

X[ := ω(X, ·) (A.19)

Identically we define the sharp map ] : T ∗M → TM to be the inverse of the flat map ] = [−1,

an operation that is well-defined since we imposed the need for our form to be non-degenerate.

These maps are called musical isomorphisms.

Whenever the bilinear form ω is symmetric we have a Riemannian manifold and these are

simply the operations of lowering ([) and raising (]) indices used in Ricci’s calculus. In our

symplectic manifolds, these are analogue operations

In canonical coordinates the musical isomorphisms take the form

(∂pi)
[ = d qi

(∂qi)
[ = −d pi

(A.20)

A.4 coadjoint orbits and the moment map

Having briefly sketched the idea of symplectic manifolds we are now almost in position to

introduce the moment map. We just need to talk a bit about coadjoint orbits.

A.5 coadjoint orbits

Consider a Lie group G and an element of the corresponding Lie algebra ξ ∈ g ∼= TeG. Let M

be a manifold and consider the action Φ(exp tξ,m) : G×M →M (for a simple introduction

to group action, see Appendix B). Then the vector at m

ξM (m) =
d

d t
|t=0Φ(exp tξ,m) (A.21)

is called the infinitesimal generator of the action Φ.

1It gives rise to even more than that. It has the structure of a Kähler manifold but this is not important
for our discussion.
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Consider a group G and another group H. The adjoint action of G on H is a map

Ad : g × h → ghg−1, g ∈ G, h ∈ H. In particular, the action of a Lie group G on its Lie

algebra is quite important, Ad : g × ξ → gξg−1, g ∈ G, ξ ∈ g. It is a simple exercise to show

that the infinitesimal generator of the adjoint action Adg(ξ) is ξM = adξ, i.e. adξ(x) := [ξ, x].

The coadjoint action of a Lie group on the dual of its Lie algebra, Ad∗ : G× g∗, is defined

in terms of the adjoint action via, Ad∗g = Adg−1 . The orbits of this action are called coadjoint

orbits. It can be proved that the coadjoint orbits are symplectic manifolds with a natural

2-form inherited from g. The sympelctic form on the coadjoint orbits of g∗ is given by,

ωξ(adξ x, adξ y) = tr ξ adx y (A.22)

known as the Kirillov-Kostant-Souriau symplectic form [168], which is a symplectic form on

adξ x and adξ y.

A.5.1 Hamiltonian actions and moment maps

Let (M,ω) be a symplectic manifold and H : M → R a function on M . The vector field given

by XH = (dH) is called Hamiltonian vector field with Hamiltonian H. The tuple (M,ω,XH)

is known as Hamiltonian system.

Let M be a symplectic manifold on which a Lie group G acts. Then the action of G on

M is called symplectic if g∗ω = ω, ∀g ∈ G. The action of G on M , Ψ, is called Hamiltonian

if there exists a map µ : M → g∗ that satisfies the following conditions

1. For X ∈ g, dµX = ιX′ω where µX(m) = 〈µ(m), X〉 is the component of µ along X and

X ′ is the vector field on M generated by the flow Φ = exp tX.

2. µ ◦Ψ = Ad∗g ◦µ, where Ψ is the action of G on M .

The map µ is called moment map and the tuple (M,ω,G, µ) a Hamiltonian G-space.

For pedagogical reasons let us look at an example. Let us consider a system of 3 particles

in 1D with spacial coordinates qi and momentum pi, i = 1, 2, 3. In this case the phase space

is M = R6 and given by (q1, p1, q2, p2, q3, p3). As would follow from Hamiltonian mechanics

[169], phase space is equipped with the canonical symplectic form ωc =
∑

i d qi ∧ d pi. We let

now G = R3 act on M by translations with action ψ

ψ(~q, ~p) =
(
~q + ~d, ~p

)
, ~d ∈ R3 (A.23)

Then the vector field X ′ in M generated by the flow Φ = exp t~d is given by X ′ = di
∂

∂qi
and

we have

dµX(~p) = ιX′ω(~p) = ~a · d ~p (A.24)
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where we have used the fact that
∂

∂qi
d qj = δji . Given that µX = 〈µ,~a〉, one then has

µ(~x, ~p) = ~p, which justifies the name moment map.

A.5.2 Abelian Moment polytope

We now state, without proof, the following important theorem,

Theorem 54 (Abelian convexity theorem (Atiyah [170],Guillemin-Sternberg [171])). Let

(M,ω) be a compact connected symplectic manifold and G be a compact connected Abelian Lie

group. Consider an Hamiltonian action Ψ : G×M →M of G on M and let MG be the fixed

points of this action. Denote the moment map associated with this action by µ : M → g∗.

Then we have the following:

• µ(MG) is finite

• µ(M) = convµ(MG)

Hence it follows that ∆µ = µ(M) is a convex polytope, which is called the moment polytope

of M .

Let us see a simple example of the moment map and the Abelian convexity theorem.

Consider the unit sphereM = S2 equipped with the canonical symplectic form ωc = dx∧d y =

d θ∧d z, where we have used cylindrical coordinates. This gives rise to the symplectic manifold

(S2, ωc). In quantum mechanics one can think about the Bloch sphere instead. Consider then

the group action of the circle group G = T by rotations on our manifold. This action has

associated vector field X =
∂

∂θ
(see Fig. A.4). This vector field is Hamiltonian

ιXωc = d z = dH (A.25)

with Hamiltonian function H = z. Note that the two poles are the fixed points of the action

MG = {|0〉 , |1〉}. The image of the fixed points is µ(MG) = {0, 1}, while the image of

the manifold under the moment map is µ(M) = [−1, 1]. Hence µ(M) = convµ(MG), in

accordance with theorem 54 (see Fig A.5).

One good example on the usage of theorem 54 is in proving, in a straightforward way,

Schur-Horn’s theorem, which characterizes the diagonal elements of Hermitian matrices with

respect to their spectra [172].

A.5.3 Non-Abelian moment map

For the non-Abelian case, the image of the moment map, unlike before, is not necessarily

convex. However, the intersection of the image of the moment map with the positive Weyl

chamber does give us a convex polytope called the moment polytope or Kirwan polytope
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Figure A.4: Vector field X =
∂

∂θ
on the sphere S2.

Figure A.5: Moment map induced by the action of the circle group T by rotations on the
sphere S2.
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Theorem 55 (Non abelian convexity theorem (Kirwan [16])). Let G be a compact connected

group that has an Hamiltonian action on a compact connected symplectic manifold M . Let the

moment map associated with this action be given by µ : M → g∗. Let t∗+ denote the positive

Weyl chamber of the dual of the Lie algebra of the maximal torus T of G. Then,

∆(M)µ = µ(M) ∩ t∗+ (A.26)

is a convex polytope.

Where we have used the definition of maximal torus.

Definition 56. The maximal torus T of a group G is the maximal Abelian subgroup of G.

For the particular case of U(n) the maximal torus are the unitary diagonal matrices

T = {diag
(
eiα1 . . . eiαn

)
|α1, . . . αn ∈ R} (A.27)

There is some freedom in choosing the positive Weyl chamber. In our case and in the case

of U(n), we take the positive Weyl chamber of the dual of the Lie algebra of T to be those

diagonal matrices whose entries are ordered non-increasingly.

This theorem can be used, for example, to prove Horn’s theorem which characterizes the

spectrum of the sum of two Hermitian matrices A,B with respect to the spectra of A and

B [172].

A.6 Convexity of the spectra of 1-RDMs

Let us now connect the previous results with the quantum univariate marginal problem. This

discussion is based on [9].

Let H be a Hilbert space of dimension d and consider an observable O = iA on this

Hilbert space. The operator A is anti-Hermitian and traceless, hence A ∈ su(d). From this

Hilbert space we can consider the projective space P (H) = {ρ = |ψ〉 〈ψ| | |ψ〉 ∈ H}, which

is simply the set of pure states on H and a smooth manifold. Consider now the functional

−i tr (·ρ) ∈ g∗ ∼= su∗(d). One can clearly establish an isomorphism between this functional

and ρ. Moreover, using 〈·,�〉 := tr(·,�) as the natural pairing between g and g∗ the map

µ(ρ) : P(H)→ su∗(d) defined by

〈µ(ρ), A〉 := −i tr(Aρ) A ∈ g (A.28)

is a moment map (cf. Section A.5.1). Note that −i tr(Aρ) = tr(Oρ), the average value of O.

Let us now introduce subsystems. We start by considering the case of N distinguishable

particles. In this case the Hilbert space is given by the tensor product H =
⊗N

i=1Hi where
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Setting Hilbert space H Group G

N distinguishable particles Cd1 ⊗ . . .⊗CdN SU(d1)× . . .× SU(dN )

N bosons SymN
(
Cd
)

SU(d)
N Fermions ΛN

(
Cd
)

SU(d)
n-mode Fermionic Fock space Fn = ⊕ni=1Λi

(
Cd
)

⊕ni=1SU(d)

Table A.2: The quantum marginal problem is modeled by the action of G on H. (adapted
from [9])

Hi is the Hilbert space of the ith particle. In this case the ith 1-RDM is defined by

tr(Ojρj) := tr(1H1⊗...⊗Hj−1 ⊗Oj ⊗ 1Hj+1⊗...⊗HN ), ∀Oj , j = 1, . . . N (A.29)

where Oj is an observable on Hj . We embed SU(Hj) into SU(H) through the map Uj 7→
1H⊗...⊗H ⊗Uj ⊗1H⊗...⊗H . This in turn induces a restriction the Lie algebra level and on the

level of its dual as well. Via Eq. (A.28), this gives rise to the map ρ 7→ ρj . By considering

j = 1, . . . N , one can send ρ to all corresponding 1-RDMs, which by our previous discussion

is the same as computing the moment polytope ∆µ(P(H)) associated with the Hamiltonian

action of G = SU(H1)⊗ . . .⊗ SU(HN ) with moment map given by Eq. A.28 and hence the

solution to the pure univariate quantum marginal problem, for distinguishable particles, is a

convex polytope.

For indistinguishable particles the discussion is similar and can be found in [9], so we

refrain from discussing it here. The case of Fermionic Fock space is treated in Chapter 5.

For all these cases, the difference is in the Hilbert space H and the group G acting on our

coadjoint orbit. On Table A.2 we summarize these differences.
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Group action

This chapter serves as a very elementary introduction to group actions, which play a very im-

portant role in mathematics and physics by serving the purpose of characterizing symmetries

of objects using the language of group theory.

B.1 Action on sets

Let G be a group and X a set. Then a left group action of G on X is a map Φ : G×X → X

such that

• Φ (g,Φ(h, x)) = Φ (gh, x) , ∀g, h ∈ G,∀x ∈ X

• Φ(e, x) = x

For simplicity one often writes Φ(g, x) := g.x. One can identically define a right group action

Φ : X ×G→ X

• Φ (Φ(x, h), g) = Φ (x, hg) , ∀g, h ∈ G,∀x ∈ X

• Φ(x, e) = x

written as Φ(x, g) := x.g One can identify left and right group actions by considering the map

x.g−1 := g.x. Hence there’s no loss of generality in considering left actions alone and this is

what we shall do onwards. The action of a group G on a set X is commonly referred to as

G-action.
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An example of a very important group action is action by conjugation defined as g.x =

gxg−1. That this is indeed a group action is trivial to check:

g1.(g2.x) = g1.(g2xg
−1
2 )

= g1(g2xg
−1
2 )g−1

1

= g1g2x(g1g2)−1

= (g1g2).x

(B.1)

Also, trivially exe−1 = x. Hence action by conjugation is a group action.

An important thing to remark is that the action of a group G on a set X is isomorphic

to the group homomorphisms G→ SymX,

Proof. Let us write define the endomorphism πg : X → X by πg(x) := g.x Then g1.(g2.x) =

(g1g2).x for all x implies that πg1 ◦ πg2 = πg1g2 . Also, e.x = x implies that πe is the identity

on X. From here it follows that πg ◦ πg−1 = πe. Hence one has πg ∈ Sym(X) and the map

G→ Sym given by g 7→ πg is a group homomorphism. Conversely consider the homomorphism

f : G → Sym(X). Hence f(g) =: πg gives us a permutation of the set X and since f is an

homomorphism we have πg2g1 = πg1 ◦ πg2 . Performing the identification g.x =: πg(x) we

identify the action of a permutation as a group action. That this is a valid group action

follows trivially from the fact that f is a homomorphism.

If a set X admits a group action Ψ of G, the tuple (X,G,Φ) is called a G-set.

B.2 Action on manifolds

The action of a Lie group on a manifold is Φ : G ×M → M is a map similar to the group

action described above except that we now require this map to be smooth.

The analogue of the above homomorphism in this case is Φ : G→ Diff(M), where Diff de-

note the group of diffeomorphisms on M . So in this case, instead of the group of permutations

on M we have the group of diffeomorphisms on M , the continuous analogue.

If a manifold M admits a group action of G, the tuple (M,G,Φ) is called a G-manifold

(in topology it is known as G-space).

B.3 Orbits and stabilizers

Let us begin by defining the orbit of a group. Consider the action of a group G on a set X,

given by G.X. The orbit of x ∈ X under the action of G is

G.x = {g.x|g ∈ G} (B.2)
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i.e. the elements of X to which x is mapped under G.

We note here, without proof, that the orbits of G on X define a partition of X and so

define equivalence classes: x, y ∈ X are equivalent if and only if their orbit under G are the

same.

The fixed points of the action, denoted by XG, is the set of points x ∈ X that are invariant

under the action of G

XG = {x ∈ X|G.x = x}. (B.3)

The stabilizer subgroup of x ∈ X is the subgroup of G that fixes x, i.e.,

Gx = {g ∈ G|g.x = x} . (B.4)

As a simple example of these concepts, let us consider the action of SO(2), the group of

rotations on the plane, on R2 (see Fig B.1). Note that the orbit of every point are circles

centered at the origin. The point (0,0) is the only fixed point of the action and the stabilizer

subgroup is trivial, i.e. Gx = {e} for all points except the origin, for which it is the entire

group.

Figure B.1: Action of SO(2) on R2. The doted circles are the orbits while the dot at the
center is the only fixed point of the action.
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Appendix C
Bogoliubov transformation and BCS

In condensed matter physics, namely in BCS theory one is interested in electron pairing. As

such, the BCS ground state is a linear combination of states living in Fock layers containing

an even number of particles. This means that in BCS theory one consider only O ∈ SO(2n)

and ignores all entirely transformations such that det O = −1. In fact in condensed matter

one usually assumes [173, p. 211], [51, p. 177], [174, p. 4],

U = U∗

V = −V ∗
(C.1)

for two modes, labeled by k and −k, this reduces to,

U =

(
uk 0

0 u−k

)

V =

(
0 vk

v−k 0

) (C.2)

The multi-mode scenario follows trivially.
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Appendix D
Results on the spectra of the 1-RDM for

some atoms

1 0.99241576
2 0.99241576
3 0.00416068
4 0.00416068
5 0.00114119
6 0.00114119
7 0.00114119
8 0.00114119
9 0.00114119

10 0.00114119

Table D.1: Natural occupation numbers for the ground state of Helium calculated using
full-CI and a 6-31++G** basis set.
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1 9.99956850e-01
2 9.99899091e-01
3 9.99874121e-01
4 3.24402153e-05
5 3.22779332e-05
6 3.22779332e-05
7 3.22779332e-05
8 3.18761352e-05
9 2.99844510e-05

10 2.99844510e-05
11 2.99844510e-05
12 3.61887485e-06
13 3.61887485e-06
14 3.61887485e-06
15 7.22910383e-07
16 7.22910383e-07
17 7.22910383e-07
18 7.22910383e-07
19 7.22910383e-07
20 7.22891553e-07
21 7.22891553e-07
22 7.22891553e-07
23 7.22891553e-07
24 7.22891553e-07
25 3.63566017e-07
26 3.13443923e-07
27 2.22870198e-08
28 2.22870198e-08
29 2.22870198e-08
30 4.38298977e-09

Table D.2: Natural occupation numbers for the ground state of Lithium calculated using
full-CI and a 6-31++G** basis set.
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1 9.99758047e-01
2 9.99758047e-01
3 9.03090382e-01
4 9.03090382e-01
5 3.18868732e-02
6 3.18868732e-02
7 3.18868732e-02
8 3.18868732e-02
9 3.18868732e-02

10 3.18868732e-02
11 1.12956124e-03
12 1.12956124e-03
13 1.29508096e-04
14 1.29508096e-04
15 3.24524902e-05
16 3.24524902e-05
17 3.24524902e-05
18 3.24524902e-05
19 3.24524902e-05
20 3.24524902e-05
21 3.24524902e-05
22 3.24524902e-05
23 3.24524902e-05
24 3.24524902e-05
25 2.32064181e-05
26 2.32064181e-05
27 2.32064181e-05
28 2.32064181e-05
29 2.32064181e-05
30 2.32064181e-05

Table D.3: Natural occupation numbers for the ground state of Beryllium calculated using
full-CI and a 6-31++G** basis set.
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Appendix E
Jordan Wigner transformation

Let us consider a k modes Fock space, Fk. Consider a Fermionic state, with a well defined

number of Fermions, in occupation number representation given by (different sources may

use a different ordering of the creation operators),

|n1, . . . , nk〉 := (a†1)n1 . . . (a†k)
nk |0〉 (E.1)

with ni = 0, 1, the ith mode occupation number. For the sake of completeness, note that an

arbitrary Fock state is the linear combination of all such states.

Consider now a system of k qubits, H =
(
C2
)⊗k

and consider the Pauli operators on

the jth qubit, {Zj , Yj , Xj}. These can be written in the computational basis (we omit the

subscript indicating the qubit whenever there is no loss of generality),

Z = |0〉 〈0| − |1〉 〈1| ,

Y = i
(
σ† − σ

)
,

X = σ + σ†

(E.2)

where we have defined the lowering operator σ = |0〉 〈1| and the raising operator (its Hermitian

conjugate), σ†.

Then we can set up an isomorphism between the Fermionic operators and the Pauli

operators. It is given by the Jordan-Wigner (J-W) transformation [175]

aj = ⊗j−1
k=1Zk ⊗ σj . (E.3)

Using,

aa† = |0〉 〈0| ,

a†a = |1〉 〈1|
(E.4)
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we can invert the J-W transformation

Zj = aja
†
j − a

†
jaj . (E.5)

One also has,

Xj = ⊗j−1
k+1Zk

(
aj + a†j

)
,

Yj = −i⊗j−1
k+1 Zk

(
aj − a†j

)
.

(E.6)

Consider now the Majorana representation

c2j−1 := a†j + aj ,

c2j := −i
(
a†j − aj

)
.

(E.7)

Using Majorana operators, and the J-W transformation, we can write.

Xj = ⊗j−1
k+1Zk (c2j−1) ,

Yj = −⊗j−1
k+1 Zk (c2j) ,

Zj = −iXjYj = ic2j−1c2j

(E.8)

where in the last equation we used the fact that Z2 = 1.
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Basis expansion of a qubit density matrix

Consider the density matrix for a single qubit ρ ∈ L(C2,C2) ∼= C4. Let b =
{
σ0 = 1, σ1 =

X,σ2 = Y, σ3 = Z
}
, σi ∈ L(C2,C2). Then since these operators are linearly independent and

the cardinality of b equals the cardinality of C4, these operators constitute a basis for our

space. We can then write,

ρ =
1

2

3∑
i=0

= ciσi, ci ∈ C. (F.1)

Introducing the Hilbert Schmidt inner product between two operators, (A,B) := trA†B, it

is easy to see that our basis b is actually orthogonal. In fact (σi, σj) = 2δi,j . Then we can

write,

ρ =
3∑
i=0

1

2
(σi, ρ)σi. (F.2)

Since our basis operators are Hermitian, (σi, ρ) = 〈σi〉. Therefore, if 〈X〉 = 〈Y 〉 = 0 we have

that ρ is diagonal in the spin basis {|0〉 , |1〉} of C2. Furthermore, let spec ρ = (λmax , λmin).

Then for a diagonal ρ, we have 〈Z〉 = λmax − λmin.

This result is easily extended to an n qubit system by expanding,

ρ =
1

2n

3∑
i1,...in=0

ci1,...inσi1 ⊗ . . .⊗ σin (F.3)

and we conclude that rho is diagonal if 〈Xj〉 = 〈Yj〉. Moreover if ρ is diagonal and its reduced

spectra are spec tr\iρ = (λmin
i , λmax

i ), then 〈Zi〉 = λmax
i − λmin

i .
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Appendix G
Zoo of decision problems: physical

interpretation and reductions

This section strives to be as self contained as possible. As such we will repeat some of the

notions and derivations already in the main text.

Consider the following scenario: A system of n qubits in a pure state |ψ〉. Consider now

the local reductions obtained by tracing out all qubits except the ith ones. By the necessity

of Higuchi’s conditions [6], since our state is pure we must have,

λmin
i ≤

∑
j 6=i

λmin
j , ∀i. (G.1)

Now, considering our spectra to be ordered simply as a matter of convenience (and without

any loss of generality), we reduce our problem to the following inequality

λ1 ≤
n∑
i=1

λi. (G.2)

We can now ask the very natural question: Imagine you perform only local measurements

and obtain the local spectra of the system. Is this local spectra compatible with a bi-separable

state? This can be cast formally into the following decision problem

BISEPARABILITY

INSTANCE: A set of n numbers λ1, . . . λn satisfying λi ∈ [0, 0.5], λi ≤ λi+1, λ1 ≤
∑n

i=2 λi.

QUESTION: Is there S1 ( S = {1, · · · , n}, 1 ∈ S1, such that λ1 ≤
∑

16=i∈S1
λi and

λk ≤
∑

i∈SC1
λi, where λk = maxk 6=i∈SC1

λi?
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One can now ask what the computational complexity of this problem is. While we have

no concise answer, we strongly suspect the problem to be NP-hard.

We can, however formulate a series of related problems for which we can decide their

computational complexity.

Let us imagine the following scenario: Consider again a set of n qubits and a globally pure

state. Without loss of generality assume that the local spectra is ordered non increasingly.

By this definition qubit one has the largest minimal local eigenvalue. For simplicity, let’s say

that we give this first qubit to Alice. Now choose one of the other qubits, say b, and give

it to Bob. We can now ask, is this local spectra compatible with a bi-separable state such

that Alice’s and Bob’s qubits belong to different tensor factors of our global state ψ and such

that Bob’s qubit has the largest minimal local eigenvalue in its tensor factor? This can be

formally stated as the following decision problem.

BISEP-LARGEST-B

INSTANCE: A set of n + 1 numbers λ1, . . . λn, b satisfying λi ∈ [0, 0.5], λi ≤ λi+1, λ1 ≤∑n
i=2 λi.

QUESTION: Is there S1 ( S = {1, · · · , n} , 1 ∈ S1 such that λ1 ≤
∑

1 6=i∈S1
λi and

λb ≤
∑

i∈S\S1
λi

Although not a very natural problem, we will, in an instant connect it to more relevant

ones.

Consider again a set of n qubits and a globally pure state |ψ〉. Again we will consider

only the minimal eigenvalues of the local reductions, which are taken to be non increasingly

ordered. Now choose two qubits. Give one, call it a, to Alice and give another one, call it b,

to Bob. We now ask the following question: looking at local spectral information alone, can

we certify that a and b are part of one genuinely entangled subsystem? We have discussed

this setting in the previous chapter where we have said that it can can be formally stated as

the following decision problem.

BISEP-AB

INSTANCE: A set of n + 2 numbers λ1, . . . λn, a, b satisfying λi ∈ [0, 0.5], λi ≥ λi+1,

λ1 ≤
∑n

i=2 λi.

QUESTION: Is there S1 ( S = {1, · · · , n}, 1 ∈ S1 such that λ1 ≤
∑

16=i∈S1
λi and

λk ≤
∑

k 6=i∈Sc1
λi, λk = maxi∈Sc1 λi with λa ∈ S1 and λb ∈ Sc1?

We now proceed to connect all the above mentioned problems. We begin by connecting



203

BISEPARABILITY and BISEP-LARGEST-B through the following lemma.

Lemma 57. BISEPARABILITY ≤P BISEP-LARGEST-B

Proof. Consider a general instance of BISEP-LARGEST-B, BISEP-LARGEST-B(λ1, . . . , λn, b).

Let us now assume that we posses an oracle which can decide BISEP-LARGEST-B in a single

operation. Then, by querying the oracle for all possible values of b = 2, . . . n, it can decide

BISEPARABILITY in a polynomial number of operations.

Hence we have that BISEPARABILITY ≤P BISEP-LARGEST-B.

We are now in position to prove the following lemma concerning the computational com-

plexity of BISEP-LARGEST-B.

Lemma 58. PARTITION ≤P BISEP-LARGEST-B

Proof. Consider a general instance of Q-PARTITION, Q-PARTITION(ω1, . . . , ωm). If ω1 >∑m
i=2 ωi then there is no way of satisfying Q-PARTITION. This can obviously be checked in

polynomial time. We now proceed to show that every instance of Q-PARTITION, such that

ω1 ≤
∑m

i=2 ωi reduces, polynomially, to an instance of BISEP-LARGEST-B. To do so, let us

establish the following definitions,

λ1 := λ2 :=
1

2ω1m

(
m∑
i=1

ωi
2

)
,

λi :=
ωi−2

2ω1m
, i = 3 . . . , n,

n := m+ 2,

b := 2.

(G.3)

Using these definitions we have

m∑
i=2

ωi ≥ ω1

m∑
i=1

ωi ≥ 2ω1

1

2ω1m

(
m∑
i=1

ωi
2

)
≥ λ3

λ1 = λ2 ≥ λ3.

(G.4)

Given this, which also implies λ1 ≤
∑n

i=2 λi, and since λi ∈ [0, 0.5], i = 1, . . . , n and λi ≥
λi+1, i = 3, . . . , n by construction, then the set {λ1, . . . , λn, b = 2} is a valid instance of BISEP-

LARGEST-B. Consider our original BISEP-LARGEST-B problem, deciding whether there
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exists an S1 ( S = {1, . . . n} with 1 ∈ S1 such that λ1 ≤
∑

16=i∈S1
λi and λb ≤

∑
b 6=i∈Sc1

λi,

with λb ∈ Sc1. Then we have

λ1 ≤
∑

16=i∈S1

λi,

λ2 ≤
∑

26=i∈Sc1

λi.
(G.5)

Now, using Eq. (G.3) we can transform this into

1

2ω1m

 m∑
j=1

ωj
2

 ≤ ∑
16=i∈S1

ωi−2

2ω1m
,

1

2ω1m

 m∑
j=1

ωj
2

 ≤ ∑
26=i∈Sc1

ωi−2

2ω1m
.

(G.6)

Taking B = {1, . . . , n} and A = {j ∈ B|j + 2 ∈ S1}, then A ⊂ B and its complement in B is

Ac = {j ∈ B|j + 2 ∈ Sc1}. Using this fact, we can write

1

2ω1m

∑
j∈B

ωj
2

 ≤∑
j∈A

ωj
2ω1m

,

1

2ω1m

∑
j∈B

ωj
2

 ≤ ∑
j∈Ac

ωj
2ω1m

.

(G.7)

Now, using the fact that
∑

j∈B · =
∑

j∈A ·+
∑

j∈Ac ·,∑
j∈B

ωj
2
≤
∑
j∈A

ωj∑
j∈B

ωj
2
≥
∑
j∈A

ωj
(G.8)

which means that ∑
j∈B

ωj
2
≤
∑
j∈A

ωj ≤
∑
j∈B

ωj
2

(G.9)

and consequently ∑
j∈Ac

ωj =
∑
j∈A

ωj . (G.10)

Which proves that any instance of Q-PARTITION such that ω1 ≤
∑m

i=2 ωi, reduces to a

particular instance, BISEP-AB(λ1, . . . , λn, a, b), of BISEP-LARGEST-B. Given that all other

instances of Q-PARTITION can be decided in polynomial time, we have Q-PARTITION ≤P
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BISEP-LARGEST-B. Since PARTITION ≤P Q-PARTITION it follows that PARTITION

≤P BISEP-LARGEST-B.

In fact since one can easily see that BISEP-LARGEST-B ∈ NP, which, given the lemma

above, implies the stronger statement that BISEP-LARGEST-B ∈ NP-complete.

We now finally prove the following lemma relating BISEPARABILITY and BISEP-AB,

Lemma 59. BISEPARABILITY ≤P BISEP-AB

Proof. Consider a general instance of BISEP-AB, BISEP-AB(λ1, . . . , λn, a, b) Let us assume

that we posses an oracle which can decide BISEP-AB in a single operation. Then querying

the oracle for a = 1 and all possible values of b = 2, . . . , n it can decide BISEPARABILITY

in a polynomial number of operations

Hence we have that BISEPARABILITY ≤P BISEP-AB.

Hence we arrive at a series of reductions relating our problems, as shown in Fig. G.1.

BISEP-LARGEST-BBISEP-AB BISEPARABILITY

PARTITION

Figure G.1: Reduction tree for our decision problems.
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Appendix H
Conductance equations through a non

interacting quantum ring

In this chapter we present a simple method for calculating the conductance through a non

interacting quantum ring connected to two semi-infinite leads and threaded by a magnetic

flux φ. The work presented here has been done in collaboration with Bruno Zeferino António

and Ricardo Guimarães Dias and has been published in [176].

Our system is composed by a tight-binding cluster with N sites connected to 2 semi-

infinite 1D leads modeled as 1D tight-binding semi-chains. The system Hamiltonian is the

sum of the leads and cluster Hamiltonians, H0, and the coupling between each lead and the

cluster, VLR,

H = H0 + VLR, (H.1)

with

H0 = −
0∑

j=−∞
(|j − 1〉〈j|+ H.c.)︸ ︷︷ ︸

left lead

−
∞∑

j=N+1

(|j〉〈j + 1|+ H.c.)︸ ︷︷ ︸
right lead

+ HS︸︷︷︸
cluster

(H.2)

where Hs is the single-particle Hamiltonian in the scattering region (the cluster) and |j〉 is

the Wannier state localized on the atomic site j. The leads connected to the cluster are

considered ideal with nearest-neighbor hopping t = 1. The coupling VLR between the leads

and the cluster is given by

VLR = −tL|0〉〈L| − tR|R〉〈N + 1|+ H.c., (H.3)

where the hopping matrix elements tL and tR connect the left and right leads, respectively,

to the cluster sites L and R. The Hamiltonian of the cluster is
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Figure H.1: Schematic representation of the studied systems. In (a) and (c) one has the
left and right semi-infinite 1D leads, respectively. These leads are considered to be perfect
conductors. In (b), we show the cluster described by a tight-binding model. The hopping
factors which couple the left and right leads to the cluster are, respectively, tL and tR.

HS =
∑
j

εj |j〉〈j| −
∑
ij,i6=j

(
tije

iφij |i〉〈j|+ H.c.
)

(H.4)

where the indices i and j run over all cluster sites. For a general gauge and an arbitrary

geometry of the cluster, the phase shifts φij in the hopping factors between sites ri = a and

rj = b are determined from φij = − e
~
´ b
a A.dr where the integral is a standard line integral

of the vector potential A along the line segment which links sites a and b. The tight-binding

Hamiltonian of a ring of N sites enclosing an external magnetic flux can be expressed as

HS =

N∑
j=1

εj |j〉〈j| −
N∑
j=1

t
(
eiφ
′/N |j〉〈j + 1|+ e−iφ

′/N |j + 1〉〈j|
)

(H.5)

where φ′ = 2πΦ/Φ0 is the reduced flux, εj is the on-site energy, t is the hopping integral

between two nearest neighbor sites, and Φ0 = h/e is the flux quantum

The hoppings tL and tR generate finite transmission probability across the cluster. Since

no two-particle interactions are considered in our case, the transmission probability |t(εk)|2 for

an incident particle with momentum k and energy εk = −2 cos(k) can be calculated solving di-

rectly the respective eigenvector equation for the tight-binding Hamiltonian, Ĥ|Ψk〉 = εk|Ψk〉.
This method is similar to that followed in the determination of the band structure of a

tight-binding model, which is usually taught in a undergraduate Solid State course. Since

|Ψk〉 =
∑∞

n=∞ ψn|n〉 where ψn is the eigenfunction amplitude at site n, the eigenvector equa-

tion can be written as a matrix equation [H](ψ) = εk(ψ), where (ψ) is the column vector of

the eigenfunction amplitudes ψn and [H] is the matrix representation of the Hamiltonian in

the Wannier function basis {|n〉}. This matrix equation is equivalent to an infinite system of

linear equations (the number of equations is equal to the number of sites which is infinite in
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our system) of the form

εkψn =
∞∑

m=−∞
Hnmψm (H.6)

where Hnm = 〈n|Ĥ|m〉. The matrix element Hnm is zero except if the site m is a nearest-

neighbor of site n. One should now recall that our system is constituted by the left lead,

the cluster and the right lead. If tL = tR = 0, the system of equations decouples into three

independent sets of equations and the particle can be restricted to one of the three regions.

For instance, the eigenvectors and eigenvalues when the particle is confined to the cluster

are obtained from [HS ](ψS) = ω(ψS) where (ψS) is the column vector of the eigenfunction

amplitudes at the cluster sites and the corresponding equations in the case of the tight-binding

ring are of the form

ωψj = εjψj − teiφ
′/Nψj+1 − te−iφ

′/Nψj−1 (H.7)

where j = 1, · · · , N and with periodic boundary conditions, ψN+1 = ψ1.

Let us now assume finite tL and tR. Since we are interested in the transmission probability

of a right-moving particle, we can limit our study to states with energy ωk = −2 cos(k) which

can be written as an incident wave plus the respective reflected wave on the left lead and

a transmitted wave on the right lead. This implies that the equations for the wavefunction

amplitude at any site j of the leads (with j < 0 or j > N + 1),

ωkψj = −ψj+1 − ψj−1, (H.8)

are automatically satisfied if the wavefunction in the leads is of the form

ψj = eikj + ψre
−ikj , j ≤ 0, (H.9)

ψj = ψte
ikj , j ≥ N + 1, (H.10)

where ψr and ψt are the amplitudes of the reflected and transmitted waves, respectively. So

these equations can be dropped from the the global system of equations. We are left with

the equations for the amplitudes at sites 0 and N + 1 which involve the hopping constants tL

and tR and depend on the amplitudes ψL and ψR at the sites L and R of the ring,

ωkψ0 = −tLψL − ψ−1, (H.11)

ωkψN+1 = −ψN+2 − tRψR. (H.12)

The amplitude equations for the cluster sites remain the same when tL and tR are finite, that

is, [HS ](ψS) = ωk(ψS), except for the equations corresponding to sites L and R which have
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an additional term −tLψ0 and −tRψN+1 and are given by

ωkψL = −tLψ0 + εLψL − teiφ
′/NψL+1 − te−iφ

′/NψL−1, (H.13)

ωkψR = −tRψN+1 + εRψR − teiφ
′/NψR+1 − te−iφ

′/NψR−1. (H.14)

The solution of this set of N + 2 equations (that is, Eqs. H.7, H.11, H.12, H.13, and H.14)

allows us to determine ψt and ψr. Note that ψ0, ψ−1, ψN+1 and ψN+2 are given by Eqs. H.9

and H.10 and are functions of ψr and ψt, therefore we have N +2 variables. The transmission

probability is then given by the square of the absolute value of the ratio between the amplitude

of the outgoing wave ψt and the amplitude of the incident wave (which we have assumed to

be 1).
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[167] José M. Isidro. The Geometry of Quantum Mechanics.

[168] Jean-Paul Dufour and Nguyen Tien Zung. Poisson Structures and Their Normal Forms.
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