

The Braincon Platform Software – A Closed-Loop

Brain-Computer Interface Software for Research

and Medical Applications

Dissertation zur Erlangung des Doktorgrades der technischen

Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau

vorgelegt von

Jörg Daniel Fischer

aus Oberndorf am Neckar

Freiburg 08/2014

ii

Dekan Prof. Dr. Georg Lausen

Referenten Prof. Dr. Gerhard Schneider (Erstgutachter)

Prof. Dr. Thomas Stieglitz (Zweitgutachter)

Datum der Promotion 11. Mai 2015

iii

iv

Comment on References

This work contains text and figures from

Fischer, J., Milekovic, T., Schneider, G. and Mehring, C. (2014), “Low-latency multi-threaded

pro-cessing of neuronal signals for brain-computer interfaces”, Frontiers in

Neuroengineering, Vol. 7, p. 1, doi 10.3389/fneng.2014.00001

that were slightly adapted to fit in smoothly with the whole text. Such text passages are marked in

cursive font in the text body and in cursive font in figure captions.

This work also contains text and figures from

Kohler, F., Fischer, J., Gierthmuehlen, M., Gkogkidis, A., Henle, C., Ball, T., Wang, X., Rickert,

J., Stieglitz, T. and Schuettler, M., Long-term in vivo validation of a fully-implantable, wireless

brain-computer interface for cortical recording and stimulation, in preparation

that were slightly adapted to fit in smoothly with the whole text. Such text passages are marked in

cursive font in the text body and in cursive serif font in figure captions.

v

Zusammenfassung

Gehirn-Computer Schnittstellen (brain-computer interfaces, BCIs) bieten eine vielversprechende

Möglichkeit zur Wiederherstellung der Bewegungsfähigkeit von schwerstgelähmten Menschen, zur

Kommunikation mit Patienten, die in ihrem eigenen Körper gefangen sind oder zur Verbesserung der

Wirkung von Maßnahmen zur Schlaganfallsrehabilitation. Deshalb hat dieser Forschungsbereich in

den letzten Jahren großes Interesse erhalten und viele Forschungsstudien erzielten gute Ergebnisse.

Jedoch haben BCIs nicht den Übergang aus der Forschung zum klinischen und täglichen Heimgeb-

rauch vollzogen. Ein medizinisches BCI muss Gehirnaktivität mindestens über mehrere Jahre stabil

und sicher aufzeichnen können und dabei im Alltagsgebrauch minimale Vorbereitungszeit benötigen.

Außerdem muss ein medizinisches BCI sicher für Patienten und Benutzer sein und muss als Medizin-

produkt für die Verwendung am Menschen zugelassen sein. Die beiden zuletzt genannten zwei regu-

latorischen und sicherheitsrelevanten Anforderungen bedingen einen enormen Anstieg des Entwick-

lungs- und Testaufwands.

Das Ziel von Braincon ist es, ein universelles, medizinisches BCI zu sein, d.h. anwendbar für eine Viel-

zahl von Forschungs- und medizinischen Anwendungen, bei gleichzeitiger Reduzierung des Aufwands

für Testung und für die Einhaltung der regulatorischen Vorgaben. Braincon besteht aus einem Im-

plantat zum Aufzeichnen von Gehirnsignalen und zur elektrischen Stimulation von Gehirnarealen

sowie einer Software zur Verarbeitung von Gehirnsignalen zur Laufzeit, um die Stimulationsfunktion

des Implantats zu steuern.

Diese Dissertation konzentriert sich auf die Software von Braincon, d.h. die Braincon Plattform Soft-

ware, und stellt eine allgemeine, flexible und verifizierbare BCI-Software-Architektur mit einer „mul-

ti-threaded“ Filter-Pipeline für die Verarbeitung von Gehirnsignalen mit niedriger Latenz. Zudem wird

ein Leitfaden zu den gesetzlichen und regulatorischen Rahmenbedingungen bei der Entwicklung von

medizinischer Software gegeben, zusammen mit einer Beschreibung der Teststrategie und den Test-

werkzeugen, die für die regulatorische Verifizierung der Braincon Plattform Software verwendet

wurden. Die Rechenlast und die Latenz, d.h. die Zeit die ein BCI-System für die Reaktion auf eine Be-

nutzereingabe benötigt, von verschiedenen Implementierungen der Filter-Pipeline werden für eine

unterschiedliche Anzahl von Threads sowie für typische Merkmalsextraktions- und Dekodierungsalgo-

rithmen gemessen. Die Ergebnisse zeigen, dass BCIs im Allgemeinen von der hier vorgestellten

Parallelisierung profitieren können: zum einen durch die Reduzierung von Latenz, zum anderen durch

Erhöhung der Aufzeichnungskanäle und Merkmale, die zur Dekodierung verwendet werden können

jenseits der Menge, die durch einen einzelnen „thread“ verarbeitet werden kann.

Die hier vorgestellte Software-Architektur wurde erfolgreich in einer BCI Studie am Menschen einge-

setzt, welche deren Fähigkeit zur Online-Dekodierung von Gehirnsignalen zur Laufzeit belegt. Des

Weiteren wurde Braincon in einer in vivo Studie im Schafsmodell erprobt. Die Ergebnisse zeigen, dass

die von Braincon aufgezeichneten Gehirnsignale mit den von einem kommerziell erhältlichen, nicht

implantierbaren Verstärker gemessenen Gehirnsignalen vergleichbar sind. Ein Schaf wurde chronisch

implantiert und belegte die erfolgreiche Verifizierung von Braincon‘s Mess- und Stimulationsfunktio-

nen in vivo. Zusammenfassend ist die Braincon Plattform Software ein flexibles und leistungsstarkes

Werkzeug für die BCI Forschung und hat das Potenzial, bei minimalem regulatorischen Aufwand, die

Entwicklung von BCI-basierten Behandlungsmethoden für den Menschen zur fördern.

vi

Abstract

Brain-Computer Interfaces (BCIs) provide an auspicious opportunity for restoring movement to se-

verely paralyzed persons, enabling communication with locked-in patients or improving efficacy in

stroke rehabilitation. Therefore, this area of research has received great in interest in recent years

and many research studies yielded excellent results. However, BCIs did not make the transition from

research to clinical application and everyday home use. A medical BCI needs to provide the means

for recording neural activity in a stable and safe manner over several years while requiring minimal

preparation time for everyday use. In addition, a medical BCI has to be safe for patients and users

and needs to be certified as a medical device for use with human patients. These latter two regulato-

ry and safety requirements cause an enormous increase of effort during development and testing.

The goal of Braincon is to be a general-purpose medical BCI (i.e., applicable to a wide range of re-

search and medical indications) while reducing the effort for testing and regulatory compliance.

Braincon consists of an implant for recording of neuronal signals and for electrical stimulation of

brain areas and a software that processes neural data at run-time to control the implant's electrical

stimulation functionality.

This thesis focuses on the software component of Braincon (i.e., the Braincon Platform Software) and

proposes a general, flexible and verifiable BCI software architecture with a filter pipeline for low-

latency multi-threaded processing of neuronal signals. In addition, a guide on the juristic and regula-

tory environment for the development of medical software is given together with a description of

the test strategy and test tools employed for a regulatorily compliant verification of the Braincon

Platform Software. The computational load and latency (i.e., the time that a BCI system needs to re-

act to user input) are measured for different filter pipeline implementations, for different numbers of

threads and for typical feature extraction and decoding algorithms from the BCI domain. Results

show that BCIs in general can benefit from the proposed parallelization: firstly, by reducing the laten-

cy and secondly, by increasing the amount of recording channels and signal features that can be used

for decoding beyond the amount which can be handled by a single thread. The proposed software

architecture was successfully employed in a human BCI study to show its capability for online decod-

ing of neuronal signals. Furthermore, Braincon was put to the test in an in vivo sheep study. Results

show that the neuronal signals recorded by Braincon are comparable to the signals recorded by a

commercially available, non-implantable recording device. One sheep was chronically implanted,

yielding successful verification of Braincon’s in vivo measurement and stimulation capabilities. In

conclusion, the Braincon Platform Software is a flexible and powerful tool for BCI research and has

the potential to promote the development of BCI-based treatments for human patients with minimal

regulatory effort.

vii

To my family.

viii

Acknowledgements

First and foremost, I would like to express my deep gratitude to my supervisor, Professor Dr. Gerhard

Schneider for the helpful discussions and his excellent scientific guidance. Without his encourage-

ment, patience and invaluable experience, this thesis would not have been completed. I will miss our

regular meetings on Wednesday, 11am.

I would also like to thank Professor Dr. Gerhard Schneider, Professor Dr. Thomas Stieglitz, Professor

Dr. Ulrich Egert and Professor Dr. Bernd Becker for serving as committee members and for turning

my defense into a positive experience which I will always remember.

I am very grateful to my fellow researchers in the research groups of Professor Dr. Carsten Mehring,

Professor Dr. Thomas Stieglitz and Dr. Tonio Ball. All of them have been a great source of inspiration

during the long and sometimes gloomy road to the completion of this thesis, but also provided alter-

native perspectives on the problems at hand and valuable scientific advice.

During my research I had the privilege to dive into fields of knowledge not typically encountered in

computer science. Therefore, I would like to thank Professor Dr. Mehring and Dr. Tomislav Milekovic

who introduced me into the exciting domain of brain-computer interfaces and the analysis of neural

data. I am also very grateful to Fabian Kohler and Dr. Martin Schüttler for giving me insight into the

art of designing brain implant hardware. My gratitude also goes to Professor Dr. Jörg Haberstroh and

his team. Doing research during a neurosurgery was a rare and valuable experience for me.

I would also like to thank all patients, nurses and staff of the university clinics of Freiburg who partic-

ipated or supported me in conducting the brain-computer interface study.

I am also grateful to my colleagues from CorTec GmbH, especially to its CEO, Dr. Jörn Rickert, for his

continuing support of my research, to Christian Stolle for our invaluable discussions about software

architecture, to Markus Raab for sharing his knowledge of regulatory affairs and to Lukas Feinweber

for helping me with the intricacies of the English language.

I would also like to thank the German Federal Ministry of Education and Research for funding my

research.

I thank my parents for raising me and giving me the possibility to go to university. I treasure the faith

you put in me.

Finally, I would like to gratefully and sincerely thank my wife Martina and our daughters Miriam and

Anna. Their support, love, care and motivation were essential and invaluable for me. Without my

family, I would not have succeeded.

ix

Table of contents
Comment on References .. iv

Zusammenfassung ... v

Abstract ... vi

Acknowledgements ... viii

Table of contents ... ix

1 Introduction ...1

1.1 Motivation: Towards a Medical BCI ...1

1.2 Properties of a Clinical BCI ...2

1.2.1 Recording Techniques ..2

1.2.2 Signal Quality ..3

1.2.3 Stability and Usability ...3

1.2.4 Patient Safety ...4

1.2.5 Certification as a Medical Device ...4

1.3 Why Cortical Stimulation? ..5

1.3.1 Parkinson’s Disease ..5

1.3.2 Somatosensory Feedback...5

1.3.3 Pain Therapy ...5

1.3.4 Stroke Motor Rehabilitation...6

1.4 Braincon in a Nutshell ..7

1.5 Braincon Software Requirements ..7

1.5.1 Modular Software Architecture ...7

1.5.2 Medical Platform Software ..7

1.5.3 Low-Latency Processing ...8

1.5.4 Computational Power ..8

1.6 Scientific Contribution ..9

2 Braincon Overview .. 11

3 State of the Art .. 14

3.1 Implants ... 14

3.2 BCI Software Platforms ... 16

4 Regulatory Requirements ... 19

4.1 Juristic Environment for Medical Software Development .. 19

4.2 Consequences for Medical Software Development .. 22

4.2.1 EN ISO 13485 – Quality Management System .. 22

x

4.2.2 EN ISO 14971 – Risk Management .. 24

4.2.3 EN 62304 – Software Life-Cycle Processes for Medical Device Software 25

5 Scientific Objectives .. 30

5.1 Own Approach ... 30

5.2 Roadmap ... 30

5.3 Software Objectives .. 31

6 Methods .. 35

6.1 Design Principles of the Software Architecture .. 35

6.1.1 Modularity ... 35

6.1.2 Verifiability .. 35

6.1.3 No Data-Sharing .. 40

6.1.4 Coding Convention .. 42

6.2 Software Architecture ... 43

6.2.1 Domain Model ... 43

6.2.2 Implementation ... 43

6.2.3 Startup and Shutdown Order .. 46

6.2.4 Filter Pipeline ... 47

6.2.5 Parallelization .. 50

6.3 Performance Analysis .. 51

6.3.1 Performance Definition ... 51

6.3.2 Simulation Setup ... 53

6.3.3 Stall Definition ... 54

6.3.4 Algorithms ... 55

6.3.5 Statistical Analysis ... 56

6.4 Closed-Loop BCI Study... 57

6.5 Preclinical in vivo Animal Study ... 59

6.5.1 Software for in vivo Study ... 59

6.5.2 Acute Animal Study ... 60

6.5.3 Chronic Animal study .. 62

7 Results ... 64

7.1 Performance Analysis .. 64

7.1.1 Stalls of the Filter Pipeline ... 65

7.1.2 Performance of Classification/Regression Algorithms .. 66

7.2 Closed-Loop BCI Study... 68

xi

7.3 Preclinical in vivo Animal Study ... 70

7.3.1 Acute Setting ... 70

7.3.2 Chronic Setting .. 72

8 Discussion .. 77

8.1 Platform Software from the Regulatory Perspective .. 77

8.2 Filter Pipeline... 78

8.3 Distributed System .. 80

8.4 Soft Real-Time versus Hard Real-Time .. 80

8.5 On-Implant- versus Body-External Signal Processing .. 82

8.6 Implant Housing .. 83

8.7 Future Work .. 83

8.8 Summary and Outlook .. 84

9 References ... 86

10 Appendix ... 103

10.1 Supplementary Materials .. 103

10.2 List of Figures .. 109

10.3 List of Tables .. 110

10.4 List of Abbreviations .. 111

10.5 Figure Copyright .. 112

10.6 Funding .. 113

10.7 List of Publications .. 114

1

Introduction

1 Introduction
Brain-Computer Interfaces (BCIs; Nicolas-Alonso and Jaime, 2012; Shih et al., 2012; Wolpaw et al.,

2002; Vidal, 1973) promise to help patients with a wide array of diseases, disabilities and disorders.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease (Kiernan et al., 2011) where pa-

tients become increasingly paralyzed until they lose all voluntary control over musculature (i.e., they

are completely locked inside their own body while retaining full consciousness (Bauer et al., 1979)).

Birbaumer et al. trained ALS patients to voluntarily modulate certain brain rhythms, so-called slow

cortical potentials. These were recorded and decoded with a BCI to operate a spelling program so

that the patients could write short messages (Birbaumer et al., 2000; Birbaumer et al., 1999). Today,

several research studies show that BCIs can be employed to re-enable locked-in patients to com-

municate (Oken et al., 2014; Kim et al., 2011).

There are 15 million patients worldwide suffering a stroke each year, of which 5 million patients re-

main disabled permanently (Gonzalez Andino et al., 2011). Stroke patient rehabilitation can be im-

proved by combining conventional physiotherapy with BCI training (Broetz et al., 2010). Depending

on the magnitude of the µ-rhythms, a brain signal related to motor activity, a BCI controls an orthosis

that assists the patient's limb movements. A clinical study shows that this approach improves rehabil-

itation results compared to the conventional physiotherapy control group (Ramos-Murguialday et al.,

2013).

Hochberg et al. (2006) shows that a tetraplegic patient with spinal cord injury is able to use a BCI to

open and close a prosthetic hand, control a computer cursor in a simple email program and operate a

TV. Several research studies show that monkeys can control robotic arms with multiple degrees of

freedom (Shpigelman et al., 2009; Velliste et al., 2008; Lebedev et al., 2005). Similar results were

achieved for human patients (Collinger et al., 2013; Hochberg et al., 2012). BCIs can also help severe-

ly paralyzed patients to regain some degree of mobility by controlling their wheelchair (Galán et al.,

2008; Leeb et al., 2007).

BCIs typically perform four steps (Figure 1): First, they record the patient's neurophysiologic signals,

for example the electroencephalogram (EEG) or neuronal spike activity and then extract features

from the recorded signals. Typical features can be power in a certain frequency band or the number

of detected neuronal spikes in a certain time period. An algorithm then decodes the desired infor-

mation from the features (e.g., intended movement or the probability of an imminent epileptic sei-

zure). Depending on the outcome of the decoding step, feedback is provided to the patient which

can be visually (e.g., by moving a cursor on a screen), auditory or in the form of electrical stimulation

applied to the brain. These steps are continuously repeated, creating a continuous closed loop of

interactions between BCI and patient.

1.1 Motivation: Towards a Medical BCI

Although many research studies show good results, BCIs did not make the transition from research to

clinical or every-day home use (Rouse et al., 2011; Ryu and Shenoy, 2009). So far, only the Neuropace

RNS® System (Morrell, 2011) has received FDA approval as a supplement for epilepsy therapy in

2013. Many promising BCI approaches stay on the level of a proof-of-concept (Silvoni et al., 2013;

Brunner et al., 2011; Broetz et al., 2010; Rebsamen et al., 2010; Blakely et al., 2009; Cincotti et al.,

2

Introduction

2008; Galán et al., 2008; Schalk et al., 2008; Krepki et al., 2007; Mellinger et al., 2007; Wolpaw and

McFarland, 2004), on the level of an animal study (Chao et al., 2010; Velliste et al., 2008; Lebedev et

al., 2005; Carmena et al., 2003; Taylor et al., 2002) or, as a patient-specific study, report on only one

or few human patients (Collinger et al., 2013; Wang et al., 2013; Hochberg et al., 2012; Walter et al.,

2012a; Hochberg et al., 2006). According to Ryu and Shenoy et al., a clinical BCI needs to have several

properties in order to be feasible:

1. the bio-electrical signals need to be recorded stably and informatively for the time the sys-

tem is in use,

2. preparation time for each session has to be as short as possible,

3. the system has to be safe for the patient and

4. the system has to be certified as a medical device for use in human patients.

1.2 Properties of a Clinical BCI

There are multiple techniques for recording brain signals, each influencing the properties of the re-

sulting BCI regarding signal quality, stability, usability and safety. A clinical BCI is a medical device and

therefore the applicable regulatory framework indirectly influences the development and design of a

clinical BCI.

1.2.1 Recording Techniques

Action potentials can be recorded invasively with needle arrays from neurons, either single unit activ-

ity (SUA) or multi-unit activity (MUA) or local field potentials (LFPs, Waldert et al., 2009).

Electrocorticography (ECoG) records electrical activity from the surface of the brain with an

epidurally or subdurally implanted foil electrode grid (Schwartz et al., 2006). Electroencephalography

measures the electrical field of the brain non-invasively with electrodes placed on the head (Schwartz

Figure 1: Components of a closed-loop BCI

Figure 1 shows typical components of a BCI depicted as rectangles and their interactions with a patient. Information
flow between components is depicted as arrows annotated with examples for the information type.

3

Introduction

et al., 2006). Similar to EEG, magnetoencephalography (MEG) measures the magnetic field of the

brain (Knowlton and Shih, 2004). Functional magnetic resonance imaging (fMRI) and near-infrared

spectroscopy (NIRS) indirectly measure neuronal activity by measuring the oxygen saturation of the

blood (Huettel et al., 2008; Jöbsis, 1977). As MEG, fMRI and NIRS systems are expensive and such

devices are too big for home use, these recording techniques will not be considered further.

1.2.2 Signal Quality

The recording technique has a significant influence on the spatiotemporal resolution and the infor-

mation contained in the recorded signal. As a rule of thumb it can be said that the more invasive a

recording technique is, the better its spatiotemporal resolution and information content (Slutzky et

al., 2010; Stieglitz et al., 2009; Schwartz et al., 2006). SUA/MUA signals are typically sampled with

high frequencies up to 10 000Hz in order to capture the wave form of neuronal action potential and

provide the highest fidelity of all signal types considered here. Spatial resolution of SUA/MUA activity

is also very high, ranging from 0.2mm to 1mm (Schwartz et al., 2006). As activity is sampled from the

atomic building block of the brain (i.e., neurons) it seems plausible that SUA/MUA activity has the

highest information content. Waldert et al. (2009) corroborates this by providing evidence that

SUA/MUA activity contains more directional information than less invasive methods.

EEG signals are recorded from the scalp and due to their non-invasiveness are often the preferred

choice for BCI studies. The skin, fat tissue and skull between the neurons and the electrodes attenu-

ate and low-pass filter the signal, resulting in a lower frequency range for EEG and a typical spatial

resolution around 3-5cm (Slutzky et al., 2010; Stieglitz et al., 2009; Schwartz et al., 2006). In contrast

to SUA/MUA activity, EEG provides only ambiguous localization of the neuronal source of a signal

(Sitaram et al., 2007) and is prone to ambient noise and muscle artifacts, especially eye movements,

blinking and heartbeat (Kern et al., 2013; Millan and Carmena, 2010; Ball et al., 2009; Freeman et al.,

2000).

Electrocorticography is a kind of compromise between the high invasiveness and information content

of SUA/MUA activity and the non-invasiveness and lower information content of EEG. Without the

low-pass filter properties of skin, bone and fat tissue, ECoG signals have a higher amplitude and fidel-

ity (up to 500Hz) compared to EEG (Millan and Carmena, 2010). Spatial resolution of ECoG is with

0.5cm typically between SUA/MUA and EEG (Stieglitz et al., 2009; Schwartz et al., 2006). Although

there are artifacts (e.g., due to blood vessels, heart beat or blinking), they are weaker than in EEG

(Kern et al., 2013; Millan and Carmena, 2010; Ball et al., 2009; Freeman et al., 2000). ECoG signals

contain auditory-, language- and motor-related information (Flinker et al., 2011) and are therefore

well suited for BCI applications.

1.2.3 Stability and Usability

The recording technique also influences the stability of the recorded signal and the effort required to

perform a BCI session. SUA/MUA recordings are typically performed by inserting needle arrays into

the brain. The signal quality therefore tends to degrade over time due to the formation of scar tissue

and the death of neurons adjacent to the recording sites (Williams et al., 2007; Otto et al., 2006). In

addition, recording single neurons requires rather complex spike sorting algorithms. Although there

are partial advances in automation of the spike sorting, this still has to be done manually by experts

before each recording session (Franke et al., 2012). This makes SUA/MUA recordings rather unsuita-

ble for long-term everyday use. EEG signal quality does not degrade over time, but preparing conven-

4

Introduction

tional wet EEG electrodes can be very time-consuming and has to be done for every recording ses-

sion (Stieglitz et al., 2009). EEG electrode position changes slightly with each preparation which could

require recalibration of decoding parameters. There is evidence that ECoG recordings provide stable

recordings over months (Chao et al., 2010; Schalk, 2010; Blakely et al., 2009). Recording location for

ECoG recording is selected once during the initial surgery and then the electrode grid stays in place

(Harvey and Nudo, 2007) without need of daily preparation, which further supports ECoG as feasible

choice for long-term everyday clinical and home use.

1.2.4 Patient Safety

Invasive recordings clearly involve a risk for the patient from the initial surgery. For implantation of

needle arrays there is no broad experience so far regarding the risks for implantations in humans.

However, the risk of an ECoG electrode implantation can be estimated by the risk of the established

and well-known surgical intervention for treatment of medical refractory epilepsy (Ryu and Shenoy,

2009; Nair et al., 2008). Electrode grids for epilepsy surgery are relatively big compared to grids in-

tended for BCI use. Since the implantation risk also correlates with the electrode size (Wong et al.,

2009; Hamer et al., 2002), the risk for BCI grid implantations might actually be lower compared to

epilepsy surgery. There are significant risks of complication for epilepsy surgery, but they are mostly

transient (Wong et al., 2009). According to Bilir et al. (1996), there is no increased morbidity for pa-

tients who had surgical epilepsy treatment.

Conventional invasive recording techniques use cables connected to a body-external amplifier for

recording. Due to these cables, there is a permanent open wound with the risk of infection increasing

over time (Nair et al., 2008; Hamer et al., 2002). In contrast, an implant using a wireless communica-

tion and energy supply would not cause such a permanent wound and the risk of infection would be

reduced. Such a solution would be a necessary prerequisite for a medical BCI for chronic use over

several years.

1.2.5 Certification as a Medical Device

A medical BCI, even if it consists exclusively of software, is a medical device and therefore its devel-

opment, manufacturing and certification is governed by the directive of the European Community for

active implantable medical devices (AIMD, Council of the European Community, 1993a, in the latest

revision from 21.09.2007). The higher the risk caused by a medical device, the higher the regulatory

requirements. For implants, a quality management system compliant with EN ISO 13485 (European

Committee for Electrotechnical Standardization, 2012b) has to be applied for development and man-

ufacturing in order to guarantee that development and manufacturing processes are traceable, doc-

umented and developed using state-of-the-art processes. It has to be verified through extensive test-

ing that the medical BCI meets the desired performance specifications. Manufacturing processes

need to be verified to yield devices that meet their design specifications. Risk management according

to EN ISO 14971 (European Committee for Electrotechnical Standardization, 2012a) has to be em-

ployed during development to verify that a device is designed to be safe for patient and user. Devel-

opment processes, manufacturing processes and the medical device itself have to be certified to be

compliant with law and applicable standards. For new medical devices, where no sufficiently compa-

rable other certified medical devices exist, clinical studies in human patients have to be conducted to

verify the device's efficacy and safety (Council of the European Community, 1990, 1993a).

5

Introduction

1.3 Why Cortical Stimulation?

Currently much research activity is dedicated to improving existing BCI approaches as well as thera-

pies for stroke rehabilitation, medical refractory pain and motor disorders like Parkinson’s disease by

employing closed-loop cortical stimulation. In all of these research areas, there is the assumption or

evidence that cortical electrical stimulation should be employed, as outlined in the following text.

Therefore, it would be desirable to include the ability to perform cortical stimulation into a medical

BCI.

1.3.1 Parkinson’s Disease

Deep brain stimulation (DBS) is an established and safe treatment for hyperkinetic movement disor-

ders like the Parkinson’s disease (Rosin et al., 2011; Kenney et al., 2007). Stimulation is applied con-

tinuously to the patient’s brain. Rosin et al. report on closed-loop stimulation having greater efficacy

on akinesia than open-loop stimulation. As many researchers propose the evaluation of closed-loop

stimulation for Parkinson’s disease treatment (Modolo et al., 2012; Rouse et al., 2011; Marceglia et

al., 2007), one can expect a demand for closed-loop implants capable of stimulation.

1.3.2 Somatosensory Feedback

The type of feedback provided by most closed-loop BCIs is often visual (LaFleur et al., 2013; Milekovic

et al., 2012), auditory (McCreadie et al., 2013; Nijboer et al., 2008) or somatosensory (Chatterjee et

al., 2007; Cincotti et al., 2007). With visual feedback, the patients are required to focus their visual

attention to a screen. For example, when using a P300-based spelling device, letters are displayed

that flash in turn. In order to select a letter, the patient has to concentrate on the letter, which can

be quite tedious. Similarly, auditory feedback can be experienced by the patient as annoying when

interfering while simultaneously talking to people. An alternative feedback method for BCIs without

the aforementioned disadvantages is to use cortical stimulation (i.e., to use electrical stimulation of

brain areas to elicit somatosensory sensations). This is an ongoing area of BCI research (Millan and

Carmena, 2010; Wang et al., 2010). In animal studies it was shown that cortical stimulation of soma-

tosensory brain areas can be used to cue the animal's actions (Venkatraman and Carmena, 2011;

Fitzsimmons et al., 2007) and that different stimulation patterns can be distinguished by the animal

(O'Doherty et al., 2009; Schwartz et al., 2006; Romo et al., 2000). Tabot et al. (2013) report on mim-

icking the touching sense with electrical stimulation in an animal study. Researchers aim to use corti-

cal stimulation as a more fine-grained feedback channel and to integrate the ability to feel into pros-

thesis (Millan and Carmena, 2010; Wang et al., 2010).

1.3.3 Pain Therapy

Worldwide, up to 1.2 million stroke patients per year suffer from intermittent or permanent pain

within the first year after stroke. Conventional treatments with analgesics rarely shows significant

effects (Gonzalez Andino et al., 2011; Andersen et al., 1995; Bowsher, 1995). Tsubokawa et al. report

first on achieving alleviation of neurogenic pain by stimulating the patient’s motor cortex for 5-10

minutes (Tsubokawa et al., 1993, 1991; Tsubokawa et al., 1985). Today, cortical stimulation of the

motor cortex has become a viable option for medical treatment (Brown, 2001). However, stimulation

is applied constantly in an open-loop manner (i.e., largely independently from the patient's actual

state of pain). The physicians select stimulation parameters by trial-and-error, which could reduce

the effect of pain relief (Zuo et al., 2012; Aydin, 2011). Closed-loop approaches can result in a lower

daily stimulation dosage and fewer dosage-dependent adverse effects so that the resulting treat-

ment is better tolerable by the patient (Stanslaski et al., 2012; Halpern et al., 2008; Osorio et al.,

6

Introduction

2001). Therefore, cortical closed-loop stimulation is considered auspicious for improving existing pain

therapies (Edwardson et al., 2013; Walter et al., 2012b; Zuo et al., 2012; Gonzalez Andino et al.,

2011; Rouse et al., 2011; Plow et al., 2009).

1.3.4 Stroke Motor Rehabilitation

Every year, there are 5 million people worldwide who suffering from a stroke and remaining perma-

nently disabled. Researchers aim to improve stroke rehabilitation by using a closed-loop BCI ap-

proach (Gharabaghi et al., 2014; Walter et al., 2012a; Gonzalez Andino et al., 2011). The basic idea is

to induce neuroplasticity based on Hebbian learning by using cortical stimulation to artificially associ-

ate activities of two separate sites within the motor cortex (Wang et al., 2010; Jackson et al., 2006;

Bütefisch et al., 2004). It has been shown that rehabilitation effects of physiotherapy can be im-

proved by applying concurrent non-invasive transcranial magnetic stimulation (TMS) to the motor

cortex in an open-loop manner (Bolognini et al., 2009; Plow et al., 2009; Bütefisch et al., 2004). How-

ever, the non-invasive TMS stimulation device limits the patient's movements during physiotherapy.

The 'hot spot' on the patient's motor cortex has to be re-located for each physiotherapy session and

kept fixed for the duration of each session (Harvey and Nudo, 2007). In addition, stimulation parame-

ters might be adapted in a closed-loop approach to further improve rehabilitation effects (Gonzalez

Andino et al., 2011; Plow et al., 2009). As intracortical stimulation mimics the effects of TMS

(Bolognini et al., 2009), researchers consider intracortical stimulation an attractive approach to im-

prove stroke motor rehabilitation (Levy et al., 2008; Bütefisch et al., 2004).

Figure 2: Braincon overview

A: Schematic overview of Braincon. It consists of a foil electrode (1), an implant (2) and a body-external unit (3) which is

connected to a PC running the Braincon Platform Software (4). B: Image of Braincon implant with foil electrode. C:

Screenshot of the Braincon Platform Software.

7

Introduction

1.4 Braincon in a Nutshell

This thesis describes Braincon with focus on its software component, the Braincon Platform Soft-

ware. It consists of a hermetically encapsulated implant which could record ECoG and simultaneously

perform electrical stimulation of brain areas through a foil electrode. The implant communicates

wirelessly through the skin with a body-external unit. Power supply is also provided wirelessly by the

body-external unit. Processing of the recorded signals and generation of stimulation commands is

done on a standard personal computer (PC) running the Braincon Platform Software. For a more

detailed overview of Braincon see Section 2.

1.5 Braincon Software Requirements

Braincon is intended as a tool for neuroscientists and physicians to further their understanding of the

underlying neural mechanisms of movement disorders like Parkinson's disease, stroke motor rehabil-

itation and treatment of medical refractory pain as well as to foster research of new treatments

based on a closed-loop approach for these medical indications. Promising approaches will have to go

through initial preclinical tests, probably several patient-specific studies on few selected patients

until the efficacy and safety of such new treatments finally have to be proven in a clinical study with

human patients. The Braincon Platform Software is an integral part of Braincon, because it controls

the implant by continuously reading out measurements, processing them and issuing stimulation

commands. Therefore, the Braincon Platform Software has to be considered as a medical device

software and needs to be developed according to the regulations and standards for active implanta-

ble medical devices (Council of the European Community, 1993b in the latest revision from

21.09.2007). For a better readability, the term medical software will be used as abbreviation for

medical device software in the following. Similarly, software that does not satisfy the criteria for

medical software (e.g., research software) will be termed non-medical software. In addition to regu-

latory requirements it was also mandatory from an ethical perspective to apply state-of-the-art de-

velopment and risk management processes for developing and testing this kind of software. The in-

tended use of the Braincon system imposed several requirements on the Braincon Platform Soft-

ware, as described in the following.

1.5.1 Modular Software Architecture

Firstly, the Braincon Platform Software should be used in different clinical studies with different

software components for signal processing algorithms, stimulation paradigms, user interfaces and

maybe even other neurophysiologic recording devices in addition to the Braincon implant. It might

even be necessary to frequently modify or exchange any of these components for each individual

patient. Therefore the software architecture should support the exchange of these components as

well as easy modification of existing components and the addition of new ones.

1.5.2 Medical Platform Software

Development of implants as medical devices, including software which is an integral components of

the device, has high regulatory hurdles and requires large amounts of effort and money (Rouse et al.,

2011; Ryu and Shenoy, 2009). In the European Union, software development for medical software is

regulated mainly by the standards EN ISO 13485 (quality management), EN ISO 14971 (risk manage-

ment) and EN IEC 62304 (software development for medical software) These standards require ex-

tensive verification of the software to meet the design specifications and extensive validation of the

software to operate with the specified efficacy (European Committee for Electrotechnical Standardi-

zation, 2006, 2012b, 2012a). Writing medical software from scratch for one specific clinical study

8

Introduction

might therefore be close to impossible within given research budgets and might be the reason why

many successful BCI research studies did not yet make the transition to clinical use (Rouse et al.,

2011; Ryu and Shenoy, 2009). One way to alleviate this problem could be to provide component-

oriented platform software for the scientific community which was developed in compliance with

regulatory requirements but can be used for a wide range of applications, as the term 'platform' im-

plies. Then scientists could re-use existing and already extensively tested components like algorithms

or user interfaces to create medical software for their needs. Development and testing effort under

the regime of the regulatory requirements would be reduced to new or modified components plus

the integration test and certification of the final medical device software. Using medical platform

software might even be an attractive choice for research studies because due to the extensive testing

the results of the research studies would be more reliable. Bearing in mind that clinical studies can

follow from successful research studies, the same medical platform software can be used for these

follow-up clinical studies, therefore no effort would be necessary for switching from another non-

medical software to a medical software. Although non-medical software can be used in patient-

specific studies on selected human patients if justifiable, the attending physician is responsible for

the selection of the software tools used in such a study (Council of the European Community, 1990,

1993a). In the risk- and benefit analysis of the attending physician, a software based on a tested and

safe medical platform software is likely to be preferred to pure non-medical software.

1.5.3 Low-Latency Processing

Every BCI system is limited in its applications by the time it needs to react to neurophysiologic meas-

urements (i.e., the latency to react on user input). For motor BCIs with motor prostheses, low latency

is especially important (Ryu and Shenoy, 2009), because a fast and responsive prosthesis is clearly

preferable to a slow one. There were two main sources of latency for the Braincon system: Firstly,

the transmission of data to and from the implant and secondly, the time needed for signal processing

by the Braincon software. The latency for signal processing was composed of time needed by the

signal processing algorithms, time needed for distribution of the measurement data stream to differ-

ent CPU cores for processing and the time needed for thread synchronization. Therefore the goal was

to reduce the latter overhead to free up computational resources for additional signal processing and

to reduce latency.

1.5.4 Computational Power

Decoding neuronal activity typically involves multivariate signal processing (multiple channels and

multiple signal features) and linear or non-linear methods for classification and regression. Therefore,

the overall decoding process can be computationally demanding. On standard desktop computers or

laptops, the amount of computations a processor core can execute per time is limited and may be

insufficient for BCI signal processing. One can alleviate such limitations by distributing calculations

among multiple cores. A higher amount of computational power available for decoding can be bene-

ficial for several reasons: (i) Processing of neural activity measurements at a higher spatiotemporal

resolution (i.e., more recording channels and higher sampling rates) can potentially yield more accu-

rate decoding of the subject’s intentions (Gunduz et al., 2009; Carmena et al., 2003; Nicolelis et al.,

2003). Moreover, the decoding accuracy can be improved by using multiple signal features from a

single neuronal signal simultaneously (e.g., by decoding from multiple frequency bands of the same

local field potential or EEG channel (Kai Keng Ang et al., 2008; Woon and Cichocki, 2007; Rickert et

al., 2005)). In both cases, the computational demand increases with the number of channels or the

number of features per channel. (ii) More complex classification or regression algorithms can improve

9

Introduction

decoding accuracy (e.g., by incorporating nonlinearities (Shpigelman et al., 2009; Gao et al., 2003)) or

by adapting to non-stationary neuronal signals (Shpigelman et al., 2009; Wu and Hatsopoulos, 2008;

Blumberg et al., 2007; Rotermund et al., 2006). Such algorithms typically require a higher amount of

computational power. (iii) The computational load increases with the number of degrees of freedom

(DOF) of the external actuator. For example, in the often used linear filter (Collinger et al., 2013;

Schalk et al., 2008; Hochberg et al., 2006; Carmena et al., 2003), computational demand of the filter

grows linearly with the number of DOFs. (iv) The Braincon Platform Software has to support future,

yet unknown algorithms for signal processing which can be computationally demanding. (v) Higher

computational power can increase the number of decoding steps per second. Hence, BCI users can

experience a smoother control and might, therefore, feel more comfortable with the BCI. Further-

more, by reducing the time between two decoding steps, the BCI user will receive faster feedback on

the movements of the actuator, which can improve the performance (Cunningham et al., 2011). In

contrast, long delays and low update rates can substantially decrease the user’s comfort and perfor-

mance while using the interface.

1.6 Scientific Contribution

Braincon was intended to meet the criteria for a medical BCI system and to meet the demand of sci-

entists as a research tool for stable long-term recording and cortical stimulation in human patients

(Edwardson et al., 2013; Zuo et al., 2012; Rouse et al., 2011; Marceglia et al., 2007). From this data

scientists expect new insights into the underlying mechanics of neural motor diseases (which are

often still unknown) or psychic disorders (Maling et al., 2012; Modolo et al., 2012; Rosin et al., 2011)

or into system neuroscience in general (Bergmann et al., 2012; Jensen et al., 2011). The author hopes

to contribute to the provision of a tool to obtain these insights which will promote development of

improved treatments for patients by leveraging existing open-loop to closed-loop approaches.

However, there is still a long way to go. The development, verification and certification of Braincon

are a huge endeavor and therefore still on-going. However, it is reasonable that Braincon will meet

the criteria for a medical BCI: It uses ECoG recordings because they have a good signal-to-noise ratio,

a high spatial resolution and promise good long-term stability (cf. Section 1.2). Implantation should

be safe for the patient, based on the experience in epilepsy surgery (Wong et al., 2009; Ryu and

Shenoy, 2009; Bilir et al., 1996). The wireless data and energy transmission reduces the risk of infec-

tion (Ryu and Shenoy, 2009) and the implant's life time is not limited by a battery. Development is

conducted in compliance with regulatory requirements and standards as necessary prerequisite for

Braincon's certification as a medical device.

This thesis reports on the development of the Braincon Platform Software as a medical software for

BCI research. Due to the enormous monetary effort required for its development, it was necessary to

do a balancing act between contributing the obtained results to the scientific community and finan-

cial requirements. Therefore Braincon Platform Software is under a closed-source license, despite the

fact that the scientific community would benefit most from an open-source license. Instead, the key

choices and decisions that led to its software design will be provided so that the approach is tracea-

ble for other scientists and can be used for similar undertakings. These choices and decisions had to

cover regulatory requirements for medical software development. Therefore, a guide for scientists is

provided describing the surrounding juristic conditions, including the major applicable standards for

quality management, risk management and software life cycle and the resulting consequences for

medical implant software development.

10

Introduction

The Braincon Platform Software was developed according to the standards and regulations applica-

ble for medical software and therefore has to be tested rigorously prior to certification. Here an ac-

count is given on the design decisions, test tools and programming paradigms used to make the

software verifiable, a necessary requirement for certification.

A BCI software architecture is presented where new functionality (e.g., signal processing algorithms)

can be added and tested in a fast and easy manner. It is also an efficient software architecture de-

signed for multi-core processing of neuronal signals. Using a technique termed ’independent

substream parallelization’, the processing of neuronal signals can be divided into independent pro-

cessing steps. Each of these steps can then be run as an individual thread, thereby making adequate

use of multi-threading, prevailing protocol for parallel computations supported on desktop and laptop

computers. Furthermore, this demonstrates that the performance of multi-threaded processing of

neuronal signals is highly dependent on the waiting strategy (i.e., the algorithm used to exchange

data between threads). Results show a trade-off between the speed at which the data is exchanged

(latency) and the processor (CPU) usage: low latency comes at the cost of high CPU usage and vice

versa.

The proposed BCI software architecture was employed in two research studies. Here, the software

components are presented that were used to realize these studies, further corroborating the claim

that the software architecture is suitable for a wide range of applications. In a closed-loop BCI study

with human patients, wrist movement direction was successfully decoded. In a chronic in vivo animal

study, the implant's measurement and stimulation capabilities were evaluated. Results show that

Braincon is comparable to an established non-implantable amplifier in respect to signal quality. Stim-

ulation from the technical perspective also works in vivo.

In the following text, first an overview over the whole Braincon system will be given, followed by a

review of the current state of the art regarding similar software and implants. Then a summary of the

juristic and regulatory environment and its consequences for the development of medical implants

with focus on software development is provided as guidance for scientists. In the Methods Section,

the Braincon Platform Software architecture with focus on the filter pipeline will be presented first.

Then the setup for the evaluation the filter pipeline’s performance is given and the software compo-

nents for the closed-loop BCI study and the in vivo animal study are provided. The Results Section

reports on the two research studies and also contains an assessment of the filter pipeline perfor-

mance on typical feature extraction and decoding algorithms from the BCI domain with respect to

latency and CPU load for different number of threads. Finally, implementation alternatives of the

Braincon Platform Software are discussed and future work is addressed.

11

Braincon Overview

2 Braincon Overview
The Braincon system consists of three parts: an implant, a body-external unit and the Braincon Plat-

form Software running on a PC. The implant and body-external unit are currently subject to on-going

development and optimization. Here, an overview of the implant prototype and the body-external

unit used in the in vivo animal study is provided. The Braincon Platform Software will be described in

more detail in Sections 6.1 and 6.2.

Figure 4 shows an image of the implant consisting of an ECoG electrode grid, a cable connecting the

grid to a hermetic electronic package with a magnet and an inductive coil, all cast in medical grade

silicone rubber.

The electrode was manufactured with a computer aided manufacturing technique for small, high

density microelectrode arrays as described in Schuettler et al., 2005. First, the grid layout was de-

Figure 4: Braincon implant with body-external unit

Image of implant (left) and body-external unit (right).

Figure 3: Braincon foil electrode

Electrode design implementing meander-shaped tracks and an intermediate parylene C layer. 1: Electrode contact sites

2: Meander-shaped tracks 3: Silicone rubber with embedded parylene C foil 4: Transition electrode to cable (welded).

(Caption and figure from Kohler et al. (2012); Copyright © 2012 IEEE).

12

Braincon Overview

signed with a CAD application. Then a laser cut

the grid layout from a single platinum/iridium

foil which was laminated onto a layer of silicone

rubber. Excess platinum/iridium was removed

and a second silicone rubber layer was added.

An embedded layer of parylene C provided ad-

ditional mechanical stabilization (Henle et al.,

2011). For Braincon, a foil electrode with 32

platinum/iridium contacts (Ø = 1.12mm) suita-

ble for either measurement or stimulation was

designed (Figure 3). Two interconnected rows of

seven contacts were provided as ground or ref-

erence. Overall dimensions of the electrode grid

were 0.4mm x 20mm x 36mm. Due to re-

strictions of the implant's electronics, 16 con-

tacts were addressable for measurement and

eight contacts for electrical stimulation. These

contacts were connected to the electronics in-

side the implant housing through a cable with a

length of 50cm. The electrode and its manufac-

turing process are described in more detail in

(Kohler et al., 2012; Henle et al., 2011;

Schuettler et al., 2005)

A microcontroller on the electronics in the implant housing was employed to manage measurement

data, stimulation and communication with the body-external unit. Electronics and firmware were

implemented by Multi Channel Systems GmbH (Reutlingen, Germany) and used off-the-shelf compo-

nents. The electronics provided functionality for ECoG measurement on 16 channels with 1000Hz

sampling frequency. Over eight additional channels, stimulation pulses could be issued for voltage

stimulation of brain areas, however only one channel could stimulate at a time. A schematic of a

stimulation waveform together with its constituent parameters is shown in Figure 5. Stimulation

consisted of four steps with varying amplitude (0-17V) and step widths (1-10ms) which could be re-

peated for a specified duration. Blocking capacitors were switched between the waveform generator

and the electrodes, removing the direct current (DC) component from the waveform. DC-free stimu-

lation is required for minimizing the risk of electrode corrosion and potential biological tissue irrita-

tion. For diagnostic and safety purposes (i.e., failure prediction of the device) temperature and hu-

midity sensors were incorporated in the implant housing.

As Braincon was intended for chronic implantation over several decades, the implant housing had to

be hermetic against vapor in order to protect the electronics from body moisture, but also had to be

permeable for infrared light to allow communication to the outside of the body. An exploded sche-

matic view of the implant’s main components is shown in figure 6. The electronic components were

bonded to a base substrate with screen-printed feedthroughs. These feedthroughs provided electri-

cal connections to the inside of the hermetic housing where the electronics were located. To achieve

hermeticity, a metal frame was placed between the base substrate around the electronics and a ce-

ramic lid on top (figure 6, parts 1-3). The seams between lid, frame and base substrate were sealed

Figure 5: Scheme of stimulation parameters

Green enlarged curve shows one repetition of a stimula-

tion wave form specified by voltages U1, U2, U3, U4 and

step widths t1, t2, t3 and t4.

13

Braincon Overview

by soldering under helium atmosphere. After

the soldering process, a leak test was performed

with a helium leak detector to verify

hermeticity. Data transmission was realized with

a half-duplex infrared optical link (1Mbit/s),

allowing transmission through the ceramic lid.

Energy was harvested with a transmission coil

outside the implant housing (Figure 6, part 5). A

body-external counterpart to this coil inside the

body-external unit was placed above the im-

plant’s coil to enable an inductive energy trans-

fer. One magnet (Figure 6, part 6) was placed in

the center of each coil for easy alignment of the

coils and to provide an adhesive force to fixate

the body-external unit to the implant. The

whole implant housing, transmission coil and

magnet were cast in medical grade silicone

(Figure 6, parts 7a+b) for electrical insulation

and protection from a harsh body environment.

The implant housing and its manufacturing pro-

cess are described in more detail in Kohler et al.

(2013) and Schuettler et al. (2012).

The body-external unit (Figure 3), placed above the implantation site, was also equipped with an

optical infrared link for data communication with the implant, a transmission coil for energy supply

and an additional trigger input was provided to mark the time of external trigger events within the

measured data. Consider as an example an experiment where an optical stimulus is presented re-

peatedly while the implant measures the subject’s brain activity. Through the trigger input, the stim-

ulus onset could be marked within the measured data so that the brain activity at the time of stimu-

lus onset can be reconstructed later. Firmware for the microcontroller of the body-external unit was

implemented by Multi Channel Systems. The body-external unit was connected via USB to a PC or

laptop where the Braincon Platform Software was executed for processing of the measurement data

and issuing of stimulation commands (Figure 2 C). Depending on the application, the Braincon Plat-

form Software can be configured for a wide range of open- and closed-loop applications.

Figure 6: Exploded CAD view of the Braincon implant
without electrode array

Numbers indicate the different parts of the system. 1:

the base incl. screen printed feedthrough-substrate and

electronics, 2: metal frame, 3: lid, 4: cable to electrode

incl. substrate interconnection, 5: transmission coil, 6:

alignment magnet, 7a,b: rubber molding (Caption and

figure from Kohler et al. (2013); Copyright © 2013 IEEE).

14

State of the Art

3 State of the Art

3.1 Implants
There are several key aspects for comparing neural implants related to BCI applications. One aspect

is the capability to measure and stimulate (e.g., type of measured neurophysiologic signals, number

of measurement and stimulation channels, type of stimulation and sampling frequency). Another

important aspect is whether the implant is fully implantable or if there are percutaneous leads. This

has influence on implant size, energy supply (e.g., battery or wireless energy transmission through

the skin), communication to and from the implant and implant life time. Implant size and the power

supply in turn influence an implant’s signal processing capability. In general, there are tradeoffs be-

tween implant size and number of channels, signal processing capabilities and energy consumption

respectively battery longevity. Finally, implants differ by their intended use: there are implants for

studies on cell cultures, implants for animal studies and implants which were or are being developed

for use in human patients.

Many systems for in vitro studies on neuronal cell cultures have facilities for closed-loop measure-

ment of neuronal activity, signal processing and electrical stimulation and can be used to explore and

influence neuroplasticity. Because of this similarity to closed-loop implants, they have to be consid-

ered in this state of the art section. The NeuroRighter Platform is an open-source multichannel neu-

ral interfacing platform for bi-directional, real-time communication with neuronal networks (New-

man et al., 2013). It uses commercially available recording boards, but also provides open-source

printed circuit board (PCB) layouts for voltage- and current-controlled stimulation of up to 64 chan-

nels from a microelectrode array (MEA). These layouts are modular in a sense that boards can be

stacked and combined. NeuroRighter also contains a platform software running on a standard PC

which is capable of closed-loop and will be discussed in more details below. The system from Müller

et al. is also designed for closed-loop studies and supports stimulation while measuring. It uses a

MEA with 126 measurement channels and 42 stimulation channels. The feedback loop is optimized

for low latency. Configurable spike sorting and signal processing is realized using field-programmable

gate arrays (FPGA) which gives the whole system hard real-time response times below 1ms (Müller et

al., 2013).

For animal studies in small rodents the size of the implant is important. Wires are prone to be

chewed on by the animals; therefore wireless techniques for data transmission are very useful in

these scenarios. Ativanichayaphong et al. (2008) report on a wireless system for recording and elec-

trical stimulation in free-moving rodents. It has one microelectrode for measuring SUA activity with

10kHz and two microelectrodes for stimulation. Up to four different stimulation voltages with a max-

imum of 18V can be configured by choosing appropriate resistors on the electronics circuit. The elec-

trodes are connected via percutaneous leads to the body-external electronics for measurement and

stimulation and for wireless transmission to an up to 300m distant PC. Recording sessions are limited

to six hours due to battery capacity. So far, this system was successfully employed to study closed-

loop approaches for pain relief in rats (Zuo et al., 2012; Aydin, 2011; Ativanichayaphong et al., 2008).

Another wireless system similar to the system by Ativanichayaphong et al. with more recording

channels but no stimulation capability was developed by Aydin (2011). It has seven ECoG channels at

1000Hz and a battery with capacity for an operation time of up to 80 hours.

15

State of the Art

For animal studies in large animals (e.g., non-human primates) Borton et al. (2013) report on an im-

plant with a microelectrode array that can record 100 channels of SUA/LFP activity with 7.8kHz. It has

no stimulation capabilities. The hermetic titanium housing is fully implantable for more than one

year. Energy supply is provided by a rechargeable battery which allows for up to seven hours of op-

erating time. Recharging and wireless data transmission are conducted through an electromagnetic

transparent single-crystal sapphire window. The whole system has been evaluated in swine and non-

human primates. The implant from Rizk et al. (2009) uses a hand-assembled tungsten wire electrode

array for recording SUA activity from 96 channels with 31.25kHz. It has a wireless percutaneous en-

ergy supply and uses wireless data transmission to an external PC. Due to the relatively high sampling

frequency only the measurements from one channel can be transmitted. To reduce bandwidth us-

age, spike sorting for all channels is done inside the implant. This allows to either send the spike

counts in bins of 1ms or to send all detected spike waveforms, together with a timestamp, every

50ms. So far, this implant has been evaluated in sheep in an acute setting.

The WIMAGINE implant is intended for human motor BCI applications according was developed

compliant with the AIMD. Therefore the standards EN 45502-2-1 for cardiac pacemakers and EN IEC

62304 for firmware development were applied (Charvet et al., 2013; European Committee for

Electrotechnical Standardization, 2006, 2003). It is fully implantable and has a hermetic titanium

housing with wireless percutaneous data transmission and energy supply. The electrode for epidural

ECoG recordings is integrated at the bottom of the housing. In order to reduce energy consumption,

signal acquisition is performed by two application-specific integrated circuits (ASICs), each capable of

recording 32 channels at 1kHz. From the 64 channels available up to 32 can be selected for transmis-

sion to an external PC for signal processing. This implant is currently in the preclinical phase and has

been verified in a rodent study (Charvet et al., 2011) and a monkey BCI study (Charvet et al., 2012). A

long-term biocompatibility study in non-human primates showed no negative effects (Charvet et al.,

2013).

The NeuroVista Seizure Advisory System (NeuroVista Corporation, Seattle, USA) developed for pre-

diction of epilepsy seizures in human patients. It consists of a rechargeable, long-term implantable

device for measuring of 16 ECoG channels at 400Hz. Signal processing was conducted on a body-

external pager-like device. The NeuroVista system’s efficacy was used in preclinical research on ca-

nines and later evaluated in a clinical study with 15 human patients (Davis et al., 2011; Cook et al.,

2013). This study was stopped in 2012 due to ‘sponsor restructuring’ (clinicaltrials.gov, U.S. Govern-

ment).

The bi-directional neural interface (NI) system is designed as general purpose platform for closed-

loop approaches in human patients (Rouse et al., 2011; Afshar et al., 2013). Its hardware is based on

a certified medical device, the Activa® PC Neurostimulator (Medtronic, Minneapolis, USA), and adds

ECoG measurement, acceleration measurement and signal processing capabilities. With up to two

epidural or subdural electrode strips up to four channels can be used for simultaneous stimulation

and measurement (Rouse et al., 2011). Signal processing is performed by the implant. Each channel

can either be pre-processed in the time domain with 200Hz or, for at most 2 channels, spectral band

power for up to two frequency bands (DC to 500Hz) can be calculated for each channel. In addition to

the fixed hardware signal processing, custom pre-processing and decoding algorithms can be applied

by firmware (e.g., median filtering or support vector regression). The firmware can be flashed wire-

less after implantation (Stanslaski et al., 2009; Rouse et al., 2011). The NI system uses a non-

16

State of the Art

rechargeable battery as energy supply, therefore the amount and frequency of computations influ-

ence battery longevity. In order to reduce energy consumption, an ASIC was employed for measure-

ment and calculation of spectral features. Battery life-time ranges from approximately two years

when doing time-domain signal processing to several decades for spectral signal processing (Avestruz

et al., 2008; Rouse et al., 2011). The NI system has additional temperature and humidity sensors for

technical diagnosis and an accelerometer for detection of the patient’s posture, activity or tremor

state. The implant hardware was developed and verified according to IEC 60601 for safety and effec-

tiveness of medical electrical equipment. Pre-clincial tests were done in a ovine animal model for

epilepsy and in a monkey BCI study to verify closed-loop capability (Shafquat, 2011; Rouse et al.,

2011; Stanslaski et al., 2012; Stypulkowski et al., 2013). According to a press release from Medtronic,

the NI system obtained certification as medical device in the EU for simultaneous measurement and

stimulation with epilepsy treatment as medical indication (Medtronic, Inc., 2013). However, there

was no comment on the NI system’s closed-loop capabilities. This makes it unlikely that its medical

indication includes closed-loop stimulation.

There are numerous implants for open-loop neuromodulation certified for medical usage in human

patients, for some examples see Arle and Shils, 2011. However, to the best of the author’s

knowledge, only the NeuroPace® RNS® System (Sun et al., 2008), an implantable closed-loop

neurostimulator for treatment of medically refractory epilepsy, has received FDA approval in 2013.

This chronic implant is powered by a battery with an expected lifetime of approximately four years

and supports up to eight stimulation channels. Of these channels, up to four channels can be used

alternatively for measuring ECoG. Signal processing for triggering stimulation is facilitated by the

implant based on configurable parameters. Up to 30 minutes of ECoG activity can be recorded on the

implant for later upload and analysis on an external PC (NeuroPace, Inc., 2013).

3.2 BCI Software Platforms

BCI software platforms can be characterized by several aspects. Their software architecture and do-

main model (Fowler, 2003) define the data structures for data acquisition, signal processing, patient

feedback and the interactions between these data structures. As a rule of thumb, it can be said that

the more generic a BCI domain model, the wider the range of supported applications is. The aspect

of modularity encompasses how fine-grained functionalities of a software platform can be added,

modified and exchanged. Modularity is often related to testability. Closed-loop software can either

be hard or soft real-time software. Hard real-time software guarantees that the software can re-

spond to an event within a fixed time (Kopetz, 2011). In the BCI context, this hard real-time require-

ment applies when studying neuroplasticity on the level of neurons. For example, Jackson et al., 2006

applied electrical stimulation to one neuron after another neuron had fired with delays in the range

of few milliseconds. In contrast, soft real-time software is only required to respond in the mean with-

in a fixed time, occasional violations of this time limit are tolerable (Kopetz, 2011). Another aspect is

whether the BCI software platform was developed as medical device software under the regime of

medical software development.

The NI System provides facilities to wirelessly flash the implant’s firmware (e.g., after implantation).

This enables the use of different signal processing algorithms for different use-cases which is a neces-

sary requirement for the NI system’s platform claim. The firmware algorithms used are constrained

by power consumption and computational power of the implant’s microcontroller. The algorithms

for processing of acceleration measurements were taken from a CE marked medical device, but for

17

State of the Art

certification, the whole firmware, including signal processing algorithms, has to be certified, as well

as all subsequent updates (Rouse et al., 2011).

The system for closed-loop MEA studies from Müller et al. (2013) uses a hybrid approach between

hardware and software by using FPGAs for signal processing. Stimulation responses can be detected

by an ‘event engine’ which can be composed of several interconnected ‘modules’. Modules can be

combined to elicit stimulation when certain events occur, resulting in a set of rules. A colloquially

example for such a rule could be: ‘IF spike detected on channel 1 AND within 1ms a spike is detected

on channel 2 THEN stimulate on channel 3’. A set of such rules is programmed on the FPGAs for sub-

sequent signal processing. Latency is of importance when doing closed-loop studies on the level of

neurons and therefore the system is optimized for low latency. Due to the usage of FPGAs signal

processing can be done in hard real-time and reaches latencies of 1.25ms between the triggering of

neuron activity and detection of the elicited spike (Müller et al., 2013).

The NeuroRighter platform for MEA studies performs signal processing on a standard PC and is im-

plemented in C# (ISO/IEC 23270:2006, International Organization for Standards, 2006). It provides a

graphical user interface (GUI) for visualization of measurement data, manual control of stimulation

and modular signal processing for closed-loop studies. Modularity is achieved by organizing signal

processing functions in a set of tasks. Each task has one method for processing which is called either

in regular time intervals or after occurrence of an event (e.g., when new measurements are availa-

ble). There is a globally accessible ’DataSrv’ object, from which tasks can obtain measurement data.

Similarly, there is a ‘StimSrv’ for controlling stimulation. Both global objects provide an abstraction

layer to facilitate transparent exchange of the underlying hardware. NeuroRighter is operating under

soft real-time conditions, therefore response time ranges, depending on configuration, between

7.1ms and 46.9ms (Newman et al., 2013).

BioSig is an open-source software library for BCI research. It is based on Matlab/Simulink

(Mathworks, Natick, USA) and consists mainly of a large library of algorithms for artifact processing,

adaptive signal processing, feature extraction and classification. For hard real-time BCI applications

the rtsBCI package can be used (Vidaurre et al., 2011; Schlögl et al., 2007).

BCI++ is a framework for fast prototyping of BCI applications written in C++ and Matlab. It consists of

two modules, both communicating with each other over TCP/IP. The ‘Hardware Interface Module’

(HIM) is used for measurement acquisition, visualization, data storage and signal processing. Algo-

rithms for signal processing can be added to through plug-ins loadable at runtime. HIM supports sig-

nal acquisition from different devices, new devices can also be added. Graphical user feedback is

provided by the second module called ‘AEnima’ using a 3D graphics engine which allows fast and

easy creation of 3D environments. BCI++ is free of charge for researchers (Perego et al., 2009).

The Berlin BCI (BBCI) separates signal acquisition, signal processing and user feedback into separate

processes which communicate over network. Signal processing is parallelized in a fixed manner: two

threads are used for feature extraction and two threads for classification. It is used for research on

neuromuscular disorders, multimedia-based bio-feedback and brain-games (Krepki et al., 2003,

2007).

BCI2000 is an open-source general purpose BCI research and development platform written in C++.

Its main features are a common model based on interchangeable modules to represent most BCI

18

State of the Art

systems, scalability (i.e., no constraint on number of channels, sampling rate, number of signal pro-

cessing steps...) and soft real-time capability. The common model defines three sequential pro-

cessing steps: signal acquisition, signal processing and user feedback. Each processing step is imple-

mented by a separate process which communicates over TCP/IP protocol with the next processing

step's process. Another operator process manages configuration and starts/stops the other process-

es. Modularity is achieved by defining a sequence of 'operators' for each processing step at compile-

time. An operator is an arbitrary function that modifies a stream of data (e.g., a band-pass filter or

support vector classification algorithm). BCI2000 natively supports parallel processing of data in a

sense that two different operators are applied to the same input. There are also extensions for BCI

implementing multi-threaded and graphics processing unit-based (GPU-based) accelerations. This

sequence of operators does not support backward connections (i.e., the output of an operator can-

not be connected as input to a previous operator). However, this architectural constraint can be par-

tially circumvented by using global state variables for inter-process backward connections. BCI2000

has been used successfully in multiple research studies (Schalk et al., 2004; Schalk, 2009; Wilson and

Williams, 2009).

Similarly to BCI2000, OpenVibe is an open-source BCI platform software for research written in C++.

It has its focus on modularity and reusability and 3D virtual environments for immersive user feed-

back. Data acquisition is conducted by an acquisition server that supports acquisition from different,

exchangeable hardware devices. Signal processing is divided into five steps: preprocessing (e.g., for

artifact reduction), feature extraction, classification, translation to a command (e.g., for an external

effector) and finally user feedback. Each of these steps is done by one or more ‘boxes’. A box has

facilities for data input and for providing the processed output. Boxes can process data either in

regular time intervals or when new data is available for processing. OpenVibe allows configuration of

signal processing with visual programming techniques. Boxes and the connections between outputs

and inputs are represented as rectangles and arrows respectively in a GUI called ‘scenario editor’.

Connections between boxes and box properties can be set via scenario editor so that no program-

ming skills are required to configure OpenVibe (Renard et al., 2010).

19

Regulatory Requirements

4 Regulatory Requirements
This Section describes the requirements imposed on the developers of medical software (i.e., the

directives, laws and standards a scientist has to comply with when creating software for a clinical

study). It focuses on how these requirements influence the development of software systems for

closed-loop implants. These requirements apply for all member states of the European Community.

Although it can be expected that the requirements imposed by legislation of other countries are simi-

lar, it is beyond the scope of this thesis to cover and compare these. Please note that this Section is a

guidance for scientists, not a legally complete description.

4.1 Juristic Environment for Medical Software Development

The European Council releases directives that regulate development and distribution of medical de-

vices in the European Community. Johner et al. (2011) identify three basic directives for medical de-

vices:

 the Medical Device Directive (MDD) with amendments (Council of the European Community,

1993a; European Parliament and Council, 1998c, 2000, 2001, 2003b, 2007);

 the in vitro diagnostic medical device directive (INVITRO) with amendments and corrigenda

(European Parliament and Council, 1998c, 1999, 2002, 2003b, 2009, 2011)

 and the directive for Active Implantable Medical Devices (AIMD) with amendments and cor-

rigendum (Council of the European Community, 1990, 1993a, 1993b, 1994; European Parlia-

ment and Council, 2003b, 2007)

For the sake of readability these directives will be referenced in the following text with their abbrevi-

ations (MDD, INVITRO, AIMD). Unless stated otherwise, a directive will be referenced in its latest

revision (i.e., directives with all amendments and corrigenda applied).

Each member state of the European Community has to adopt and publish national laws that adopt

these European directives, e.g. in Germany the ‘Medizinproduktegesetz’ implements all three direc-

tives (MDD article 16(1), INVITRO article 22(1), AIMD article 22(1), Bundesregierung der Bundesre-

publik Deutschland, 2012).

The contents of all three directives are quite similar (Johner et al., 2011). Because the AIMD applies

to Braincon, this Section focuses on the AIMD as representative for the other directives. The AIMD

incrementally defines the term ‘active implantable medical device’ in order to define its scope. It

starts with the definition of the term ‘medical device’. From article 1(2) a:

‘medical device’ means any instrument, apparatus, appliance, software, material or other article,

whether used alone or in combination, together with any accessories, including the software intended

by its manufacturer to be used specifically for diagnostic and/or therapeutic purposes and necessary

for its proper application, intended by the manufacturer to be used for human beings for the purpose

of:

 diagnosis, prevention, monitoring, treatment or alleviation of disease,

 diagnosis, monitoring, treatment, alleviation of or compensation for an injury or handicap,

 investigation, replacement or modification of the anatomy or of a physiological process,

 control of conception,

20

Regulatory Requirements

and which does not achieve its principal intended action in or on the human body by pharmacological,

immunological or metabolic means, but which may be assisted in its function by such means;’

In this definition, the classification of a device as medical device depends on the medical indication as

designated by the manufacturer (e.g., a temperature sensor is not a medical device, but it would be

one if the manufacturer claimed that this sensor can be used for diagnosis of fever with human pa-

tients). As laid out later in this section, the medical indication of a medical device is relevant for usa-

bility analysis, requirements analysis and risk assessment. This definition also explicitly includes soft-

ware1 as part of a medical device, used in combination with a medical device or used alone. The

AIMD further defines the term ‘active medical device’ as medical device with ‘… a source of electrical

energy or any source of power …’ (AIMD article 1(2) b). It also introduces the term ‘active implantable

medical device’ as ‘... any active medical device which is intended to be totally or partially introduced,

surgically or medically, into the human body or by medical intervention into a natural orifice, and

which is intended to remain after the procedure;’ (AIMD Article 1(2) c). For the sake of readability, the

term ‘active implantable medical device’ will be abbreviated with ‘medical device’ or simply ‘device’

in the following text.

The contents of the AIMD can be divided roughly in three topics.

(1) Market regulations define how medical devices can be placed on the market. In summary, all

member states of the European Union allow manufacturers access to their national market if and

only if their device complies with the AIMD (i.e., has the CE marking of conformity (AIMD article 1(2),

article 12(1))). Please note that market access here is not restricted to selling a device, it already in-

cludes making a device ‘available to medical profession for implantation’ (AIMD article 1(2) g, article

2) (i.e., for a clinical study).

(2) Conformity assessment procedures defines the procedures and the involved organizations for

assessment of a medical device’s conformity to the AIMD (AIMD article 4 (1), article 9). A procedure

is defined for obtaining the CE-marking. Besides the manufacturer, a so-called notified body is in-

volved in this process. A notified body is an organization appointed by any European member state

to carry out conformity assessment procedures. All member states have to notify the European

Commission of the bodies they appoint, hence the term notified body (AIMD article 11 (1)). During

this procedure, the notified body conducts one or more audits to check if the requirements as speci-

fied in the AIMD annexes 1-4 are fulfilled. In effect, the notified body checks

 if the device satisfies the so-called ‘essential requirements’;

 if the manufacturer has established a quality management system suitable for design and

production of active implantable medical devices;

 if the produced devices match their technical design specification;

 and verifies that the manufacturer’s production processes can continuously yield devices

that match their technical design specifications.

There are two procedures that allow the use of medical devices without obtaining the CE marking.

1
 The original AIMD directive AIMD did not include software. The definition of ‘medical device’ was amended to

include software in 2007, see Council of the European Community (1990); European Parliament and Council
(2007).

21

Regulatory Requirements

The first procedure allows the use of ‘custom-made devices’ designed specifically for one particular

patient (AIMD article 1(2) d) and is used by scientists to conduct patient-specific studies. Such devices

also have to fulfill the essential requirements, unless sufficient reason for not fulfilling a particular

requirement is provided (AIMD annex 6 2.1). The design and manufacturing of custom made devices

also has to be documented. Please note that this procedure is not suitable for systematically as-

sessing the efficacy of a device by testing this device with multiple patients.

The second procedure allows the use of devices intended for clinical investigations (i.e., clinical stud-

ies). Since amendment 2007/47/EC in 2007 the procedure for assessment of the essential require-

ments demands to demonstrate a medical device’s conformity with a clinical evaluation (Council of

the European Community, 1990; European Parliament and Council, 2007 annex 1-I article 5a). The

purpose of a clinical evaluation is to verify that under normal conditions of use the device works as

expected and to determine any undesirable side effects caused by the device (AIMD annex 7 article

2.1). Clinical evaluations can be conducted legally using medical devices without CE markings, as oth-

erwise one could never completely determine a device’s conformity with the AIMD. However, a de-

vice intended for clinical investigation is required to fulfill all essential requirements except the ‘…

aspects constituting the object of the investigations’ (AIMD annex 6 article 2.2).

Clinical evaluation can be omitted if it can be reasoned with the notified body, based on existing clin-

ical data, that no clinical evaluation is necessary. This can be the case if the device is similar to exist-

ing devices.

(3) Conformity requirements: The AIMD states in article 3 that the ‘… active implantable medical

devices referred to in Article 1(2)(c), (d) and (e), hereinafter referred to as ‘devices’, shall satisfy the

essential requirements set out in Annex 1…’. Please note that this demands fulfillment of the essen-

tial requirements (AIMD annex 1) from devices intended for market, custom-made devices and de-

vices intended for clinical studies. In summary, these requirements demand that a device is safe, that

the device does what it is designed to do and that during design and manufacturing of the device

state of the art safety principles must be applied. Especially software ‘… must be validated according

to the state of the art taking into account the principles of development lifecycle, risk management,

validation and verification’ (AIMD annex 1 article 9).

The formulation of the essential requirements is kept relatively general in a sense that no test proce-

dures or critical values are provided. Instead, AIMD article 5 binds the European member states to

presume a device to be compliant with the essential requirements if so-called harmonized standards

were used for its design and production. Harmonized standards are standards that can be used to

show compliance with European laws, regulations or administrative provisions. Similar to European

directives, national standardization bodies are required to adopt harmonized standards adopted by

European standardization bodies (European Parliament and Council, 1998a amended by European

Parliament and Council, 1998b, 2003a; Council of the European Community, 2006). In the Official

Journal of the European Union, a list of harmonized standards for the AIMD is published and main-

tained (European Commission, 2013).

By applying the appropriate harmonized standards, sufficient reason can be given for the presump-

tion of a device’s compliance with the AIMD’s essential requirements. Please note that AIMD article 5

only suggests one way to show compliance with the essential requirements and does not prohibit

other ways. Therefore, one could also try to show compliance in a different way (e.g., by using cus-

22

Regulatory Requirements

tom standards). This way, however, during the conformity assessment procedure, one would have to

argue why one did not apply established state of the art principles as defined in harmonized stand-

ards. This would probably turn out to be difficult and laborious to argue with a notified body. There-

fore, in the following subsection, the main applicable harmonized standards will be presented as well

as the resulting consequences of applying them to the development of medical software systems for

closed-loop implants.

4.2 Consequences for Medical Software Development

In the list of harmonized standards for active implantable medical devices (European Commission,

2013) three important standards were identified that apply to software development for closed-loop

implants.

4.2.1 EN ISO 13485 – Quality Management System

The EN ISO 13485 (European Committee for Electrotechnical Standardization, 2012b) defines the

requirements for a quality management system for an organization (e.g., a company or university

department that develops and manufactures medical devices). Although it is a standalone standard,

it is derived from the ISO 9001 standard for quality management systems (International Organization

for Standards, 2008) and adapted for medical devices (clause 0.3.1). The three key concepts of the

EN ISO 13485 relevant medical software development are its process approach, traceability of these

processes and validation of requirements.

Process approach: The EN ISO 13485 adopts the definition of ‘process’ from ISO 9000 (International

Organization for Standards, 2005) as a transformation of inputs into outputs under correlated activi-

ties. In the context of the EN ISO 13485 all activities related to medical devices (e.g., technical design

of an implant or manufacturing of an implant) are seen as a set of processes which must be identi-

fied, defined, implemented and controlled (clause 4.1). When a quality management system is newly

created for an organization, it is important to decide for each activity performed in that organization

if this activity influences the quality, the users or the patients of the medical device. For example, the

activity of buying office materials like paper and ball pens is probability highly irrelevant for a medical

quality management system, but buying silicone for an implant housing intended for use in human

patients is very likely an activity that needs to be executed according to a process. Regarding medical

software development, all activities related to it need to be identified and written in a process de-

scription (= identified and defined). During medical software development, these processes have to

be applied (= implementation). Evidence has to be provided that these processes have been imple-

mented by documenting their progress and results (clause 4.2.4) in so-called records. The implemen-

tation of each process can be controlled (e.g., in internal audits or external audits from notified bod-

ies) by reviewing the process’ description and the records created during its execution (= control).

The minimal set of activities for medical software development is described in more detail later in

the subsection 4.2.3 for EN ISO 62304.

Control of documents and records: The EN ISO 13485 requires that documents and records related

to the quality management system are controlled whereas in this context control means that a pro-

cess for updating, reviewing, approval, distribution of documents is implemented (clauses 4.2.3 and

4.2.4). As people develop and manufacture medical devices according to the processes described in

documents, any changes in these documents need to be carefully reviewed. In addition, one has to

make sure that after a change to a document has been approved, all persons affected by this docu-

23

Regulatory Requirements

ment change are informed of the change. Finally, at least one copy of the old, now obsolete docu-

ment has to be archived.

To illustrate this process, consider a design document that defines the software environment (i.e.,

operating system and patches) for a medical software system. This document shall be changed to

include a new patch. The process for document control could proceed like this: first the software

developers analyze the effects of adding this patch with respect to safety. Could the addition create

new safety or stability hazards? If the answer is yes appropriate measures are applied. Then the doc-

ument is reviewed and approved. After approval, the persons performing software tests are in-

formed that the test environment has changed, the updated document is handed out and all obso-

lete copies of the old document are collected.

Please note the central role of the documentation during a quality management system activity: if

some activity of a process is not recorded (i.e., there is a record from this activity) then the auditor

has no evidence that this activity has been executed. In this perspective, it would be difficult to pro-

vide evidence for the safety of a medical software system during an audit if the risk analysis sessions

and the resulting risk control measures were not recorded completely. In the worst case, this could

mean that compliance with the AIMD cannot be shown.

Requirements validation: The requirements together with the medical indication are central inputs

for risk and usability analysis (see Section 4.2.2). Therefore the EN ISO 13485 demands the require-

ments for a medical device to be defined (and documented) in advance for they are to be used as

inputs for these design and development activities (clauses 7.3.1 and 7.3.2). The outputs of the de-

sign and development shall be verified and validated (clauses 7.3.5 and 7.3.6). In contrast to the gen-

erally applicable standard ISO 9000, the EN ISO 13485 additionally demands that the outputs of de-

vice design and development shall be validated and ‘completed prior to the delivery’. This validation

includes clinical evaluations or evaluation of performance of the device if required (clause 7.3.6).

The definitions of the terms ‘verification’ and ‘validation’ vary across standards and journals, some-

times these terms are even used interchangeably (Maropoulos and Ceglarek, 2010). In the following

text, we will use the definitions from EN ISO 134852:

Verification: ‘Confirmation, through the provision of objective evidence, that specified requirements

have been fulfilled.’ (International Organization for Standards, 2005)

Validation: ‘Confirmation, through the provision of objective evidence, that the requirements for a

specific intended use or application have been fulfilled.’ (International Organization for Standards,

2005)

In the context of medical device design and development, one could say that verification tests if a

device has been built according to its specifications (Was the device built as specified?) and that vali-

dation tests if a device has the performance according to its requirements (Does the device do what

it should do?).

In practice this means for medical software development that requirements have to be documented

(e.g., in a requirements specification document) that the requirements have to be validated after

2
 The EN ISO 13485 in turn uses the definitions of ISO 9000 by reference.

24

Regulatory Requirements

completion of design and development and that the outcome of this validation is recorded. Design

specifications also have to be documented and verified. For each requirement and each design speci-

fication, a test has to be defined with an objective acceptance criterion. Please note the implicit de-

pendency between design and development requirements and their acceptance criterion: all re-

quirements have to be formulated in a way that an objective criterion exists.

4.2.2 EN ISO 14971 – Risk Management

The EN ISO 14971 (European Committee for Electrotechnical Standardization, 2012a) addresses risk

management for medical devices by defining a risk management process that should be applied

throughout the whole life-cycle of a medical device (i.e., it starts with the design of a device and ends

after the last device has been put out of service). All activities of the risk management process have

to be documented, similarly to EN ISO 13485. The activities of the risk management process can be

grouped into four parts (clause 3.2)

Risk analysis: During risk analysis, potential hazards that can result from using the device are identi-

fied. The risk of each hazard is estimated (i.e., the probability of its occurrence and the severity of the

harm in case of occurrence). The standard explicitly requires using the device’s intended use and

medical indication as input to risk analysis (clause 4.2).

Risk evaluation: An organization developing an implantable medical device has to decide3 which risks

it defines acceptable and which are intolerable. As the EN ISO 14971 defines risk as combination of

probability of occurrence of harm and severity of harm, it would be a straight forward approach to

define the acceptance for each combination, yielding a so-called ‘risk chart’, cf. Figure 7 A for an ex-

ample of a risk chart. Please note that the EN ISO 14971 neither requires the grouping of probability

3
 The decision is usually approved by the management.

Figure 7: Risk chart and option analysis flow chart

Example of a risk chart. The axis for severity of harm and probability of harm are discretized, each into four regions.
Combinations with high probability and high severity are defined as intolerable (red), combinations of low probability
and low severity are defined as acceptable (green). Risks in between are defined to be kept as low as reasonably possi-
ble (orange). (B) Flowchart of option analysis for deriving risk control measures according to EN ISO 14971 clause 6.2.

25

Regulatory Requirements

and severity into discrete classes, nor does it define what acceptable risk levels are (EN ISO 14971

clause 1). It is in the responsibility of the organization applying the EN ISO 14971 to define an appro-

priate risk chart.

Risk control: For the identified risks defined as acceptable during risk evaluation no control measures

have to be implemented. Intolerable risks have to be controlled to reduce the remaining risk (i.e., risk

control measures have to be defined that reduce a hazard’s severity or probability of occurrence so

that it becomes acceptable). In addition, ‘risk control measures shall be reviewed to identify if other

hazards are introduced’ (EN ISO 14971 clause 6.6). The EN ISO 14971 defines a priority order of appli-

cation on the type of risk control measures (clause 6.2), cf. Figure 7 B. If possible, the risk shall be

removed completely by making the design inherently safe. Otherwise, protective measures should be

applied in the medical device itself, otherwise information for safety can be provided (e.g., a warning

in the manual). If the residual risk is still intolerable after applying all risk control measures, the EN

ISO 14971 allows a risk/benefit analysis to determine if the medical benefits outweigh the residual

risk (clause 6.4). This decision has to be recorded. In the worst case, the benefits do not outweigh the

risk and the whole device development has to be aborted. As an example, consider a heart defibrilla-

tor. When used, there is always a chance that the patient dies from defibrillation. But as defibrillation

is only applied to get the patient out of an already life-threatening state, the medical benefit out-

weighs the risk. All risk control measures shall be implemented and their effectiveness has to be veri-

fied (clause 6.3). After implementation and verification of a risk control measure, the residual risk

shall be evaluated (clause 6.4). If necessary, further risk control measures have to be applied.

Post-production information: After development and production of a medical device, it is put into

service. The EN ISO14971 defines that in this life cycle phase information gained from the usage of

the medical device and similar devices shall be reviewed continuously, especially for previously un-

recognized hazards, if the risk evaluations during design and development are still valid (EN ISO

14971 clause 9).

Although the risk management process described by this standard is generally applicable, some mod-

ifications apply to this general process for medical software development as can be seen in the fol-

lowing section.

4.2.3 EN 62304 – Software Life-Cycle Processes for Medical Device Software

The essential requirements of the AIMD demand that ‘the software must be validated according to

the state of the art taking into account the principles of development lifecycle, risk management,

validation and verification’ (Council of the European Community, 1990; European Parliament and

Council, 2007 Annex I Article 9). This requirement can be fulfilled by applying the EN 62304 (Annex

ZZ) which defines a set of requirements and activities for software life cycle processes for medical

software. Please note that the term ‘software life cycle processes’ includes the time after design and

development (i.e., the time when the software has been released). The EN 62304 does not ‘prescribe

a specific life cycle model’ (EN 62304 page 7), it only poses requirements a life cycle model has to

fulfill. As a consequence, one can freely choose the software development model (e.g., waterfall

model (Royce, 1970; Boehm, 1981)) V-model XT (Bundesministerium des Inneren, 2014), SCRUM

(Schwaber, 1995) or even extreme programming (Beck and Andres, 2005), if and only if these models

incorporate the required activities and processes.

26

Regulatory Requirements

The EN 62304 also imposes some general demands on the environment in which medical software is

developed and maintained. Firstly, one shall demonstrate that the medical software meets user re-

quirements and applicable regulatory requirements. Although the standard leaves the actual fulfill-

ment of this requirement open, it recommends the application of ISO 13485 to establish a quality

management system (clause 4.1). Secondly, the EN 62304 explicitly demands to ‘apply a risk man-

agement process complying with ISO 14971’ (clause 4.2). Similarly to the EN ISO 13485, the EN 62304

demands traceability from user requirements to the resulting source code and the respective verifi-

cation tests and also demands traceability from identified risks over risk control measures to the

verification tests to the released software.

In the context of the EN 62304, a medical software system is divided into software items and soft-

ware units. A software item is defined as ‘any identifiable part of a computer program’ (clause 3.25).

A software unit is a ‘software item that is not subdivided into other items’ (clause 3.28). It is up to the

developer to define what comprises a software unit and a software item for the actual software sys-

tem and the used programming language(s). According to these definitions, a medical device can

include several software systems (e.g., one software system used for therapeutic treatment by nurs-

es or patients and one for diagnosis by physicians). Each software system, software item and soft-

ware unit has an associated software safety class, either ‘A’, ‘B’ or ‘C’. For the sake of brevity and

readability, the term ’software safety class’ will be shortened to ‘safety class’ in the following text.

The safety classes are defined as follows (clause 4.3a):

 Class A: No injury or damage to health is possible

 Class B: Non-serious injury4 is possible

 Class C: Death or serious injury is possible

The bigger the potential harm that can be caused by a software system, item or unit, the higher is its

safety class. Required activities demanded by the EN 62304 vary depending on the software safety

class of a software system, item or unit. The EN 62304 requires more activities for software systems,

items and units with safety class C than for class B and more for class B than for class A, cf. EN 62304

annex A for an overview. Software items (and systems) inherit the maximum safety class from the

software items and units they are composed of, cf. Figure 8 for an example.

4.2.3.1 Software Development Process

Prior to the actual development of a software system, development has to be planned in a document

called software development plan. This plan will be updated and maintained throughout the whole

development process. It contains a description of the software development life cycle model and the

outputs (e.g., documents) of the activities resulting from software development. The software devel-

opment plan also addresses software configuration management, change management, software

integration and how software problems are resolved (clause 5). If there are already existing process

definitions, (e.g., provided by a quality management system according to EN ISO 13485), the soft-

ware development plan can refer to these process descriptions instead of providing complete pro-

cess descriptions.

4
 In informal language, serious injury is an injury that permanently damages or impairs a person. It also includes

injuries that need medical or surgical treatment to prevent such damage (Article 3.23).

27

Regulatory Requirements

After planning, requirements are identified and risk management is started. The identified require-

ments and risk control measures are transformed into an architectural design which contains a de-

scription of the structure of the software by defining the software items and describing the interfaces

these software items expose to other software items (clause 5.3). With a risk analysis, a safety class is

derived for each software item. Based on the safety class, a so-called detailed design is created,

where software items with safety class B or C are recursively refined to the level of software units.

Please note that the granularity of the detailed design strongly depends on the definition of ‘soft-

ware unit’ for the software system.

After top-down decomposition of the software system into software units and planning the software

architecture and detailed design, the implementation and integration is done. First, all software units

are implemented. For each software unit with safety class B or C, acceptance criteria have to be de-

fined and verified (clauses 5.5.2 and 5.5.3). Integration of software units into software items and

finally the software system is done according to procedures defined in the software development

plan (clauses 5.1.5 and 5.6). After integration, one has to test if the software system meets the de-

fined requirements a priori (clause 5.7). The software system can be released if it passes all tests. If it

does not, some anomalies remain and have to be evaluated regarding their risk. If this risk evaluation

shows that these anomalies do not contribute to an unacceptable risk, the software can be released

despite the anomalies (clause 5.8). After release the software maintenance process starts.

4.2.3.2 Software Problem Resolution and Change Control Processes

Problems can be detected by users and developers (e.g., when the software fails to meet its re-

quirements or new risks are discovered). There might also be new features that need to be incorpo-

rated in the existing software system. This can occur after a software system has been released or

during development and may require a change of the software system. The two processes described

in this subsection aim to avoid the introduction of new risks through these changes and that the

changed software system still meets its requirements.

Figure 8: Division of a software system into safety classes

Example of the division of a software system into software items and units according to EN 62304. Rectangles repre-
sent parts of the software system together with the associated safety class (A, B or C) in brackets. Arrows with diamond
tip indicate a composition relation, e.g. software unit 1.1.1 is part of software item 1.1.

28

Regulatory Requirements

For each problem, a problem report has to be created in which the scope of the problem is defined

(i.e., affected parts of source code and hardware / software configurations, clause 9.1). Each problem

report is evaluated with respect to the problem’s relevance to safety. Based on this evaluation, a

change request is created defining what actions have to be taken to solve the problem (clause 9.2). A

change might introduce new risks, therefore it might be necessary to perform a risk analysis as part

of the change request creation. If and only if the change request has been approved for implementa-

tion, then the changes are applied according to the change control process (clause 9.4).

Changing a software system might invalidate some previously obtained results of verifications or

validations or change the safety class of a software item. Therefore implementing a change always

includes three steps: the actual implementation of the changes, then the identification of activities

that have to be repeated due to the change and finally the repetition of change dependent activities

including the verification of the change itself (clauses 8.2.2 and 8.2.3).

4.2.3.3 Software Maintenance Process

The EN 62304 explicitly requires software to be maintained after release by monitoring the feedback

reports from its users (clause 6.1). Prior to release, it has to be defines how feedback is received,

evaluated and resolved. Every feedback that reports on adverse events or deviations from specifica-

tion is considered as a problem and a problem report is created. Risk analysis has to be applied in

order to determine whether the releases software system needs to be changed (clause 6.2.1). If yes,

the software problem resolution process is started to handle the problem report (clause 6.2.2).

4.2.3.4 Software Risk management Process

The EN ISO 14971 defines the risk of a hazard as the combination of the probability of its occurrence

and the severity of the harm in case of occurrence. This definition is simplified by EN 62304 by defin-

ing the probability of occurrence for software hazards as 100%. As a consequence, the only remain-

ing degree of freedom for software-related risks is the severity of harm, resulting in the grouping into

the safety classes A, B and C.

During risk analysis, the risks for every software item have to be identified, explicitly including third-

party libraries (clauses 7.1.1 and 7.1.2). Similar to EN ISO 14971, risk control measures can be imple-

mented and have to be verified for efficacy. A software item that is used to control a risk always in-

herits the safety class of the risk it is controlling (clause 7.2.2). Software items of a hierarchically

composed software system can have different safety classes if and only if it can be shown that the

items with different safety classes are segregated (clause 4.3 d). Two software items can be seen as

segregated if they do not share resources like memory and processor units (clause 5.3.5). Although

segregation might be expensive to achieve, it can be worth the effort: a single software item with

safety class C makes all other software items of the whole software system also class C. The EN

62304 requires more activities to be executed for class C than for B and A, resulting in much higher

development effort. If segregation of this software item can be achieved, then the other software

items can have a lower safety class and can thus be developed with less effort.

4.2.3.5 Software Configuration Management Process

Medical software interacts with other software (e.g., the operating system or third party libraries)

that were not developed according to EN 62304 and thus do not necessarily comply with all process

and documentation requirements demanded by this standard. This kind of software is called ‘soft-

ware of unknown provenance’ (clause 3.23), abbreviated as SOUP . Software tools such as an inte-

29

Regulatory Requirements

grated development environment or a compiler used for the development and testing of the medical

software itself are also considered SOUPs. All SOUPs and the hardware platform(s) on which the

medical software is intended to run are considered configuration items. The management of all con-

figuration items is addressed by the configuration management process. Its goal is to ensure that any

software item can be recreated and its constituent parts identified, and to provide a history of the

changes applied to each software item (annex B.8). As a consequence, each configuration item needs

to be identified uniquely (clause 8.1.1). All valid software system configurations (i.e., sets of configu-

ration items) have to be documented (clause 8.1.3). Changes to configuration items (e.g., upgrade of

a third party library) are subject to change control: prior to the implementation of a change, an ap-

proval of the intended change is needed and afterwards the change has to be verified and any verifi-

cation tests have to be repeated that might be invalidated by the change (clauses 8.2.2 and 8.2.3).

30

Scientific Objectives

5 Scientific Objectives

5.1 Own Approach
Given the current state of the art for chronic, bi-directional neural implants for BCIs applications, it

can be said that hardware technologies are still evolving and it can currently not be predicted which

will prevail. Similarly, the implementation details of medical indications for such implants (i.e., the

neurophysiologic signals used, signal processing algorithms and patient feedback) are not yet fully

defined. The software used in this phase of research and development has to cope with these un-

knowns and the constant change regarding the experimental paradigm. In addition, software used in

clinical studies on human patients has to be developed under the regime of medical software devel-

opment. To the best of the author’s knowledge, there is no BCI platform that offers a flexible soft-

ware architecture as well as low-latency multi-threaded signal processing required for computation-

ally demanding research studies and is developed as a medical software compliant with the regulato-

ry requirements of the AIMD.

5.2 Roadmap

The goal of a medical BCI platform, including hardware and software, is to provide scientists with the

means to evaluate the safety and efficacy of their BCI approach in clinical studies on human patients,

hopefully yielding new certified medical indications. Developing such a platform is a substantial effort

consisting of many steps over a long period of time. Therefore it is beyond the scope of this thesis to

cover all steps towards certification. Here, an outline of the roadmap towards this goal shall be given

including the steps addressed in this thesis (Figure 9). These steps can roughly be divided into three

phases: research phase, preclinical phase and clinical phase.

In the research phase, the Freiburg BCI Software was developed for evaluation in research BCI stud-

ies. Based on these first experiences in closed-loop software, a refined software architecture was

derived, suitable for a BCI platform that is modular, flexible and supports multi-threaded processing

of neuronal data. A test strategy was developed by selecting a set of software tools and making the

software architecture suitable for future verification necessary for medical software development.

Meanwhile the development of the implant which would later be termed 'Braincon implant' started

and an interface to the Freiburg BCI Software was implemented. The Freiburg BCI Software's signal

processing capabilities were optimized in a series of benchmark tests for low-latency multi-threaded

processing. Research BCI studies were conducted to validate its closed-loop capability.

In the preclinical phase, the optimized software architecture of the Freiburg BCI Software was taken

to ‘re-developed’ a new medical software termed ‘Braincon Platform Software’ according to AIMD-

compliant software development and risk management processes. As a consequence, the two soft-

ware systems are very similar regarding software architecture and performance. The following text

has to be read with this evolution from Freiburg BCI Software to Braincon Platform Software in mind:

some results will refer to the Freiburg BCI Software, but are also applicable to the Braincon Platform

Software as well due to the almost identical software architecture of the software systems. Extensive

testing was conducted to verify that the Braincon Platform Software meets its specifications. Mean-

while, the implant's measurement and stimulation capabilities were evaluated in a bovine animal

study. These processes are not yet completed. Although the core functions of the Braincon Platform

software are implemented and tested, application-specific algorithms still need to be added for each

medical indication. More animal studies will be necessary to evaluate the safety and efficacy of the

31

Scientific Objectives

Figure 9: Roadmap

List of tasks with their current state of completion towards certification of Braincon as a medical device. A task can be
either done (checked checkbox), in progress (work-in-progress symbol) or not yet done (unchecked checkbox).

whole system (i.e., implant and Braincon Platform Software). The final clinical phase will evaluate the

system's safety and efficacy for one specific medical indication in human patients. If successful,

Braincon will be certified as a medical device. Thereafter there is the possibility that Braincon will,

due to its platform character, foster further closed-loop BCI studies and certifications for other medi-

cal indications.

5.3 Software Objectives

Programmers write software systems to help users to solve a problem. Depending on the user and

problem, different requirements are made to a software system. The better these requirements are

understood and incorporated in design and implementation of a software system, the better the

software system helps to solve a problem and the more the user is satisfied. The main requirements

that influenced design decisions as outlined in the following section are described here. A tabular

overview of these requirements is given in Table 1.

32

Scientific Objectives

Platform: For a BCI platform, software is needed that can handle a wide range of research and clinical

studies. This generality has to be reflected by the software’s domain model, which describes a do-

main of interest in terms of function and data (Fowler, 2003). Leuthardt et al. (2009) define four es-

sential components necessary for BCI platforms: a component for signal acquisition, one for signal

processing, one for providing feedback for the BCI user and a component that controls the opera-

tions of all other components. This domain model is used by BCI2000 (Schalk et al., 2004), a general-

purpose BCI software which was used in a wide range of research studies (Schalk, 2009). OpenVibe

Requirement Freiburg
BCI Soft-

ware

Braincon
Platform
Software

Implementation of Requirement

Platform
Support wide range of medical
& research applications

++ ++ Modularity (page 35)

 Domain model (page 43)

Conformity to essential re-
quirements of AIMD

+ ++ Software development according to
standards

 Unit tests& regression tests (page 35)

 ‘All-or-nothing’ rule (page 39)

 Mock objects (page 36)

Fast development for new
clinical studies

+ ++ Modularity (page 35)

 Domain model (page 43)

Performance
High computational power for
yet unknown demanding algo-
rithms

++ ++ Multi-threaded filter-pipeline (pages
43ff, 51ff and 64ff)

Low latency ++ ++ Optimized waiting strategies (pages
51ff and 64ff)

 Small block sizes from implant (page
59)

Flexibility
Fast addition of new function-
ality

++ + Modularity (page 35)

 Domain model (page 43)

Fast modification of existing
functionality

++ + Modularity (page 35)

 Domain model (page 43)

Stability, correctness & verifiability
Verification of classes ++ ++ Unit tests & regression tests (page 35)

Verification during integration + ++ Unit tests & regression tests (page 35)

Input parameter checks + ++ ‘All-or-nothing’ rule (page 39)

Isolated tests + ++ Mock objects (page 36)

Understandability
User: Researchers ++ + ‘No data sharing’ rule (page 40)

 Simple coding convention (page 42)

User: Software developers + ++ Advanced coding convention (page
42)

Table 1: Requirements for the Freiburg BCI Software and the Braincon Platform Software

In the first column, requirements are grouped into requirements for platform, performance, stability, and usability
aspects. Second column quantifies the importance of each requirement for the Freiburg BCI Software, third column for
the Braincon Platform Software respectively. A '+' stands for nice-to-have features, '++' for features that are mandato-
ry. Fourth column provides references to what was done to address each requirement.

33

Scientific Objectives

(Renard et al., 2010), also a widely used research BCI system, distinguishes six processing steps (ac-

quisition, preprocessing, feature extraction, decoding, translation into commands and finally user

feedback, see Renard et al. (2010) for details). The Berlin BCI Software only distinguishes 3 steps

(Krepki et al., 2003). One goal for the Braincon Platform Software is to provide a domain model that

is at least as general as the domain models of established BCI software, because then it can be as-

sumed that such a domain model will be applicable to a wide range of medical and research BCI ap-

plications. Existing general-purpose BCI software systems like BCI2000, OpenVibe or BBCI were not

developed according to these standards and therefore cannot be used in a medical scenario. In order

to comply with the essential requirements of the AIMD, the Braincon Platform Software needs to be

developed according to the applicable medical standards (see Section 4.2). For a clinical study with

human patients, development according to the applicable medical standards can be very time-

consuming, mainly due to the mandatory testing and documentation activities. This can make a clini-

cal study unfeasible. Therefore the Braincon Platform Software should provide commonly used and

tested functionality, including utility functions such as file or thread handling, signal visualization,

common filter algorithms, ECoG recording and electrical stimulation with the Braincon implant. For a

new clinical study, one only needs to implement, document and test additional signal processing

algorithms and graphical user interface(s). Existing development documentation of software compo-

nents can be reused: risk and usability analysis already cover the general use cases of implantation,

explantation, ECoG measurement and electrical stimulation. Then it only has to be considered if the

documentation of these general use cases have to be extended for each clinical study.

Performance: The Freiburg BCI Software and Braincon Platform Software both should be able to ac-

commodate future, yet unknown and possibly computationally demanding algorithms. In this do-

main, latency determines how fast a system can react to user (brain signal) input. The lower the la-

tency, the more responsive the reaction of the system is, which potentially increases user conven-

ience and is important for motor BCIs (Ryu and Shenoy, 2009). The more computation time a system

can provide, the more decoding steps can be executed per second. More decoding steps mean that

the BCI user will receive faster feedback, which can improve the performance (Cunningham et al.,

2011). If a BCI software uses less CPU load, one can employ computationally more demanding decod-

ing algorithms.

Flexibility: The number of patients available for an invasive study is relatively low compared to non-

invasive studies; it is often not clear when a suitable patient is available, and experiments have to be

tailored to the peculiarities of a single patient, sometimes literally over night. These adaptations

could incorporate implementation of new or modification of existing algorithms and graphical para-

digms. Therefore the ability to modify and extend the functionality is crucial for invasive BCI re-

search. For the Braincon Platform Software as medical software, functional requirements do not

change so fast, but as a platform it still benefits from fast addition and modification of functionality.

Stability, correctness and verifiability: BCI software often does complex calculations to a continuous

stream of data which can make the detection and fixing of programming errors time-consuming and

often difficult. Obviously BCI software that crashes due to a programming error during an experiment

or, in the worst case, harms a patient, is not desirable. Therefore a crucial requirement for BCI soft-

ware is stability. In this context, a stable software system is as a software system running without

programming errors and that does terminate in a controlled manner if a runtime error beyond the

control of the software occurs. It is also crucial that BCI software is correct software (i.e., working

34

Scientific Objectives

according to its specification). The standard EN 62304 states that the correctness of a software sys-

tem can be ascertained through verification (EN 62304 clause 3.33). The verification of the correct-

ness of a medical software system is explicitly required by the EN ISO 62304 (Sections 5.6 and 5.7). In

addition, all software units5 with safety class B or C have to be verified (EN 62304, Section 5.5). As a

consequence, all parts and the software in its entirety should be verifiable. For the Braincon Platform

Software written in C++, this requires verifiability on the level of single classes as well as on the level

of multiple classes together in integration tests (Royer, 1993). Besides the regulatory and normative

obligation, thorough testing of a medical BCI software is also mandatory from the ethical perspec-

tive: scientists owe it to the users and patients to test their software properly. The properties of sta-

bility, correctness and verifiability are closely related. The correctness of a software system can also

influence its stability: if any part of a software does not work correctly, this might induce a crash.

Verifiable software is a necessary prerequisite for confirming the properties of stability and correct-

ness of the software with a sufficiently high probability. The effectiveness of verification can be in-

creased by verifying classes in isolation. If class A is being verified and uses another class B, it is pos-

sible that a programming error in B can make the verification to be shown as correct erroneously.

Therefore the requirement was added that classes should be verifiable in isolation. Other sources of

errors are parameters provided by user input (e.g., a user tries to open a non-existing file) or from

parameter files (e.g., filter coefficients for an unstable infinite impulse response filter, Oppenheim et

al. (1999)). Therefore facilities for checking input parameters are required.

Understandability: Here, understandability encompasses the ease of use and the comprehensibility

of the source code. Obviously, any proposed BCI software platform is useless if the researchers or

software developers cannot implement their own experiment or medical indication with it. Therefore

the programming skills of the intended users had to be taken into account. The intended users for

the Freiburg BCI Software are researchers, mainly Ph. D. students, with varying degrees of program-

ming skills. In contrast, the Braincon Platform Software will also be used by professional software

developers. For both software systems there have to be means to enable its users to understand and

work with the software’s source code.

In the following section, it will be described how the aforementioned requirements were addressed.

5
 For the Braincon Platform Software, a single C++ class was defined as software unit.

35

Methods

6 Methods

6.1 Design Principles of the Software Architecture

6.1.1 Modularity

The Freiburg BCI Software and the Braincon Platform Software were written in C++ (Stroustrup,

2000) using the object-oriented programming paradigm. The additional overhead that comes with

the use of objects, polymorphism and interfaces was accepted because the benefits of object-

oriented programming outweighed the computational costs. One benefit was that now a domain

model could be formulated, enabling the exchange of different implementations of the same inter-

face and thereby contributing to flexibility: then functionality could be exchanged or added by chang-

ing the implementations of interfaces or by creating a new implementation. For a detailed descrip-

tion of the domain model see Section 6.2.1. Another benefit of the object-oriented programming

paradigm is that objects can be reused, in the BCI domain this was used mainly to create multiple

instances of the same class (e.g., to create several infinite impulse response filters with different

parameters). The division of the whole systems functionality into parts (e.g., a class or multiple relat-

ed classes) simplifies verification because each part can be verified separately.

6.1.2 Verifiability

Here, the test tools used for the Braincon Platform Software are described. Based on these tools, a

test strategy for verification of specifications and detection of programming errors is derived.

6.1.2.1 Test Tools

6.1.2.1.1 Unit Tests

Unit tests are usually written with the help of a unit test framework, a library that provides the

means to implementing and execute tests (Hamill, 2004). For the Braincon Platform Software, the

Google C++ testing framework (googletest community, 2014) was used to define a test class consist-

ing of a set of test cases for each class. Each test case executed method calls to the tested class and

checked the returned result(s). Unit tests require no modification of the tested class and allow split-

ting test code and productive code in two separate sets. This avoids any influence of test code on the

productive code. If testing is done before integration for each class, errors contained within each

class can be detected earlier. Test cases can be seen as examples for the usage of the tested class,

therefore test cases extend the documentation of classes by providing examples for their usage. For

medical software, the EN 62304 demands verification of single software units (in this case classes) for

safety class B and C to fulfill the requirements defined by software architecture and detailed design

(EN 62304 clauses 5.5-5.7). Many such requirements can be verified by unit tests that therefore pro-

vide a method for verification in the sense of EN 62304.

6.1.2.1.2 Automatic Regression Tests

Regression tests are tests that check whether a change of a software system affected functionality,

reliability, performance or cause additional defects (EN 62304 clause 3.15). While unit tests are cre-

ated during initial implementation of a software, they can also be used as regression tests when the

software is modified. Regression tests are required by EN 62304 for all parts of a software affected

by a change. It can be difficult and time-consuming to determine the affected parts. However, one

can simply execute all unit tests after a change and thus the determination of the affected parts can

be omitted. The proposed test strategy endorses automated regression test execution with a contin-

36

Methods

uous integration (CI) server (Duvall et al., 2007; Zaytsev and Morrison, 2012). Such a CI server auto-

matically compiles, links and then runs regression tests every time the source code changes. If there

are any failed tests, developers are informed by email. Although the usage of a CI server is not man-

datory in this test strategy, it reduces development effort by automating the recurrent task of re-

gression test execution.

6.1.2.1.3 Mock Objects

During program execution classes use other classes (i.e., methods call other classes’ methods). An

error in the called method could influence the result of the calling class. This effect also influences all

unit tests where the tested class calls methods from other classes. If a test case fails, it is not a priori

clear if the error is located in the tested class or in the methods this class calls during testing. In the

worst case, a test case that should fail actually succeeds due to an error in a called method. Testing is

also more complicated if the class interacts with external resources (e.g., a database accessible via

network connection or a robotic arm). In a straight-forward test case implementation, one could

provide actual instances of all necessary external resources (e.g., setup a database and a robotic

arm). In order to test the behavior of the tested class in the presence of runtime errors, one would

have to generate runtime errors during testing. This can be very time-consuming and complex (e.g.,

generate a network disconnection or a defect in a joint actuator of a robotic arm). In addition, for

each test case execution one would have to reset these external resources into a well-known state.

The proposed test strategy requires that each class should be tested in isolation which in turn has

consequences for the design of classes and the interfaces they use. In order to isolate one class, in

each test case one needs to replace all classes used by the class under test with so-called mock clas-

ses that behave according to the test case. For example when a test case tests a query to a database,

the mock class simulating the database will return a set of data. In another test case, the query to the

database could throw an exception to simulate a runtime error. In the C++ language, one can facili-

tate this replacement with templates or with polymorphism (Stroustrup, 2000). When using tem-

plates, a template class would maintain all classes that need to be replaced by mock objects as tem-

Figure 10: Test pattern for isolation of tested class

Classes belonging to productive code are shown in green, classes used solely for testing in lilac. A: UML class diagram
shows the relationship between the tested class and the classes it interacts with. B: UML sequence diagram shows
calling sequence during a test-case. Actual call to method bar() is re-directed to a mock implementation of InterfaceA.

37

Methods

plate parameter. With polymorphism, all classes interact only through virtual methods to facilitate

the replacement. Here, replacement would be implemented by overriding these virtual methods. The

test-pattern used to test classes in isolation is shown in Figure 10: The tested class uses a pointer to

an instance of type 'InterfaceA'. During testing, this instance is a mock object, while in productive

usage a separately tested implementation of 'InterfaceA' is used.

One could achieve isolation during testing by implementing mock classes for each test case, which

can lead to large test code. In addition, such mock classes would have to be verified too. There are

libraries called mocking frameworks (Freeman and Pryce, 2011) for reducing the programming effort

when implementing mock classes. In order to perform a test case with the help of a mocking frame-

work, the following steps are executed:

1. Derive a mock class from the class that should be mocked. This mock class can be reused

when mocking the same class in a different test case, so this step is necessary only once for

each interface.

2. Create an object of the mock class.

3. Set the expectations of the mock object. Expectations are declarative statements that define

the behavior and expected usage of the mock object. This could be for example how often

each method of the mock object should be called, what arguments the methods should ex-

pect at each call and what to return.

4. Run the test. At the end of the test the mock object verifies if the expectations have been

fulfilled. If not, the test case fails.

In contrast to implementing the behavior of a mock object, declaring the behavior has two main ad-

vantages: repetitive checks like ‘method is called exactly two times’ need to be implemented only

once and thus need to be verified only once, and declarative statements are easier to comprehend,

because the expectations roughly resemble English sentences. Code example 1 gives a concrete ex-

ample of mock object usage in a test. In this test, the method getCountries() of class

// Create an instance of the mock class

CMockDatabase* db = new CMockDatabase();

// Set the expectations of the mock class

{

 InSequence s;

 EXPECT_CALL(db, connect()).Times(1).willOnce(Return(true));

 EXPECT_CALL(db, query("SELECT * FROM COUNTRY")).Times(1)

 .willOnce(Throw(runtime_error("Network error"));

}

// run the test

CDatabaseFacade facade(db);

EXPECT_THROW({facade.getCountries();}, connection_error);

// expectations are checked when db is being deleted.

Code example 1: Mock object usage example

Example of a test case using a mock object from Google mocking framework (googlemock team, 2014).

38

Methods

CDatabaseFacade should throw an connection_error exception when the database object signals a

network error. After mock object ‘db’ is created, two expectations are set: firstly, ‘db’ expects its

connect() method to be called. The call to connect() should succeed, therefore ‘db’ will return true.

Secondly, a call to query method expects as argument the string “SELECT *FROM COUNTRY” and will

throw an exception to indicate that during this query a network error has occurred. Please note that

with the statement “InSequence s” the call to connect is required to be executed before the call to

query. After setting up the expectations, the test is executed by calling façade.getCountries() and will

succeed if the expectations of db are fulfilled and getCountries() throws a connection_error excep-

tion.

For the Braincon Platform Software, the Google mocking framework (googlemock community, 2014)

is used, because it is actively maintained, is compatible to the Google testing framework (googletest

community, 2014) and provides a large library of functions that can be used for setting expectations.

6.1.2.2 Test Strategy

In the object-oriented programming paradigm, software is composed of one or more objects that

interact with each other through method6 calls (Freeman and Pryce, 2011), based on the parameters

provided to software at start. Each method call is composed of the following steps: First, the method

call is initiated by the calling object. If the method requires arguments, they are provided by the call-

ing object. Then the method is executed and, if the method returns a result, the result is returned to

the calling object. If an error occurs during execution, the error is signaled to the calling object.

Hence, four types of errors could be identified during a method call:

1. Calling object violates the pre-condition of the called method. Each method might require

constraints on the input arguments (e.g., only non-empty strings or only numbers > 0) but al-

so on the state of the object whose methods is being called (e.g., stop()-method may only be

called once after a call to start() method).

2. Called method violates its invariant. During each method execution, the method’s invariant

has to be true. For example in a method that counts objects within a loop, an invariant might

be that the current sum of objects must be greater or equal to 0. Such a violation could be

caused by a programming error within a method.

3. Runtime error is not correctly handled during method execution. If a runtime error occurs,

a method has to handle this error appropriately. Consider as an example a method that calls

another method for inversion of a matrix. If this matrix inversion fails, the calling method has

to detect this failure and act accordingly (e.g., by stopping the software system). If this failure

could not be detected, the method would continue execution with an invalid matrix and

would most likely return incorrect results.

4. Invalid input at application start. Similar to runtime errors, users may provide inputs that

the starting application cannot handle or can lead to an error during method execution if

they are not detected. Here, inputs encompass command line parameters as well as parame-

ters from a configuration file or database. Examples would be unstable filter parameters or a

path to a file that does not exist.

In the following, for each error type a programming strategy is provided to detect it.

6
 The same statement holds for constructors, operators and global static functions because they can also be

called like methods and are therefore as special cases of methods seen in the context of testing.

39

Methods

6.1.2.2.1 Violation of Pre-Conditions

Pre-conditions impose restrictions on a method’s arguments. If the pre-condition of a method was

required to be checked by the calling code every time, then every time there would be a chance that

the programmer forgets to add the check. In addition, if the pre-condition changed, then these

checks would have to be modified everywhere the method is called. Again, such a modification can

be forgotten. The chance to forget would increase linearly with the number of method calls. There-

fore this approach would lead to a potentially error-prone source code which is more laborious to

maintain, contradicting the requirements of stability and flexibility. Instead, the test strategy pro-

posed here requires each method to check its own pre-condition. This way, the check of pre-

condition is implemented once for each method and the programmer is less likely to forget to add a

check. Likewise, modifications to pre-conditions can be done in only one place (i.e., the method).

Unit tests can be used to verify that the method works for arguments that satisfy the pre-condition

as specified and that for arguments that violate the pre-condition an error is signaled by the method

in the specified manner (e.g., error code or exception).

6.1.2.2.2 Violation of Invariants

If a method’s pre-condition is satisfied, a method’s invariant can only be violated by a programming

error. The proposed test strategy provides two methods for detection of invariant violations. (1) Unit

tests: A programming error is likely to make a method return the wrong results. Therefore unit tests

can be used to check a method's results. (2) Assertions: When using assertion, one formulates Boole-

an conditions in the method’s body and evaluates these conditions with ‘assert’ statements from the

standard C library (ISO IEC 9899:1999, International Organization for Standards). Every time an invar-

iant is violated (i.e., the assertion fails) program execution is stopped. One property of assert state-

ments in C++ is that they are evaluated only if the code is compiled in ‘debug’. This makes the execu-

tion of code compiled in ‘release’ mode faster than in ‘debug’ mode and the programmer does not

need to worry that these checks degrade the application's performance. The use of assertions prom-

ises to yield more robust applications as assertions alert the programmer immediately at runtime

when and where within the method body something is awry.

For verification, it is actually sufficient to use only unit tests to check a method's results. However,

assertions can give more detailed information to the programmer about where the invariant viola-

tion occurs, as they can be employed within the method body. This might accelerate fixing of pro-

gramming errors, especially if the method body contains complex code. Therefore, the proposed test

strategy always requires unit tests to check method results (i.e., to verify each method’s conformity

with its specification) and endorses the additional use of assertion in complex methods.

6.1.2.2.3 Unhandled Runtime Errors

Each method needs to detect and handle runtime errors according to its specification which might

involve the returning of an error code or to throwing of an exception. Consider the general case

where a method A is called by method B. In a unit test, the proposed test strategy employs mock

objects for letting A deliberately fail (e.g., throw an exception) and then verifying if the runtime error

is handled according to the specification of B.

6.1.2.2.4 Invalid Input at Application Start

The more complex a software system, the more likely an error caused by wrong configuration or

user-provided input parameters can occur (e.g., a parameter is in the wrong range). When such an

40

Methods

error is detected by the application, there are several options how to continue: ignore this error, try

to fix it and continue or abort program execution. In the context of medical software, ignoring is not

an option. Although in some cases it might be possible to fix the error (e.g., by setting this parameter

to a default value) this might deteriorate the reliability of the whole application. Consider a simple

recording of neuronal signals done with some parameters (e.g., a set of channels to record and a

band pass filter for each channel). The user cannot know if the signals on screen are actually record-

ed with the chosen parameters or some fixed parameters. Therefore, the proposed test strategy

requires to use the last option and stipulates the rule that all input parameters have to be checked

programmatically by the reading object at application startup. If an error is detected, application

execution has to be aborted. This rule was termed ‘all-or-nothing rule’, because it guarantees the

user that with a successful application start all parameter checks succeeded, otherwise nothing starts

and the user is forced to correct the parameters.

6.1.3 No Data-Sharing

The Freiburg BCI Software and Braincon Platform Software were intended to be modular BCIs. There-

fore their software architecture consists of multiple modules7 that exchange objects (e.g., measure-

ments) from an amplifier module are sent to other modules like processing filters. Each module

might process its objects in a separate thread. For any object that is used by more than one module

the question arises whether these modules should work on the same object or use an own copy of

this object. Sharing objects requires objects to be thread-safe, which is often difficult to implement.

Copying objects increases memory consumption but obviously needs no synchronization, as each

module maintains its own copy. In the BCI domain, two typical cases were identified. In both cases it

was decided to not share data between threads. The reasons behind these decisions are provided in

the following.

6.1.3.1 Big Permanent Objects

A BCI system can contain buffers (e.g., buffers to accumulate measurement data from multiple time

points for a processing with a sliding window like short-time Fourier transform (Allen, 1977)). Besides

buffers, the following arguments apply to all big permanent data structures to which multiple mod-

ules might want to have shared access.

As buffers can be memory consuming, one might apply the singleton pattern (Gamma et al., 1994;

Alexandrescu, 2001) to reduce memory consumption by sharing one data structure between all

modules that need access to it. Although this minimizes memory consumption, the implementation

yields are two drawbacks.

Object lifecycle operations like initialization, reset and cleanup of a singleton object have to be man-

aged. These life cycle operations either have to be provided by the modules that use a singleton or

by the global application that manages the modules. In the first case it is not clear which of the mod-

ules is responsible for its initialization and cleanup, because no module is guaranteed to be used in all

configurations, therefore each module has to provide these methods. This leads to redundant code

which is error-prone and difficult to maintain (e.g., if a newly written module initializes differently or

not at all). In the second case, while a global life-cycle method has no redundant code, the global

application needs to know if there are any modules that use a singleton object at all. So either a sin-

7
 In Section 6.2 Software Architecture the general term ‘module’ will be divided more precisely into ‘processing

object’, ‘active filter’ and ‘passive filter’.

41

Methods

gleton object is always created, even if it is not used at all, or there has to be a query mechanism

between global application and modules so that the need for a singleton object can be queried. This

leads to a cyclic dependency between application and module, which contradicts to the modularity

principle (see Section 6.1.1).

Access to singleton objects has to be synchronized between threads. This synchronization costs addi-

tional computation time (e.g., when one module has to wait until another object has finished its ac-

cess to a singleton object). In the worst case this creates performance bottlenecks. Additionally, crea-

tion of synchronized data structures can be difficult and is error-prone. Programming errors related

to synchronization, especially livelocks and deadlocks (Roscoe, 1998; Schneider, 1998; Unger, 1995),

are often non-deterministic and difficult to fix. In the worst case, such bugs do not occur on the de-

velopment system, but only non-deterministically on the productive system.

If big permanent objects are not shared, the responsibility for their life cycles clearly lies with the

using module and synchronization is not required. From the experience with the Freiburg BCI Soft-

ware and given the current state of memory technology, it is feasible to accept the additional

memory overhead through redundant objects, as the following calculation shows: It is assumed that

8 bytes are used to store each value because this is sufficient for high precision data types (e.g., dou-

ble precision floating point numbers (IEEE 754:2008, IEEE Standards Association) or 64-bit integer

numbers). The following values were chosen from Fischer et al. (2014) as they represent typical pa-

rameters in the BCI domain and were then doubled to get an upper bound estimate. It was further

assumed that 2s of data is buffered from a data stream with 2000 channels and a sampling frequency

of 2000Hz. This yields a buffer size of 61MB. In a computer system with 4GB of memory, excluding

2GB for the operating system and other data, there would still be enough memory left for 33 buffers.

However, the previous calculation only shows that it is very likely that all big and permanent objects

needed for BCI operations fit in memory without sharing. There can always be exceptions that have

to be dealt with separately.

Given these arguments, the disadvantage of additional memory overhead is outweighed by the ben-

efits of more simple non-synchronized objects and without need for global life-cycle methods and

therefore, each module should maintain its own big permanent objects.

6.1.3.2 Small Short-Lived Objects

In a closed-loop BCI system, a stream of measurement data is continuously processed. This means

that data has to be passed among modules (e.g., from amplifier through feature extraction to decod-

ing modules). Consider the case where an amplifier distributes its measurement data to multiple

other modules. The data can either be copied for each module or be shared amongst them.

The copy strategy is simple to implement, as it requires from each object only to be able to make a

complete copy of itself. No synchronization between threads is necessary, as each thread has its own

copy of the data. But it would always require a call to a memory allocation mechanism at the data

objects creation, in C++ usually the ‘new’ operator, and a call to a memory deallocation mechanism,

in C++ usually the ‘delete’ operator, when the object is not needed anymore. In addition, copying the

content from the original data object to its copy also costs time and CPU load. As the object can pass

thread boundaries when it is moved between modules, no thread-local storage (ISO IEC 14882:2011,

International Organization for Standards; Microsoft Developer Network Library, 2014) can be used.

Therefore the global heap has to be used and locked for allocation and deallocation, creating a po-

42

Methods

tential bottleneck, as there can be experimental settings with many allocations and deallocations per

time unit (e.g., consider an experiment with an amplifier that has a sampling rate of 10 kHz). In addi-

tion, continuous allocation and deallocation of object with different sizes can lead to heap fragmen-

tation (Wilson et al., 1995) which degrades system performance or, in the worst case, the application

runs out of memory. One could use preallocated pools of data objects (e.g., segregated free lists

(Wilson et al., 1995)), which makes repeated (de)allocations from global heap unnecessary, thus

avoids memory fragmentation and promises faster object creation and deletion.

Sharing small, short-lived objects could be achieved by using smart pointers (Alexandrescu, 2001)

with reference counting (e.g., as provided by the boost library (Karlsson, 2006; boost community)).

From the perspective of a module usage of such a pointer would be identical to regular pointers: the

pointer would be deleted when the object is not needed anymore, thus shared pointers would not

complicate pointer management. But internally, data objects and shared pointers need to be thread-

safe, as in the BCI scenario, multiple modules could access the same data object simultaneously, add-

ing more complexity to data objects. Now consider the case where two modules want to modify the

same data object in different ways (e.g., a module that applies common average referencing (Ludwig

et al., 2009) to measurement data and a module that normalizes measurement data into the interval

[-1, 1]). Even with proper synchronization, one of these modules will not produce the correct output

as the data object can only hold the result from one module. This example can be generalized to the

requirement that shared data objects have to be copied prior to modification. This forces the pro-

grammer of a module to create a copy of a shared object each time before a modification to its data

is applied. If a module erroneously forgets to create a copy, these modifications can induce errors in

other modules using the same shared data object. This kind of errors is difficult to reproduce, as they

are time dependent, and their cause is difficult to locate, as it is inside another module.

At the time when the software architecture for the Freiburg BCI Software was developed, it was not

clear how big the performance loss due continuous allocations/deallocations from the copy strategy

would be. As the software architecture of the Freiburg BCI Software was also a test environment for

the Braincon Platform Software, it was decided to use the copy strategy and evaluate its perfor-

mance. It turned out that the costs are sufficiently small, see results in Section 7.1. In addition, the

simplicity of the copy strategy promised a more robust system in contrast to shared pointers. For all

these reasons, the copy strategy was also used for small short-lived objects in the Braincon Platform

Software.

6.1.4 Coding Convention

A coding convention imposes syntactic and semantic rules on source code. Typically, it regulates the

naming of files, classes, methods and variables, code structure and documentation, thus making it

easier to understand source code written by other programmers. If programmers understand what a

method does, then then they are less likely to use this method wrong, yielding a potentially more

reliable application. The initial coding convention for the Freiburg BCI software was written with

Ph.D. students as programmers in mind. Their programming skills can vary from novice to expert.

Therefore it contained mainly rules for better readability of code and rules that helped to avoid typi-

cal novice programming errors. Additionally, programming techniques deemed insecure or error

prone were forbidden. The coding convention used for the Braincon Platform Software was written

for expert C++ programmers with the aim to increase safety and reliability of the source code. Many

rules were adopted from the coding standard used in the ‘Joint Strike Fighter’ program, which was

43

Methods

intended to enable programmers ‘to employ good programming style and proven programming prac-

tices leading to safe, reliable, testable and maintainable code’ (Lockheed Martin Corporation, 2005).

6.2 Software Architecture

6.2.1 Domain Model

The domain model of a software describes a domain of interest from the existing world in a set of

data structures and function definitions (Fowler, 2003). The BCI domain of interest considered here

encompasses a patient interacting with a computer in a closed-loop manner. Therefore there has to

be a software representation of the data source (e.g., an implant) that provides a continuous stream

of neurophysiologic measurements. If the BCI supports electrical stimulation of brain areas, there

have to be facilities for executing stimulation commands in its software representation of the data

source. Depending on the experimental setup, there might also be additional neurophysiologic re-

cording systems (e.g., for measuring SUA/MUA activity, ECoG, MEG or muscle activity (Merletti and

Parker, 2004)). There can also be recording systems for capturing the patient’s movement (e.g., a

computer mouse or a joystick). Besides passive movement recording, some movement recording

systems also actively execute movements (e.g., an active orthosis (Kawamoto et al., 2010; Banala et

al., 2010)) that moves the patient’s limb, or provide force feedback (e.g., a SensAble Phantom Omni

haptic device (SenseGraphics AB, Kista, Sweden) or a robotic arm). A BCI extracts information from

neurophysiologic measurements (e.g., intended movement (LaFleur et al., 2013; Milekovic et al.,

2012) or epileptic seizure probability (Morrell, 2011)). First, features are extracted from these meas-

urements by using one or more feature extraction algorithms (e.g., low-pass filtered by a linear filter

(Oppenheim et al., 1999) or short time Fourier transform (Allen, 1977)). Then the desired infor-

mation is decoded from the previously generated features. Decoding can be done by decoding algo-

rithms (e.g., linear discriminant analysis (Hastie et al., 2009), Kalman Filter (Haykin, 2001; Kalman,

1960) or support vector regression (Cristianini and Shawe-Taylor, 2000; Vapnik and Chervonenkis,

1974)) or might involve multiple decoding algorithms working together in a boosting approach (Has-

tie et al., 2009). Depending on the experimental setup, feedback is provided to the patient (e.g., de-

coded movement intention can be provided as visual feedback or used to control an external effector

or applied directly to the brain as electrical stimulation feedback). There can also be cases where

patient and implant are connected in an open-loop configuration (e.g., for recording calibration data

prior to training of decoding algorithms or for functional brain mapping).

The goal of the domain model proposed here was to be general enough to handle all these configu-

rations as well as many yet unknown future BCI applications.

6.2.2 Implementation

From a more general perspective, a BCI application can be seen as a stream of data which is being

processed. Therefore for the proposed domain model three main types of objects were identified:

processing objects (PO), data objects and connection objects. Figure 11 shows the interfaces related

to these objects.

44

Methods

Data objects represent the data to be processed by processing objects (e.g., neuronal activity meas-

urements or measurements of limb movements). They are used to move information between other

classes. All data classes are derived from the IData8 interface.

A processing object takes input streams consisting of data objects, processes them and provides out-

put streams. There can be processing objects that do not need input streams (e.g., a processing ob-

ject that provides a data stream of limb movement measurements from a joystick). There can also be

processing objects that do not provide any output streams (e.g., processing objects that convert in-

put streams into visual feedback for the patient). Processing objects can be run in different threads

to make efficient use of multi-core processor computers and thus meet the requirement for compu-

tational performance as defined in Section 5.3.

A connection class connects two processing objects by forwarding the output data objects from one

processing object to the input data stream of another processing object. By different configurations

of connection objects, one can realize open-loop or close-loop BCI applications.

According to the design principles, no object instances are shared between threads (Section 6.1.3).

This was implemented by requiring all data classes to provide a ‘clone’ method for creating a deep

copy of itself. When passing a data object instance between two threads, actually a pointer to this

data object is passed. Either the sending processing object relinquishes ownership of the data object

and passes the data object to the receiving processing object or it creates a clone of the data object

and actually passes the clone to the receiving object. This pattern can also be extended to the case

8
 In the used class naming convention, interfaces start with an ’I’, all other classes start with a ’C’. For both class

types we use so-called camel hump notation, where each word of a compound name starts with a capital letter
(e.g., CNameWithMultipleWords).

Figure 11: Interfaces related to processing objects

Class diagram of the interfaces related to processing objects in unified markup language notation (UML, Booch et al.,
2005). Every IProcessingObject implementation can have zero or more instances of IInputPort or IOutputPort.
IConnector is the interface from which connection classes inherit in order to receive data from an output port (cf. ob-
server pattern in Gamma et al., 1994). C++-specific data type modifiers like references, pointers or ‘const’ omitted for
the sake of readability.

45

Methods

when a data object should be passed to multiple processing objects: one simply creates multiple

clones.

Input ports are classes that receive streams of data objects for processing by a processing object.

They are derived from the IInputPort interface (Figure 11). One can insert multiple IData instances

into an input port by calling its ‘enqueue’ method. The ‘enqueue’ method has to be thread-safe so

that data objects can be inserted into the input port from arbitrary threads. An IInputPort object

guarantees that the data objects are passed on to the processing object in the temporal order in

which they were enqueued. The current input port implementation is essentially a thread-safe

queue, but the IInputPort interface allows for different implementations like an input port that serial-

izes queued data and sends it to another application running on a different computer system via

network socket (e.g., a cluster computer system for complex computations which cannot be handled

in time by one computer system).

Processing objects are derived from the IProcessingObject interface (Figure 11). They provide meth-

ods for starting and stopping processing. Each processing object can own input and output ports by

owning instances of the IInputPortEx interface. IInputPortEx extends the IInputPort interface by a

method for dequeueing data objects previously inserted via the ‘enqueue’ method. By separating

input port functionality into two interfaces, a processing object can selectively expose input port

functionality to other objects: other objects can enqueue data objects to exposed IInputPort instanc-

es, but only the processing object owning an input port can dequeue data objects from it by using

the ‘dequeue’ method from IInputPortEx. The result of a processing object is a set of data objects

which is distributed through its output ports. The process of dequeueing, processing and distribution

of results is repeated. There are different implementations of this cycle which will be described in

detail in Section 6.2.4.

Output ports use the observer pattern (Gamma et al., 1994) to distribute the results of a processing

object to other process object input ports. This pattern works similarly to a mailing list: all persons

registered to a mailing list receive emails addressed to this mailing list. One does not need to know

which persons are registered for a mailing list in order to send a mail to all registered persons. For

example, consider a processing object A that wants to receive the data objects from the output port

of another processing object B. A connects a connector (i.e., an object derived from the IConnector

interface) to B’s output port by calling its connect method (Figure 11). In the email list analogy, this

would correspond to registering an email address for a mailing list. Each output port maintains a set

of connectors which are connected to it. When the processing object has new results, it calls the

output port’s ‘publish’ method which notifies all connected listeners by calling their ‘forward’ meth-

od. This step would correspond to writing an email to a mailing list in the email list analogy. The con-

nector forwards the data to another input port where the whole process is repeated.

In Figure 12 a UML sequence diagram shows the method invocation sequence of a processing object

with one input port and one output port. Initially, a connector object enqueues data objects. Then

the processing object, running in another thread, iterates over three steps: First, it dequeues the

data object from the input ports, secondly it processes the data objects and finally it distributes the

resulting data objects by invoking the output port’s ‘publish’ method, which in turn notifies all con-

nectors attached to it by invoking their ‘forward’ method. In the case of processing objects with n

46

Methods

input ports and m output ports, method call sequence is similar as calls to ‘dequeue’ and ‘publish’

are repeated n respectively m times.

The division into processing objects and connector objects separates sender and receiver in a sense

that the sender does not need to know its receiver, similar to the mailing list analogy: the sender

does not need to know the subscribers of a mailing list. The sending source code only interacts with

instances of the IConnector interface and therefore makes the source code of the sending processing

object independent from the source code of the receiving processing object. These IConnector in-

stances can be exchanged. As a consequence, any processing object class can be instantiated (multi-

ple times) independently from other processing objects and can be arbitrarily connected to other

processing objects, even at runtime. These properties of the proposed architecture achieve the re-

quired flexibility (see Section 5.3).

6.2.3 Startup and Shutdown Order

In the proposed software architecture, a set of processing objects is being maintained for providing

the BCI functionality (e.g., reading of neurophysiologic data, feature extraction and decoding and

visual or electrical feedback) where each processing object can operate in its own thread. When the

user starts the software these threads have to be started. The order in which these processing ob-

jects are started or stopped is of importance, as outlined in the following. Consider the following use-

case: an amplifier processing object of a neurophysiologic recording system is connected to a utility

window view which displays the measured data at runtime. Both processing objects cannot be start-

ed simultaneously. If the amplifier is started first, measurements can be queued into the view’s input

port while the view is not yet started. This creates a transient stall of measurements in the view’s

input port. In such a case, the view has now two options: ignore the stalled measurements or display

all stalled measurements in an initial burst at the same time. Both options are not desirable because

in the first option data is ignored and in the second option an unsmooth burst of information is dis-

Figure 12: Sequence diagram for passing of data objects

UML sequence diagram that shows passing of data objects to a processing object with one input port and one output
port. Processing object runs in its own thread (green life lines) as well as the connector (blue life lines) which enqueues
data objects.

47

Methods

played at startup. This transient stall can be avoided if the amplifier is started last. In general, pro-

cessing objects that create data objects like amplifiers or trackers have to be started after the other

processing objects.

One could assign a numerical startup priority to each processing object and start the processing ob-

jects according to their priority. These priorities have to be assigned manually for each configuration,

as each processing object does not know the other processing objects it is interacting with.

Another approach would be to identify processing objects that produce data by deriving them from a

special interface termed IDataSource. This interface derives from IProcessingObject and adds no

methods; its sole purpose is to flag a processing object as data source. At startup, each processing

object of a configuration is tested via runtime type information if it is of type IDataSource. If yes, it is

started after all the other processing objects. The advantage of this approach is that startup order is

derived automatically for all combinations of processing objects, therefore this approach was chosen

for the proposed software architecture.

6.2.4 Filter Pipeline

The process of neural decoding used in BCIs can be seen as a sequence of signal processing steps ap-

plied to a stream of neural data. The processing steps vary depending on the signal type (EEG,

electrocorticogram, spiking activity of individual neurons, MEG, etc.) and the BCI application. Here, a

single processing step is called a ‘filter’ and the whole sequence of processing steps is called a ‘filter

pipeline’. A filter is therefore a transformation (linear or non-linear) of an n-dimensional input signal

to an m-dimensional output signal. With this terminology, low-pass, band-pass or high-pass filters are

included in the definition of ’filters’, as well as the short-time Fourier transform (Allen, 1977) or classi-

fication and regression methods, such as linear discriminant analysis (Hastie et al., 2009), support

vector regression (Cristianini and Shawe-Taylor, 2000; Vapnik and Chervonenkis, 1974) and Kalman

filter (Haykin, 2001; Kalman, 1960). It also includes state-machine-like functionality used for model-

ing the state of a visual feedback paradigm (e.g., cursor and target positions in a center-out task

(Waldert et al., 2009)). From the software architecture perspective, each filter is implemented as a

processing object and the whole filter pipeline is implemented as a set of connected processing ob-

jects.

A filter’s worker thread iterates over three steps, as shown in Figure 13. First, it fetches a new set of

input data objects by dequeueing its input port. Then the input data objects are processed according

to the signal processing algorithm implemented by the filter, resulting in a set of output data objects.

Finally, these data objects are distributed to the connection objects connected to the output ports.

Two types of filters were identified as necessary for implementing BCI filter pipelines: active and

passive filters.

6.2.4.1 Active Filters

An active filter’s worker thread checks each input port for newly arrived input data objects at regular

time intervals. This filter type was termed ‘active’ because it actively checks for input, in contrast to

the ‘passive filter’ described later which passively waits for input to arrive. If there are any inputs, it

dequeues them all from the input port and passes them to the signal processing algorithm. If there

are no inputs in a time interval, the processing algorithm is still called. This property also justifies the

name ‘active filter’ because such a filter can autonomously generate output data objects (i.e., with-

out input data objects).

48

Methods

This type of filter can be used to implement state machines that depend on time. As an example con-

sider a filter that implements a visual feedback paradigm for a ‘center-out’ task where a cursor

should be moved for five seconds after a go-cue from the center of the screen to a target at the rim

of the screen. Every five seconds it creates a new output data object that signals alternating go or

pause cues. This filter also receives a data object containing decoded movement every second. In

order to make cursor movement appear smoother, it interpolates the decoded movement trajectory.

For every decoded movement data object, the active filter creates ten interpolated movement data

objects. Every 0.1 seconds a data object with interpolated movement is sent to an output port of the

active filter object.

6.2.4.2 Passive Filters

Passive filters can be used to implement mathematical functions like short-time Fourier transform,

linear filters or support vector regression. They need exactly one data object from each input port in

order to create a set of output data objects. If there is no data object available in one input port, the

passive filter’s worker thread has to wait until at least one data object has arrived. The way a worker

thread waits is defined by its waiting strategy. This waiting strategy influences the performance of a

passive filter with regard to latency and CPU load as shown in Section 7.1.

An operating system usually provides facilities for threads to wait until certain events happen (Hart,

2010; Corbet and Rubini, 2005; Halvorsen and Clarke, 2011), therefore a worker thread could wait for

the event ‘new data has arrived’. This waiting strategy was termed Waitevent. Waitevent has the ad-

vantage that the worker thread only waits as long as necessary, but it could require potentially ex-

pensive kernel calls for synchronization.

Another option would be to wait for a fixed amount of time and then check again whether new input

has arrived in the meantime. Then one has to choose the amount of waiting time, which is generally

not known. Here, three choices of waiting time were considered, resulting in the waiting strategies

‘Polling’, ‘Wait0’ and ‘Wait1’.They were defined in the following.

Figure 13: Schematic representation of the filter implementation

Figure depicts the main working steps of a filter. After a filter is started, its worker thread collects the input data objects
from all input ports. Then an exchangeable algorithm processes the data objects and its results are distributed to the
output ports. This is repeated until the filter is stopped. Figure from (Fischer et al., 2014).

49

Methods

The waiting strategy Polling does not wait at all, it continuously polls (i.e., queries) the input port for

new data.

In a multi-threading environment governed by a scheduler (Stallings, 2012), a thread gets so-called

time slices allocated by the scheduler in which it is executed on a CPU core. If the operating system’s

scheduler provides facilities for a thread to yield the rest of a time slice (Li et al., 2009) a waiting

strategy could stop execution during a time slice and make the remaining time available for execu-

tion of other threads. This waiting strategy was termed ‘Wait0’.

Waiting strategy ‘Wait1’ waits for one tick of the operating system’s event timer, which is approxi-

mately 16 milliseconds (ms) in Windows.

6.2.4.3 Implementation

The signal processing algorithms which should be performed by filters for BCIs vary. Therefore the

strategy pattern (Gamma et al., 1994) was employed to make the algorithm part exchangeable, see

Figure 11. Each filter implementation (CActiveFilter and CPassiveFilter) has an algorithm (i.e., an in-

stance of IActiveFilterAlgorithm or IActiveFilterAlgorithm). With this separation, the signal processing

algorithm is only responsible for the processing of input data. The responsibility of the filter encom-

passes management of the data flow (i.e., create a worker thread which repeatedly fetches inputs,

passes them on to the algorithm and distributes the results to the output ports until it is stopped

(Figure 14)). This separation provides two benefits:

Firstly, one can reuse the two filter implementations because their task of worker thread manage-

ment and data flow management is independent from the signal processing algorithm. New func-

Figure 14: Sequence diagram for passive filter

Figure shows UML sequence diagram for passive filter with one input and one output port. Method preStart() is called
once after filter has been started. Likewise, postStop() is called after processing was stopped. Signal processing is per-
formed by the process() method.

50

Methods

tionality can be added faster because only a filter algorithm class needs to be implemented. This con-

tributes to satisfying the requirements of fast extension of functionality (see Section 5.3).

Secondly, it simplifies testing because filters and filter algorithms can be tested separately from their

filter classes: the reusable classes CActiveFilter and CPassiveFilter with their thread and data flow

management are tested once. Filter algorithms need to be tested only for data processing, no thread-

ing is involved, thus improving the verifiability of these classes.

6.2.5 Parallelization

The filter pipeline continuously applies a sequence of signal processing steps (i.e., filters) to a stream

of neural data. In a typical BCI application, such signal processing steps encompass the acquisition of

signals from a neurophysiologic recording system, feature extraction and movement decoding by the

filter pipeline and generation of feedback. Here, the case is considered that these computations are

executed on a computer system with multiple CPU cores: on each core only one thread of execution

can be executed at any point in time. These computations have to process this stream of data at least

as fast as new neural data is acquired.

If all computations are fast enough to be carried out by one thread before a new neural data is ac-

quired there is no need for parallelization and one can do the computations with one thread, using at

most one CPU core, see Figure 15 A. In the proposed software architecture, one can implement such

a configuration by concatenating filter algorithms to a compound filter algorithm, here termed ‘filter

algorithm chain’. The output of each filter is forwarded as input to the next filter in the chain. The

filter algorithm chain is then given to a filter for execution by its worker thread.

If the computation time required by the signal processing steps is too long to be handled by one

thread, one can use a first level of parallelization by dividing the main processing steps (i.e., signal

acquisition, feature extraction, movement decoding, and the generation of feedback) into separate

threads (Figure 15 B). This degree of parallelization can use as many cores as there are processing

steps since every thread can occupy only one separate core at any time. Existing facilities of the oper-

ating system, in this case the Windows scheduler, are used to distribute the workload of the threads

among CPU cores. However, since each step depends on the result of the previous step most compu-

tations are not carried out in parallel.

In BCI software applications, many processing steps transform the signal on one channel inde-

pendently from the signal on other channels (e.g., Fourier transformation or band-pass filters). This

can be exploited for a higher degree of parallelization, where a processing step can be divided into

functionally independent substreams, each processing a subset of channels. Each data substream can

then be processed by a separate thread (Figure 15 C, for an example see Wilson and Williams (2009)).

Here, this level of parallelization was termed as ’independent substream parallelization’. The same

principle can be extended to the processing of the decoding step. For example, if the BCI application is

decoding the intended movement and each DOF of the movement can be computed independently

from the other movement DOF (e.g., in a linear filter) then the decoding algorithms for each DOF can

be run on a separate thread.

There are ways to achieve even higher degrees of parallelization. In principle, all functionally inde-

pendent parts of a processing step can be run on separate threads. However, such ’fine grain’ paral-

lelization requires exploitation of the specific processing algorithm used. Therefore, there are no gen-

51

Methods

eral ways to explore such ways of parallelization. Furthermore, current BCI systems process record-

ings from a large number of channels. Therefore, even by using ’independent substream paralleliza-

tion’ one can divide the processing into a number of substreams that exceed the number of available

CPUs used to run BCI software applications by far. Later in Section 7.1 it is shown that, when the

number of threads is much larger than the number of available CPUs, one cannot expect additional

gains in performance. For all these reasons, parallelization on a degree finer than the ’independent

substream parallelization’ was not considered.

6.3 Performance Analysis

6.3.1 Performance Definition

In Section 5.3 performance of a BCI was defined to encompass computational power, latency and

CPU load. The methods for the assessment of the proposed software architecture’s performance are

described in the following.

The overall latency L of a BCI (i.e., the time the system needs to react to the user’s (neurophysiologic)

input) was defined as follows:

The term Lacq encompassed the time span needed by the data acquisition hardware system to digitize

the analog neurophysiologic signal and make it available to the BCI software for processing. The digit-

Figure 15: Degrees of parallelization for a typical BCI software

Figure shows processing steps applied to a stream of neural data by a BCI application. A: No parallelization (i.e., all
processing steps are executed sequentially in one thread on a single CPU core). B: each processing step is executed in a
separate thread. The computations of each thread can be handled by a different core. C: independent substream paral-
lelization. Feature extraction and movement decoding steps are split into functionally independent computations (e.g.,
by computing the features for each channel in a different thread). Figure from Fischer et al. (2014).

52

Methods

ized recording values are usually sent in blocks comprising of recording values from multiple points in

time. If the block size is greater than 1 (i.e., comprises recording values from more than one point in

time) it inherently adds additional latency to Lacq. As the worst case, consider an algorithm that wants

to process the recorded values from the least recent point in time of a block. It has to wait until all

values of a block have been recorded (and made available to the BCI software system) before it can

start processing. In the following analysis, block sizes larger than 1 were not considered for two rea-

sons: Firstly, because the block size is determined by the recording system and cannot be influenced

by the proposed software architecture. Secondly, the final Braincon implant will use a block size of 1,

so the results of this analysis will be valid for this version of Braincon.

The latency resulting from the time needed to process the recorded data (i.e., execute the filter algo-

rithms) is denoted as Lcomp. Therefore Lcomp depends on the implementation of the used filter algo-

rithm(s). It was beyond the scope of this performance analysis to evaluate the effects of different

implementations of the same filter algorithm because this performance analysis focusses on the pro-

posed software architecture.

On standard desktop computers or laptops the amount of computations a processor core can execute

per time is limited and may be insufficient for BCI signal processing. One can alleviate such limitations

by distributing calculations among multiple cores. According to Amdahl’s law (Amdahl, 1967) compu-

tation time Lcomp of an algorithm decreases linearly with the number of processor cores used. How-

ever this is the optimal case. There are additional latencies caused by parallelization which are de-

noted as Lpar. It takes additional time to split the recorded data into multiple parts for independent

processing and time for merging the processing results. Synchronization between threads and pro-

cesses also takes time (e.g., when one thread waits for another thread to yield some input or to re-

lease a shared resource). Lpar was influenced by the way the parallelization is implemented (i.e., by

the software architecture) as shown in Section 7.1.

Another aspect of a BCI system’s performance is the CPU load it consumes while processing neuro-

physiologic data. Low CPU usage is desirable for several reasons. Firstly, low CPU usage leaves more

CPU time as a reserve for other processes or the operating system. Given a sufficiently large reserve,

a BCI system still has enough CPU time and is not influenced by sudden increases in CPU load (e.g., if

a virus scan starts or the operating system performs a CPU-consuming background operation). Sec-

ondly, if the BCI system is running on a mobile battery-powered computer system, a lower CPU usage

can increase the run-time of such mobile BCI systems by consuming less energy. Thirdly, by using less

CPU time, one can use the remaining CPU time as additional computational power for additional or

more demanding feature extraction or decoding algorithms to improve decoding performance.

Active filters were excluded from the following analysis for two reasons: Firstly, the latency caused by

active filters is dominated by the time interval t in which the filters check for new input. In the worst

case, input data arrives immediately after the last check, so in the worst case latency is <t. This time

interval can be chosen and adapted by the operator: if t is increased CPU load decreases while laten-

cy increases because data processing is initiated less frequently. Secondly, for computationally ex-

pensive feature extraction and decoding algorithms it usually does not make sense to use an active

filter that starts processing at fixed time intervals. Instead one would prefer to use a passive filter

that processes data as soon as it can.

53

Methods

6.3.2 Simulation Setup

Performance of the proposed software architecture was evaluated on a standard desktop PC with an

Intel Core i7 970 computer with 3.2GHz and 24GB memory running 64-bit Microsoft Windows 7 En-

terprise operating system. The performance values will vary on different hardware and software con-

figurations. However, the author is convinced that the conclusions drawn from the quantitative re-

sults will be valid for a wide range of commonly used desktop and laptop computer systems.

To measure the performance, simulations of a filter pipeline were run as shown in Figure 16. From an

artificial data source data objects were passed to the filter pipeline at a fixed frequency. This artificial

data source was a software simulation of a neurophysiologic recording system. In each simulation

session, the data source provided 120 seconds (s) of recordings from 256, 512, 768 or 1024 channels,

sampled at a frequency of 256Hz, 512Hz, 768Hz or 1024Hz. The filter pipeline consisted of one or

more filters that processed the data (described in more detail in Sections 6.2.4 and 6.3.4). This setup

simulated a parallelized processing step like feature extraction or decoding as outlined in Figure 15 C.

The degree of parallelization (i.e., the number of filters and therefore the number threads) could be

varied.

For each waiting strategy and number of threads the time

required for the processing of a data object was measured as the latency (i.e., the time between the

injection of the data object into the filter pipeline and the reception of the resulting all data objects of

one processing step at the data sink). Since some of the algorithms considered here used a sliding

window with a step size of n sample points, only every n-th input packet yields an output data packet

and thus a latency value. One latency measurement is denoted as Lw,i,j, where w is the waiting strate-

gy used, i is the number of threads and is the j-th measurement of the latency. The

performance of the filter pipeline was quantified by three measures:

Median latency: Due to computational processes initiated by the operating system, the processors

used for simulations would occasionally be used for other computations. This would cause latencies

much higher than expected for one or more consecutive measurement points in time. To reduce the

Figure 16: Filter pipeline setup for simulation

Data is generated from a data source and distributed to n filters for processing. Results are sent to a data sink. Pro-
cessing time (i.e., the time from data source to data sink) was measured. Double brackets indicate the used filter type.
As the data source generates data with a fixed frequency, it has to be realized as an active filter.

54

Methods

effect of such outliers, the median latency for a waiting strategy w and i threads was defined as fol-

lows:

In addition, in each simulation, the first 16 latency values (corresponding to 0.5s of data) were re-

moved from each simulation in order exclude transient latency values at the start of the simulation.

Median of relative latency reduction (MRLR): The normalization factor was

defined as the median latency of the waiting strategy with the minimum median latency when only

one thread was used. All other latencies were compared to such a normalization factor. Furthermore,

for each latency Lw,i,j, the relative latency reduction (RLR) was define defined as

By construction, RLRw,i,j equals 1 if the latency measurement equals median latency of the fastest

waiting strategy with one thread, is above 1 if Lw,i,j is smaller than N1 indicating an increase of per-

formance relative to the fastest waiting strategy with one thread and is below 1 if Lw,i,j is larger than

N1. To capture the general dependence of the latencies as a function of the number of threads, medi-

an of relative latency reduction was defined as

Thus, MRLRw,i is larger than 1 if the computations are (in the median) performed faster than with the

fastest waiting strategy using one thread.

CPU load: Once per second during each simulation, CPU load was measured. Similar to latency meas-

urement, computational processes can be initiated by the operating system and thus the processors

used for simulations would occasionally be used for other computations. This would cause a CPU load

which is temporarily much higher than expected for one or more consecutive CPU load measure-

ments. To reduce the effect of such outliers, if was reported on the median percentage of the total

possible load of one core (100%). CPU load measurement was started some time before the simula-

tion started and thus initially CPU load was measured from a period of inactivity. To exclude this peri-

od, the first two CPU load measurements (corresponding to 2s of data) were removed. The test sys-

tem contained 6 cores with Hyper Threading which can allow two threads being processed in parallel

on one core (Marr et al., 2002), so the maximum number of parallel threads, that can run at 100%

CPU load, is 12. However, during simulations, one thread simulated the data source and one thread

was used to receive the results of the filter pipeline (Figure 16). In addition, some processing was re-

quired by the operating system. Therefore the real number of threads that could be used exclusively

by the simulated filter pipeline in parallel was lower than 12. It was assumed that at least 9 threads

were available for full 100% CPU load assuming that the operating system, the data source simulation

and the acquisition of results from the simulation each occupied one thread at most.

6.3.3 Stall Definition

A minimum requirement for a BCI application is that the filter can process the input data at least at

the rate it is coming in. If processing is not fast enough the data objects will accumulate at the input

ports of a filter. Consequently, the latencies will add up, making the application unable to react to

55

Methods

inputs. Additionally, the memory usage will grow until it reaches the limit of available memory which

will cause the application to terminate. Here this scenario was referred to as stall. During simulations

a test run was considered to be stalled if one of the following conditions was true:

 Memory consumption exceeded a threshold of 750 megabytes (MB).

 The overall calculation time exceeded the expected time by more than 1.2s.

The memory limit of 750MB was exceeded if more than 5s of data accumulated at the input port of

one of the filters. The memory limit was chosen big enough to reduce the number of falsely detected

stalls as much as possible while giving the application sufficient remaining memory to shut down

normally. If the system took more than 1.2s (1%) beyond the expected execution time of 120s, it was

fairly safe to conclude that the latency of the processing was too high. If the application was allowed

to continue to run the data would accumulate and the program would eventually stall. While there is

some necessary arbitrariness in the time limit of 1.2s, it was chosen to reduce falsely detected stalls

due to temporal jitter caused by other processes.

6.3.4 Algorithms

Algorithms used in the BCI applications mostly fall into two groups: (i) feature extraction algorithms

and (ii) decoding (classification and regression) algorithms. In most BCI applications these algorithms

will take most of the computational time. Therefore, to evaluate the performance of the proposed

software architecture several feature extraction and decoding algorithms frequently used in BCI ap-

plications were tested.

6.3.4.1 Feature Extraction Algorithms

In the context of BCIs, feature extraction algorithms are algorithms used to calculate features from

neuronal signals. Two frequently used feature extraction algorithms were considered: short-time Fou-

rier transform (Allen, 1977) and Savitzky-Golay filter (Milekovic et al., 2012; Savitzky and Golay, 1964)

as an example of a linear filter for smoothing signals. The implementation of the Savitzky-Golay filter

used here was more demanding than the implementation of the short-time Fourier transform, since it

used one forward Fourier transform and one inverse Fourier transform in each calculation step.

6.3.4.2 Decoding Algorithms

BCI related decoding algorithms can be grouped into algorithms for inference of continuous variables

(regression) and algorithms for inference of discrete variables (classification). For classification, filter

pipelines implementing linear discriminant analysis (LDA) (Hastie et al., 2009) and support vector

machines (SVM) (Vapnik and Chervonenkis, 1974) were tested. For regression the linear filter (LF),

support vector regression (SVR) and the Kalman filter (KF) (Kalman, 1960; Haykin, 2001) were tested.

The libsvm library (Chang and Lin, 2011) was used to implement SVM and SVR, and the GNU Scientific

Library (Galassi, 2009) was used for linear algebra operations. For all tests of classification/regression

algorithms, the sampling frequency was kept fixed at 1024Hz and decoded one DOF (i.e., a one-

dimensional movement). In the context of classification or regression algorithms, the computational

complexity regarding the inputs is best measured by the number of features that have to be pro-

cessed in each decoding step, rather than by the number of channels, as each channel might provide

multiple features (e.g., data from multiple delays in respect to the current time or from multiple fre-

quency bands). In addition to the computational complexity arising from the number of features, the

computational complexity of the SVR and SVM algorithms depends on the number of support vectors.

56

Methods

Therefore the number of support vectors for all tests involving the SVR and SVM algorithms was var-

ied. All feature extraction and decoding algorithms were executed 32 times per second (in steps of

31.25ms).

6.3.4.3 Decoding Algorithm Complexity

For each algorithm, parametric models of the latency L as a function of feature dimension were de-

rived. Since only the feature dimension varied, the terms Lacq and Lpar (cf. Equation 1) are constant and

can thus be expressed as constant terms in each model. For SVR and SVM latency was also a function

of the number of support vectors. These models were fitted to the measured latency values (cf. Sec-

tion 7.1) to estimate the parameter values. In each model nf denotes the number of features and ns

the number of support vectors.

Linear filter and linear discriminant analysis: One DOF decoding using LF models or binary classifica-

tion using LDA models is equivalent to a scalar product between a feature vector and a vector of fixed

coefficients (obtained by calibrating the model on the training data). Therefore the computation time

is linear in the number of features (Hastie et al., 2009). For LF and LDA decoders the latencies were

therefore modeled as L = b ∙ nf + a.

Kalman filter: In the limit of high number of features the computation time of the Kalman filter algo-

rithm is dominated by the inversion of a symmetric matrix. The Cholesky factorization algorithm was

used for matrix inversion (as the matrix to be inverted is symmetric) and the computational complexi-

ty of Cholesky factorization is a cubic function of a number of features (Santos and Chu, 2003). All

other operations have a linear or quadratic dependence on the number of features. Profiling the im-

plementation of the Kalman filter used here revealed that with nf = 128 and decoding one DOF around

94% of the computation time in each iteration was used for the matrix inversion. Thus all simulations

were made in the regime of a high number of features. Therefore the contributions of all other

Kalman filter calculations were neglected in the model of the Kalman filter latencies: L = c ∙ nf
3 + a.

SVR/SVM: Computational costs of SVM/SVR scale as O(nf ∙ ns) (Burges, 1998). Latencies were there-

fore modeled as L = d ∙ nf ∙ ns + a.

6.3.5 Statistical Analysis

Four different waiting strategies for the filter pipeline were considered (cf. Section 6.2.4.2) and their

performance was measured using three different measures: median latency, median of relative laten-

cy reduction and CPU load. Performance was examined as a function of the number of threads and

across a range of sampling frequencies and numbers of channels (Supplementary Figures i-iii, Figure

19). For each combination of waiting strategy, number of threads, sampling frequency and number of

channels ten simulations were run yielding 38 240 latency measurement and 1180 CPU load meas-

urements in total. To assess the significance of the performance increase with an increasing number

of threads the performance measures were compared between 1 and 9 threads by a Wilcoxon rank

sum test (Gibbons and Chakraborti, 2011). The Wilcoxon rank sum test of MATLAB R2010a (The

Mathworks Inc., Nattick Massachusetts, United States) uses an approximation to compute p-values in

the case of large samples. Given potential inaccuracies of this approximation, here was simply report-

ed p < 0.0001 even if actual p-values were much smaller. The null hypothesis was considered as re-

jected if p < 0.05. This test was carried out for different sampling frequencies and number of channels

(cf. Sections 7.1 and 10.1).

57

Methods

6.4 Closed-Loop BCI Study

In order to evaluate whether the domain model presented in this thesis was sufficient to map a

closed-loop BCI application and to show its closed-loop capability, the Freiburg BCI Software was

employed in a closed-loop BCI study for decoding of kinematic movement parameters from ECoG.

Five human patients suffering from intractable pharmacological resistant epilepsy participated in this

study after having given their informed consent. The study was approved by the Freiburg University

Ethics Committee (Milekovic et al., 2012).

There were two types of experimental sessions: training sessions to collect ECoG data while the pa-

tient performed wrist movements, and brain-control sessions where movements were decoded

online from ECoG data. Previously collected data (e.g., from training sessions) was analyzed offline

with MATLAB to derive the parameters used for decoding in brain-control sessions.

A session consisted of multiple trials and each trial consisted of several phases. At the beginning of

each trial, a visual cue displayed on a screen instructed the subject whether to move left or right (cue

phase). After a pause (pause phase), a go cue was displayed (movement phase). In training sessions

subjects then had to move a joystick, either to the left or to the right, and then hold the joystick posi-

tion for two seconds. Then a visual feedback was presented by a ball moving from the center of the

screen to a target in the cued direction (feedback phase). If the movement was not executed correct-

ly (e.g., into the wrong direction or movement was started too early or too late) an error message

was displayed and the trial was discarded (error phase). Brain-control sessions were similar to train-

ing session, except that movement direction was controlled by the posterior probability of the cued

direction. Posterior probability was decoded online from the ECoG data. The ball in the visual feed-

back moved proportional to the posterior probability towards the target (e.g., if the decoded poste-

rior probability for direction ‘left’ was 0.75, then the ball would move 75% of the distance towards

the left target). A trial was considered successful, if the posterior probability was greater than 0.5.

There were two variants of brain-control sessions: in one variant subjects performed actual wrist

movements. In the other variant subjects imagined wrist movements. However, in both variants ball

movement was controlled by the decoded posterior probability. For more details on the task, cf.

Milekovic et al. (2012).

Several processing objects were developed for the Freiburg BCI Software to realize this experimental

setup in terms of software.

Joystick reader: This processing object continuously polled the position of a joystick. To support dif-

ferent joysticks with different resolutions along x- and y-axis the position was normalized between [-

1.0, +1.0] for each axis. An output port provided the normalized position for further processing.

Movement discretizer: As input, this processing object required a two-dimensional movement posi-

tion, ranging from -1.0 to +1.0 for both x- and y-axis. The position along each axis was divided into

five regions, depending on the distance to the center (0, 0): full negative reflection, negative deflec-

tion, centered, positive deflection and full positive deflection. These regions were defined for each

axis by thresholds. Every time a threshold was crossed (i.e., movement position reached a new re-

gion) an event was generated containing the current x- and y-regions and thus, the continuous two-

dimensional space was transformed into a discrete space of 25 distinct positions. Consider as exam-

ple that the joystick would be deflected horizontally to the very left (i.e., normalized position would

58

Methods

be (-1, 0)). Then the corresponding two-dimensional discretized position would be (full negative de-

flection, centered).

Paradigm model: In the context of this BCI study a ‘paradigm’ was the virtual setting with which the

patient interacted. This encompassed the position of the ball, the target position, the current trial

number and the phase of the current trial. The paradigm model was a processing object which used a

finite state machine. Each phase was represented as a state. Either actual patient movement, decod-

ed movement or time (e.g., by a timeout) triggered a state transition. Therefore it had two input

ports, one for actual movement (i.e., discretized position from movement discretizer (see above))

and one for decoded movement (i.e., decoded posteriori probability from RLDA decoder (see be-

low)). An output port published state transition events which contained all relevant information to

display the current state of the paradigm model.

Paradigm view: The paradigm view displayed the state of a paradigm model. Its graphical user inter-

face used the user interface development framework Qt (Digia Qt, Oslo, Norway). A paradigm view

could operate in two modes: experimenter mode and subject mode. In subject mode the paradigm

was rendered normally as it should be seen by the subject. In experimenter mode, additional infor-

mation relevant for the experimenter was displayed like current posterior probability, decoding accu-

racy and trial number. With this information the experimenter could give detailed feedback to the

subject (e.g., by saying ‘You’re doing well’ when decoding accuracy is good or ‘Almost done.’ to moti-

vate the subject for the remainder of the session).

Common average referencing filter: This processing object applied the common average referencing

algorithm (Ludwig et al., 2009) to a stream of measurements. A measurement consisted of a set of n

voltage values measured at one point in time where n was the number of channels.

Let be a non-empty subset of the available channels. For each channel

 the common average referenced voltage value
 of was defined as followed:

Running average filter: The running average processing object removed temporary offsets from

measurement values similarly to a high-pass filter. Let be a measurement value from one channel

at time , where . Let further be the number of points in time to be included into the

calculation of the running average. For each , the running average filtered result was defined as

followed:

The number of points in time could be adjusted for each subject.

Decoding algorithm: A processing object implementing a decoding algorithm continuously buffered

the measurement values from the last n seconds, whereas n was adjustable for each patient. This

buffer computed features, as determined by the previous feature selection process, from the past

59

Methods

measurement points using a Savitzky-Golay low-pass filter (Savitzky and Golay, 1964). For details on

the feature selection process cf. Milekovic et al. (2012). A regularized linear discriminant analysis

(RLDA) classifier (Friedman, 1989) calculated the posterior probabilities for the movement classes

‘left’ and ‘right’ from the features. This processing object did not yield a continuous stream of decod-

ed probabilities. Instead, decoding could be triggered through an input port. This way the time of the

decoding was more closely coupled to the time of external events like ‘joystick position reached max-

imum deflection’.

Brainbox amplifier: The processing object read out the measurement values of a Brainbox EEG-1164

amplifier device (Braintronics B. V., Almere, Netherlands). This EEG-1164 amplifier had a sampling

frequency of 1024Hz. It provided one output port for publishing of measurements for further pro-

cessing. In addition, the processing object wrote the measurements onto a hard disk.

Neuvo amplifier: Similar to the Brainbox amplifier, this processing object read measurements from a

Neuvo amplifier device (Compumedics Limited, Abotsford, Australia). Here the sampling frequency

was 2500Hz.

6.5 Preclinical in vivo Animal Study
The objective of the following preclinical animal study was to validate the measurement and stimula-

tion functionality of Braincon in vivo and to assess long-term stability timed until the implant eventu-

ally fails. This study was approved by the Animal Committee of the University of Freiburg and the

Regierungspräsidium Freiburg, Baden-Württemberg. It was conducted in compliance with Directive

2010/63/EU (European Parliament and Council, 2010).

6.5.1 Software for in vivo Study

For this study, the Freiburg BCI Software was used together with five processing objects which are

presented in the following paragraphs.

Braincon implant PO: The Braincon implant processing object (BPO) implemented access to

Braincon implants. With this processing object, ECoG measurements in the form of a continuous data

stream were read out from an implant. Every time electrical stimulation was started or stopped by the

implant, these events were marked in the data stream. Other modules used such events to determine

the sections of the data stream where stimulation was active for further analysis or signal processing,

see the EPA module as an example below. Due to the wireless data transmission from and to the im-

plant the BPO had to cope with connection losses. In the case of a connection loss the stream of meas-

urements was marked invalid with special values. This way the data stream continued to flow and all

other processing objects that process this stream could decide individually how to handle gaps in the

measurement stream (e.g., they could choose to ignore the data or could try to interpolate the missing

measurements). The implant sent data in blocks of 10ms.

The BPO could issue electrical stimulation. Since Windows 7 is no real-time operating system, it is

not guaranteed that the Freiburg BCI Software always has the computational resources to control the

electrical stimulation of the implant (i.e., to turn stimulation and off). Therefore a dead man switch in

the implant's firmware protected against unwanted endless stimulation. The maximum duration of a

stimulation command accepted by the firmware was internally restricted, currently to 1s. The firmware

could guarantee this temporal constraint because the firmware operated under hard real-time condi-

tions. The BPO internally decomposed stimulations with durations greater than 1s into sequences of

short stimulation commands with a duration of <1s.

60

Methods

The measurement stream had an additional 32-bit counter for the measurement stream to check its

completeness. To assess the implant’s power supply its supply voltage was measured with 1kHz and

sent along the measurement stream. In addition, the implant’s temperature and internal humidity could

be read out by the BPO.

gUSBamp amplifier PO: The gUSBamp processing object (GPO) recorded measurements from the

gUSBamp amplifier (gtec, Schiedlberg, Austria). This amplifier served as a reference device for the

Braincon implant.

Evoked Potential Analyzer: Evoked Potential Analyzer (EPA) was a processing object that served to

detect evoked potentials at runtime. Whenever a stimulation pulse was emitted an event marker was

inserted into the stream of ECoG measurements. When the EPA detected such an event marker, the

EPA took a window (with a configurable width) of the neural signal data around the event for each

channel, then processed it according to an exchangeable algorithm (e.g., incremental mean and stand-

ard deviation for each point in time) and yielded a set of representable traces for on-screen display.

Stimulation script editor: The stimulation script editor (SSE) was a processing object for automating

the stimulation procedure. Such scripts could be used in experiments that involved long and complex

sequences of stimulation commands or experiments where stimulation parameters had to be changed

faster than a human operator could enter them through the GUI. The two basic commands of a script

were stimulation and pause commands, each with different parameters. The parameters of a stimula-

tion command were amplitude, pulse width and duration. A pause command had its duration as a pa-

rameter. The basic commands could be executed in sequences. These sequences in turn could be iter-

ated over any parameter (e.g., one could iterate a sequence by increasing the amplitude). The SSE

allowed creation and execution of scripts through a GUI as well as loading and saving scripts from and

to a file.

Stimulation script controller: The stimulation script controller (SSC) executed the scripts created by

the SSE by translating stimulation sequences and iterations into actual stimulation commands for a

Braincon implant. The separation of script execution from stimulation control allowed the usage of

different script sources: a script could either originate from the user through the script editor or pro-

grammatically from another processing object. This allowed open-loop application where scripts were

issued from the SSE, (e.g., for brain mapping) but also supported future closed-loop applications (e.g.,

a decoder issuing stimulation sequences based on current neural activity).

6.5.2 Acute Animal Study

In the following the methods for validation of the Braincon implant’s in vivo measurement functionali-

ty will be presented. The ECoG signals recorded by the Braincon implant are compared with ECoG

signals recorded by an established and commercially available ECoG amplifier. This study used sheep

as animal model because these animals were big enough for subsequent chronic implantation studies

(Gierthmuehlen et al., 2014). The main idea was to electrically stimulate the sheep's nose and compare

the resulting evoked potentials on the sheep's somatosensory cortex when measured by a Braincon

implant and a gUSBamp device. Two sheep, A1 and A2, were implanted in this acute setting.

A schematic overview of the experimental setup is provided in Figure 17 A. Surgeons implanted a 32

channel micro ECoG electrode grid (cf. Figure 17 A-2, Figure 18 A and B, Kohler et al., 2012) above

the sheep's somatosensory cortex because a sheep's facial part is represented with a fairly large area in

the sheep's somatosensory cortex (Johnson et al., 1974). Electrical stimulation was applied to different

parts of the sheep's mouth and nose (lower lip, upper lip, chin and nose, each laterally and

ipsilaterally) with an isolated ML180 stimulator controlled by a PowerLab 8/30 (all AD-Instruments,

61

Methods

Spechbach, Germany), see Figure 17 A-1. Although the electrode grid had 32 electrodes the Braincon

implant supported only 16 recording channels. In order to achieve a good coverage of the eloquent

areas with 16 channels, ECoG was first recorded from all 32 contacts with the gUSBamp. Based on

this information, an area comprised of 16 electrode contacts with good coverage of the eloquent areas

was selected. The selected channels for sheep A1 and A2 are shown in Figure 18 A and B.

Each stimulation episode lasted 300s, stimulation pulses varied in intensity (1mA, 2mA and 4mA)

while pulse width and frequency were constant at 100µs and 2.0202Hz respectively. The interval be-

tween two stimulation pulses was chosen to be long enough so that one can safely assume that the

effects of the previous pulse would not overlap with the effects of the current impulse. In addition, the

chosen frequency was not a divisor of the sampling frequencies of the Braincon implant, gUSBamp

amplifier or power supply (f=50Hz), so that one could exclude recording of periodic technical artifacts

from sampling or synchronization with 50Hz interference. Over a percutaneous cable the electrode

grid was connected to a connector solution which permitted the manual switching between Braincon

implant and gUSBamp amplifier (Figure 17 A-3). This way, different devices could record ECoG

signals without relocation of the electrode grid. During all experiments, gUSBamp amplifier recorded

with a sampling frequency of 4800Hz and Braincon implant recorded with a sampling frequency of

1000Hz.

Both devices were connected to a PC running the Freiburg BCI Software (Figure 17 A-4) for data

recording and online signal processing by the EPA. For each channel the EPA applied a three-step

online processing algorithm: First, for each trigger event and each channel a window of measurement

data ranging from 100ms before until 200ms after the trigger event was extracted for further pro-

cessing. Then each window was normalized by subtracting the mean of the window from 100ms to

Figure 17: Scheme experimental setups

Color red indicates stimulation, blue indicates measurement. Gray boxes depict processing objects. A: Scheme of acute

setup. 1: Body-external electrical stimulator connectable to various facial locations. 2: ECoG electrode grid over sheep's

somatosensory cortex with percutaneous leads. 3: Connector solution which allows switching of recording between a

Braincon implant and a gUSBamp device. 4: Freiburg BCI Software configured for online evoked potential detection. B:

Scheme of chronic setup. 5: Braincon implant housing between sheep's shoulder blades. 6: Freiburg BCI Software con-

figured for online evoked potential detection and automatic stimulation. Figure from Kohler and Fischer.

62

Methods

50ms before the trigger event. Finally the EPA calculated and displayed the median and the interquar-

tile range over all windows available so far on screen.

6.5.3 Chronic Animal study

For chronic evaluation of the Braincon implant's measurement and stimulation functionality, a sheep

C1 was chronically implanted with a Braincon implant. Surgeons implanted the electrode grid over

somatosensory cortex and the implant housing between the shoulder blades (Figure 17 B-5). Implanta-

tion procedure is described in detail by Gierthmuehlen et al. (2014). In contrast to the acute setting, the

connector solution was omitted in the chronic setting and the electrode grid connected directly to the

implant, cf. Figure 17 B. Prior to implantation, 16 of the 32 available contacts of the electrode were

chosen for recording and 8 contacts were chosen for stimulation (Figure 18 B). The first intended use

of this configuration was to record somatosensory evoked potentials elicited by the body-external

ML180 stimulator as in the acute setting. The second intended use was to analyze ECoG measure-

ments with the EPA for any delayed responses from electrical stimulation by the Braincon implant

itself. To facilitate this, the Freiburg BCI Software additionally employed the SSE and SSC processing

objects for automatic execution of stimulation scripts (Figure 17 B-6). Using the SSE, experimenters

applied stimulation pulses (1ms pulse width, 5Hz) to each channel with increasing amplitude (1V, 4V,

7V, 10V and 13V).

Figure 18: Clinician's view of the electrodes used for the acute and chronic setting

Numbers indicate assigned channel numbers used for analysis. Colors blue, red, green and black indicate the type of

channel: measurement, stimulation, reference or ground channel, respectively. A: Electrode used for first acute sheep. B:

Electrode used for second acute sheep. C: Electrode used for chronically implanted sheep. Parts of this figure (i.e., the

electrode layout scheme in the background) were designed and manufactured by Christian Henle. Figure from Kohler

and Fischer.

63

Methods

In order to predict failure of the Braincon system humidity and temperature values from the built-in

sensor on the implant’s electronics were collected during every recording event.

After the Braincon implant was explanted, the integrity of the capsule’s solder-seal was analyzed by

means of computer tomography (CT). This method allowed for the identification of any voids or non-

adherent parts which could have caused an increase of humidity within the package and hence posed a

hazard for the electronics. CT measurements were conducted at the Technisches Pruefzentrum in

Neuss, Germany utilizing a nanoCT® system (phoenix nanotom m, General Electric Company, Fair-

field, CT, USA). The 3D data was analyzed with the software tool myVGL 2.2 (Volume Graphics

GmbH, Heidelberg, Germany).

64

Results

7 Results

7.1 Performance Analysis
Figure 19 shows latencies, MRLR and CPU load at the extreme points of investigated parameter range

(256Hz / 256 channels and 1024Hz / 1024 channels) for different numbers of threads. For all waiting

strategies except for Wait1, the latency generally decreased and the MRLR generally increased with

more threads. Data was processed significantly faster when nine threads were used instead of one

thread (p < 0.0001, Figure 19 and Supplementary Figures I and ii). Among all four waiting strategies,

Wait1 yielded the poorest overall performance gain when more than 1 thread was used. This was

particularly pronounced for low sampling frequencies and low channel numbers (Supplementary Fig-

ures i and ii). The inferior performance of Wait1 was due to querying for data at fixed intervals of

16ms which can be highly suboptimal if the data arrived at the input port just after the last query,

thereby causing a higher increase in latency compared to the other waiting strategies. Waitevent per-

forms better for higher sampling frequencies and numbers of channels (Figure 19 B, D and Supple-

mentary Figures i and ii). Compared to Wait0 and Polling, Waitevent performed worse for 256Hz and

256 channels (p < 0.0001), whereas for 1024Hz and 1024 channels Waitevent performed similarly for up

to four threads (median latency of Waitevent differs at most 0.15ms, p < 0.0001), better for five threads

(p < 0.0001) and slightly worse for up to nine threads (p < 0.0001, Figure 19 A-D).

Latency and MRLR measurements showed a drop in performance for five threads for Polling and

Wait0 and for six threads for Waitevent and Wait1 waiting strategies. Fischer et al. suspected that the

combination of the system hardware and the scheduler of Windows 7 caused the system to perform

slower for particular numbers of threads (e.g., five threads for Polling and Wait0 waiting strategies

and six threads for Wait1 and Waitevent strategies), depending on the number of cores available. To

test this hypothesis simulations were rerun on a four-core machine and indeed showed the same drop

in performance for three and four threads, respectively. A further test using the same hardware run-

ning Windows XP instead of Windows 7 revealed that the performance drop disappeared under Win-

dows XP. Taken together, these additional tests support the initial presumption that the performance

drop of Polling and Waitevent was caused by Windows 7 when the number of used threads is equal to

or one less than the number of available cores.

Further possible improvements in performance for the number of filter threads of up to 25 were ex-

plored, well above the total number of threads that could be used in parallel exclusively for filter pipe-

line simulation on the used six-core Hyper Threading system. In this regime, several threads would

compete for the use of different cores. These simulations were run for a sampling frequency of

1024Hz and 1024 channels to get a lower bound estimate of MRLR and an upper bound estimate of

latency and CPU load (Figure 19 B, D, F). While the performance of Waitevent and Wait1 increased fur-

ther, MRLR of Wait0 decreased when the number of threads was greater or equal to 15 and simula-

tions stalled when 25 threads were used. Polling performance decreased for more than 10 threads

and simulations stalled for 15, 20 and 25 threads (Figure 19 B, D, F). CPU load of Polling and Wait0

strategies increased linearly with the number of threads until for 10 and more threads where the

maximum CPU load was observed. For the Waitevent and Wait1 strategies CPU load remained at its low

level of below 200%, even for up to 25 threads (Figure 19 E, F). Therefore, for 10 and more threads

performance of the system may be influenced by the insufficient processing resources.

65

Results

7.1.1 Stalls of the Filter Pipeline

If the processing of one decoding step exceeds the amount of time available during two consecutive

decoding steps, data will accumulate at the input ports of the filter pipeline and therefore the system

will eventually be delayed increasingly and run out of memory. Here this incident was called a stall (cf.

Section 6.3.3). It was investigated under which circumstances a stall could occur when the application

required the complete translation of the neuronal signals to control signals (i.e., feature extraction

and decoding) to be performed every 32ms. Such a decoding rate was typical for continuous control

BCI applications and let the BCI user experience a smooth and virtually instantaneous control. For

each number of channels and sampling frequency ten simulations were run. It was assumed that a

certain combination of number of channels and sampling frequency can be handled if no stalls were

detected in all ten repetitions. For all tested sampling frequencies and for all tested numbers of chan-

Figure 19: Performance of the filter pipeline

Performance of the filter pipeline implementing the short-time Fourier transform algorithm for different waiting strate-
gies and different numbers of threads. Lines show median of latencies (A, B), median of relative latency reduction (C, D)
and median CPU load (E, F). The latencies, MRLR and CPU load of the waiting strategies Polling and Wait0 are very
similar so that their graphs mostly coincide. Error bars show the 25% and 75% percentiles. Panels on the left (A, C, E)
show results for simulations with 256Hz and 256 channels while panels on the right (B, D, F) show results for simulations
with 1024Hz and 1024 channels. In addition, panels B, D and F (simulations with 1024Hz and 1024 channels) show
median latencies, MRLR and CPU load for 10, 15, 20 and 25 threads. For high numbers of threads a diamond symbol
indicates that at least one out of ten simulations stalled when the corresponding waiting strategy was used. Figure from
Fischer et al. (2014).

66

Results

nels the Fourier transform algorithm could be handled by only one thread. Due to the computationally

more demanding Savitzky-Golay filter algorithm, implemented as a forward and inverse FFT, the

Savitzky-Golay filter resulted in stalls for various parameter settings (Figure 20). Stalls already oc-

curred for moderate sampling frequencies and for realistic numbers of channels if only one thread

was used. However, by increasing the number of threads, independent substream parallelization al-

lowed to handle an increasing number of channels and higher sampling rates without stalls.

7.1.2 Performance of Classification/Regression Algorithms

Latencies were measured for filter pipelines that implemented either one DOF regression (LF, KF and

SVR) or binary classification (LDA and SVM) algorithms (cf. Section 6.3.4.2 for details). Measurements

were made for different numbers of features while the sampling frequency was fixed at 1024Hz. The

Waitevent filter implementation was used for all of these simulations since it provided a good compro-

mise between performance (latency reduction) and efficient CPU usage (cf. Section 7.1).

The latencies of the LF and the LDA algorithms stayed below 0.1ms for up to 1024 features, increasing

slowly with the number of features (cf. Figure 21 A, B) with a linear model fitting the latencies well.

The computation time of LF and LDA decoders was negligible compared to the short-time Fourier

transform feature extraction (which required a computation time of more than 15ms with 1 thread,

1024Hz sampling frequency and 1024 channels) with the used test system. The measured latencies of

SVR increased linearly with the number of features and with the number of support vectors (Figure

21D, E). The measured latencies of SVM were almost identical to the latencies of SVR (Supplementary

Figure iv).The latency values for SVM and SVR (Figure 21 D, E, F) were below 4ms for all tested values

of the number of features (up to 1024) and support vectors (up to 1000), far below the time needed

Figure 20: Stalls for a filter pipeline

Stalls for a filter pipeline implementing the Savitzky-Golay algorithm and using the Waitevent waiting strategy, shown

for different channel number/sampling frequency combinations and different numbers of threads (1 to 9). A black

square indicates combinations for which at least one out of ten simulations stalled, while a white square stands for no

stalls. Numbers in black squares indicate how many stalls out of ten simulations occurred. Figure from (Fischer et al.,

2014).

67

Results

for feature extraction. In summary, the parallelization of LF, LDA, SVM and SVR was not required, at

least with the parameters and hardware considered here. In contrast, the computation times of the

KF algorithm reached values similar to the feature extraction for about 200 features (Figure 21 C). For

about 200 features and more the latency of the KF algorithm was within the range of the total time

that was available for the decoding in continuous BCI applications. In such cases, parallelization of the

KF might thus be desirable. Due to the nature of the algorithm, KF could not be parallelized using the

independent substream parallelization suggested here. However, more complex parallelization

schemes of the underlying computations could be employed (e.g., see Santos and Chu, 2003).

To estimate the latencies of the classification/regression algorithms for parameter values (e.g., num-

ber of features or support vectors) beyond the investigated values, the computations that underlie

each algorithm were analyzed and for each algorithm a model was derived that relates the latencies

to the number of features and support vectors (cf. Section 6.3.4.3 for details).

Figure 21: Latencies for classification/regression algorithms

(A) LF, (B) LDA, (C) KF and (D, E and F) SVR. Crosses depict median latencies and error bars show 25% and 75% percen-
tiles. Solid lines show fits of algorithm specific models to the measured values. (D) Latencies for the SVR algorithm as a
function of the number of features for ns = 1, 250, 500, 750 and 1000. (E) Latencies for the SVR algorithm as a function
of the number of support vectors for nf = 32, 256, 512, 768 and 1024. (F) Latencies given by the model of the SVR algo-
rithm as a function of nf and ns. Figure from Fischer et al. (2014).

68

Results

The free model parameters were fitted to the measured latencies (Table 2, Figure 19, Supplementary

Figure iv). These models predicted the maximum number of features that could be handled within a

given maximally allowed time by a tested decoding algorithm running in a single thread. Assuming

that the maximal latency of the overall filter pipeline (feature extraction and decoding) should not

exceed 32ms for a smooth control, 10ms (about one third) were allowed for the decoding algorithm

and the remaining 22ms were allotted for the feature extraction, other computations and as a safe-

guard against stalls. Under these conditions, one can use up to 5.7 ∙ 106, 4.5 ∙ 106 and 286 features for

LF, LDA and KF respectively, and 57625 and 57958 features for SVR and SVM, if 100 support vectors

are used for decoding. This further corroborated the finding that, in most currently realistic scenarios

all decoding algorithms except the Kalman filter did not require parallelization. If the Kalman filter

was used with hundreds of features, parallelization of the KF algorithm would increasingly become

necessary to ensure smooth and instantaneous BCI control.

Summary

Latency and CPU load can be reduced significantly when using an appropriate waiting strategy. The

waiting strategy Waitevent might be the preferred choice for many applications as it combines low

latencies with low CPU usage and robustness against stalls. For realistic parameters the considered

feature extraction algorithm can already be too demanding for an application without using inde-

pendent substream parallelization. All considered decoding algorithms except the Kalman filter did

not require parallelization.

7.2 Closed-Loop BCI Study

The Freiburg BCI Software was deployed in a closed-loop BCI study. Two different configurations

were used for training and brain-control sessions respectively. A configuration consisted of a set of

processing objects and the connections between processing objects. Brain-control configuration

based on the training configuration but was extended by additional filter algorithms for feature ex-

traction and decoding as well as the necessary additional connections. For three subjects a Brainbox

amplifier was used, for the remaining two subjects a Neuvo amplifier was used. Experimenters ex-

changed the Brainbox and Neuvo amplifier processing object according to the amplifier hardware

decoder coefficient Lower CI Value Upper CI

LF a (µs) 44.22 44.26 44.30
 b (µs/feature) 0.00376 0.00382 0.00388

LDA a (µs) 44.92 44.96 45.01
 b (µs/feature) 0.00478 0.00484 0.00490

KF a (µs) 236.82 238.74 240.66
 b (µs/feature) 0.0009230 0.009231 0.0009233

SVR a (µs) 12.03 12.36 12.69
 b (µs/feature) 0.0038148 0.0038156 0.0038165

SVM a (µs) 12.66 12.98 13.31
 b (µs/feature) 0.0037928 0.0037936 0.0037945

Table 2: Parameters of latency models for decoding algorithms

Fitted parameter values of the models describing the latencies of different classification/regression algorithms together
with their lower and upper 5% confidence interval (CI) bounds. Table from Fischer et al. (2014).

69

Results

that was actually used. For both configurations ECoG measurements were recorded to hard disk for

later offline analysis.

Training session configuration is shown in Figure 22 A. A joystick reader read subject wrist move-

ments which were then discretized and sent to the paradigm model. There were two screens, one for

the subject and one for the experimenter. Two paradigm views, one for the subject and one with

additional information for the experimenter (i.e., in experimenter mode) displayed the paradigm

model on screen.

Feedback session configuration (Figure 22 B) was based on the training session configuration but

added a filter pipeline for closed-loop decoding. Measurements were preprocessed by a common

average algorithm. As the Neuvo amplifier did not have a high pass filter, in contrast to Brainbox

amplifier, an additional running average algorithm removed offsets when measuring with a Neuvo

amplifier. The wrist position was decoded from preprocessed measurements and forwarded to the

paradigm model. The paradigm model also used discretized joystick positions, but only to detect

erroneous trials (i.e., if actual movement deviated from instructed movement). Over the paradigm

model’s output port, a backward connection to the decoding algorithm triggered decoding after

movement phase.

Training and feedback configurations included connections where two data streams converged into

one processing object, one data stream was distributed to two processing objects and one backward

connection (Figure 22 B; from paradigm model to decoder). This confirmed in practice that the do-

main model can map different experimental settings by exchanging, adding and removing processing

objects and the connections between them. It furthermore corroborated the assumption that the

domain model was general enough to map a wide range of experimental settings.

Summary

Significant online decoding of movement direction was achieved in four out of five subjects with an

75% average of correct trials (Milekovic et al., 2012). Seen as an acceptance test, this successful de-

Figure 22: Configurations for closed-loop BCI study

Black arrows denote connectors between output ports (circles) and input ports (circles with rectangular ending). Type
of data which is being transferred by a connector is written besides it. A: configuration for training sessions. B: configu-
ration for brain-control sessions.

70

Results

ployment of the software in a closed-loop BCI study demonstrated the flexibility of the proposed

software architecture as well as the closed-loop capability of the Freiburg BCI Software in its entirety.

7.3 Preclinical in vivo Animal Study

7.3.1 Acute Setting

The goal of the acute setting was to compare the measurement functionality of the Braincon implant to

an established ECoG amplifier. Therefore two sheep (A1 and A2) were implanted with an experi-

mental setup that allowed ECoG recording with different amplifiers but from the same brain area (cf.

Section 6.5.2).

Both amplifiers (i.e., Braincon implant and gUSBamp) recorded measurements from A1 and A2 at rest

condition. During rest condition no electrical stimulation was applied. Figure 23 shows one second of

exemplary measurements from these recordings in the time domain. All measurements were from the

same electrode grid using the same physical electrode contact (channel 9 in Figure 18 A and channel 1

in Figure 18 B, respectively). Regarding amplitude fidelity all recordings were similar. The signals

recorded with Braincon looked rougher, because an artifact overlaid the recorded signal. The artifact

was caused by the transmission of data from the implant to the external unit: a block of data was sent

every ten milliseconds which consumes additional energy. As the energy was transmitted in a constant

manner, supply voltage of the implant dropped and caused a bias with a periodicity of 100Hz in the

measured values. Therefore this effect was termed '100Hz artifact'. In addition, a lead fracture oc-

curred in one measurement channel of the implant (channel 11 in A1, channel 3 in A2), this channel

was therefore excluded from this analysis.

For the Braincon implant, the mean power spectral densities (PSD) over 100s of recordings at rest

condition were calculated for each channel. For each acute implantation, the PSDs of all single chan-

nels recorded by Braincon were similar and the same was true for the gUSBamp amplifier, see Sup-

Figure 23: Exemplary ECoG measurements

Measurements recorded by gUSBamp and Braincon implant in acute sheep A1 and A2. Figure from Kohler and Fischer.

71

Results

plementary Figure v. It is therefore sufficient to report only the mean PSDs over all channels. For both

sheep A1 and A2, Braincon's mean PSDs were similar with a decrease of power for increasing fre-

quency until ~300Hz when the noise floor was reached (Figure 24). Above 300Hz, Braincon's mean

power stayed roughly constant for A2, but increased for A1. As this increase was only visible in A2

but never in A1 and C1 (cf. Figure 27), this was likely to be a temporary effect (e.g., bad contacts be-

tween electrode and brain). The 100Hz artifact and its harmonics clearly dominated frequency bands

around 100Hz, 200Hz, 300Hz and 400Hz. Braincon’s PSDs were comparable to gUSBamp spectra in

the lower frequencies up to ~200Hz. The gUSBamp reached its noise floor around 400Hz.

The body-external ML180 stimulator applied electrical stimulation to the sheep's nose while either

gUSBamp amplifier or Braincon implant recorded sheep's ECoG. The EPA processing object analyzed

these measurements for somatosensory evoked potentials (SEPs), cf. Section 7.3.1.

Figure 25 shows exemplary median of evoked potentials from A1 when the lower left lip was stimu-

lated with 4mA. The 100Hz artifact and its harmonics were removed with a third order Butterworth

band-stop filter (cut-off frequencies at [f-10Hz, f+10Hz] for f=100Hz, 200Hz, 300Hz and 400Hz). The

amplitudes of the evoked potential varied depending on the channel, whereas channel 16 showed the

most pronounced evoked potential. For each channel the evoked potentials recorded by Braincon and

gUSBamp amplifier were similar in respect to form, amplitude and onset. This similarity was found

for different stimulation sites and also with sheep A2. It was beyond the scope of this work to provide

a neurobiological interpretation for the evoked potentials (e.g., the relation between stimulation pa-

rameters, evoked potentials and brain topology). This aspect is provided by Gierthmuehlen et al.

(2014).

Figure 24: Mean power spectral density over all channels

Mean power spectral density of gUSBamp and Braincon for acute sheep A1 and A2. Power spectral densities were calcu-

lated from 100 seconds of recordings while sheep were anesthetized. For the Braincon implant, one channel was exclud-

ed due to lead fracture, therefore mean was calculated over 15 channels. For gUSBamp, mean was calculated over 16

channels. Figure from Kohler and Fischer.

72

Results

To sum up the results, the recorded signals from Braincon and the gUSBamp were similar in time- and

frequency-domain for both acute sheep for up to 200Hz. However, the 100Hz artifact dominated the

frequency bands around 100Hz and its harmonics. The recorded SEPs were similar regarding form and

amplitude for different stimulation sites and for both sheep. This provided strong evidence for the

assumption that the measurements yielded by the Braincon implant were technically comparable to a

commercially available, non-implantable amplifier. This was a necessary pre-requisite for the interpre-

tation of the signals recorded from Braincon in the chronic setting.

7.3.2 Chronic Setting

One sheep (C1) was chronically implanted to technically assess Braincon's measurement and stimula-

tion functionality in the chronic setting.

C1 was anesthetized for multiple measurement sessions at days 29, 114, 281 and 308 after implanta-

tion. The positions of implant and electrode grid were verified by x-ray at days 0, 114 and 308 after

implantation. At day 308, x-ray showed a dislocation and folding of the electrode grid. Temperature

within implant housing was monitored by the built-in temperature sensor and was mostly within the

typical range for sheep body temperature (Lorenz, 2006). Only during measurements under anesthesia,

temperature was higher due to the permanent operation of the implant during this session. However,

temperature was always below the limit of 2K above average body temperature as required by EN

45502-1 (European Committee for Electrotechnical Standardization, 1997). Humidity within the im-

plant housing was very low (i.e., below detection threshold) until day 281. Negative humidity values

Figure 25: Evoked potentials from acute sheep A1

Stimulation site was at the lower lip with 4mA, stimulation pulse occurred at t = 0. Red line shows median over 350

stimulation events for gUSBamp, blue line shows median over 350 stimulation events for Braincon implant. Light red

and light blue areas show interquartile range for gUSBamp and Braincon, respectively. Subplot position corresponds to

the electrode contact position in the electrode grid, cf. Figure 18 A. Figure from Kohler and Fischer.

73

Results

were attributable to the sensor’s measurement tolerance in this range (i.e., ±2 %). Then humidity in-

creased rapidly. The implant stopped transmission after 316 days, probably due to humidity (Figure 26

A). Explantation revealed that a cyst has grown between electrode grid and brain surface. Computer

tomography analysis of implant housing after explantation revealed two drawbacks of the sealing and

assembly process (Figure 26 B). During this process, first a rectangular metal frame is soldered onto

the implant’s base and then a ceramic lid is soldered onto the top of the metal frame, cf. Figure 6.

Please see Kohler et al. for details about this process. Reduced surface areas of the screen-printed

frames on top of the implant’s base (Figure 26 B (1)) as well as voids within the solder bulk (Figure 26

B (2)) were identified. Especially the first defect easily leads to possible moisture pathways which

could cause eventual implant failure.

Figure 27 shows the mean PSDs over all channels for C1 from the measurements in rest condition at

29, 114, 281 and 308 days after implantation. Mean PSDs from acute setting are shown in gray for

comparison. Five channels yielded no signal, probably due to lead fracture, and were thus excluded

from further analysis. Compared to acute PSDs from A1 and A2 (gray lines), the power in the chronic

spectra was lower but constant up to 114 days for all frequencies (blue lines). Power for frequencies

below 100Hz decreased to a minimum at 281 days and increased again at 308 days (green lines).

Noise floor was reached at ~300Hz on days 29, 114, 308. However, on day 281 the noise floor was

already reached at ~100Hz. As humidity was at day 281 still below any critical threshold with

1.52%rh, an electronics malfunction could be excluded. Therefore possible causes for these differ-

ences between the first and the last two measurements could be the growing of the cyst between elec-

trode grid and brain surface or the folding of the electrode grid.

Figure 26: Humidity over time and µCT of Braincon implant housing

A: Humidity values measured within C1 implant housing over time after implantation. Green dots mark measurements

under anesthesia, black crosses indicate measurements while C1 was awake. Black line is linear interpolation between

measurements. Orange line at 7.7%rh, corresponding to 5500ppm water, marks critical threshold where water could

condensate within the housing (Jiang and Zhou, 2010). Red line at 26.1%rh, corresponding to 17000ppm, marks critical

threshold for ongoing corrosion mechanisms between metal tracks (Thomas, 1976). For calculation of both thresholds,

average sheep body temperature of 39.5°C was assumed (Lorenz, 2006). B: The top image shows the transition between

the soldered ribbon and the screen-printed metal frame on the lid. The bottom image illustrates the transition between

base and ribbon. Defective sites are distinguished between layer delamination (1) and voids (2) within the material.

Figure from Kohler and Fischer.

74

Results

As in the acute setting, different facial areas of C1 were stimulated with the body-external ML180

stimulator. Stimulation current varied between 2mA, 4mA and 8mA. The Braincon implant together

with the Freiburg BCI Software measured and analyzed the resulting SEPs. As expected, and con-

sistent with the experiences from the acute setting, not all channels responded equally well to stimula-

tion (i.e., not all channels exhibited SEPs). Figure 28 exemplarily shows median SEPs recorded on day

29 at channels 7 and 11. These channels exhibited SEPs when the sheep's lower or upper lips were

stimulated. As in the previous analysis (cf. Section 7.3.1), the 100Hz artifact and its harmonics were

removed. For both channels and both stimulation sites, amplitudes of SEPs increased with increasing

stimulation currents. However, channel 7 showed higher SEP amplitudes for upper lip stimulation than

for lower lip stimulation. Channel 11 exhibited an opposite behavior. The two channels considered

here were located adjacent on the foil electrode. This demonstrated that Braincon could record with a

spatial resolution of 4mm, the center-to-center distance of the electrode contacts used in this study.

To assess the stimulation functionality of Braincon, the implant applied voltage stimulation to each

channel. Stimulation waveform was a rectangular pulse with a pulse width of 1ms with 5Hz repetition

frequency. Amplitude was either 1V, 4V, 7V, 10V and 13V. All measurement channels showed a re-

sponse to stimulation. This observation was expected because the measurement range of the implant

was in the range of millivolts and the stimulation amplitudes were three orders of magnitude higher.

Figure 29 shows three exemplary responses from a measurement under anesthesia at day 281. There

were always sharp peaks at the time t = 0, most likely caused by the 1ms stimulation pulse, but after

this peak, the form of the response varied for each measurement channel (Figure 29 A-C). A removal

of the 100Hz artifact was not done for this figure because this would also remove necessary frequency

components from these sharp peaks and thus falsify their form too much. For some channels the re-

sponse amplitude scaled with the stimulation response (e.g., Figure 29 A). For other channels the re-

sponse amplitudes first increased, then decreased (e.g., Figure 29 C). Taking into account that signal

quality at day 281 was the worst compared to other recording sessions (cf. Figure 27) and that the foil

Figure 27: Mean power spectral densities for C1 at different times after implantation

Blue and green lines show mean PSDs from C1 measured at different times after implantation (29days, 114 days, 281

days and 308 day). Gray lines depict mean PSDs of Braincon from A1 and A2. For each PSD, N denotes the number of

channels used for calculation of mean. Figure from Kohler and Fischer.

75

Results

electrode was dislocated, it is likely that the measured responses were volume conduction effects. Still,

these results demonstrated that Braincon could, from technical perspective, perform in vivo stimula-

tion.

Summary

This study confirmed the Braincon implant's in vivo technical measurement capability for up to 316

days and provided an upper bound estimation on the minimal spatial resolution achievable with

Braincon. First evidence was provided that Braincon can perform in vivo stimulation. In addition, the

proposed software architecture was successfully applied to a study involving brain mapping, providing

more evidence in favor of the claim that the proposed architecture is applicable to a wide range of BCI

applications.

Figure 28: SEPs from C1 for different stimulation sites and intensities

Examples of SEPs from two adjacent measurement channels (channels 7 and 11, cf. Figure 18 C). Each subplot shows

the stimulation response measured on one channel for one stimulation intensity. Stimulation intensity varied between

2mA, 4mA and 8mA. Blue line is median SEP response over 360 trials when stimulation is applied to the sheep's lower

lip. Light blue area mark the 25 and 75 percentile. Similary, green lines shows median SEP and percentiles for upper lip

stimulation. Figure from Kohler and Fischer.

76

Results

Figure 29 Exemplary responses to stimulation with Braincon implant

Each subplot shows responses to stimulations with varying amplitudes (0V, 1V, 4V, 7V, 10V and 13V). Stimulation

occurred at time t = 0. A: Responses from measurement channel 4 while stimulating on stimulation channel 8. B: Re-

sponses from measurement channel 5 while stimulating on stimulation channel 1. C: Responses from measurement

channel 1 while stimulating on stimulation channel 8. Figure from Kohler and Fischer.

77

Discussion

8 Discussion

8.1 Platform Software from the Regulatory Perspective
Braincon is a platform system for closed-loop measurement and electrical stimulation of brain areas

intended for chronic implantation in human patients. The AIMD defines a medical device, in essence,

as a device for the purpose of diagnosis, treatment or alleviation of disease, injury or handicap

(Council of the European Community, 1990; Article 1(2) a in the latest version from 2007). According

to this definition, the Braincon Platform is not a medical device, because there is no specific medical

indication to treat, diagnose or alleviate a disease, injury or handicap defined for it. In addition, the

risk management according to EN ISO 14971 requires the medical indication and intended use as

input for risk analysis (European Committee for Electrotechnical Standardization, 2012a, clause 4.2).

The development of the platform in compliance with the regulatory requirements of medical device

development can therefore not be done completely. However, risk management and usability stud-

ies can be done for use cases which all potential medical indications of Braincon have in common:

implantation, measurement, stimulation, impedance measurement and explantation. Consider now

the case that the Braincon Platform should be used for a new specific medical indication. From the

regulatory perspective, one has to start a completely new development of a medical device. But in

practice, most of the existing development documentation, especially risk management and usability

studies, can probably be re-used. However, a gap analysis has to be conducted to check if identified

risks, risk control measures and use cases still adequately cover this specific medical indication as

well as to identify not yet considered risks and use cases. This should accelerate the development

process and reduce development time and effort to commence a clinical study, but the acceleration

depends on how much can be re-used from the Braincon Platform. As the functionality of the implant

hardware is rather generic (i.e., measure ECoG signals and perform cortical stimulation) the adapta-

tion of the Braincon Platform to different medical indications will most likely involve mainly changes

to the Braincon Platform Software. This further corroborates the necessity of the Braincon Platform

Software for a modular software architecture with a general domain model.

The way for a BCI system towards certification of as a medical device is usually divided in three phas-

es: In the research phase a proof-of-concept is developed (e.g., in an animal model or non-invasively

with healthy subjects in a setting comparable to the aspired clinical setting). In the second phase the

AIMD allows patient-specific studies with a ‘custom-made device’ designed specifically for one par-

ticular patient. The third phase consists of one or more clinical studies with multiple patients to as-

sess the BCI's efficacy and safety in a systematic manner. Using the Braincon Platform Software al-

ready in the research phase offers several advantages: one can re-use existing and already extensive-

ly tested components, yielding reliable results. Results from early preclinical experiments are also

better comparable to later results, as same the software was used. Using the same software reduces

the programmer's effort and learning curve for switching from a non-medical software to a medical

software. When progressing from research study over patient-specific study to clinical study, the

experimental paradigm and thus the finally needed software components become clearer so that the

used non-medical components can be subsequently replaced with medical components. Waiting

times due to development of medical software are less likely, as the transition from non-medical to

full medical software can be performed smoothly over time.

However, there is one caveat when mixing non-medical and medical components. As the whole

software development has to be conducted according to the AIMD's requirements (Council of the

78

Discussion

European Community, 1990 Annex 1 Article 9; in the latest revision from 2007), a BCI platform con-

figured to use medical and non-medical components cannot be certified. A similar situation occurs on

the level of source code: if non-medical source code is incorporated into a medical source code base

in an untraceable manner, one cannot verify that the whole software was developed according to

the AIMD's requirements. Therefore, when using the Braincon Platform Software for a 'soft

transition' towards medical software, it is crucial to establish an effective segregation between medi-

cal and non-medical source. In addition, the effectiveness of this segregation has to be argued to the

certifying notified body. One possible solution could be to encapsulate all medical and non-medical

components in plug-ins which can be loaded at runtime dynamically. On the Windows operating sys-

tem, each plug-in would reside in a separate dynamic loadable library (DLL). A plug-in within a DLL

does not require linkage to the main application at compile time and therefore the plug-in's source

code can be kept completely separated from the medical source code of the main application (e.g., in

different source code repositories) and thus provides a plausible segregation between non-medical

and medical source code. The Braincon Platform Software uses such a plug-in loading mechanism.

One further improvement could be to implement facilities to reliably distinguish medical and non-

medical plug-ins, to protect against accidental loading of non-medical plug-ins (e.g., by using crypto-

graphic signatures). In summary, the Braincon Software Platform with its modular plug-in loading

facility supports a smooth transition from the research phase to the clinical phase.

8.2 Filter Pipeline

In this thesis, a software architecture for BCI applications was presented and its performance evalu-

ated. The modular design of the proposed architecture makes it easy to parallelize typical processing

steps of BCI applications by making use of multi-core computer processors and multi-processor con-

figurations, which are nowadays available inside standard desktop and laptop computers. The pro-

posed domain model makes the integration of any type of processing algorithm simple. Algorithms

are housed inside a filter implementation, general and reusable elements of the architecture that

enable immediate use of the parallelized data processing. It was shown that, by using the proposed

software architecture, it is simple to parallelize many time-consuming parts of the neuronal data pro-

cessing in typical BCI applications. Results demonstrate that using multiple threads in BCI signal pro-

cessing leads to a substantial reduction of computing time required for one decoding step, further

corroborating the findings of Wilson and Williams, 2009. Wilson et al. evaluated the effects of multi-

threading on computation time for two feature extraction algorithms, in one case using independent

substream parallelization. Here, different implementations of multi-threading for BCI systems were

examined (i.e., different waiting strategies) and it was shown that the choice of the waiting strategy

is crucial for CPU load and latency reduction. This reduction in latency determines how fast a BCI re-

acts to the user’s input which can directly affect the BCI performance: lower latencies can lead to

improved performance while higher latencies can lead to deterioration of performance (Cunningham

et al., 2011). In addition, BCI users may experience a control latency themselves which might reduce

their motivation and convenience. In contrast, the experience of a quickly responsive, smooth control

may motivate users. Moreover, by reducing the latency, the remaining time allotted for one pro-

cessing step can be used to process recordings from additional channels, more signal features, signals

recorded at higher sampling frequencies and to decode using computationally more complex algo-

rithms. All of these possibilities can lead to an improvement in performance (Bansal et al., 2012;

Milekovic et al., 2013) and might therefore substantially increase the user’s convenience with the BCI

system. The findings presented here also show that for a realistic number of channels and a realistic

79

Discussion

sampling frequency the BCI signal processing task can already be too demanding for a standard desk-

top computer if no parallelization is used. Hence, without parallelization the delay of the BCI feedback

would need to be increased, resulting in a less smooth and delayed control.

By using the proposed software architecture, one can easily split the time consuming parts of the

processing into separate threads: This is particularly straightforward for feature extraction algo-

rithms, which can often be applied to each channel independently (e.g., low-/band-/high-pass filter,

Fourier transform). In this case, each channel or different groups of channels could be contained in

separate filters and run in separate threads. The results presented here show that among all waiting

strategies Polling and Wait0 provide the best overall scaling of latency reduction with increasing

number of threads. However, these two waiting strategies result in the highest CPU load, leaving

fewer computational resources for additional applications to run in parallel. Moreover, the number of

threads has to be chosen carefully for these strategies as the BCI application can stall if the number of

threads exceeds the number of available cores. In contrast, the waiting strategy Waitevent does not

stall and performance still increases even if the number of threads is higher than the number of cores.

Therefore, fine tuning of the number of threads to the hardware specifications of the computing sys-

tem is not necessary for Waitevent (at least for up to twice the number of threads in relation to the

number of cores). In addition, Waitevent achieves the highest latency reduction among all waiting

strategies. While the scaling of the latency with numbers of threads is slightly worse compared to

Polling and Wait0 this maximal latency reduction can be obtained by using more threads than cores. A

further advantage of Waitevent is that the CPU load remains low even if high numbers of threads are

used. The waiting strategy Waitevent might therefore be the preferred choice for many applications as

it combines low latencies with low CPU usage and robustness against stalls.

In this thesis, BCI performance was improved by applying different waiting strategies to multi-

threaded neuronal signal processing and decoding. The proposed software architecture is also useful

for improving BCI performance as follows. (1) For multi-DOF regression multiple LFs and SVRs can be

used. This increases the computation time approximately by a factor of the number of DOFs. Howev-

er, as the computations of these separate LFs and SVRs are independent for each dimension, they can

be parallelized in a straightforward way by using the proposed independent substream parallelization

with each thread computing the LF/SVR for one dimension. Similarly, multi-class classification with C

classes using SVM can be handled by C independent one-vs.-rest SVMs or by C ∙ (C − 1) / 2 pairwise

SVMs which are independent as well. Multi-class LDA requires the computation of C − 1 decision func-

tions, all of which can be calculated independently. Therefore, LF and SVM algorithms can also be

efficiently parallelized using the proposed software architecture. (2) A boosting approach (Hastie et

al., 2009) where many eventually weak decoders are combined into one stronger decoder promises to

be suitable for BCI scenarios with noisy signals. As the individual decoders process the signals inde-

pendently, the boosting approach can also be parallelized directly with the software architecture pro-

posed here. (3) Another scenario might be an adaptive decoder (e.g., Shpigelman et al., 2009) where

time-consuming adaptation operations are run in one or more background threads in addition to the

thread running the decoder. (4) Neuronal signal decoding can also be temporally independent (i.e.,

separate and independent computations have to applied to the signals at different points in time) and

these computations could be carried out by separate threads, see Wilson and Williams (2009).

It is possible to further parallelize the BCI application beyond the parallelization approaches present-

ed here. For example, the processing on the level of the algorithm itself could be parallelized (e.g., by

80

Discussion

using OpenMP (2014)). Such approaches are more complex than the solutions proposed here and

require custom made solutions for each filter. Further optimization could also be achieved by inte-

grating computations on graphics processing units into the proposed software architecture which

provide fast and optimized algorithms for matrix and vector operations (Wilson and Williams, 2009).

Some algorithms, for example the Kalman filter, cannot benefit directly from independent substream

parallelization as their most time-consuming computations are not independent from the substream.

For these algorithms, custom solutions have to be implemented, such as using parallelized code for

the required matrix/vector operations (e.g., Cholesky factorization as described by Santos and Chu

(2003)).

8.3 Distributed System

The aforementioned approaches for parallelization all involved parallelization within one process.

One can also use multiple processes for parallelization, as for example BCI2000, the Berlin BCI and

BCI++ do (Schalk et al., 2004; Krepki et al., 2003; Perego et al., 2009). Transferring data between two

processes or two computers requires additional complexity and development effort. Prior to sending

data to the other process, all transferred data has to be serialized and after transfer, received data

has to be deserialized. It might even be necessary to account for different binary data formats be-

tween two computers (e.g., little and big endian data format). Also, the transfer could introduce a

latency jitter, especially when using transfer over network, which might be difficult to control. But

splitting a BCI among multiple computers also has its benefits. One can increase the available compu-

tational power with additional computers9. Threads within one process share the same memory

range, making it possible that one thread accidently modifies memory used by another thread (e.g.,

due to a programming error). In contrast to threads, different processes use different memory rang-

es, so that accidental modification of memory is prevented by the operating system. Consider a med-

ical software system consisting of software items from all safety classes (A, B and C; see EN 62304,

European Committee for Electrotechnical Standardization, 2006). This software system would have

the maximum safety class of all its constituent software items (i.e., safety class C). One would have to

apply more of the laborious development and testing processes required for safety class C during

implementation of all software items. Alternatively, one could split this software system into two

systems, one system with safety class C items and one for the remaining class A and B items, each

running on different computers. This would reduce the required development effort because from

the regulatory and risk management perspective, this division is an effective segregation (EN 62304

Clause 5.3.5, European Committee for Electrotechnical Standardization, 2006) of software systems:

there is no sharing of resources (CPU, memory) between them. The Braincon Platform Software

could be leveraged to a multi-process application, if a processing object was added that serialized

outgoing IData objects and transmitted them to another computer running another instance of the

Braincon Platform software or even another software system (e.g., over network). Similarly, incom-

ing data would be deserialized into IData objects for further processing.

8.4 Soft Real-Time versus Hard Real-Time
A software with hard real-time capability guarantees to respond within a certain time limit. In con-

trast to this, soft real-time software guarantees only to respond in the mean within a certain time

limit (Kopetz, 2011). Closed-loop BCI software is clearly subject to real-time requirements. However,

9
 However, the communication overhead will increase with each additional computer. This makes adding more

computers unfeasible at some point.

81

Discussion

whether soft or hard real-time is required and the time limit depends on the concrete use case.

There was the question whether the Braincon Platform Software should provide hard real-time ca-

pabilities. As it was intended as a platform software, no specific use case could be used for deriving

real-time requirements. Instead, comparable BCI platform software systems were examined with

respect to their real-time capabilities as guidance for this decision. BCI2000, the Berlin BCI and

OpenVibe are capable of soft real-time, whereas BioSig provides hard real-time capabilities (Schalk et

al., 2004; Krepki et al., 2003; Renard et al., 2010; Schlögl et al., 2007). The NeuroRighter platform for

closed-loop experiments on the level of single neurons provides only soft real-time, which according

to Newman et al. (2013), is sufficient for most of the authors' closed-loop experiment. In contrast,

the system by Müller et al. (2013) is also intended for closed-loop experiments with single neurons

but is designed for hard real-time capabilities in the sub-millisecond range. To summarize, from the

application perspective, three out of four of the BCI platforms (BCI2000, OpenVibe, Berlin BCI) which

are most similar to the Braincon Platform Software are designed for soft real-time. If recordings on

the level of neurons were involved, hard real-time requirements were encountered more often, but

were still not always required.

The BCI platforms considered previously were not intended as medical devices (i.e., for human pa-

tients). But for the Braincon Platform Software, safety considerations had to be taken into account

when deciding on its real-time capability. It would clearly be beneficial for safety if one could imple-

ment safety-critical functionality with a hard real-time guarantee. Two safety-related features, F1

and F2, were identified as possible sources of hard real-time requirements: (F1) to guarantee that

stimulation was started or stopped within a certain time limit and (F2) to guarantee that the nursing

staff would be informed within a certain time limit that the patient needs assistance. It would be

technically feasible to add a third-party library for enhancing the Braincon Platform Software with

hard real-time capabilities (e.g., Kithara RealTime SuiteTM (Kithara Software GmbH, Berlin, Germa-

ny)). But the regulatory consequences of adding safety-critical features like the two outlined above

would be the following: the software safety class of the software item for F1 is determined by the

harm that could be caused if the software item malfunctioned. As one can never completely exclude

a programming error, one cannot completely exclude that the software item fails to stop stimulation

which results, in the worst case, in unwanted stimulation causing the patient's death. Therefore, this

software item would have software safety class C. Similarly, the software item for F2 would have

safety class C because one cannot exclude the case that the call for assistance fails. As a conse-

quence, the whole software system and all its constituent software items, would have to be devel-

oped according to the laborious development requirements for safety class C. Therefore the decision

was made to exclude such safety-critical features from the Braincon Platform Software. As electrical

stimulation was an essential part of the Braincon system, at least F1 had to be addressed. Therefore

F1 was realized as part of the firmware with a dead man switch that turns off stimulation automati-

cally when no more stimulation commands are sent by the Braincon Platform Software, see Section

6.5.1 for details. The implant’s firmware has safety class C and is considerably smaller than the

Braincon Platform Software. Therefore less validation effort was needed and the firmware can give

real-time guarantees (e.g., by using interrupts). This design decision has one important consequence:

in the case of a malfunction (e.g., connection between PC and implant is interrupted) the implant

stops stimulation. This in turn restricts the medical indications for Braincon to indications where

stimulation is not used for life-sustaining treatments.

82

Discussion

Real-time capabilities also played a decisive role when choosing the programming language of the

Braincon Platform Software. Managed languages (e.g., Java or C#) have excellent tool support for

development and testing and come with an extensive standard library. They are therefore very ap-

pealing for the development of medical software. But these managed languages also have a garbage

collector (Domani et al., 2000). Garbage collection could hamper the soft real-time capabilities by

infrequent freezes of the whole application, namely every time a garbage collection is executed. This

resulted in additional temporal jitter (Azatchi et al., 2003), even in the case where most of the gar-

bage collection is done concurrently in the background. Therefore the decision was made to use C++

because there memory management could be fully controlled by the programmer.

To summarize, hard real-time capabilities for Braincon Platform Software were technically realizable.

However, hard real-time was not implemented because from the application perspective, soft real-

time capabilities were sufficient so far and from safety perspective it is more feasible to implement

hard real-time safety features in a separate software system.

8.5 On-Implant- versus Body-External Signal Processing
The key element that makes a chronic implantable closed-loop BCI system a platform is its signal

processing capability. The more different algorithms are provided, the more applications can be han-

dled by the platform. Therefore, it is important where signal processing is actually implemented:

either on the implant or not. If signal processing is located on the implant, there is clearly the ad-

vantage that processing is faster because the latencies involved with sending the data to an external

processing device do not occur. One can probably give hard real-time guarantees, because it is likely

that processing will be done on a microcontroller without operating system. However, all functionali-

ty implemented inside the implant is subject to size and energy constraints. The algorithms imple-

mented on a microcontroller are limited by its small computational performance, compared to con-

ventional PCs. Adding signal processing to the implant increases its energy consumption which in

turn either reduces battery longevity or requires a more powerful percutaneous energy supply. Addi-

tionally, the heat generated by the implant increases. The issue of size and energy consumption can

be alleviated by using ASICs for the most demanding algorithms regarding computational complexity

and/or energy consumption, see Avestruz et al. (2008) for an example. However, the algorithms im-

plemented in ASICs are less flexible than their software equivalents. In addition, the more algorithms

are ‘rendered into hardware’, the more testing effort has to be invested for verification of the ASICs.

If signal processing is located outside the implant (e.g., on a body-external device like a PC, laptop or

embedded system), size and energy constraints are more relaxed for both the body-external device

and the implant. The implant’s functionality would be reduced to only measurement and stimulation.

Removing signal processing capabilities from an implant could free up space, therefore the implant

could either be smaller or use the free space for additional measurement and/or stimulation chan-

nels. On body-external devices, especially on PCs, computationally more demanding algorithms can

be used. One can use classic BCI platform software with a large built-in library of algorithms (e.g.,

BCI2000 or OpenVibe). To the best knowledge of the author, there is currently no BCI platform

known which provides such a library of algorithms for firmware. The system could profit from ad-

vances in computer technology (e.g., faster CPUs or more memory) by upgrading the body-external

device without the need to exchange or modify the implant. Finally, the learning effort when pro-

gramming and testing algorithms for classic BCI platforms is likely to be smaller, compared to pro-

83

Discussion

gramming firmware, because the algorithms are often written in C++, Matlab or Python, where am-

ple documentation and testing tools are available.

The NI system from Rouse et al. (2011) is an example for a BCI platform with on-implant signal pro-

cessing. They based their implant on a cardiac pacemaker and added measurement and signal pro-

cessing. The firmware of this implant can be flashed, even when already implanted and thus new

algorithms for signal processing can be set, making the NI system suitable for multiple BCI applica-

tions and has thus to be considered a BCI platform. Deriving the system from a certified medical de-

vice is also an auspicious approach because much of the development effort (e.g., for hermetic hous-

ing, manufacturing, bio-compatibility validation etc.) has already been done and much of the re-

quired regulatory documentation has already been created. However, the trade-off for these fea-

tures, compared the Braincon Platform, is a four times smaller number of measurement channels,

fewer stimulation channels and limitations to the signal processing algorithms (Rouse et al., 2011).

It is currently not clear whether to prefer on-implant signal processing or the body-external signal

processing approach. In an early stage of a BCI study, the signal processing algorithms are less clear

and thus a body-external signal processing with its higher flexibility regarding algorithms might be

preferable to on-implant signal processing. In later stages, one can expect that the signal processing

algorithms are better known and therefore an on-implant signal processing approach might be better

suitable. Therefore it is likely that this question has to be decided separately for each BCI study.

8.6 Implant Housing
The built-in humidity sensor reliably delivered implant vitals for every measurement session. As soon

as a humidity increase within the package was observable, the time until failure for the implant could

be predicted. Hence, the humidity sensor concept works reliably as a diagnostic safety measure. Three

reasons for the solder-seal being prone to defects such as illustrated in µCT scans (cf. Figure 26) are

important to mention. Firstly, as the implant housing was assembled from three parts, it possessed two

interfaces which had to be solder-sealed, providing an increased overall volume and more critical spots

for defects. Secondly, the hand-crafted metal ribbon, bent to form the intermediate frame between

screen-printed lid and base, was inherently not perfectly even. It hence left small gaps and crevices

within the stack assembly which needed to be solder-filled. Again, this meant an increased likelihood

for voids. Finally, the utilization of more solder material to form a regular shaped seal demanded in-

creased soldering intervals. As the solder liquidus time was increased, side effects such as leaching

occurred which in turn affected thickfilm adhesion and integrity.

8.7 Future Work

One topic that has to be addressed in future hardware-generations of the Braincon Platform is minia-

turization. Clearly, the current size of the used PC or laptop for running the Braincon Platform Soft-

ware is not optimal for everyday clinics or at home use. This can be alleviated, probably at the cost of

computational power, by using micro-PCs or by porting the Braincon Platform Software to an em-

bedded hardware. The implant size should also be reduced, as the implant size is likely to correlate

with the risk for the patient. Therefore, there will be a transition from the currently used off-the-

shelf electronic component towards ASICs. Such ASICs might also be used on the body-external de-

vice for signal processing (e.g., to provide complex algorithms in a fast and energy-efficient manner)

in the future. However, then additional methods for verification of these ASICs have to be applied

(e.g., by model checking (Miller et al., 2011) or fault injection (Sauer et al., 2011b)). For risk manage-

84

Discussion

ment there are methods for identifying the critical parts of an ASIC (e.g., Sauer et al. (2011a)) that

might be used to derive risk control measures.

One goal of the Braincon Platform is to provide an implant that can be implanted and used, in the

optimal case, for the entire life time of a patient. The EN 62304 requires software developers to take

into account maintenance over the software’s whole life cycle, which can mean up to several dec-

ades for the Braincon Platform Software. During such a time period, one can expect that the manu-

facturers of computer hardware components for the Braincon system will sooner or later cease to

produce these components. Likewise, at some point in time the operating system’s vendor will stop

to maintain it. In the worst case, this would mean a laborious and continuous maintenance effort to

migrate the Braincon Platform Software to future operating systems and hardware platforms. The

issue regarding the computer hardware components could be addressed by building up sufficiently

large stocks of hardware components and operating system licenses. But then one could not profit

from better future hardware. One solution could come from the domain of digital libraries: many

libraries have an increasingly large amount of digital artifacts. Such artifacts encompass plain data,

but also interactive data (e.g., digital art) and executable works (i.e., software) and all have to be kept

accessible virtually forever. Like in the domain of medical software development, migration to no

data formats and hardware platforms is laborious. Suchodoletz et al. (2013, 2012) propose to use

emulation instead of migration: a big syndicate10 with sufficient development resources should pro-

vide and maintain an emulator for future hardware platforms. Then there would be no need for mi-

gration of the digital artifact. The Braincon Platform Software, but also medical software with compa-

rable maintenance requirements, could also use such an emulator to reduce migration effort.

8.8 Summary and Outlook

In this thesis, the Braincon Platform for chronic closed-loop measurement and electrical stimulation

of brain areas in human patients is presented with focus on the Braincon Platform Software. The

software's requirements were derived under the constraint of the juristic and normative regulations

that apply for medical software. A BCI software architecture was defined to meet these require-

ments. The principles used for designing such a BCI software architecture, which satisfies the regula-

tory requirement of testability, but also has the desired performance properties necessary for BCI

research, were given. As part of the architecture, a domain model was implemented which is flexible

enough for a wide range of BCI applications. Its filter pipeline substantially increases the computa-

tional power available for BCI signal processing while reducing latency. The architecture runs on

standard desktop PCs and laptops and makes use of their multi-core/multiprocessor hardware. The

proposed software architecture’s modular design enables BCI researchers to quickly modify, extend

and reuse existing algorithms, as well as to implement new algorithms for neuronal signal processing.

The algorithms immediately benefit from parallelization without requiring the programmer to possess

any knowledge about multi-threaded programming. For the filter pipeline, the effects of waiting

strategies on latency and CPU load were evaluated with respect to latency, CPU usage and different

number of threads on typical feature extraction and decoding algorithms from the BCI domain. Re-

sults show that latency and CPU load can be reduced significantly when using an appropriate waiting

strategy. They also show that for realistic parameters (i.e., number of channels and sampling fre-

10

 To the best of the author’s knowledge, vendors of established virtualization software like VirtualBox
(www.virtualbox.org) or VMWare (www.vmware.com) do not give the necessary guarantees to support old
hardware platforms over decades.

85

Discussion

quency) BCI signal processing can already be too demanding for an application without using multiple

threads. The software architecture was employed in two research studies to show that its domain

model is flexible enough to map different BCI settings but also as acceptance tests for the software

architecture in its entirety. In the first study, wrist movement direction in five human subjects was

decoded in a closed-loop manner. In a second animal study, the Braincon implant's measurement

and stimulation capabilities were evaluated. Results show that measurements are comparable to a

non-implantable, commercially available ECoG amplifier and verified its stimulation functionality in

vivo.

The goal of the Braincon Platform Software is to provide researchers with the software means to

evaluate the safety and efficacy of their BCI approach in research studies and clinical studies with

human patients. This undertaking involves substantial development and testing effort under the re-

gime of medical software development. Future works will have to include finishing the preclinical

phase for one specific medical indication (e.g., stroke rehabilitation or pain therapy) and then con-

ducting a successful clinical study. The author hopes that the Braincon Platform Software will support

researchers in BCI research and thus foster the development of new closed-loop medical treatments.

86

References

9 References
Afshar, P., Khambhati, A., Stanslaski, S.R., Carlson, D., Jensen, R., Linde, D., Dani, S., Lazarewicz, M.,

Cong, P., Giftakis, J., Stypulkowski, P.H. and Denison, T.J. (2013), “A translational platform for pro-

totyping closed-loop neuromodulation systems”, Frontiers in Neural Circuits, Vol. 6, doi

10.3389/fncir.2012.00117.

Alexandrescu, A. (2001), Modern C++ design: Generic programming and design patterns applied, C++

In-Depth Series, Addison-Wesley, Boston, MA.

Allen, J.B. (1977), “Short term spectral analysis, synthesis, and modification by discrete Fourier trans-

form”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 25 No. 3, pp. 235–238,

doi 10.1109/TASSP.1977.1162950.

Amdahl, G.M. (1967), “Validity of the single processor approach to achieving large scale computing

capabilities”, in Proceedings of the April 18-20, 1967, spring joint computer conference, Atlantic

City, New Jersey, USA, April 18-20, 1967, ACM, New York, NY, USA, pp. 483–485, doi

10.1145/1465482.1465560.

Andersen, G., Vestergaard, K., Ingeman-Nielsen, M. and Jensen, T.S. (1995), “Incidence of central

post-stroke pain”, Pain, Vol. 61 No. 2, pp. 187–193, doi 10.1016/0304-3959(94)00144-4.

Arle, J.E. and Shils, J.L. (Eds.) (2011), Essential neuromodulation, Academic Press, London, Burlington,

MA.

Ativanichayaphong, T., He, J.W., Hagains, C.E., Peng, Y.B. and Chiao, J.-C. (2008), “A combined wire-

less neural stimulating and recording system for study of pain processing”, Journal of Neurosci-

ence Methods, Vol. 170 No. 1, pp. 25–34, doi 10.1016/j.jneumeth.2007.12.014.

Avestruz, A.-T., Santa, W., Carlson, D., Jensen, R., Stanslaski, S.R., Helfenstine, A. and Denison, T.J.

(2008), “A 5 µW/Channel Spectral Analysis IC for Chronic Bidirectional Brain-Machine Interfaces”,

IEEE Journal of Solid-State Circuits, Vol. 43 No. 12, pp. 3006–3024, doi

10.1109/JSSC.2008.2006460.

Aydin, F. (2011), “Wireless closed-loop feedback systems for automatic detection and suppression of

nociceptive signals”, University of Texas, Arlington, 2011.

Azatchi, H., Levanoni, Y., Paz, H. and Petrank, E. (2003), “An on-the-fly mark and sweep garbage col-

lector based on sliding views”, ACM SIGPLAN Notices, Vol. 38 No. 11, pp. 269–281, doi

10.1145/949343.949329.

Ball, T., Kern, M., Mutschler, I., Aertsen, A. and Schulze-Bonhage, A. (2009), “Signal quality of simul-

taneously recorded invasive and non-invasive EEG”, NeuroImage, Vol. 46 No. 3, pp. 708–716, doi

10.1016/j.neuroimage.2009.02.028.

Banala, S.K., Agrawal, S.K., Kim, S.H. and Scholz, J.P. (2010), “Novel Gait Adaptation and Neuromotor

Training Results Using an Active Leg Exoskeleton”, IEEE/ASME Transactions on Mechatronics, Vol.

15 No. 2, pp. 216–225, doi 10.1109/TMECH.2010.2041245.

Bansal, A.K., Truccolo, W., Vargas-Irwin, C.E. and Donoghue, J.P. (2012), “Decoding 3D reach and

grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local

field potentials”, Journal of Neurophysiology, Vol. 107 No. 5, pp. 1337–1355, doi

10.1152/jn.00781.2011.

Bauer, G., Gerstenbrand, F. and Rumpl, E. (1979), “Varieties of the locked-in syndrome”, Journal of

Neurology, Vol. 221 No. 2, pp. 77–91.

Beck, K. and Andres, C. (2005), Extreme programming explained: Embrace change, 2nd ed., Addison-

Wesley, Boston, MA.

87

References

Bergmann, T.O., Mölle, M., Schmidt, M.A., Lindner, C., Marshall, L., Born, J. and Siebner, H.R. (2012),

“EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability

during the human sleep slow oscillation”, Journal of Neuroscience, Vol. 32 No. 1, pp. 243–253, doi

10.1523/JNEUROSCI.4792-11.2012.

Bilir, E., Faught, E., Kundu, S., Kuzniecky, R., Zeiger, E. and Morawetz, R. (1996), “Morbidity of epidur-

al strip electrode implantation for epilepsy presurgical evaluation”, Journal of Epilepsy, Vol. 9 No.

1, pp. 52–55, doi 10.1016/0896-6974(95)00057-7.

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J.,

Taub, E. and Flor, H. (1999), “A spelling device for the paralysed”, Nature, Vol. 398 No. 6725, pp.

297–298, doi 10.1038/18581.

Birbaumer, N., Kübler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iversen, I.,

Kotchoubey, B., Neumann, N. and Flor, H. (2000), “The thought translation device (TTD) for com-

pletely paralyzed patients”, IEEE Transactions on Rehabilitation Engineering, Vol. 8 No. 2, pp.

190–193, doi 10.1109/86.847812.

Blakely, T., Miller, K.J., Zanos, S.P., Rao, R.P.N. and Ojemann, J.G. (2009), “Robust, long-term control

of an electrocorticographic brain-computer interface with fixed parameters”, Neurosurgical Fo-

cus, Vol. 27 No. 1, pp. E13, doi 10.3171/2009.4.FOCUS0977.

Blumberg, J., Rickert, J., Waldert, S., Schulze-Bonhage, A., Aertsen, A. and Mehring, C. (2007), “Adap-

tive classification for brain computer interfaces”, in Proceedings of the 29th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBS-2007), Lyon, France,

August 22-26, 2007, IEEE press, Piscataway, NJ, pp. 2536–2539, doi

10.1109/IEMBS.2007.4352845.

Boehm, B.W. (1981), Software engineering economics, Prentice-Hall Advances in Computing Science

and Technology Series, Prentice-Hall, Inc, Englewood Cliffs, N.J.

Bolognini, N., Pascual-Leone, A. and Fregni, F. (2009), “Using non-invasive brain stimulation to aug-

ment motor training-induced plasticity”, Journal of Neuroengineering and Rehabilitation, Vol. 6,

p. 8, doi 10.1186/1743-0003-6-8.

boost community, Boost C++ Libraries.

Borton, D.A., Yin, M., Aceros, J. and Nurmikko, A. (2013), “An implantable wireless neural interface

for recording cortical circuit dynamics in moving primates”, Journal of Neural Engineering, Vol. 10

No. 2, p. 26010, doi 10.1088/1741-2560/10/2/026010.

Bowsher, D. (1995), “The management of central post-stroke pain”, Postgraduate Medical Journal,

Vol. 71 No. 840, pp. 598–604, doi 10.1136/pgmj.71.840.598.

Broetz, D., Braun, C., Weber, C., Soekadar, S.R., Caria, A. and Birbaumer, N. (2010), “Combination of

brain-computer interface training and goal-directed physical therapy in chronic stroke: a case re-

port”, Neurorehabilitation and Neural Repair, Vol. 24 No. 7, pp. 674–679, doi

10.1177/1545968310368683.

Brown, J.A. (2001), “Motor cortex stimulation”, Neurosurgical Focus, Vol. 11 No. 3, pp. E5.

Brunner, P., Ritaccio, A.L., Emrich, J.F., Bischof, H. and Schalk, G. (2011), “Rapid Communication with

a “P300” Matrix Speller Using Electrocorticographic Signals (ECoG)”, Frontiers in Neuroscience,

Vol. 5, doi 10.3389/fnins.2011.00005.

Bundesministerium des Inneren (2014), “Das V-Modell XT”, available at: http://www.v-modell-xt.de/

(accessed 1 August 2014).

Bundesregierung der Bundesrepublik Deutschland (2012), Gesetz über Medizinprodukte (Medizinp-

roduktegesetz - MPG): MPG.

88

References

Burges, C.J. (1998), “A tutorial on support vector machines for pattern recognition”, Data Mining and

Knowledge Discovery, Vol. 2 No. 2, pp. 121–167, doi 10.1023/A:1009715923555.

Bütefisch, C.M., Khurana, V., Kopylev, L. and Cohen, L.G. (2004), “Enhancing encoding of a motor

memory in the primary motor cortex by cortical stimulation”, Journal of Neurophysiology, Vol. 91

No. 5, pp. 2110–2116, doi 10.1152/jn.01038.2003.

Carmena, J.M., Lebedev, M.A., Crist, R.E., O'Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G.,

Henriquez, C.S. and Nicolelis, M.A.L. (2003), “Learning to Control a Brain–Machine Interface for

Reaching and Grasping by Primates”, PLoS Biology, Vol. 1 No. 2, pp. 192–208, doi

10.1371/journal.pbio.0000042.

Chang, C.-C. and Lin, C.-J. (2011), “LIBSVM: A library for support vector machines”, ACM Transactions

on Intelligent Systems and Technology, Vol. 2 No. 3, pp. 1–27, doi 10.1145/1961189.1961199.

Chao, Z., Nagasaka, Y. and Fuji, N. (2010), “Long-term asynchronous decoding of arm motion using

electrocorticographic signals in monkey”, Frontiers in Neuroengineering, Vol. 3, doi

10.3389/fneng.2010.00003.

Charvet, G., Foerster, M., Chatalic, G., Michea, A., Porcherot, J., Bonnet, S., Filipe, S., Audebert, P.,

Robinet, S., Josselin, V., Reverdy, J., D'Errico, R., Sauter, F., Mestais, C. and Benabid, A.L. (2012),

“A wireless 64-channel ECoG recording electronic for implantable monitoring and BCI applica-

tions: WIMAGINE”, in Proceedings of the 34th Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBS-2012), San Diego, CA, USA, August 28 - September

1, 2012, IEEE press, pp. 783–786, doi 10.1109/EMBC.2012.6346048.

Charvet, G., Foerster, M., Filipe, S., Porcherot, J., Beche, J.F., Guillemaud, R., Audebert, P., Regis, G.,

Zongo, B., Robinet, S., Condemine, C., Tetu, Y., Sauter, F., Mestais, C. and Benabid, A.L. (2011),

“WIMAGINE: A wireless, low power, 64-channel ECoG recording platform for implantable BCI ap-

plications”, in Proceedings of the 5th International IEEE EMBS Conference on Neural Engineering,

Cancun, Mexico, April 27 - May 1, 2011, IEEE press, pp. 356–359, doi 10.1109/NER.2011.5910560.

Charvet, G., Sauter-Starace, F., Foerster, M., Ratel, D., Chabrol, C., Porcherot, J., Robinet, S., Reverdy,

J., D'Errico, R., Mestais, C. and Benabid, A.L. (2013), “WIMAGINE(®): 64-channel ECoG recording

implant for human applications”, in Proceedings of the 35th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBS-2013), Osaka, Japan, July 3-7, 2013,

IEEE press, pp. 2756–2759, doi 10.1109/EMBC.2013.6610111.

Chatterjee, A., Aggarwal, V., Ramos, A., Acharya, S. and Thakor, N.V. (2007), “A brain-computer inter-

face with vibrotactile biofeedback for haptic information”, Journal of NeuroEngineering and Re-

habilitation, Vol. 4, p. 40, doi 10.1186/1743-0003-4-40.

Cincotti, F., Kauhanen, L., Aloise, F., Palomaki, T., Caporusso, N., Jylanki, P., Mattia, D., Babiloni, F.,

Vanacker, G., Nuttin, M., Marciani, M.G. and Millan, J.d.R. (2007), “Preliminary Experimentation

on Vibrotactile Feedback in the context of Mu-rhythm Based BCI”, in Proceedings of the 29th An-

nual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS-

2007), Lyon, France, August 22-26, 2007, IEEE press, Piscataway, NJ, pp. 4739–4742, doi

10.1109/IEMBS.2007.4353398.

Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., Cherubini, A., Marciani, M.G. and

Babiloni, F. (2008), “Non-invasive brain-computer interface system: Towards its application as as-

sistive technology”, Brain Research Bulletin, Vol. 75 No. 6, pp. 796–803, doi

10.1016/j.brainresbull.2008.01.007.

Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland,

A.J.C., Velliste, M., Boninger, M.L. and Schwartz, A.B. (2013), “High-performance neuroprosthetic

89

References

control by an individual with tetraplegia”, The Lancet, Vol. 381 No. 9866, pp. 557–564, doi

10.1016/S0140-6736(12)61816-9.

Cook, M.J., O'Brien, T.J., Berkovic, S.F., Murphy, M., Morokoff, A., Fabinyi, G., D'Souza, W., Yerra, R.,

Archer, J., Litewka, L., Hosking, S., Lightfoot, P., Ruedebusch, V., Sheffield, W.D., Snyder, D.,

Leyde, K. and Himes, D. (2013), “Prediction of seizure likelihood with a long-term, implanted sei-

zure advisory system in patients with drug-resistant epilepsy: a first-in-man study”, The Lancet

Neurology, Vol. 12 No. 6, pp. 563–571, doi 10.1016/S1474-4422(13)70075-9.

Corbet, J. and Rubini, A. (2005), Linux Device Drivers, 3rd ed., O’Reilly Media, Inc.

Council of the European Community (1990), Council Directive of 20 June 1990 on the approximation

of the laws of the Member States relating to active implantable medical devices: AIMD.

Council of the European Community (1993a), Council Directive 93/42/EEC of 14 June concerning med-

ical devices: MDD.

Council of the European Community (1993b), Council Directive 93/68/EEC of 22 July 1993 amending

90/385/EEC (active implantable medical devices).

Council of the European Community (1994), Corrigendum to the Council Directive 90/385/EEC of 20

june 1990 on the approximation of the laws of the Member States relating to active implantable

medical devices.

Council of the European Community (2006), Council Directive 2006/96/EC of 20 November 2006

adapting certain Directives in the field of free movement of goods, by reason of the accession of

Bulgaria and Romania.

Cristianini, N. and Shawe-Taylor, J. (2000), An introduction to support vector machines: And other

kernel-based learning methods, 1st ed., Cambridge University Press, Cambridge, New York.

Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I. and Shenoy, K.V. (2011), “A closed-

loop human simulator for investigating the role of feedback control in brain-machine interfaces”,

Journal of Neurophysiology, Vol. 105 No. 4, pp. 1932–1949, doi 10.1152/jn.00503.2010.

Davis, K.A., Sturges, B.K., Vite, C.H., Ruedebusch, V., Worrell, G., Gardner, A.B., Leyde, K., Sheffield,

W.D. and Litt, B. (2011), “A novel implanted device to wirelessly record and analyze continuous

intracranial canine EEG”, Epilepsy Research, Vol. 96 1-2, pp. 116–122, doi

10.1016/j.eplepsyres.2011.05.011.

Domani, T., Kolodner, E.K. and Petrank, E. (2000), “A generational on-the-fly garbage collector for

Java”, ACM SIGPLAN Notices, Vol. 35 No. 5, pp. 274–284, doi 10.1145/358438.349336.

Duvall, P.M., Matyas, S. and Glover, A. (2007), Continuous integration: Improving software quality

and reducing risk, Addison-Wesley signature series, Addison-Wesley, Upper Saddle River, NJ.

Edwardson, M.A., Lucas, T.H., Carey, J.R. and Fetz, E.E. (2013), “New modalities of brain stimulation

for stroke rehabilitation”, Experimental Brain Research, Vol. 224 No. 3, pp. 335–358, doi

10.1007/s00221-012-3315-1.

European Commission (2013), Commission communication in the framework of the implementation

of the Council Directive 90/385/EEC of 20 June 1990 on the approximation of the laws of the

Member States relating to active implantable medical devices.

European Committee for Electrotechnical Standardization (1997), Active implantable medical devices

- Part 1: General requirements for safety, marking and information to be provided by the manu-

facturer EN 45502-1.

European Committee for Electrotechnical Standardization (2003), Active implantable medical devices

- Part 2-1: Particular requirements for active implantable medical devices intended to treat

bradyarrhythmia (cardiac pacemakers) EN 45502-2-1.

90

References

European Committee for Electrotechnical Standardization (2006), Medical device software - Software

life-cycle processes EN IEC 62304.

European Committee for Electrotechnical Standardization (2012a), Medical devices - Application of

risk management to medical devices EN ISO 14971.

European Committee for Electrotechnical Standardization (2012b), Medical devices - Quality man-

agement systems- Requirements for regulatory purposes EN ISO 13485.

European Parliament and Council (1998a), Directive 98/34/EC of the European Parliament and of the

Council of 22 June 1998 laying down a procedure for the provision of information in the field of

technical standards and regulations.

European Parliament and Council (1998b), Directive 98/48/EC of the European Parliament and of the

Council of 20 July 1998 amending Directive 98/34/EC laying down a procedure for the provision of

information in the field of technical standards and regulations.

European Parliament and Council (1998c), Directive 98/79/EC of the European Parliament and of the

Council of 27 October 1998 on in vitro diagnostic medical devices.

European Parliament and Council (1999), Corrigendum to Directive 98/79/EC of the European Parlia-

ment and of the Council of 27 October 1998 on in vitro diagnostic medical devices.

European Parliament and Council (2000), Directive 2000/70/EC of the European Parliament and of

the Council of 16 November 2000 amending Council Directive 93/42/EEC as regards medical de-

vices incorporating stable derivates of human blood or human plasma.

European Parliament and Council (2001), Directive 2001/104/EC of the European Parliament and of

the Council of 7 December 2001 amending Council Directive 93/42/EEC concerning medical devic-

es.

European Parliament and Council (2002), Corrigendum to Directive 98/79/EC of the European Parlia-

ment and of the Council of 27 October 1998 on in vitro diagnostic medical devices.

European Parliament and Council (2003a), Act concerning the conditions of accession of the Czech

Republic, the Republic of Estonia, the Republic of Cyprus, the Republic of Latvia, the Republic of

Lithuania, the Republic of Hungary, the Republic of Malta, the Republic of Poland, the Republic of

Slovenia and the Slovak Republic and the adjustments to the Treaties on which the European Un-

ion is founded.

European Parliament and Council (2003b), Regulation (EC) No 1882/2003 of the European Parliament

and of the Council of 29 September 2003 adapting to Council Decision 1999/468/EC the provisions

relating to committees which assist the Commission in the exercise of its implementing powers

laid down in instruments subject to the procedure referred to in Article 251 of the EC Treaty.

European Parliament and Council (2007), Directive 2007/47/EC of the European Parliament and of

the Council of 5 September 2007 amending Council Directive 90/385/EEC on the approximation of

the laws of the Member States relating to active implantable medical devices, Council Directive

93/42/EEC concerning medical devices and Directive 98/8/EC concerning the placing of biocidal

products on the market.

European Parliament and Council (2009), Regulation (EC) No 596/2009 of the European Parliament

and of the Council of 18 June 2009 adapting a number of instruments subject to the procedure re-

ferred to in Article 251 of the Treaty to Council Decision 1999/468/EC with regard to the regulato-

ry procedure with scrutiny — Adaptation to the regulatory procedure with scrutiny — Part Four.

European Parliament and Council (2010), Directive 2010/63/EU of the European Parliament and of

the Council of 22 September 2010 on the protection of animals used for scientific purposes.

91

References

European Parliament and Council (2011), Commission Directive 2011/100/EU of 20 December 2011

amending Directive 98/79/EC of the European Parliament and of the Council on in-vitro diagnostic

medical devices.

Fischer, J., Milekovic, T., Schneider, G. and Mehring, C. (2014), “Low-latency multi-threaded pro-

cessing of neuronal signals for brain-computer interfaces”, Frontiers in Neuroengineering, Vol. 7,

p. 1, doi 10.3389/fneng.2014.00001.

Fitzsimmons, N., Drake, W., Hanson, T.L., Lebedev, M.A. and Nicolelis, M.A.L. (2007), “Primate reach-

ing cued by multichannel spatiotemporal cortical microstimulation”, Journal of Neuroscience, Vol.

27 No. 21, pp. 5593–5602.

Flinker, A., Chang, E.F., Barbaro, N.M., Berger, M.S. and Knight, R.T. (2011), “Sub-centimeter language

organization in the human temporal lobe”, Brain and Language, Vol. 117 No. 3, pp. 103–109, doi

10.1016/j.bandl.2010.09.009.

Fowler, M. (2003), Patterns of enterprise application architecture, The Addison-Wesley Signature

Series, Addison-Wesley, Boston.

Franke, F., Jäckel, D., Dragas, J., Müller, J., Radivojevic, M., Bakkum, D.J. and Hierlemann, A. (2012),

“High-density microelectrode array recordings and real-time spike sorting for closed-loop exper-

iments: an emerging technology to study neural plasticity”, Frontiers in Neural Circuits, Vol. 6, doi

10.3389/fncir.2012.00105.

Freeman, S. and Pryce, N. (2011), Growing object-oriented software, guided by tests, The Addison-

Wesley Signature Series, 5th ed., Addison-Wesley, Boston, MA.

Freeman, W.J., Rogers, L.J., Holmes, M.D. and Silbergeld, D.L. (2000), “Spatial spectral analysis of

human electrocorticograms including the alpha and gamma bands”, Journal of Neuroscience

Methods, Vol. 95 No. 2, pp. 111–121, doi 10.1016/S0165-0270(99)00160-0.

Friedman, J.H. (1989), “Regularized Discriminant Analysis”, Journal of the American Statistical Associ-

ation, Vol. 84 No. 405, pp. 165–175, doi 10.2307/2289860.

Galán, F., Nuttin, M., Lew, E., Ferrez, P.W., Vanacker, G., Philips, J. and Millan, J.d.R. (2008), “A brain-

actuated wheelchair: Asynchronous and non-invasive Brain–computer interfaces for continuous

control of robots”, Clinical Neurophysiology, Vol. 119 No. 9, pp. 2159–2169, doi

10.1016/j.clinph.2008.06.001.

Galassi, M. (2009), GNU scientific library: Reference manual, 3rd ed., Network Theory Ltd, Bristol.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994), Design patterns: Elements of reusable ob-

ject-oriented software, Addison Wesley Professional Computing Series, Addison-Wesley, Reading,

MA.

Gao, Y., Black, M.J., Bienenstock, E., Wu, W. and Donoghue, J.P. (2003), “A quantitative comparison

of linear and non-linear models of motor cortical activity for the encoding and decoding of arm

motions”, in Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering,

Capri Island, Italy, March 20-22, 2003, IEEE press, pp. 189–192, doi 10.1109/CNE.2003.1196789.

Gharabaghi, A., Kraus, D., Leão, M.T., Spüler, M., Walter, A., Bogdan, M., Rosenstiel, W., Naros, G.

and Ziemann, U. (2014), “Coupling brain-machine interfaces with cortical stimulation for brain-

state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation”, Fron-

tiers in Human Neuroscience, Vol. 8, doi 10.3389/fnhum.2014.00122.

Gibbons, J.D. and Chakraborti, S. (2011), Nonparametric statistical inference, Statistics Textbooks and

Monographs, 5th ed., Chapman & Hall/Taylor & Francis, Boca Raton.

Gierthmuehlen, M., Wang, X., Gkogkidis, A., Henle, C., Fischer, J., Fehrenbacher, T., Kohler, F., Raab,

M., Mader, I., Kuehn, C., Foerster, K., Haberstroh, J., Freiman, T.M., Stieglitz, T., Rickert, J.,

92

References

Schuettler, M. and Ball, T. (2014), “Mapping of sheep sensory cortex with a novel micro-

electrocorticography grid [epub ahead of print]”, Journal of Comparative Neurology, doi

10.1002/cne.23631.

Gonzalez Andino, S.L., Herrera-Rincon, C., Panetsos, F. and Grave de Peralta, R. (2011), “Combining

BMI Stimulation and Mathematical Modeling for Acute Stroke Recovery and Neural Repair”,

Frontiers in Neuroscience, Vol. 5, doi 10.3389/fnins.2011.00087.

googlemock community (2014), “googlemock. google C++ Mocking Framework”, available at:

http://code.google.com/p/googlemock/ (accessed 1 August 2014).

googletest community (2014), “googletest. google C++ Testing Framework”, available at:

http://code.google.com/p/googletest/ (accessed 1 August 2014).

Gunduz, A., Sanchez, J.C., Carney, P.R. and Principe, J.C. (2009), “Mapping broadband

electrocorticographic recordings to two-dimensional hand trajectories in humans”, Neural Net-

works, Vol. 22 No. 9, pp. 1257–1270, doi 10.1016/j.neunet.2009.06.036.

Halpern, C.H., Samadani, U., Litt, B., Jaggi, J.L. and Baltuch, G.H. (2008), “Deep brain stimulation for

epilepsy”, Neurotherapeutics, Vol. 5 No. 1, pp. 59–67, doi 10.1016/j.nurt.2007.10.065.

Halvorsen, O.H. and Clarke, D. (2011), OS X and iOS kernel programming, 1st ed., Apress; Distributed

to the book trade by Springer, Berkeley, CA, New York.

Hamer, H.M., Morris, H.H., Mascha, E.J., Karafa, M.T., Bingaman, W.E., Bej, M.D., Burgess, R., Dinner,

D.S., Foldvary, N.R., Hahn, J.F., Kotagal, P., Najm, I., Wyllie, E. and Lüders, H. (2002), “Complica-

tions of invasive video-EEG monitoring with subdural grid electrodes”, Neurology, Vol. 58 No. 1,

pp. 97–103, doi 10.1212/WNL.58.1.97.

Hamill, P. (2004), Unit test frameworks, 1st ed., O’Reilly Media, Inc, Sebastopol, CA.

Hart, J.M. (2010), Windows system programming: Description based on print version record, Addison-

Wesley Microsoft Technology Series, 4th ed., Addison-Wesley, Upper Saddle River, N.J.

Harvey, R.L. and Nudo, R.J. (2007), “Cortical Brain Stimulation: A Potential Therapeutic Agent for Up-

per Limb Motor Recovery Following Stroke”, Topics in Stroke Rehabilitation, Vol. 14 No. 6, pp. 54–

67, doi 10.1310/tsr1406-54.

Hastie, T., Tibshirani, R. and Friedman, J.H. (2009), The elements of statistical learning: Data mining,

inference, and prediction, Springer Series in Statistics, 2nd ed., Springer-Verlag, New York.

Haykin, S.S. (Ed.) (2001), Kalman filtering and neural networks, Adaptive and Learning Systems for

Signal Processing, Communications, and Control, John Wiley & Sons, Inc, New York.

Henle, C., Hassler, C., Kohler, F., Schuettler, M. and Stieglitz, T. (2011), “Mechanical characterization

of neural electrodes based on PDMS-parylene C-PDMS sandwiched system”, in Proceedings of the

33th Annual International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBS-2011), Boston, Massachusetts, USA, August 30 - September 3, 2011, IEEE press, pp. 640–

643, doi 10.1109/IEMBS.2011.6090142.

Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J.,

Cash, S.S., van der Smagt, Patrick and Donoghue, J.P. (2012), “Reach and grasp by people with

tetraplegia using a neurally controlled robotic arm”, Nature, Vol. 485 No. 7398, pp. 372–375, doi

10.1038/nature11076.

Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen,

D., Penn, R.D. and Donoghue, J.P. (2006), “Neuronal ensemble control of prosthetic devices by a

human with tetraplegia”, Nature, Vol. 442 No. 7099, pp. 164–171, doi 10.1038/nature04970.

Huettel, S.A., Song, A.W. and McCarthy, G. (2008), Functional magnetic resonance imaging, 2nd ed.,

Sinauer Associates, Sunderland, Mass.

93

References

IEEE Standards Association, IEEE Standard for Floating-Point Arithmetic IEEE Std 754:2008.

International Organization for Standards, Programming Language C++ ISO/IEC 14882:2011.

International Organization for Standards, Programming Languages ‐ C ISO/IEC 9899:1999.

International Organization for Standards (2005), Quality management systems - Fundamentals and

vocabulary ISO 9000.

International Organization for Standards (2006), Information technology - Programming languages -

C# ISO/IEC 23270:2006.

International Organization for Standards (2008), Quality management systems - Requirements

ISO 9001.

Jackson, A., Mavoori, J. and Fetz, E.E. (2006), “Long-term motor cortex plasticity induced by an elec-

tronic neural implant”, Nature, Vol. 444 No. 7115, pp. 56–60, doi 10.1038/nature05226.

Jensen, O., Bahramisharif, A., Oostenveld, R., Klanke, S., Hadjipapas, A., Okazaki, Y.O. and van

Gerven, M.A.J. (2011), “Using brain-computer interfaces and brain-state dependent stimulation

as tools in cognitive neuroscience”, Frontiers in Psychology, Vol. 2, doi

10.3389/fpsyg.2011.00100.

Jöbsis, F.F. (1977), “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency

and circulatory parameters”, Science, Vol. 198 No. 4323, pp. 1264–1267, doi

10.1126/science.929199.

Johner, C., Hölzer-Klüpfel, M. and Wittorf, S. (2011), Basiswissen medizinische Software: Aus- und

Weiterbildung zum Certified Professional for Medical Software, 1st ed., dpunkt-Verlag, Heidel-

berg.

Johnson, J.I., Rubel, E.W. and Hatton, G.I. (1974), “Mechanosensory projections to cerebral cortex of

sheep”, Journal of Comparative Neurology, Vol. 158 No. 1, pp. 81–108, doi

10.1002/cne.901580106.

Kai Keng Ang, Zhang Yang Chin, Haihong Zhang and Cuntai Guan (2008), “Filter Bank Common Spatial

Pattern (FBCSP) in Brain-Computer Interface”, in International Joint Conference on Neural Net-

works (IJCNN 2008), Hong Kong, China, June 1-8, 2008, IEEE press, pp. 2390–2397, doi

10.1109/IJCNN.2008.4634130.

Kalman, R.E. (1960), “A New Approach to Linear Filtering and Prediction Problems”, Journal of Basic

Engineering, Vol. 82 No. 1, pp. 35–45, doi 10.1115/1.3662552.

Karlsson, B. (2006), Beyond the C++ standard library: An introduction to Boost, 6th ed., Addison-

Wesley, Upper Saddle River, NJ.

Kawamoto, H., Taal, S., Niniss, H., Hayashi, T., Kamibayashi, K., Eguchi, K. and Sankai, Y. (2010), “Vol-

untary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia”,

in Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBS-2010), Buenos Aires, Argentina, August 31 - September 4, 2010, IEEE

press, pp. 462–466, doi 10.1109/IEMBS.2010.5626191.

Kenney, C., Simpson, R., Hunter, C., Ondo, W., Almaguer, M., Davidson, A. and Jankovic, J. (2007),

“Short-term and long-term safety of deep brain stimulation in the treatment of movement disor-

ders”, Journal of Neurosurgery, Vol. 106 No. 4, pp. 621–625, doi 10.3171/jns.2007.106.4.621.

Kern, M., Aertsen, A., Schulze-Bonhage, A. and Ball, T. (2013), “Heart cycle-related effects on event-

related potentials, spectral power changes, and connectivity patterns in the human ECoG”,

NeuroImage, Vol. 81, pp. 178–190, doi 10.1016/j.neuroimage.2013.05.042.

94

References

Kiernan, M.C., Vucic, S., Cheah, B.C., Turner, M.R., Eisen, A., Hardiman, O., Burrell, J.R. and Zoing,

M.C. (2011), “Amyotrophic lateral sclerosis”, The Lancet, Vol. 377 No. 9769, pp. 942–955, doi

10.1016/S0140-6736(10)61156-7.

Kim, S.-P., Simeral, J.D., Hochberg, L.R., Donoghue, J.P., Friehs, G.M. and Black, M.J. (2011), “Point-

and-click cursor control with an intracortical neural interface system by humans with tetraple-

gia”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 19 No. 2, pp. 193–

203, doi 10.1109/TNSRE.2011.2107750.

Knowlton, R.C. and Shih, J. (2004), “Magnetoencephalography in Epilepsy”, Epilepsia, Vol. 45 Suppl.

4, pp. 61–71, doi 10.1111/j.0013-9580.2004.04012.x.

Kohler, F., Fischer, J., Gierthmuehlen, M., Gkogkidis, A., Henle, C., Ball, T., Wang, X., Rickert, J., Stieg-

litz, T. and Schuettler, M., Long-term in vivo validation of a fully-implantable, wireless brain-

computer interface for cortical recording and stimulation, in preparation.

Kohler, F., Schuettler, M. and Stieglitz, T. (2012), “Parylene-coated metal tracks for neural electrode

arrays - fabrication approaches and improvements utilizing different laser systems”, in Proceed-

ings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBS-2012), San Diego, CA, USA, August 28 - September 1, 2012, IEEE press, pp. 5130–

5133, doi 10.1109/EMBC.2012.6347148.

Kohler, F., Ulloa, M.A., Ordonez, J.S., Stieglitz, T. and Schuettler, M. (2013), “Reliability investigations

and improvements of interconnection technologies for the wireless brain-machine interface —

‘BrainCon’”, in 6th Annual International IEEE EMBS Conference on Neural Engineering (NER 2013),

San Diego, California, USA, November 6-8, 2013, IEEE press, pp. 1013–1016, doi

10.1109/NER.2013.6696108.

Kopetz, H. (2011), Real-Time Systems: Design Principles for Distributed Embedded Applications, Real-

Time Systems Series, 2nd ed., Springer-Verlag, Boston, MA, UAS.

Krepki, R., Blankertz, B., Curio, G. and Müller, K.-R. (2003), “The Berlin Brain-Computer Interface

(BBCI): towards a new communication channel for online control of multimedia applications and

computer games”, in 9th International Conference on Distributed Multimedia Systems (DMS-

2003), Miami, Florida, USA, September 24-26, 2003, Knowledge Systems Institute, pp. 237–244.

Krepki, R., Blankertz, B., Curio, G. and Müller, K.-R. (2007), “The Berlin Brain-Computer Interface

(BBCI) – towards a new communication channel for online control in gaming applications”, Mul-

timedia Tools and Applications, Vol. 33 No. 1, pp. 73–90, doi 10.1007/s11042-006-0094-3.

LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E. and He, B. (2013), “Quadcopter control in

three-dimensional space using a noninvasive motor imagery-based brain–computer interface”,

Journal of Neural Engineering, Vol. 10 No. 4, p. 46003, doi 10.1088/1741-2560/10/4/046003.

Lebedev, M.A., Carmena, J.M., O'Doherty, J.E., Zacksenhouse, M., Herniquez, C.S., Principe, J.C. and

Nicolelis, M.A.L. (2005), “Cortical Ensemble Adaptation to Represent Velocity of an Artificial Ac-

tuator Controlled by a Brain-Machine Interface”, Journal of Neuroscience, Vol. 25 No. 19, pp.

4681–4693, doi 10.1523/JNEUROSCI.4088-04.2005.

Leeb, R., Friedman, D., Müller-Putz, G.R., Scherer, R., Slater, M. and Pfurtscheller, G. (2007), “Self-

paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a

tetraplegic”, Computational Intelligence and Neuroscience, Vol. 2007, p. 79642, doi

10.1155/2007/79642.

Leuthardt, E.C., Schalk, G., Roland, J., Rouse, A. and Moran, D.W. (2009), “Evolution of brain-

computer interfaces: going beyond classic motor physiology”, Neurosurgical Focus, Vol. 27 No. 1,

pp. E4, doi 10.3171/2009.4.FOCUS0979.

95

References

Levy, R., Ruland, S., Weinand, M., Lowry, D., Dafer, R. and Bakay, R. (2008), “Cortical stimulation for

the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and

efficacy”, Journal of Neurosurgery, Vol. 108 No. 4, pp. 707–714, doi

10.3171/JNS/2008/108/4/0707.

Li, T., Baumberger, D. and Hahn, S. (2009), “Efficient and scalable multiprocessor fair scheduling using

distributed weighted round-robin”, in Reed, D.A. and Sarkar, V. (Eds.), Proceedings of the 14th

ACM SIGPLAN symposium on Principles and practice of parallel programming (PPOPP-09), Ra-

leigh, North Carolina, USA, February 14-18, 2009, ACM, pp. 65–74, doi

10.1145/1594835.1504188.

Lockheed Martin Corporation (2005), Joint Strike Fighter Air Vehicle C++ Coding Standards for the

System Development and Demonstration Program.

Lorenz, S. (2006), Lehrbuch der anthroposophischen Tiermedizin: 39 Tabellen, Sonntag, Stuttgart.

Ludwig, K.A., Miriani, R.M., Langhals, N.B., Joseph, M.D., Anderson, D.J. and Kipke, D.R. (2009), “Us-

ing a common average reference to improve cortical neuron recordings from microelectrode ar-

rays”, Journal of Neurophysiology, Vol. 101 No. 3, pp. 1679–1689, doi 10.1152/jn.90989.2008.

Maling, N., Hashemiyoon, R., Foote, K.D., Okun, M.S., Sanchez, J.C. and Baumert, M. (2012), “In-

creased Thalamic Gamma Band Activity Correlates with Symptom Relief following Deep Brain

Stimulation in Humans with Tourette’s Syndrome”, PLoS ONE, Vol. 7 No. 9, pp. E44215, doi

10.1371/journal.pone.0044215.

Marceglia, S., Rossi, L., Foffani, G., Bianchi, A., Cerutti, S. and Priori, A. (2007), “Basal ganglia local

field potentials: applications in the development of new deep brain stimulation devices for

movement disorders”, Expert Review of Medical Devices, Vol. 4 No. 5, pp. 605–614, doi

10.1586/17434440.4.5.605.

Maropoulos, P.G. and Ceglarek, D. (2010), “Design verification and validation in product lifecycle”,

CIRP Annals - Manufacturing Technology, Vol. 59 No. 2, pp. 740–759, doi

10.1016/j.cirp.2010.05.005.

Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, J.A. and Upton, M. (2002), “Hyper-

Threading Technology Architecture and Microarchitecture”, Intel Technology Journal, Vol. 6 No.

1, pp. 1–12.

McCreadie, K.A., Coyle, D.H. and Prasad, G. (2013), “Sensorimotor learning with stereo auditory

feedback for a brain-computer interface”, Medical & Biological Engineering & Computing, Vol. 51

No. 3, pp. 285–293, doi 10.1007/s11517-012-0992-7.

Medtronic, Inc. (2013), New Medtronic Deep Brain Stimulation System the First to Sense and Record

Brain Activity While Delivering Therapy.

Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N. and Kübler, A. (2007), “An

MEG-based brain–computer interface (BCI)”, NeuroImage, Vol. 36 No. 3, pp. 581–593, doi

10.1016/j.neuroimage.2007.03.019.

Merletti, R. and Parker, P.M. (Eds.) (2004), Electromyography: Physiology, engineering and non-

invasive applications, IEEE Press Series in Biomedical Engineering, John Wiley & Sons, Inc; IEEE

press, Hoboken, N.J.

Microsoft Developer Network Library (2014), “Microsoft-Specific Modifiers _declspec(thread)”, avail-

able at: http://msdn.microsoft.com/en-us/library/9w1sdazb(v=vs.110).aspx (accessed 1 August

2014).

96

References

Milekovic, T., Ball, T., Schulze-Bonhage, A., Aertsen, A. and Mehring, C. (2013), “Detection of Error

Related Neuronal Responses Recorded by Electrocorticography in Humans during Continuous

Movements”, PLoS ONE, Vol. 8 No. 2, pp. E55235, doi 10.1371/journal.pone.0055235.

Milekovic, T., Fischer, J., Pistohl, T., Ruescher, J., Schulze-Bonhage, A., Aertsen, A., Rickert, J., Ball, T.

and Mehring, C. (2012), “An online brain-machine interface using decoding of movement direc-

tion from the human electrocorticogram”, Journal of Neural Engineering, Vol. 9 No. 4, p. 46003,

doi 10.1088/1741-2560/9/4/046003.

Millan, J.d.R. and Carmena, J.M. (2010), “Invasive or Noninvasive: Understanding Brain-Machine In-

terface Technology. Conversations in BME”, IEEE Engineering in Medicine and Biology Magazine,

Vol. 29 No. 1, pp. 16–22, doi 10.1109/MEMB.2009.935475.

Miller, C., Gitina, K. and Becker, B. (2011), “Bounded Model Checking of Incomplete Real-time Sys-

tems Using Quantified SMT Formulas”, in Abadir, M.S., Bhadra, J. and Wang, L.-C. (Eds.), 2011

12th International Workshop on Microprocessor Test and Verification (MTV-2011), Austin, TX,

USA, December 5-7, 2011, IEEE press, Los Alamitos, Calif, pp. 22–27, doi 10.1109/MTV.2011.13.

Modolo, J., Beuter, A., Thomas, A.W. and Legros, A. (2012), “Using “Smart Stimulators” to Treat Par-

kinson’s Disease: Re-Engineering Neurostimulation Devices”, Frontiers in Computational Neuro-

science, Vol. 6, doi 10.3389/fncom.2012.00069.

Morrell, M.J. (2011), “Responsive cortical stimulation for the treatment of medically intractable par-

tial epilepsy”, Neurology, Vol. 77 No. 13, pp. 1295–1304, doi 10.1212/wnl.0b013e3182302056.

Müller, J., Bakkum, D.J. and Hierlemann, A. (2013), “Sub-millisecond closed-loop feedback stimula-

tion between arbitrary sets of individual neurons”, Frontiers in Neural Circuits, Vol. 6, doi

10.3389/fncir.2012.00121.

Nair, D.R., Burgess, R., McIntyre, C.C. and Lüders, H. (2008), “Chronic subdural electrodes in the man-

agement of epilepsy”, Clinical Neurophysiology, Vol. 119 No. 1, pp. 11–28, doi

10.1016/j.clinph.2007.09.117.

NeuroPace, Inc. (2013), RNS® System User Manual.

Newman, J.P., Zeller-Townson, R., Fong, M.-F., Arcot Desai, S., Gross, R.E. and Potter, S.M. (2013),

“Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysi-

ology Platform”, Frontiers in Neural Circuits, Vol. 6, doi 10.3389/fncir.2012.00098.

Nicolas-Alonso, L.F. and Jaime, G.-G. (2012), “Brain Computer Interfaces, a Review”, Sensors, Vol. 12

No. 2, pp. 1211–1279, doi 10.3390/s120201211.

Nicolelis, M.A.L., Dimitrov, D.F., Carmena, J.M., Crist, R.E., Lehew, G., Kralik, J.D. and Wise, S.P.

(2003), “Chronic, multisite, multielectrode recordings in macaque monkeys”, Proceedings of the

National Academy of Sciences, Vol. 100 No. 19, pp. 11041–11046, doi 10.1073/pnas.1934665100.

Nijboer, F., Furdea, A., Gunst, I., Mellinger, J., McFarland, D.J., Birbaumer, N. and Kübler, A. (2008),

“An auditory brain-computer interface (BCI)”, Journal of Neuroscience Methods, Vol. 167 No. 1,

pp. 43–50, doi 10.1016/j.jneumeth.2007.02.009.

O'Doherty, J.E., Lebedev, M.A., Hanson, T.L., Fitzsimmons, N. and Nicolelis, M.A.L. (2009), “A brain-

machine interface instructed by direct intracortical microstimulation”, Frontiers in Integrative

Neuroscience, Vol. 3, doi 10.3389/neuro.07.020.2009.

Oken, B.S., Orhan, U., Roark, B., Erdogmus, D., Fowler, A., Mooney, A., Peters, B., Miller, M. and

Fried-Oken, M.B. (2014), “Brain-Computer Interface With Language Model-

Electroencephalography Fusion for Locked-In Syndrome”, Neurorehabilitation and Neural Repair,

Vol. 28 No. 4, pp. 387–394, doi 10.1177/1545968313516867.

97

References

OpenMP (2014), “OpenMP. The OpenMP API specification for parallel programming”, available at:

http://openmp.org (accessed 1 August 2014).

Oppenheim, A.V., Schafer, R.W. and Buck, J.R. (1999), Discrete time signal processing, Prentice-Hall

Signal Processing Series, 2nd ed., Prentice-Hall, Inc, Upper Saddler River, NJ.

Osorio, I., Frei, M.G., Manly, B.F.J., Sunderam, S., Bhavaraju, N.C. and Wilkinson, S.B. (2001), “An In-

troduction to Contingent (Closed-Loop) Brain Electrical Stimulation for Seizure Blockage, to Ultra-

short-term Clinical Trials, and to Multidimensional Statistical Analysis of Therapeutic Efficacy”,

Journal of Clinical Neurophysiology, Vol. 18 No. 6, pp. 533–544, doi 10.1097/00004691-

200111000-00003.

Otto, K.J., Johnson, M.D. and Kipke, D.R. (2006), “Voltage pulses change neural interface properties

and improve unit recordings with chronically implanted microelectrodes”, IEEE Transactions on

Biomedical Engineering, Vol. 53 No. 2, pp. 333–340, doi 10.1109/TBME.2005.862530.

Perego, P., Maggi, L., Parini, S. and Andreoni, G. (2009), “BCI++. A New Framework for Brain Comput-

er Interface Application”, in Al-Mubaid, H. and Dascalu, A. (Eds.), 18th International Conference

on Software Engineering and Data Engineering (SEDE-2009), Las Vegas, Nevada, USA, June 22-24,

2009, ISCA, pp. 37–41.

Plow, E.B., Carey, J.R., Nudo, R.J. and Pascual-Leone, A. (2009), “Invasive cortical stimulation to pro-

mote recovery of function after stroke: a critical appraisal”, Stroke, Vol. 40 No. 5, pp. 1926–1931,

doi 10.1161/STROKEAHA.108.540823.

Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, O., Brasil, F.L., Liberati, G., Curado, M.R.,

Garcia-Cossio, E., Vyziotis, A., Cho, W., Agostini, M., Soares, E., Soekadar, S., Caria, A., Cohen, L.G.

and Birbaumer, N. (2013), “Brain-machine interface in chronic stroke rehabilitation: a controlled

study”, Annals of Neurology, Vol. 74 No. 1, pp. 100–108, doi 10.1002/ana.23879.

Rebsamen, B., Guan, C., Zhang, H., Wang, C., Teo, C., Ang, M.H. and Burdet, E. (2010), “A brain con-

trolled wheelchair to navigate in familiar environments”, IEEE Transactions on Neural Systems

and Rehabilitation Engineering, Vol. 18 No. 6, pp. 590–598, doi 10.1109/TNSRE.2010.2049862.

Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., Bertrand, O. and Lécuyer, A.

(2010), “OpenViBE: An Open-source Software Platform to Design, Test, and Use Brain‐computer

Interfaces in Real and Virtual Environments”, Presence Teleoperators and Virtual Environments,

Vol. 19 No. 1, pp. 35–53, doi 10.1162/pres.19.1.35.

Rickert, J., Cardoso de Oliveira, S., Vaadia, E., Aertsen, A., Rotter, S. and Mehring, C. (2005), “Encod-

ing of movement direction in different frequency ranges of motor cortical local field potentials”,

Journal of Neuroscience, Vol. 25 No. 39, pp. 8815–8824, doi 10.1523/JNEUROSCI.0816-05.2005.

Rizk, M., Bossetti, C.A., Jochum, T.A., Callender, S.H., Nicolelis, M.A.L., Turner, D.A. and Wolf, P.D.

(2009), “A fully implantable 96-channel neural data acquisition system”, Journal of Neural Engi-

neering, Vol. 6 No. 2, p. 26002, doi 10.1088/1741-2560/6/2/026002.

Romo, R., Hernández, A., Zainos, A., Brody, C.D. and Lemus, L. (2000), “Sensing without Touching”,

Neuron, Vol. 26 No. 1, pp. 273–278, doi 10.1016/S0896-6273(00)81156-3.

Roscoe, A.W. (1998), The theory and practice of concurrency, Prentice Hall Series in Computer Sci-

ence, Prentice-Hall, Inc, London, New York.

Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S.N., Israel, Z., Vaadia, E. and Bergman, H.

(2011), “Closed-loop deep brain stimulation is superior in ameliorating parkinsonism”, Neuron,

Vol. 72 No. 2, pp. 370–384, doi 10.1016/j.neuron.2011.08.023.

98

References

Rotermund, D., Ernst, U.A. and Pawelzik, K.R. (2006), “Towards On-line Adaptation of Neuro-

prostheses with Neuronal Evaluation Signals”, Biological Cybernetics, Vol. 95 No. 3, pp. 243–257,

doi 10.1007/s00422-006-0083-7.

Rouse, A.G., Stanslaski, S.R., Cong, P., Jensen, R.M., Afshar, P., Ullestad, D., Gupta, R., Molnar, G.F.,

Moran, D.W. and Denison, T.J. (2011), “A chronic generalized bi-directional brain–machine inter-

face”, Journal of Neural Engineering, Vol. 8 No. 3, p. 36018, doi 10.1088/1741-2560/8/3/036018.

Royce, W.W. (1970), “Managing the Development of Large Software Systems”, in Proceeding of the

IEEE Western Electronic Show and Convention (Wescon), Los Angeles, California, USA, August 25-

28, 1970, IEEE press, pp. 328–338.

Royer, T.C. (1993), Software testing management: Life on the critical path, Prentice-Hall, Inc, Eng-

lewood Cliffs, N.J.

Ryu, S.I. and Shenoy, K.V. (2009), “Human cortical prostheses: lost in translation?”, Neurosurgical

Focus, Vol. 27 No. 1, E5, doi 10.3171/2009.4.FOCUS0987.

Santos, E.E. and Chu, P.-Y. (2003), “Efficient and Optimal Parallel Algorithms for Cholesky Decomposi-

tion”, Journal of Mathematical Modelling and Algorithms, Vol. 2 No. 3, pp. 217–234, doi

10.1023/B:JMMA.0000015832.41014.ed.

Sauer, M., Czutro, A., Polian, I. and Becker, B. (2011a), “Estimation of component criticality in early

design steps”, in 2011 IEEE 17th International On-Line Testing Symposium (IOLTS 2011), Athens,

Greece, July 13-15, 2011, IEEE press, pp. 104–110, doi 10.1109/IOLTS.2011.5993819.

Sauer, M., Tomashevich, V., Muller, J., Lewis, M., Spilla, A., Polian, I., Becker, B. and Burgard, W.

(2011b), “An FPGA-based framework for run-time injection and analysis of soft errors in micro-

processors”, in 2011 IEEE 17th International On-Line Testing Symposium (IOLTS 2011), Athens,

Greece, July 13-15, 2011, IEEE press, pp. 182–185, doi 10.1109/IOLTS.2011.5993836.

Savitzky, A. and Golay, M.J.E. (1964), “Smoothing and Differentiation of Data by Simplified Least

Squares Procedures”, Analytical Chemistry, Vol. 36 No. 8, pp. 1627–1639, doi

10.1021/ac60214a047.

Schalk, G. (2009), “Effective brain-computer interfacing using BCI2000”, in Proceedings of the 31st

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS-

2009), Minneapolis, Minnesota, USA, September 2-6. 2009, IEEE press, pp. 5498–5501, doi

10.1109/IEMBS.2009.5334558.

Schalk, G. (2010), “Can Electrocorticography (ECoG) Support Robust and Powerful Brain-Computer

Interfaces?”, Frontiers in Neuroengineering, Vol. 3, doi 10.3389/fneng.2010.00009.

Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N. and Wolpaw, J.R. (2004), “BCI2000: a gen-

eral-purpose brain-computer interface (BCI) system”, IEEE Trans. on Biomed. Eng., Vol. 51 No. 6,

pp. 1034–1043, doi 10.1109/TBME.2004.827072.

Schalk, G., Miller, K.J., Anderson, N.R., Wilson, J.A., Smyth, M.D., Ojemann, J.G., Moran, D.W.,

Wolpaw, J.R. and Leuthardt, E.C. (2008), “Two-dimensional movement control using

electrocorticographic signals in humans”, Journal of Neural Engineering, Vol. 5 No. 1, pp. 75–84,

doi 10.1088/1741-2560/5/1/008.

Schlögl, A., Brunner, C., Scherer, R. and Glatz, A. (2007), “BioSig: An Open-Source Software Library for

BCI Research”, in Dornhege, G., Millan, J.d.R., Hinterberger, T., McFarland, D.J. and Müller, K.-R.

(Eds.), Toward brain-computer interfacing, Neural Information Processing Series, MIT Press, Cam-

bridge, Mass, pp. 347–358.

Schneider, F.B. (1998), “On concurrent programming”, Communications of the ACM, Vol. 41 No. 4, p.

128, doi 10.1145/273035.273072.

99

References

Schuettler, M., Kohler, F., Ordonez, J.S. and Stieglitz, T. (2012), “Hermetic electronic packaging of an

implantable brain-machine-interface with transcutaneous optical data communication”, in Pro-

ceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Bi-

ology Society (EMBS-2012), San Diego, CA, USA, August 28 - September 1, 2012, IEEE press, pp.

3886–3889, doi 10.1109/EMBC.2012.6346816.

Schuettler, M., Stiess, S., King, B.V. and Suaning, G.J. (2005), “Fabrication of implantable microelec-

trode arrays by laser cutting of silicone rubber and platinum foil”, Journal of Neural Engineering,

Vol. 2 No. 1, pp. S121-S128, doi 10.1088/1741-2560/2/1/013.

Schwaber, K. (1995), “SCRUM Development Process”, in Wirfs-Brock, R. (Ed.), Proceedings of the 10th

Annual Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA-95, Austin, Texas, USA, October 15-19, 1995, ACM, New York, NY, pp. 117–134.

Schwartz, A.B., Cui, X.T., Weber, D.J. and Moran, D.W. (2006), “Brain-controlled interfaces: move-

ment restoration with neural prosthetics”, Neuron, Vol. 52 No. 1, pp. 205–220, doi

10.1016/j.neuron.2006.09.019.

Shafquat, A. (2011), “Design and Validation of Chronic Research Tools for an Implantable Closed-Loop

Neurostimulator”, Master, Department of Electrical Engineering and Computer Science, Massa-

chusetts Institute of Technology, 2011.

Shih, J.J., Krusienski, D.J. and Wolpaw, J.R. (2012), “Brain-Computer Interfaces in Medicine”, Mayo

Clinic Proceedings, Vol. 87 No. 3, pp. 268–279, doi 10.1016/j.mayocp.2011.12.008.

Shpigelman, L., Lalazar, H. and Vaadia, E. (2009), “Kernel-ARMA for Hand Tracking and Brain-Machine

interfacing During 3D Motor Control”, in Koller, D. (Ed.), Advances in Neural Information Pro-

cessing Systems 21: 22nd Annual Conference on Neural Information Processing Systems 2008,

Vancouver, British Columbia, Canada, December 8-10, 2008, Curran Associates Inc, pp. 1489–

1496.

Silvoni, S., Cavinato, M., Volpato, C., Cisotto, G., Clara, G., Agostini, M., Turolla, A., Ramos-

Murguialday, A. and Piccione, F. (2013), “Kinematic and neurophysiological consequences of an

assisted-force-feedback brain-machine interface training: a case study”, Frontiers in Neurology,

Vol. 4, doi 10.3389/fneur.2013.00173.

Sitaram, R., Caria, A., Veit, R., Gaber, T., Rota, G., Kübler, A. and Birbaumer, N. (2007), “fMRI Brain-

Computer Interface: A Tool for Neuroscientific Research and Treatment”, Computational Intelli-

gence and Neuroscience, Vol. 2007 No. 5, p. 25487, doi 10.1155/2007/25487.

Slutzky, M.W., Jordan, L.R., Krieg, T., Chen, M., Mogul, D.J. and Miller, L.E. (2010), “Optimal spacing of

surface electrode arrays for brain-machine interface applications”, Journal of Neural Engineering,

Vol. 7 No. 2, p. 26004, doi 10.1088/1741-2560/7/2/026004.

Stallings, W. (2012), Operating systems: Internals and design principles, 7th ed., Prentice-Hall, Inc,

Boston.

Stanslaski, S.R., Afshar, P., Cong, P., Giftakis, J., Stypulkowski, P.H., Carlson, D., Linde, D., Ullestad, D.,

Avestruz, A.-T. and Denison, T.J. (2012), “Design and validation of a fully implantable, chronic,

closed-loop neuromodulation device with concurrent sensing and stimulation”, IEEE Transactions

on Neural Systems and Rehabilitation Engineering, Vol. 20 No. 4, pp. 410–421, doi

10.1109/TNSRE.2012.2183617.

Stanslaski, S.R., Cong, P., Carlson, D., Santa, W., Jensen, R., Molnar, G., Marks, W.J., Shafquat, A. and

Denison, T.J. (2009), “An implantable bi-directional brain-machine interface system for chronic

neuroprosthesis research”, in Proceedings of the 31st Annual International Conference of the IEEE

100

References

Engineering in Medicine and Biology Society (EMBS-2009), Minneapolis, Minnesota, USA, Sep-

tember 2-6. 2009, IEEE press, pp. 5494–5497, doi 10.1109/IEMBS.2009.5334562.

Stieglitz, T., Rubehn, B., Henle, C., Kisban, S., Herwik, S., Ruther, P. and Schuettler, M. (2009), “Brain–

computer interfaces: an overview of the hardware to record neural signals from the cortex”, in

Verhaagen, J., Hol, E.M., Huitenga, I., Wijnholds, J., Bergen, A.B., Boer, G.J. and Swaab, D.F. (Eds.),

Neurotherapy: Progress in Restorative Neuroscience and Neurology, Progress in Brain Research,

Vol. 175, Elsevier Science, pp. 297–315, doi 10.1016/S0079-6123(09)17521-0.

Stroustrup, B. (2000), The C++ programming language: Special Edition, 3rd ed., Addison-Wesley, Bos-

ton.

Stypulkowski, P.H., Stanslaski, S.R., Denison, T.J. and Giftakis, J.E. (2013), “Chronic Evaluation of a

Clinical System for Deep Brain Stimulation and Recording of Neural Network Activity”, Stereotac-

tic and Functional Neurosurgery, Vol. 91 No. 4, pp. 220–232, doi 10.1159/000345493.

Suchodoletz, D. von, Rechert, K., Valizada, I. and Strauch, A. (2013), “Emulation as an Alternative

Preservation Strategy - Use-Cases, Tools and Lessons Learned”, in Horbach, M. (Ed.), Informatik

2013: Informatik angepasst an Mensch, Organisation und Umwelt, Koblenz, Germany, September

16-20, 2013, Köllen, Bonn, pp. 592–606.

Suchodoletz, D. von, Rechert, K. and van der Werf, Bram (2012), “Long-term Preservation in the Digi-

tal Age – Emulation as a Generic Preservation Strategy”, PIK - Praxis der Informationsverarbeitung

und Kommunikation, Vol. 35 No. 4, pp. 225–226, doi 10.1515/pik-2012-0051.

Sun, F.T., Morrell, M.J. and Wharen, R.E., Jr. (2008), “Responsive cortical stimulation for the treat-

ment of epilepsy”, Neurotherapeutics, Vol. 5 No. 1, pp. 68–74, doi 10.1016/j.nurt.2007.10.069.

Tabot, G.A., Dammann, J.F., Berg, J.A., Tenore, F.V., Boback, J.L., Vogelstein, R.J. and Bensmaia, S.J.

(2013), “Restoring the sense of touch with a prosthetic hand through a brain interface”, Proceed-

ings of the National Academy of Sciences, Vol. 110 No. 45, pp. 18279–18284, doi

10.1073/pnas.1221113110.

Taylor, D.M., Tillery, Stephen I Helms and Schwartz, A.B. (2002), “Direct cortical control of 3D

neuroprosthetic devices”, Science, Vol. 296 No. 5574, pp. 1829–1832, doi

10.1126/science.1070291.

Tsubokawa, T., Katayama, Y. and Yamamoto, T. (1985), “Deafferentiation pain and stimulation of

thalamic sensory relay nucleus: clinical and experimental study”, Applied Neurophysiology, Vol.

48 1-6, pp. 166–171.

Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T. and Koyama, S. (1991), “Chronic Motor

Cortex Stimulation for the Treatment of Central Pain”, in Hitchcock, E.R., Broggi, G., Burzaco, J.,

Martin-Rodriguez, J., Meyerson, B.A. and Toth, S. (Eds.), Advances in Stereotactic and Functional

Neurosurgery 9, Acta Neurochirurgica Supplementum, Vol. 52, Springer-Verlag, pp. 137–139, doi

10.1007/978-3-7091-9160-6_37.

Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T. and Koyama, S. (1993), “Chronic motor

cortex stimulation in patients with thalamic pain”, Journal of Neurosurgery, Vol. 78 No. 3, pp.

393–401, doi 10.3171/jns.1993.78.3.0393.

U.S. Government, “ClinicalTrials.gov. A service of the U.S. National Institutes of Health”, available at:

http://clinicaltrials.gov (accessed 1 August 2014).

Unger, S.H. (1995), “Hazards, critical races, and metastability”, IEEE Transactions on Computers, Vol.

44 No. 6, pp. 754–768, doi 10.1109/12.391185.

Vapnik, V.N. and Chervonenkis, A.Y. (1974), Theory of Pattern Recognition [in Russian], Nauka.

101

References

Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S. and Schwartz, A.B. (2008), “Cortical control of a

prosthetic arm for self-feeding”, Nature, Vol. 453 No. 7198, pp. 1098–1101, doi

10.1038/nature06996.

Venkatraman, S. and Carmena, J.M. (2011), “Active Sensing of Target Location Encoded by Cortical

Microstimulation”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 19

No. 3, pp. 317–324, doi 10.1109/TNSRE.2011.2117441.

Vidal, J.J. (1973), “Toward direct brain-computer communication”, Annual Review of Biophysics and

Bioengineering, Vol. 2, pp. 157–180, doi 10.1146/annurev.bb.02.060173.001105.

Vidaurre, C., Sander, T.H. and Schlögl, A. (2011), “BioSig: the free and open source software library

for biomedical signal processing”, Computational Intelligence and Neuroscience, Vol. 2011, p.

935364, doi 10.1155/2011/935364.

Waldert, S., Pistohl, T., Braun, C., Ball, T., Aertsen, A. and Mehring, C. (2009), “A review on directional

information in neural signals for brain-machine interfaces”, Journal of Physiology - Paris, Vol. 103

3-5, pp. 244–254, doi 10.1016/j.jphysparis.2009.08.007.

Walter, A., Murguialday, A.R., Spüler, M., Naros, G., Leão, M.T., Gharabaghi, A., Rosenstiel, W.,

Birbaumer, N. and Bogdan, M. (2012a), “Coupling BCI and cortical stimulation for brain-state-

dependent stimulation: methods for spectral estimation in the presence of stimulation after-

effects”, Frontiers in Neural Circuits, Vol. 6, doi 10.3389/fncir.2012.00087.

Walter, A., Naros, G., Roth, A., Rosenstiel, W., Gharabaghi, A. and Bogdan, M. (2012b), “A brain-

computer interface for chronic pain patients using epidural ECoG and visual feedback”, in 2012

IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), Larnaca, Cyprus,

November 11-13, 2012, IEEE press, pp. 380–385, doi 10.1109/BIBE.2012.6399654.

Wang, W., Collinger, J.L., Degenhart, A.D., Tyler-Kabara, E.C., Schwartz, A.B., Moran, D.W., Weber,

D.J., Wodlinger, B., Vinjamuri, R.K., Ashmore, R.C., Kelly, J.W. and Boninger, M.L. (2013), “An

Electrocorticographic Brain Interface in an Individual with Tetraplegia”, PLoS ONE, Vol. 8 No. 2,

pp. E55344, doi 10.1371/journal.pone.0055344.

Wang, W., Collinger, J.L., Perez, M.A., Tyler-Kabara, E.C., Cohen, L.G., Birbaumer, N., Brose, S.W.,

Schwartz, A.B., Boninger, M.L. and Weber, D.J. (2010), “Neural Interface Technology for Rehabili-

tation: Exploiting and Promoting Neuroplasticity”, Physical Medicine and Rehabilitation Clinics of

North America, Vol. 21 No. 1, pp. 157–178, doi 10.1016/j.pmr.2009.07.003.

Williams, J.C., Hippensteel, J.A., Dilgen, J., Shain, W. and Kipke, D.R. (2007), “Complex impedance

spectroscopy for monitoring tissue responses to inserted neural implants”, Journal of Neural En-

gineering, Vol. 4 No. 4, pp. 410–423, doi 10.1088/1741-2560/4/4/007.

Wilson, J.A. and Williams, J.C. (2009), “Massively Parallel Signal Processing using the Graphics Pro-

cessing Unit for Real-Time Brain-Computer Interface Feature Extraction”, Frontiers in

Neuroengineering, Vol. 2, doi 10.3389/neuro.16.011.2009.

Wilson, P.R., Johnstone, M.S., Neely, M. and Boles, D. (1995), “Dynamic storage allocation: A survey

and critical review”, in Baker, H.G. (Ed.), Proceedings of the International Workshop on Memory

Management (IWMM ’95), Kinross, UK, September 27-29, 1995, Springer-Verlag, London, UK, pp.

1–116, doi 10.1007/3-540-60368-9_19.

Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G. and Vaughan, T.M. (2002), “Brain-

computer interfaces for communication and control”, Clinical Neurophysiology, Vol. 113 No. 6,

pp. 767–791, doi 10.1016/S1388-2457(02)00057-3.

102

References

Wolpaw, J.R. and McFarland, D.J. (2004), “Control of a two-dimensional movement signal by a nonin-

vasive brain-computer interface in humans”, Proceedings of the National Academy of Sciences,

Vol. 101 No. 51, pp. 17849–17854, doi 10.1073/pnas.0403504101.

Wong, C.H., Birkett, J., Byth, K., Dexter, M., Somerville, E., Gill, D., Chaseling, R., Fearnside, M. and

Bleasel, A. (2009), “Risk factors for complications during intracranial electrode recording in

presurgical evaluation of drug resistant partial epilepsy”, Acta Neurochirurgica, Vol. 151 No. 1,

pp. 37–50, doi 10.1007/s00701-008-0171-7.

Woon, W.L. and Cichocki, A. (2007), “Novel features for brain-computer interfaces”, Computational

Intelligence and Neuroscience, Vol. 2007, p. 82827, doi 10.1155/2007/82827.

Wu, W. and Hatsopoulos, N.G. (2008), “Real-Time Decoding of Nonstationary Neural Activity in Mo-

tor Cortex”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 16 No. 3,

pp. 213–222, doi 10.1109/TNSRE.2008.922679.

Zaytsev, Y.V. and Morrison, A. (2012), “Increasing quality and managing complexity in

neuroinformatics software development with continuous integration”, Frontiers in

Neuroinformatics, Vol. 6, doi 10.3389/fninf.2012.00031.

Zuo, C., Yang, X., Wang, Y., Hagains, C.E., Li, A.-L., Peng, Y.B. and Chiao, J.-C. (2012), “A digital wireless

system for closed-loop inhibition of nociceptive signals”, Journal of Neural Engineering, Vol. 9 No.

5, p. 56010, doi 10.1088/1741-2560/9/5/056010.

103

Appendix

10 Appendix

10.1 Supplementary Materials
The following Supplementary Figures i-iii depict median latencies, MRLR and CPU load as a function of

the number of threads for different sampling frequencies (256Hz-1024Hz) and different number of

channels (256-1024). All graphs show the results for the short-time Fourier transform algorithm. In-

dependent of sampling rate and channel count, the performance increased with increasing number of

threads. Additionally, for all investigated sampling frequencies and number of channels the waiting

strategy Waitevent yielded the best compromise between low-latency and low CPU usage. Hence, these

figures demonstrate that the results presented in section 7.1 are valid for a wide range of different

sampling frequencies and number of channels. Supplementary Figure iv demonstrates that the com-

puting times of support vector machines (SVM; for classification) are very similar to the computing

times of support vector regression (SVR; for regression) shown in Figure 21 D–F.

Supplementary Figure v shows the mean power spectral densities of ECoG recordings from sheep A1

and A2 for individual channels using either the Braincon implant or the gUSBamp device. For each

sheep and each amplifier, the PSDs of the individual channels were similar and there was no outlier.

Therefore it is sufficient for both recording devices to compare the PSDs over all channels for signal

quality assessment (cf. Figure 24 and Figure 27).

104

Appendix

Supplementary figure i: Latency of the filter pipeline for short-time Fourier transform

Latency of the filter pipeline implementing short-time Fourier transform algorithm for different waiting strategies and
numbers of threads. Each subplot shows the median of latencies (lines) with 25% and 75% percentiles (error bars) for
one combination of sampling frequency and number of channels. Figure from Fischer et al. (2014).

105

Appendix

Supplementary figure ii: MRLR of the filter pipeline for short-time Fourier transform

MRLR for the filter pipeline implementing the short-time Fourier transform algorithm for different waiting strategies
and numbers of threads. Each subplot shows MRLR (lines) with 25% and 75% percentiles (error bars) for one combina-
tion of sampling frequency and number of channels. Figure from Fischer et al. (2014).

106

Appendix

Supplementary figure iii: CPU load of test computer running data source simulator

CPU load of the test computer running data source simulator module that receives the processed data and the filter
pipeline implementing the short-time Fourier transform algorithm for different waiting strategies and numbers of
threads. Each subplot shows the median of CPU load (lines) with 25% and 75% percentiles (error bars) for one combina-
tion of sampling frequency and number of channels. Figure from Fischer et al. (2014).

107

Appendix

Supplementary figure iv: Latencies for the filter pipeline implementing the SVM algorithm

Markers show the median of measured latencies with error bars showing the 25% and 75% percentiles. Solid lines show
latencies predicted by algorithm specific models. Models in (A) used the SVM algorithm with 1, 250, 500, 750, and 1000
support vectors. Models in (B) used the SVM algorithm with 32, 256, 512, 768, and 1024 features as input. (C) Model
prediction of SVM latencies in milliseconds (numbers on the solid lines) as a function of number of features and number
of support vectors. Model assumes a linear increase of latency with the product of ns and nf. Figure from Fischer et al.
(2014).

108

Appendix

Supplementary figure v: Mean power spectral density for individual channels

Mean power spectral densities of individual recording channels from A1 and A2, measured either with the Braincon

implant or the gUSBamp device. PSDs were calculated from 100 seconds of recordings while sheep were anesthetized.

For the Braincon implant, one channel was excluded due to lead fracture.

109

Appendix

10.2 List of Figures

Figure 1: Components of a closed-loop BCI ...2

Figure 2: Braincon overview ...6

Figure 3: Braincon foil electrode ... 11

Figure 4: Braincon implant with body-external unit ... 11

Figure 5: Scheme of stimulation parameters .. 12

Figure 6: Exploded CAD view of the Braincon implant without electrode array 13

Figure 7: Risk chart and option analysis flow chart ... 24

Figure 8: Division of a software system into safety classes .. 27

Figure 9: Roadmap .. 31

Figure 10: Test pattern for isolation of tested class.. 36

Figure 11: Interfaces related to processing objects .. 44

Figure 12: Sequence diagram for passing of data objects .. 46

Figure 13: Schematic representation of the filter implementation .. 48

Figure 14: Sequence diagram for passive filter ... 49

Figure 15: Degrees of parallelization for a typical BCI software ... 51

Figure 16: Filter pipeline setup for simulation .. 53

Figure 17: Scheme experimental setups ... 61

Figure 18: Clinician's view of the electrodes used for the acute and chronic setting 62

Figure 19: Performance of the filter pipeline .. 65

Figure 20: Stalls for a filter pipeline .. 66

Figure 21: Latencies for classification/regression algorithms ... 67

Figure 22: Configurations for closed-loop BCI study ... 69

Figure 23: Exemplary ECoG measurements .. 70

Figure 24: Mean power spectral density over all channels .. 71

Figure 25: Evoked potentials from acute sheep A1 .. 72

Figure 26: Humidity over time and µCT of Braincon implant housing .. 73

Figure 27: Mean power spectral densities for C1 at different times after implantation 74

Figure 28: SEPs from C1 for different stimulation sites and intensities .. 75

Figure 29 Exemplary responses to stimulation with Braincon implant .. 76

Supplementary figure i: Latency of the filter pipeline for short-time Fourier transform 104

Supplementary figure ii: MRLR of the filter pipeline for short-time Fourier transform 105

Supplementary figure iii: CPU load of test computer running data source simulator 106

Supplementary figure iv: Latencies for the filter pipeline implementing the SVM algorithm 107

Supplementary figure v: Mean power spectral density for individual channels 108

file:///G:/Promotion/dis/dissertation.docx%23_Toc394743945
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743946
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743947
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743948
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743949
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743950
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743951
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743952
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743953
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743954
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743955
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743956
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743957
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743958
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743959
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743960
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743961
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743962
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743963
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743964
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743965
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743966
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743967
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743968
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743969
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743970
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743971
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743972
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743973
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743974
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743975
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743976
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743977
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743978

110

Appendix

10.3 List of Tables

Table 1: Requirements for the Freiburg BCI Software and the Braincon Platform Software 32

Table 2: Parameters of latency models for decoding algorithms ... 68

file:///G:/Promotion/dis/dissertation.docx%23_Toc394743979
file:///G:/Promotion/dis/dissertation.docx%23_Toc394743980

111

Appendix

10.4 List of Abbreviations

AIMD active implantable medical device directive
ALS amyotrophic lateral sclerosis
ASIC application-specific integrated circuit
BBCI Berlin BCI
BCI brain-computer interface
BPO Braincon implant processing object
CI confidence interval, continuous integration
CT computer tomography
DBS deep brain stimulation
DC direct current
DOF degree of freedom
ECoG electrocorticography
EEG electroencephalogram
EPA evoked potential analyzer
FDA food and drug administration of the united states
fMRI functional magnetic resonance imaging
FPGA field-programmable gate arrays
GB gigabyte
GHz gigahertz
GPO gUSBamp amplifier processing object
GPU graphics processing unit
GUI graphical user interface
HIM hardware interface module
INVITRO in vitro diagnostic medical device directive
KF Kalman filter
LDA linear discriminant analysis
LFP local field potential
MB megabyte
MDD medical device directive
MEA microelectrode array
MEG magnetoencephalography
MRLR median of relative latency reduction
MUA multi unit activity
NIRS near-infrared spectroscopy
PC personal computer
PCB printed circuit board
PO processing object
PSD power spectral density
RLDA regularized linear discriminant analysis
RLR relative latency reduction
SEP somatosensory evoked potential
SOUP software of unknown provenance
SSC stimulation script controller
SSE stimulation script editor
SUA single unit activity
SVM support vector machine
SVR support vector regression
TCP/IP transmission control protocol and internet protocol
TMS transcranial magnetic stimulation

112

Appendix

10.5 Figure Copyright

Figure 3: Caption and figure taken from Kohler et al., 2012; Copyright © 2012 IEEE. Permission to

reuse obtained from IEEE via Copyright Clearance Center’s RightsLink service.

Figure 6: Caption and figure taken from Kohler et al., 2013; Copyright © 2013 IEEE. Permission to

reuse obtained from IEEE via Copyright Clearance Center’s RightsLink service.

Parts of Figure 19 (i.e., the electrode layout scheme in the background) was designed and manufac-

tured by Christian Henle.

Figures 13, 15, 20, 21, 22 and Supplementary Figures i, ii, iii, iv taken from Fischer et al. (2014) under

the Creative Commons Public License (http://creativecommons.org/licenses/by/3.0/).

Figures 17-18 and 23-29 taken from Kohler et al.. Copyright remains with the authors of this manu-

script.

113

Appendix

10.6 Funding

This work was funded by the German Federal Ministry of Education and Research (BMBF) grant

BMBF GoBio grant 0313891 and KMU-Innovativ.

114

Appendix

10.7 List of Publications

Journal Publications

Fischer, J., Milekovic, T., Schneider, G. and Mehring, C. (2014), “Low-latency multi-threaded pro-

cessing of neuronal signals for brain-computer interfaces”, Frontiers in Neuroengineering, Vol. 7,

p. 1, doi 10.3389/fneng.2014.00001.

Kohler, F., Fischer, J., Gierthmuehlen, M., Gkogkidis, A., Henle, C., Ball, T., Wang, X., Rickert, J., Stieg-

litz, T. and Schuettler, M., Long-term in vivo validation of a fully-implantable, wireless brain-

computer interface for cortical recording and stimulation, in preparation.

Milekovic, T., Fischer, J., Pistohl, T., Ruescher, J., Schulze-Bonhage, A., Aertsen, A., Rickert, J., Ball, T.

and Mehring, C. (2012), “An online brain-machine interface using decoding of movement direc-

tion from the human electrocorticogram”, Journal of Neural Engineering, Vol. 9 No. 4, p. 46003,

doi 10.1088/1741-2560/9/4/046003.

Hammer, J., Fischer, J., Ruescher, J., Schulze-Bonhage, A., Aertsen, A. and Ball, T. (2013), “The role of

ECoG magnitude and phase in decoding position, velocity, and acceleration during continuous

motor behavior”, Frontiers in Neuroscience, Vol. 7, doi 10.3389/fnins.2013.00200.

Gierthmuehlen, M., Wang, X., Gkogkidis, A., Henle, C., Fischer, J., Fehrenbacher, T., Kohler, F., Raab,

M., Mader, I., Kuehn, C., Foerster, K., Haberstroh, J., Freiman, T.M., Stieglitz, T., Rickert, J.,

Schuettler, M. and Ball, T. (2014), “Mapping of sheep sensory cortex with a novel micro-

electrocorticography grid [epub ahead of print]”, Journal of Comparative Neurology, doi

10.1002/cne.23631.

Conference Contributions

Fischer, J., Henle, C., Paetzold, J., Mohrlok, R., Raab, M., Moeller, A., Rickert, J. and Schuettler, M.

(2011), “BRAINCON – A wireless implantable system for long-term recording of

electrocorticogram signals and electrical stimulation”, poster presented at 45. DGBMT

Jahrestagung (BMT 2011), September 27-30, 2011, Freiburg, Germany, doi

10.1515/BMT.2011.859.

Fischer, J., Milekovic, T., Mehring, C., Hammer, J., Rickert, J., Aertsen, A. and Ball, T. (2013), “The

Braincon platform software architecture for invasive closed-loop Brain-Machine Interfaces and

electrical stimulation”, poster presented at SfN 2013, November 9-13, 2013, San Diego, Califor-

nia, USA.

	Comment on References
	Zusammenfassung
	Abstract
	Acknowledgements
	Table of contents
	1 Introduction
	1.1 Motivation: Towards a Medical BCI
	1.2 Properties of a Clinical BCI
	1.2.1 Recording Techniques
	1.2.2 Signal Quality
	1.2.3 Stability and Usability
	1.2.4 Patient Safety
	1.2.5 Certification as a Medical Device

	1.3 Why Cortical Stimulation?
	1.3.1 Parkinson’s Disease
	1.3.2 Somatosensory Feedback
	1.3.3 Pain Therapy
	1.3.4 Stroke Motor Rehabilitation

	1.4 Braincon in a Nutshell
	1.5 Braincon Software Requirements
	1.5.1 Modular Software Architecture
	1.5.2 Medical Platform Software
	1.5.3 Low-Latency Processing
	1.5.4 Computational Power

	1.6 Scientific Contribution

	2 Braincon Overview
	3 State of the Art
	3.1 Implants
	3.2 BCI Software Platforms

	4 Regulatory Requirements
	4.1 Juristic Environment for Medical Software Development
	4.2 Consequences for Medical Software Development
	4.2.1 EN ISO 13485 – Quality Management System
	4.2.2 EN ISO 14971 – Risk Management
	4.2.3 EN 62304 – Software Life-Cycle Processes for Medical Device Software
	4.2.3.1 Software Development Process
	4.2.3.2 Software Problem Resolution and Change Control Processes
	4.2.3.3 Software Maintenance Process
	4.2.3.4 Software Risk management Process
	4.2.3.5 Software Configuration Management Process

	5 Scientific Objectives
	5.1 Own Approach
	5.2 Roadmap
	5.3 Software Objectives

	6 Methods
	6.1 Design Principles of the Software Architecture
	6.1.1 Modularity
	6.1.2 Verifiability
	6.1.2.1 Test Tools
	6.1.2.1.1 Unit Tests
	6.1.2.1.2 Automatic Regression Tests
	6.1.2.1.3 Mock Objects

	6.1.2.2 Test Strategy
	6.1.2.2.1 Violation of Pre-Conditions
	6.1.2.2.2 Violation of Invariants
	6.1.2.2.3 Unhandled Runtime Errors
	6.1.2.2.4 Invalid Input at Application Start

	6.1.3 No Data-Sharing
	6.1.3.1 Big Permanent Objects
	6.1.3.2 Small Short-Lived Objects

	6.1.4 Coding Convention

	6.2 Software Architecture
	6.2.1 Domain Model
	6.2.2 Implementation
	6.2.3 Startup and Shutdown Order
	6.2.4 Filter Pipeline
	6.2.4.1 Active Filters
	6.2.4.2 Passive Filters
	6.2.4.3 Implementation

	6.2.5 Parallelization

	6.3 Performance Analysis
	6.3.1 Performance Definition
	6.3.2 Simulation Setup
	6.3.3 Stall Definition
	6.3.4 Algorithms
	6.3.4.1 Feature Extraction Algorithms
	6.3.4.2 Decoding Algorithms
	6.3.4.3 Decoding Algorithm Complexity

	6.3.5 Statistical Analysis

	6.4 Closed-Loop BCI Study
	6.5 Preclinical in vivo Animal Study
	6.5.1 Software for in vivo Study
	6.5.2 Acute Animal Study
	6.5.3 Chronic Animal study

	7 Results
	7.1 Performance Analysis
	7.1.1 Stalls of the Filter Pipeline
	7.1.2 Performance of Classification/Regression Algorithms

	7.2 Closed-Loop BCI Study
	7.3 Preclinical in vivo Animal Study
	7.3.1 Acute Setting
	7.3.2 Chronic Setting

	8 Discussion
	8.1 Platform Software from the Regulatory Perspective
	8.2 Filter Pipeline
	8.3 Distributed System
	8.4 Soft Real-Time versus Hard Real-Time
	8.5 On-Implant- versus Body-External Signal Processing
	8.6 Implant Housing
	8.7 Future Work
	8.8 Summary and Outlook

	9 References
	10 Appendix
	10.1 Supplementary Materials
	10.2 List of Figures
	10.3 List of Tables
	10.4 List of Abbreviations
	10.5 Figure Copyright
	10.6 Funding
	10.7 List of Publications

