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Introduction

Special subsheaves of the tangent sheaf and
Harder-Narasimhan Filtration
The study of special subsheaves E of the tangent sheaf TX of a projective variety X
reveals the geometry of underlying space. For example, Miyaoka use the existence
of positive subsheaf E of the tangent sheaf TX to deduce the uni-ruledness of X,
i.e., there is rational curve passing through a general point of X. More precisely, he
showed the following theorem:

Theorem 0.0.1 (cf. [MP97, Theorem 2.14] and references there). Let X be a
normal, projective variety defined over the complex numbers C. If there exist ample
line bundles H1, . . . ,HdimX−1 and a subsheaf E ⊂ TX such that

c1(E) ·H1 · . . . ·HdimX−1 > 0,

then X is uni-ruled.

Here the existence of positive subsheaf with respect to H1, . . . ,HdimX−1 can be
rephrased as follows. Given ample line bundles {Hi}, we can use H1, . . . ,HdimX−1
to filtrate tangent sheaf TX into

HNF{Hi}(TX) : 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = TX ,

which is called the Harder-Narasimhan filtration, by sorting out subsheaves of max-
imal normalized degree with respect to {Hi} of tangent sheaf TX repeatedly.

Definition-Theorem 0.0.2 (Harder-Narasimhan filtration,[HL97, Theorem 1.3.4]).
Let X be a normal, projective variety over the complex numbers, TX the tangent
sheaf, and H1, . . . ,HdimX−1 ample line bundles. There exists a unique filtration of
TX , the Harder-Narasimhan filtration with respect to {Hi}, depending on the chosen
ample line bundles

HNF{Hi}(F) := 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = TX ,

with the following properties:

(i) The sheaves Fi are saturated in F , i.e., F/Fi is torsion free.

(ii) The quotients Gi := Fi/Fi−1 are torsion-free and for any 0 6= F ( Gi with
rankF < rankGi we have

c1(F).H1. . . . .HdimX−1
rankF ≤ c1(Gi).H1. . . . .HdimX−1

rankGi
.
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(iii) Furthermore, we have

µ{Hi},max(TX) := c1(G1).H1. . . . .HdimX−1
rankG1

> . . . >
c1(Gk).H1. . . . .HdimX−1

rankGk
.

With this insight, we can rephrase Miyaoka’s theorem as follows:

Theorem 0.0.3 (cf. [MP97, Theorem 2.14]). Let X be a normal, projective variety
over the complex numbers C. If there exist ample line bundles H1, . . . ,HdimX−1,
such that

µ{Hi},max(TX) > 0,

then X is uni-ruled.

Relation between Harder-Narasimhan filtration and rational
maps
Problems
The terms of Harder-Narasimhan filtrations possess a unique property. If

c1(F1).H1. . . . .HdimX−1 > 0,

then the sheaf F1 is closed under Lie bracket, i.e., an integrable subsheaf, cf. Propo-
sition 1.3.32. The classic Frobenius theorem asserts that sheaf F1 is the relative
tangent sheaf of some rational map φ : U → Y , U ⊂ X an open set. It is natural to
ask the following question.

Question 0.0.4 (Baby version). For a given relative tangent sheaf Tf of a rational
map f , can we find ample line bundles {Hi} such that Tf is a term of HNF{Hi}(TX)?
Furthermore, if that is the case, what is the relation between rational map f and
ample line bundles {Hi}?

To make the second question more precise, we introduce the cone of movable
curves.

Definition 0.0.5. Let X be a smooth projective variety. The cone of movable curves
Mov1(X) is the closure of following cone

Mov1(X) := {C ∈ N1(X)R : C.E ≥ 0, for all effective Cartier divisor E}

in N1(X)R.

The cone of movable curves is naturally related to rational maps of fibre type,
since it contains all general complete intersection curves in general fibre of such
maps. Furthermore, the construction of Harder-Narasimhan filtration HNF{Hi}(TX)
with respect to ample line bundles {Hi} can be generalized to Harder-Narasimhan
filtration HNFα(TX) with respect to movable curve class α, cf. Theorem 1.3.20.
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Question 0.0.6 (Main problem). For a given tangent sheaf Tf of a rational map f ,
can we find a movable curve class α such that Tf is a term of HNFα(TX)? If that is
the case, what is relation between rational map f and the movable curves class α?
Alternatively, what is the relation between rational map f and the geometry of the
cone of movable curves?

Known results
For various rational maps, the first half of Question 0.0.6 have an affirmative an-
swer. Sola Conde and Toma considered the case when rational map f is the Maximal
rationally connected quotient map of an algebraic variety X, an important rational
map related whether any two points can by connected by a chain of rational curves.
They showed that for a uni-ruled, projective manifold, there exists a movable curve
class such that the relative tangent sheaf of the maximal rationally connected quo-
tient is part of the Harder-Narasimhan filtration of the tangent sheaf with respect
to such a curve class (cf. [SCT, Theorem 1.1]). Neumann considered the case when
rational map f is composition of maps in the Minimal Model program. He showed
that for a smooth Fano 3-fold each term of the Harder-Narasimhan filtration of the
tangent sheaf, with respect to a given movable curve class, is the relative tangent
sheaf of a (not necessarily elementary) Mori fibration (cf. [Neu10, Theorem 4.1]).

Rational contractions
We investigate a special kind of rational maps which fit into Question 0.0.6 quite
well, the Rational contractions. Rational contractions are natural generalization of
birational contractions to non-birational case. Intuitively, they are rational maps
which are composition of small birational maps with a contraction morphism.

Definition 0.0.7 (Rational contraction, cf. Definition 1.4.1). Let f : X 99K Y be
a dominant rational map between normal projective varieties. We say that f is a
rational contraction, if there exists a resolution of f

X ′

µ

��

f ′

  
X

f // Y,

where X ′ is smooth and projective, µ is birational, and for every µ-exceptional ef-
fective divisor E on X ′ we have

f ′∗OX′(E) = OY .

For a Q-Cartier divisor D ⊂ Y , f∗(D) is defined to be µ∗(f ′∗(D)).

Remark 0.0.8. In our case, toric varieties, rational contractions are indeed com-
position of small birational maps followed by a contraction morphism( cf. Corol-
lary 1.4.15).
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We note that for a rational contraction f : X 99K Y , the Neron-Severi group
of Y can be identified as a subgroup of the Neron-Severi group of X. Intuitively,
this follows from that f is composition of small rational maps and a contraction
morphism.

Results

Main Result

In this paper, we investigate both problems in Question 0.0.6 for rational contrac-
tions between tori varieties. We prove that the relative tangent sheaf of a rational
contraction between toric varieties is a term of Harder-Narasimhan filtration of the
tangent sheaf with respect to a specified movable curve C. In fact, we can choose
C to be general complete intersection curve in a general fibre of such map. Fur-
thermore, as a byproduct, the rational contraction and rational map defined by the
foliation associated to the relative tangent sheaf coincide generically. Specifically,
we prove the following theorem.

Theorem 0.0.9 (cf. Theorem 3.3.16, Corollary 3.3.17). Let φ : X 99K Z be a
rational contraction, where Z is normal, projective and dimZ < dimX. Then the
relative tangent sheaf of φ is a term of the Harder-Narasimhan filtration of the
tangent sheaf TX with respect to a suitable movable curve class. Furthermore, the
rational map φ and rational map

q : X 99K Chow(X)
x → TX/Z-leaf through x,

coincide on an open set of X.

The class of rational contractions contains a vast variety of interesting maps, in-
cluding all the maps in the minimal model program. Since the important of the Min-
imal Model Program, we extract the following statement from Theorem 0.0.9. The
following theorem shows that we can reconstruct the end result of the minimal model
program via the study of foliations associated to terms of the Harder-Narasimhan
filtration of the tangent sheaf and geometry of the cone of movable curves.

Theorem 0.0.10 (cf. Section 3.2). Let X be a Q-factorial, projective, toric variety.
Then for any KX-minimal model with scaling φ : X 99K X ′ and Mori fibre space
f : X ′ → Z

X
φ //

ψ
&&

X ′

f
��
Z,
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there is a movable curve C such that the rational map ψ = f ◦ φ : X 99K Z coincide
generically with

q : X 99K Chow(X)
x → TX/Z-leaf through x,

where F is a term of HNFC(TX). In fact, we can choose C to be the numerical
pullback of a curve in the general fibre of f : X ′ → Z.

Further Results
The key ingredient for the proof of Theorem 0.0.9 is the following theorem, which
allows us to calculate the Harder-Narasimhan filtration of the tangent sheaf with
respect to a given movable curve. We will prove Theorem 0.0.11 in Section 2.2.

Theorem 0.0.11. For a given projective, Q-factorial, toric variety X and a movable
curve class C, we give an algorithm to calculate the Harder-Narasimhan filtration of
the tangent sheaf with respect to C.

In the course of the proof of Theorem 0.0.9 in the case of Mori fibre spaces. We
prove a Mehta-Ramanathan type theorem.

Theorem 0.0.12 (Mehta-Ramanathan type theorem). Let φ : X∆ → X∆R
be a

Mori fibre space of Q-factorial, projective, complex, toric varieties contracting ex-
tremal ray R. Let C be a complete intersection in a general fibre F of φ, C ∈ R.
Then we have

HNFC(TX∆)|F = HNFC(TX∆ |F ).

Outline of the dissertation
The dissertation is structure as follows: In Chapter 1 we set up notation and ba-
sic properties of toric varieties. Then we give a combinatorial description of the
geometry of the cone of movable curves on a toric variety in Section 1.3.1. Chap-
ter 2 is devoted to the statement and proof of the algorithm of calculation of
Harder-Narasimhan filtration, and we give a simple way to determine the Harder-
Narasimhan filtration of the tangent sheaf of weight projective spaces in the end of
Chapter. Chapter 3 contains the proof of Theorem 0.0.9.
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1 Preliminaries

Throughout this paper all spaces are assumed to be algebraic varieties over complex
number C.

1.1 Convex geometry

We recall some basic definitions of convex geometry.

Definition 1.1.1. Let N be a lattice such that NR = N⊗ZR ∼= Rn. Let C ⊂ NR be a
subset of a finite dimensional real vector space. We say that C is a cone( respectively
convex subset) if whenever α and β ∈ C then

λα+ µβ ∈ C for all λ ≥ 0, µ ≥ 0,

(respectively such that λ + µ = 1 with λ ≥ 0, µ ≥ 0). We say that C is strictly
convex if C contains no positive dimensional linear subspaces. We say that R ⊂ C is
a ray of a cone C if R = R≥0α, for some non-zero vector α ∈ C. We say that R is
an extremal ray if whenever β + γ ∈ R, where β and γ ∈ C, then β and γ ∈ R; an
element C ∈ C is called an extremal element if R≥0C is an extremal ray. We say
that a cone C is a rational polyhedron if C is a cone and if there exist finitely many
ui ∈ N such that C = {

∑
aiui : ai ∈ R≥0}.

Definition 1.1.2. Given a finite subset S of NR, the cone generated by S is the set
{
∑
ass; as ∈ R≥0, s ∈ S}. We denote it by Cone(S).

Definition 1.1.3 (Dual cone). Let M be the dual lattice of N with a perfect pairing
〈 , 〉 : MR ×NR → R. Given a polyhedral cone σ ⊂ NR, its dual cone is defined by

σ∨ = {m ∈MR : 〈m,u〉 ≥ 0 for all u ∈ σ} .

Definition 1.1.4. A face of a polyhedral cone σ is τ = σ ∩Hm for some m ∈ σ∨
and Hm = {u ∈ NR : 〈m,u〉 = 0} ⊂ NR. We call m ∈ σ∨ a defining element of τ .

1.2 Toric varieties

In this section, we recall the basic properties of toric varieties and fix the notation.
For the proofs, see [CLS], [Ful].
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1 Preliminaries

Setting 1.2.1. Let N ' Zn be a lattice of rank n and M its dual lattice. A fan
∆ is a finite collection of rational, strongly convex cones σ ⊂ NR := N ⊗Z R, such
that each face τ of a convex cone σ ∈ ∆ again belongs to ∆ and every intersection
of two cones in ∆ is a face of each. To each cone σ ∈ ∆, we can associate an affine
variety Uσ = SpecC[σ∨ ∩M ], where σ∨ denotes the dual cone of σ. Then the toric
variety X∆ associated to fan ∆ is the normal variety obtained by gluing the Uσ. We
write TN := SpecC[M ] ∼= N ⊗Z C∗ = (C∗)n. The torus TN may be regarded as an
open subset of X∆ and we call it a big torus of X∆. There is an action of TN on
X∆, which extends the action of TN on itself.

We use notation and assumptions in Setting 1.2.1 in the following subsection. We
have ∆, which is a fan in a lattice N of rank n, and M will be the dual lattice of N .
The variety X∆ will always stand for the toric variety associated to the fan ∆.

Definition 1.2.2 (Dimension of cones). For σ ∈ ∆ the dimension dim σ of σ is the
dimension of the linear space Wσ = σ + (−σ) spanned by σ. Let ∆(k) to be the set
of cones in ∆ of dimension k.

For each cone τ ∈ ∆(k) there is a torus invariant closed subvariety V (τ) associated
to τ . We need the following definition in order to define V (τ).

Definition 1.2.3 (Star(τ)). For τ ∈ ∆(k) we set

Nτ := τ ∩N + (−τ ∩N), and N(τ) := N/Nτ ,

the sub-lattice generated by τ ∩N and the quotient lattice. Now for a cone σ which
contains τ as a face, we can consider its image σ in N(τ) and set

σ := (σ + (Nτ )R/(Nτ )R) ⊂ N(τ)R.

The collection {σ : τ is a face of σ} forms a fan in N(τ) and we denote this fan by
Star(τ). We note that N(τ) is of rank n− k.

τ

Star(τ)

Definition 1.2.4 (Invariant subvarieties associated to cones). For a cone τ ∈ ∆(k)
we have a fan Star(τ) in a rank n − k lattice N(τ). Then we define V (τ) :=
XStar(τ), which is of dimension n− k. The variety V (τ) can be regarded as a closed
subvariety of X∆ and it is invariant under the action of TN . In case of dimV (τ) = 1
(resp. n− 1) we call V (τ) a torus invariant curve (resp. a torus invariant divisor).
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1.2 Toric varieties

Definition 1.2.5 (Q-divisors). A Q-divisor D is a finite combination of Weil divi-
sors with coefficient in Q.

Definition 1.2.6 (Q-factoriality). A normal variety X is said to be Q-factorial if
every prime divisor D on X is Q-Cartier, i.e., for each D there exists a positive
integer mD such that mDD is a Cartier divisor.

Proposition 1.2.7 (Q-factoriality criterion for toric varieties, cf. [?, Proposition
4.2.7]). A toric variety X∆ is Q-factorial if and only if each cone σ ∈ ∆ is simplicial,
i.e., the primary generators of the one-skeleton of any cone are linearly independent.

Proposition 1.2.8 (cf. [Ful, Section 3.4]). Let D be a Cartier (resp. Q-Cartier)
divisor on a toric variety. Then D is linearly (resp. Q-linearly) equivalent to a sum
of torus invariant divisors (resp. Q-divisors).

Definition 1.2.9. A toric variety X∆ has a torus factor if it is equivariantly iso-
morphic to the product of a nontrivial torus and a toric variety of smaller dimension.

Proposition 1.2.10 (cf. [CLS, Proposition 3.3.9]). A toric variety X∆ has no
torus factor if and only if the set {uρ : ρ ∈ ∆(1),Z≥0 uρ = ρ} spans the vector space
NR.

Definition 1.2.11 (Tangent sheaf, cf. [Har77, Section II.8]). Let X be an algebraic
variety. The tangent sheaf TX is the dual of the sheaf Ω1

X of Kähler differentials.
If f : X → Y is a morphism between algebraic varieties, then the relative tangent
sheaf TX/Y is the dual of sheaf of relative differential forms Ω1

X/Y and canonical
map between Kähler differentials

f∗Ω1
Y → Ω1

X → Ω1
X/Y → 0

defines an injective map TX/Y → TX .

Definition 1.2.12 (Map of fans, cf. [Oda, Section 1.5]). Let ∆ ⊂ N and ∆′ ⊂ N ′

be two fans. A map of fans φ : (N ′,∆′) → (N,∆) is a Z-linear homomorphism
φ : N ′ → N whose scalar extension φ : N ′R → NR satisfies the following properties:
For each σ′ ∈ ∆′ there exists σ ∈ ∆ such that φ(σ′) ⊂ σ.

Theorem 1.2.13 (cf. [Oda, Theorem 1.13.]). A map of fans φ : (N ′,∆′)→ (N,∆)
gives rise to a homomorphic map

φ∗ : X∆′ → X∆,

whose restriction to the open subset TN ′ ⊂ X∆′ coincides with the homomorphism
of algebraic tori

φ⊗ 1 : TN ′ = N ′ ⊗ C∗ → TN = N ⊗ C∗

9



1 Preliminaries

arising from φ. Furthermore, the morphism φ∗ is equivariant with respect to the
actions of TN ′ and TN on the toric varieties.
Conversely, suppose f ′ : TN ′ → TN is a homomorphism of algebraic tori and

f : X∆′ → X∆ is a holomorphic map equivariant with respect to f ′. Then there
exists a unique map of fans φ : (N ′,∆′)→ (N,∆) such that f = φ∗. If a morphism
φ : X∆′ → X∆ satisfies above equivalent condition, we call it
Definition 1.2.14 (Toric morphism). Let ∆ ⊂ N and ∆′ ⊂ N ′ be two fans. We
call a morphism ϕ : X∆′ → X∆ a toric morphism if ϕ = φ∗ is the induced morphism
for some map of fans φ : (N ′,∆′)→ (N,∆).
Proposition 1.2.15 (General fibres of Toric morphism, [HLY02, Theorem 2.1.4]).
Let φ : X∆′ → X∆ be a surjective, projective, toric morphism between projective,
toric varieties associated with ψ : (N ′,∆′)→ (N,∆) with dim X∆ < dimX∆′. Then
over the big torus TN of X∆, we have φ−1(TN ) ∼= F × TN , where F a projective,
toric variety, and fan structure of F is ∆′{0} := {σ′ ∈ ∆′ : ψ(σ′) = {0}} ⊂ kerψ

Lemma 1.2.16 (Relative tangent sheaf). Let φ : (N ′,∆′) → (N,∆) be a map of
fans and φ∗ : X∆′ → X∆ the corresponding homomorphic morphism. We assume
that rank ker(φ) > 0, then the relative tangent sheaf TX∆′/X∆ is the saturation of
ker(φ)⊗OX∆′ in TX∆′ .
Proof. Since the restriction of φ∗ on TN ′ is N ′ ⊗ C∗ → N ⊗ C∗, we only need to
check that the relative tangent sheaf of φ∗ : TN ′ → TN is ker(φ) ⊗ OTN′ which is
obvious.

Proposition 1.2.17 (Exact sequence of divisors, [CLS, Theorem 4.1.3]). Let X∆
be a Q-factorial, complete, toric variety. Then there exists an exact sequence

0 //MR
α∗ // R∆(1) β∗ // Pic(X∆)R // 0

where

α∗(m) = (〈m, uρ〉)ρ∈∆(1)

β(eρ) = [Dρ] eρ a standard basis of R∆(1)

Theorem 1.2.18 (Euler sequence, cf. [CLS, Theorem 8.1.6]). Let X∆ be a Q-
factorial, toric variety without torus factor.
Then there exists an exact sequence for the tangent sheaf.

0 → Cl(X∆)⊗OX∆
α→

⊕
ρ∈∆(1)OX∆(Dρ)

β→ TX∆ → 0
‖ ∪ ∪

0 → Cl(X∆)⊗OX∆ →
⊕

ρ∈∆(1)OX∆
β→ N ⊗OX∆ → 0

(1.1)

Furthermore, if X∆ is smooth, then we have

0→ Pic(X∆)⊗OX∆
α→

⊕
ρ∈∆(1)

OX∆(Dρ)
β→ TX∆ → 0

10



1.2 Toric varieties

Definition 1.2.19 (Fake weighted projective space). A fake weighted projective
space is a Q-factorial, complete, toric variety with Picard number one but which is
not a weighted projective space. In fact, a fake weighted projective space is always
projective.

Proposition 1.2.20 ([Mat, Corollary 14-2-2]). Let X∆ be a Q-factorial, projective,
toric variety and R ⊂ NE1(X∆) an extremal ray. Let

φR : X∆ → YΣ

be the contraction of R with dimYΣ < dim X∆. Then the general fibre of φR is
either a weighted projective space or a fake weighted projective space.

Proposition 1.2.21 (Intersection theory, [Ful, Section 5.1]). Let X∆ be a Q-factorial
toric variety, i.e., every cone in ∆ is simplicial. We pick ω = 〈v1, . . . , vn−1〉 ∈
∆(n− 1), the cone generated by v1, . . . , vn−1. There are two unique primitive lattice
points vn, vn+1 such that 〈v1, . . . , vn−1, vn〉 and 〈v1, . . . , vn−1, vn+1〉 belong to ∆(n).
If we write down the equation

∑
aivi = 0 with an+1 = 1, then we have

V (〈vi〉) · V (ω) = aiV (〈vn+1〉) · V (ω)

for i = 1, . . . , n.

ω

vn

vn+1

vn−1

v1

Theorem 1.2.22 (Small Q-factorialization, [Fuj, Theorem 5.5]). Let X be a pro-
jective, toric variety, then there exists a projective morphism f : X ′ → X such
that X ′ is a Q-factorial, projective, toric variety and the exceptional set of f is of
codimension ≥ 2. We call X ′ a small Q-factorialization of X.

11



1 Preliminaries

1.2.1 Toric structure of weighted projective spaces and fake weighted
projective spaces

(ref: [CLS], [Kas]) We need the following toric interpretation of weighted projective
space and fake weighted projective spaces for the simple algorithm of the calculation
of the Harder-Narasimhan filtration of the tangent sheaf in Subsection 2.3.

1.2.23 (Toric structure of weighted projective space). For any given positive integers
a0, . . . , an with gcd(a0, . . . , an) = 1 the weighted projective space P(a0, . . . , an) has a
toric structure as follows. Let {u0, . . . , un} ⊂ N ∼= Zn be a set of n + 1 primitive
lattice points that fulfill the following two conditions

(1) a0u0 + a1u1 + · · ·+ anuu = 0.

(2) the ui generate the lattice N .

and the fan ∆ made up of the cones generated by all the proper subsets of {u0, . . . , un}.
Then the toric variety associated to this fan in the lattice N is isomorphic to
P(a0, . . . , an). Equivalently, if we define the lattice

N = Zn+1/Z · (a0, . . . , an)

and let ui for i = 0, . . . , n be the images in N of the standard basis vectors of Zn+1,
and ∆ the fan made up of the cones generated by all proper subsets of {u0, . . . , un},
then P(a0, . . . , an) ∼= X∆.

1.2.24 (Toric structure of fake weighted projective space). Consider any given pos-
itive integers a0, . . . , an with gcd(a0, . . . , an) = 1, any set {u0, u1, . . . , un}
⊂ N of n+ 1 primitive lattice points in N ∼= Zn that fulfill the conditions

(1) a0u0 + · · ·+ anun = 0

(2) The ui generate a sublattice N ′ ⊂ N of finite index

and the fan ∆ made up of the cones generated by all proper subset of {u0, . . . , un}.
Then X∆ is a fake weighted projective space and is denoted by P(u0, . . . , un). In
fact, every fake weighted projective space is of this form.

1.3 Harder-Narasimhan filtration and foliations
1.3.1 The cone of movable curves
We discuss the notion of movable curves, and provide a structure theorem of the
cone of movable curves on a Q-factorial, projective, toric variety.

Definition 1.3.1 (Movable curve, cf. [BDPP], [CP11], [GKP12, Appendix A]).
Let X be a normal, Q-factorial, projective variety. We call a curve C movable if
C lies in a covering family (Ci)t∈S with an irreducible and projective S and Ct is

12



1.3 Harder-Narasimhan filtration and foliations

irreducible for general t ∈ S. We set Mov1(X) to be the convex cone generated by
all movable curves in N1(X)R and Mov1(X) to be its closure in N1(X)R and call
it the cone of movable curves, where N1(X) is the free abelian group generated by
irreducible curves on X modulo numerical equivalence and N1(X)R := N1(X)⊗ZR.

Theorem 1.3.2 (Duality, [BDPP, Theorem 2.2]). Let X be a Q-factorial, nor-
mal, projective variety, then Mov1(X) and Eff(X) are dual to each other via the
intersection of divisors and curves.

Proof. In the original form, the theorem was prove for X a projective manifold. It
is well-known that the theorem can be extended to the case X Q-factorial, normal,
projective variety. For the reader’s convenience, we represent the proof here. It
is clear that if C is a movable curve class then C.E ≥ 0 for any effective divisor,
therefore C.E′ ≥ 0 for E′ ∈ Eff(X). We only need to show that the converse: if a
divisor E satisfies E is non-negative on Mov1(X), then E is pseudo-effective. Let
f : X ′ → X be a resolution of singularity of X and X ′ a projective manifold. The
main observation is that divisor E is pseudo-effective if and only if f∗E is pseudo-
effective. If E is not pseudo-effective, then f∗E is also not pseudo-effective. Hence
there exists a movable curve class C ′ ∈ Mov1(X ′) such that f∗E.C ′ < 0. We may
assume C ′ is a movable curve which lies in a covering family (C ′t)t∈S . Then the
family of curves (f∗Ct)t∈S is a covering family on X and E.f∗C ′ = f∗E.C ′ < 0.

Remark 1.3.3. For the case of Mori dream space, there is a simple proof of this
fact, cf. [KO12, Proposition 2.6].

1.3.4. The cone of movable curves Mov1(X) of a Q-factorial, projective, toric va-
riety X is equal to Mov1(X) by the following Proposition 1.3.6 and Lemma 1.3.5.
Hence we shall not distinguish the difference between Mov1(X) and Mov1(X).

Lemma 1.3.5 (cf. [Pay06, Proposition 2, Page 427]). Let X be a Q-factorial,
projective, toric variety and let {aρ}ρ∈∆ ⊂ Z≥0 such that

∑
aρ uρ = 0, where ρ =

Z≥0 uρ.Then there exists an irreducible movable curve C such that Dρ.C = aρ for
all ρ ∈ ∆.

The following proposition represents a curve by a vector in a vector spaces.

Proposition 1.3.6 (Exact sequence of curves, [CLS, Proposition 6.4.1]). Let X∆
be a Q-factorial, projective, toric variety and N1(X∆) the free abelian group gen-
erated by irreducible curves on X module numerical equivalence and N1(X∆)R :=
N1(X∆)⊗Z R. Then we have an exact sequence

0 // N1(X∆)R
β // R∆(1) α // NR // 0

where

α(eρ) = uρ eρ a standard basis of R∆(1)

β([C]) = (Dρ.C)ρ∈∆(1) C ⊂ X∆ an irreducible complete curve.

13
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Thus N1(X∆)R can be interpreted as the space of linear relation among the minimal
generators of ∆. Furthermore, a tuple (aρ) ∈ R∆(1) represents a curve class C if
and only if that

∑
aρuρ = 0.

Definition 1.3.7. For a movable curve C, we see that β(C) lies in the first quadrant
of the vector space RΣ(1). We set ΣC := {ρ ∈ Σ(1) : C.Dρ > 0}. We note that if
C ′ ∈ R>0C, then ΣC′ = ΣC . We also use the notation ΣC, where C ⊂ Mov1(X∆)
is a cone, which can be defined to be ∪C∈CΣC . If {Cj} generates the cone C, then
ΣC = ∪ΣCj .

Example 1.3.8. Let S be the toric surface associated to the following fan in N2.
Then S is the blowing up of Hirzebruch surface F1 along a torus fixed point.

ρ1

ρ2

ρ5ρ4

ρ3

There are 5 torus invariant divisors on S, and the intersection table is the follow-
ing.

Dρ1 Dρ2 Dρ3 Dρ4 Dρ5

Dρ1 0 1 0 0 1
Dρ2 1 0 1 0 0
Dρ3 0 1 -1 1 0
Dρ4 0 0 1 -1 1
Dρ5 1 0 0 1 -1

Since curves and divisors are the same on S, we can use intersection table to see
ΣDρi

and β(Dρi) via the intersection table. From the intersection table, we see that
Dρ1, Dρ2 are movable curves, ΣDρ1

= {ρ2, ρ4}, ΣDρ2
= {ρ1, ρ3}.

Remark 1.3.9. If VΣC the minimal sub vector space of NR containing all elements
of ΣC , then the vector space VΣC = Cone({uρ : ρ ∈ ΣC , ρ = Z≥0 uρ})

Remark 1.3.10. The set ΣC is also used to study the relation between the Mori
cone of a toric variety and the primitive collection of ∆(1), for example, see [CLS,
Theorem 6.4.11].

Definition 1.3.11. Let ∆ be a fan in a lattice N , we call a subset S ⊂ ∆(1) movable
if there exists {aρ}ρ∈S ⊂ Z>0 such that

∑
ρ∈S aρ uρ = 0, where ρ = Z≥0 uρ. We call

a movable subset S of ∆(1) irreducible if it contains no proper movable subset.

Example 1.3.12. (Example 1.3.8 continued). The set ∆(1) consists 5 rays. The
set {ρ1, ρ2} is not movable but sets {ρ2, ρ5} and {ρ1, ρ2, ρ4, ρ5} are movable. The

14



1.3 Harder-Narasimhan filtration and foliations

set {ρ2, ρ5} is irreducible but the set {ρ1, ρ2, ρ4, ρ5} is not as it contains {ρ2, ρ5} as
a subset.

ρ1

ρ2

ρ5ρ4

ρ3 ρ1

ρ2 ρ2

ρ5

ρ1

ρ2

ρ4 ρ5

Irreducible movable set are S1 = {ρ1, ρ3}, S2 = {ρ2, ρ5} and S3 = {ρ1, ρ2, ρ4}; in
fact we have S1 = ΣDρ2

, S2 = ΣDρ1
and S3 = ΣDρ2+Dρ3 . We will see later that

Dρ1 , Dρ2 and Dρ2 + Dρ3 are extremal points of Mov1(S). Furthermore, we have
Mov1(S) = Cone(Dρ1 , Dρ2 , Dρ2 +Dρ3).

Remark 1.3.13. We see that if C is a movable curve, then ΣC is a movable subset
of ∆(1) by Proposition 1.3.6. Conversely, if S ⊂ ∆(1) is a movable subset, then
we can find a movable curve C such that S = ΣC . We note that there may be two
different movable curve generate same movable set S. If Ci are movable curves, then
ΣC1+C2 = ΣC1 ∪ ΣC2.

Proposition 1.3.14. Let X∆ be a Q-factorial, projective, toric variety associated
to a fan ∆ ⊂ N . Then there exists a one to one correspondence between irreducible
movable subsets and extremal rays of Mov1(X∆).{

Extremal rays of Mov1(X∆)
}
→ {Irreducible movable subsets of ∆(1)}

R → ΣR

Proof. We start with the correspondence between irreducible movable subset of ∆(1)
and extremal rays R of Mov1(X∆). If R is not extremal, then there exists C1 6∈ R
and C2 ∈ Mov1(X∆) such that C1 + C2 ∈ R. Then ΣC1 is a proper subset of ΣR,
and ΣR is not irreducible. If ΣC is not irreducible, there exists a proper movable set
ΣC′ , then β(C)− εβ(C ′) lies in the first quadrant of R∆(1) for some rational number
0 < ε� 1, thus C − εC ′ ∈ Mov1(X∆). Hence the ray R is not extremal.

Corollary 1.3.15. There is a one-to-one correspondence between proper movable
subsets of ∆(1) and faces of Mov1(X∆).

Proof. Let S ⊂ ∆(1) be a proper movable set. The definition of movable subset
guarantees there is a relation

∑
ρ∈S aρ uρ = 0 and aρ ∈ Z>0. Lemma 1.3.5 implies

that there is a curve C with ΣC = S. We consider the minimal face F of ∂Mov1(X∆)
such that C ∈ F , such F exists since S = ΣC ( ∆(1). Converse is clear.

Remark 1.3.16. During the preparation of this paper, the author learned that Dou-
glas Monôres has proved a similar result about the description of the extremal rays
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of Mov1(X∆) in terms of the elements in lattice N cf. [Mon13, Theorem 5.3.3]. The
argument we present here is based on Theorem 1.3.2 and Proposition 1.3.6. Douglas
Monôres started with the Theorem of Araujo instead, cf Theorem 3.2.4.

Remark 1.3.17 (Forms of irreducible movable sets, [Mon13, Theorem 5.3.3]). With
the help of Theorem 3.2.4. Monôres showed that irreducible movable sets are of the
form S = {uρ0 , uρ1 , . . . , uρk} and dim Cone(uρ0 , . . . , uρk) = k, where R≥0uρi = ρi ∈
∆(1).

As a corollary, we have an estimate of numbers of the faces of the cone of movable
curves.

Corollary 1.3.18 (Numbers of faces). We can calculate the number of faces of
Mov1(X∆) directly via the structure of ∆(1).

1.3.2 Harder-Narasimhan filtration
Given a movable curve class, we can associate the notion of stability and use the
stability to filtrate a torsion free sheaf, and such stability condition provide a unique
filtration of a torsion free sheaf.

Definition 1.3.19 (Slope and stability, cf. [CP11, Section 1]). Let C be a movable
curve class of a normal, Q-factorial, projective variety X and F a torsion-free,
coherent sheaf of positive rank on X. We define the slope of F with respect to C to
be

µC(F) := c1(F) · C
rank(F) .

We call F semi-stable (resp. stable) with respect to C or C-semi-stable (resp.
stable) if for any nonzero proper subsheaf G of F with rank(G) < rank(F) holds, we
have µC(G) ≤ (<)µC(F). If there exists a nonzero subsheaf G ⊂ F with µC(G) ≥
µC(F), we call G a destabilizing subsheaf of F . If there is a nonzero subsheaf G ⊂ F
with µC(G) > µC(F), we call F unstable.

Theorem 1.3.20 (Harder-Narasimhan filtration, cf. [CP11, Prop. 1.3]). Let
F be a torsion-free coherent sheaf on a normal, Q-factorial, projective variety X and
C a nonzero movable curve class on X. There exists a unique filtration of F , the
Harder-Narasimhan filtration with respect to C, depending on the chosen movable
curve class

HNFC(F) := 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = F ,

with the following properties:

(i) The sheaves Fi are saturated in F , i.e., F/Fi is torsion free.

(ii) The quotients Gi := Fi/Fi−1 are torsion-free and semi-stable.
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1.3 Harder-Narasimhan filtration and foliations

(iii) The slopes of the quotients satisfy

µC,max(F) = µC(G1) > . . . > µC(Gk) = µC,min(F).

Remark 1.3.21. If C = Hn−1 is a complete intersection curve, where H is an
ample divisor on X. Then we also use the notation HNFH . When dimX = 1,
then we also use the notation HNF, since the notation of the Harder-Narasimhan
filtration is canonical.

Remark 1.3.22 (Maximal destabilizing subsheaf). It is clear that HNFC(F) only
depends on the ray generated by the numerical class of C in N1(X)R. For a given
sheaf F , the slopes of all subsheaves of F are bounded from above and there exists a
subsheaf G ⊂ F such that µmax

C (F) := µC(G) ≥ µC(F ′) for all subsheaves F ′ ⊂ F .
There exists a unique maximal element with respect to inclusion among all subsheaves
with slope µmax

C (F), which coincides with the first nonzero term of HNFC(F). It is
called the maximal destabilizing subsheaf of F . We refer to [GKP12, Appendix A]
for the proof of boundedness and the existence of the maximal destabilizing subsheaf.
It is clear that F is unstable if and only if the maximal destabilizing subsheaf of F
is not equal to F .

Remark 1.3.23. In fact, the sheaf Fi is the preimage of the maximal destabilizing
subsheaf of F/Fi−1 in F .

Definition 1.3.24 (G-sheaf, cf. [Kol, Definition 1.2.1]). Let G be an algebraic group
acting on a normal variety X, and F a sheaf on X. We call F a G-sheaf if there
is an isomorphism σ : m∗X ∼= p∗2F , where mX : G × X → X is the action and
p2 : G × X → X is the second projection, such that σ(g) : g∗F ∼= F for all g ∈ G
and σ satisfies the usual compatible condition.

Definition 1.3.25 (G-invariant subsheaf). Let G be an algebraic group acting on a
normal variety X, and F a G-sheaf with isomorphism σ. A G-invariant subsheaf G
of F is a subsheaf of F such that the isomorphism σ induces an isomorphism of G.

Remark 1.3.26 (Invariability of the maximal destabilizing subsheaf). We assume
that there is a connected algebraic group G acting on X and let F be a torsion-
free G-sheaf. Let C be an arbitrary movable curve class. Then the uniqueness of
maximal destabilizing subsheaf G of F implies that G of F is a G-invariant. We
do not assume the movable curve class C to be G-invariant, since G acts trivially
on N1(X), therefore G acts trivially on N1(X)R, which follows, because that G
is connected, acts continuously on N1(X) and N1(X) is discrete. Therefore, the
Harder-Narasimhan filtration of F is G-invariant. In particular, the tangent sheaf
of a toric variety is clearly a TN -sheaf, where TN is its big torus, and terms of the
Harder-Narasimhan filtration with respect to a movable curve class of the tangent
sheaf are TN -invariant.
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Theorem 1.3.27 (Metha-Ramanathan theorem, cf.[Fle84, Theorem 1.2]). Let X
be a normal, projective variety over the complex numbers, H an ample divisor on
X, and E a torsion free coherent sheaf on X. Then there exists a m0 > 0 such that
for all m > m0 there exists a curve of the form C = H1 ∩ . . . ∩ HdimX−1, Hi are
general member of |mH|, we have HNFH(E)|C = HNF(E|C).

1.3.3 Foliation and leaves
Definition 1.3.28 (Integrable subsheaves, [Pe00, Definition 1.2]). Let X be a com-
plex manifold, E ⊂ TX a subbundle. E is called integrable if E is closed under the
Lie bracket, i.e., [E,E] ⊂ E. More generally, let X be a complex variety, E ⊂ TX a
coherent subsheaf(of positive rank). Let Xreg be the set of smooth points of X and
Sing(TX/E) the set of points where TX/E is not locally free. Let

X◦ := X\Sing(TX/E).

Then E is integrable if E|X◦ ⊂ TX◦ is integrable.

Definition 1.3.29 (Foliation, [Neu10, Definition 1.1.2]). Let X be a complex, nor-
mal, projective variety. A foliation F is a non-zero, coherent, saturated, integrable
subsheaf of the tangent sheaf.

Definition 1.3.30 (Leaf, [KSC, Definition 1.9]). Let p be a general point on a com-
plex, normal, projective variety X and F ⊂ TX a foliation. Let X◦ := X\Sing(TX/E),
i.e., F|X◦ ⊂ TX◦ is a subbundle. The leaf of F through p is the union

⋃
p∈M M of all

connected manifold containing p which is contained in X◦. A leaf is called algebraic
if it is open in its Zariski closure.

Theorem 1.3.31 (Algebraicity of leaves, cf. [KSCT, Theorem 1]). Let X be a com-
plex, normal, projective variety, C ⊂ X a complete curve which is entirely contained
in the smooth locus Xreg and F ⊂ TX a (possibly singular) foliation which is regular
along C. Assume that the restriction F|C is an ample vector bundle on C. If x ∈ C
is any point, the leaf through x is algebraic. If x ∈ C is general, the closure of the
leaf is rationally connected.

Proposition 1.3.32 (HNF and foliation). Let X be a normal, Q-factorial, projective
variety and C a movable curve class. Let

0 ⊂ F1 ⊂ . . . ⊂ Fk ⊂ TX

be the Harder-Narasimhan filtration of TX with respect to C. If µC(Fl/Fl−1) > 0,
then Fl is a foliation.

Proof. If C is a general fibre in a general fibre of morphism X → Y between normal,
projective varieties. Then the proof can be found in [KSCT], as a combination of
Proposition 30, [KSCT] and an argument used in 6.2 in the same paper. This is
enough for our purpose. The proof of general form go along a different line, a proof
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can be found in [Neu10, Theorem 4.3.3] and [Neu10, Remark 4.3.4]. For the reader’s
convenience, we reproduce the proof here with small modification. First of all {Fi}s
are all coherent, non-zero, saturated subsheaves of TX , hence it suffices to show Fl
is integrable. Second we observe that if µC(Fl/Fl−1) > 0, then µC(Fk/Fk−1) > 0
for all 1 ≤ k ≤ l. Here we prove the integrability of Fl by ascending induction. First
step, we shall show that F1 is integrable. Let X◦1 = Xreg\Sing(TX/F1), we shall
show that F1|X◦1 is closed under Lie bracket. We observe that the normality of X
and torsion-freeness of TX/F1 implies Codim(X\X◦1 ) ≥ 2. Now we can associate
Lie bracket operator [, ] on F1|X◦1 to a morphism

ψ1 :
2∧
F1|X◦1 → TX/F1|X◦1 ,

the integrability of F1|X◦1 is equivalent to ψ = 0. Hence it suffices to show

Hom(
2∧
F1|X◦1 , TX/F1|X◦1 ) ⊂ Hom(

2⊗
F1|X◦1 , TX/F1|X◦1 ) = 0.

We have an isomorphism between sheaves

Hom(
2⊗
F1|X◦1 , TX/F1|X◦1 ) = Hom((

2⊗
F1)∗∗, (TX/F1)∗∗),

where

G∗∗ = Hom(Hom(G,OX),OX)

is the double dual, by the fact that Codim(X\X◦1 ) ≥ 2 and [Har80, Proposition 1.6].
Hence we reduce to show

Hom((
2⊗
F1)∗∗, (TX/F1)∗∗) = 0.

Now we are ready to use the properties of HNFC(TX) to establish the nullity of
this group. The sheaf F1 is C-semistable which follows from property (ii) of 1.3.20,
then we get that (

⊗2F1)∗∗ is also C-semistable by [GKP15, Theorem 4.2] with
µC((

⊗2F1)∗∗) = 2µC(F1). Then we have the following inequalities

µC,min((
⊗2
F1)∗∗) = µC((

⊗2
F1)∗∗) = 2µC(F1) >

µC(F1) > µC,max(TX/F1) = µC,max((TX/F1)∗∗).

Then Hom((
⊗2F1)∗∗, (TX/F1)∗∗) = 0 immediately follows from inequality

µC,min((
⊗2
F1)∗∗) > µC,max((TX/F1)∗∗)

and [HL97, Lemma 1.3.3], and we complete proof of integrability of F1. For l ≥ 2, we
may assume F1, . . . ,Fl−1 are integrable by induction. We setX◦l = Xreg \ Sing(TX/Fl)
and aiming to show that the induced morphism

ψl :
2∧
Fl|X◦

l
→ TX/Fl|X◦

l
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is zero. But this morphism factor through

ψ1 :
2∧
Fl/Fl−1|X◦

l
→ (TX/Fl−1)/(Fl/Fl−1)|X◦

l

by the fact that Fl−1 is integrable. Then we reduce to the case of l = 1. Hence we
complete the proof.

1.3.33. Let X be a complex, normal, projective variety and assume the conditions of
Proposition 1.3.32 are fulfilled. We obtain a foliation Fl whose leaves are algebraic
and rationally connected by Theorem 1.3.31. By setting

qFl : X 99K ⊂ Chow(X)
x → Fl-leaf through x,

we obtain a rational map such that the closure of the general fibre is rationally
connected, see [KSCT, Section 7].

Proposition 1.3.34 (cf. [KSCT, Proposition 29]). Let C be a smooth complex
projective curve and E a vector bundle on C with Harder-Narasimhan filtration with
respect to OC(1)

0 = E0 ⊂ E1 ⊂ . . . ⊂ Er = E

and µi := µ(Ei/Ei−1). Suppose that µ1 > 0 and let k := max{i | µi > 0}. Then Ei
is ample for all 1 ≤ i ≤ k.

1.4 Rational contraction and Toric varieties
1.4.1 Rational contractions
Definition 1.4.1 (Rational contraction, cf. [HK00, Definition 1.1]). Let f : X 99K
Y be a dominant rational map between normal projective varieties. We say that f
is contracting, or a rational contraction, if there exists a resolution of f

X ′

µ

��

f ′

  
X

f // Y,

where X ′ is smooth and projective, µ is birational, and for every µ-exceptional ef-
fective divisor E on X ′ we have

f ′∗OX′(E) = OY .

If f is birational, we say that f is birational contraction. Furthermore, if both f and
f−1 are rational contractions, then we call f a small map. If f is regular, then we
call f a regular contraction. If dimY < dimX, then we say it is a contraction of
fibre type.
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Remark 1.4.2. The definition of rational contraction is independent of the choice
of resolution. Furthermore, if we take E = 0 in the definition, we get f ′∗OX′ = OY ,
hence the map f ′ has connected fibres. If f is birational, then birational contraction
is equivalent to that f−1 does not contract any divisor.

Remark 1.4.3. The natural maps in the minimal model program are all rational
contractions.

Example 1.4.4. Here we provide a non-example for rational contraction. Let f :
X → Pn be the blowing up a point, then f−1 : Pn 99K X is not a rational contraction.

1.4.2 Mori dream spaces
We showed that rational contraction between toric varieties are compositions of
small maps and a contraction. The main result of this subsection is Corollary 1.4.15.
Corollary 1.4.15 can be showed directly by toric method, however, we believe that
the theory of Mori dream spaces make this statement more clear.

Definition 1.4.5 (Small Q-factorial modification, cf. [HK00, Definition 1.8]). Let
X be a projective variety. A small Q-factorial modification(SQM) of X is a small
map g : X 99K X ′, with X ′ normal, projective and Q-factorial.

Remark 1.4.6. Let ∆, ∆′ be two fans in N and X∆, and X∆′ the toric varieties
associated with the corresponding fans. If φ : X∆ → X∆′ is a birational contraction,
then we have ∆′(1) ⊂ ∆(1); if φ : X∆ 99K X∆′ is a small map, then we have
∆(1) = ∆′(1), i.e., they share same one cones.

Lemma 1.4.7. Let X be the Q-factorial, projective, toric variety associated with
fan ∆. Then every SQM X ′ of X is also toric.

Proof. The proof can be found in [Pay06, Section 4].

Definition 1.4.8 (Cones of divisors). Let X be a Q-factorial, normal, projective
variety. The effective cone Eff(X) is the convex cone generated by classes of effective
divisors. The nef cone Nef(X) is the cone of classes in N1(X) generated by nef
divisors. The movable cone Mov1(X) is the convex cone in N1(X) generated by the
classes of movable divisors, where a Cartier divisor D is called movable if the base
locus of |mD| has codimension ≥ 2 for m� 0 and sufficiently divisible.

Definition 1.4.9 (Mori dream space, [HK00, Definition 1.10]). Let X be a nor-
mal, Q-factorial, projective variety. We call X a Mori dream space if the following
properties hold:

(1) Pic(X) is finitely generated (equivalently, h1(OX) = 0).

(2) Nef(X) is generated by the classes of finitely many semiample divisors; and

(3) there is a finite collection of SQMs gi : X 99K Xi such that each Xi satisfies
(2) and Mov1(X) is the union of the f∗i (Nef(Xi)
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Remark 1.4.10. If X is a MDS, then the finite collection {Xi}i in property (3) is
the set of all SQMs of X.

Proposition 1.4.11 (cf. [HK00]). A Q-factorial, projective, toric variety X is a
Mori dream space.

Remark 1.4.12 (Closedness of cones). If X is a MDS, then all the Eff(X), Nef(X),
and Mov1(X) are closed, rational polyhedral cones in N1(X)R.

Proposition 1.4.13 (cf [HK00, Proposition 1.11]). Let X be a MDS and f : X 99K
Y a rational contraction. Then there exists a SQM X ′ of X such that f factors as:

X
g //

f   

X ′

h
��
Y,

where h is a regular contraction.

Remark 1.4.14. The statement was implicit stated in the last paragraph of the
proof of [HK00, Proposition 1.11].

Corollary 1.4.15. Let X∆ be a Q-factorial, projective, toric variety and f : X∆ 99K
Y a rational contraction. Then there exists a Q-factorial, projective, toric variety
X ′ and a small map g : X∆ → X ′ such that f factors as:

X∆
g //

f !!

X ′

h
��
Y,

where h is a regular contraction.

Remark 1.4.16. The toric version of Proposition 1.4.15 can be showed by the fan
structure of toric variety itself, c.f.[CLS, Theorem 15.1.10].

Theorem 1.4.17 (D-minimal model, [HK00, Proposition 1.11],). Let X be a Mori
dream space, then we may run minimal model program for any divisor on X.

Remark 1.4.18. The proof of toric version of Theorem 1.4.17 can be found in
[CLS, Section 15.5], [FS04, Section 4].

1.5 Geometry of the cone of movable curves
We define the adjoint map of the pull-forward map of divisors on the space of
curves. Furthermore, we identify rational contraction and faces of the cone of mov-
able curves.
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1.5 Geometry of the cone of movable curves

1.5.1 Numerical pullback of curves

1.5.1. Let X be a Q-factorial, projective, normal variety, N1(X) the formal group of
irreducible divisors on X modulo numerical equivalence, and N1(X)R = N1(X)⊗R.
Let ϕ : X 99K Z be a birational contraction between normal, Q-factorial, projective
varieties. Taking the pullback of Cartier divisors on Z defines an injective linear
map ϕ∗ : N1(Z)R → N1(X)R. Taking the pushforward of Weil divisors on X defines
a surjective linear map ϕ∗ : N1(X)R → N1(Z)R.

Definition 1.5.2 (Numerical pullback, cf. [A, Definition 4.1]). Let ϕ : X 99K Z be a
birational contraction between Q-factorial, projective varieties. Then the numerical
pullback ϕ∗num : N1(Z)R → N1(X)R is the dual linear map of ϕ∗ : N1(X)R →
N1(Z)R. It is the unique injective linear map with the following properties

(1) If z ∈ N1(Z)R and l ∈ N1(Z)R, then ϕ∗(z).φ∗num(l) = z.l.

(2) If β ∈ kerϕ∗ and m ∈ Imφ∗num, then β.m = 0.

Proposition 1.5.3. Let ϕ : X 99K Y be as in Definition 1.5.2. We have

(1) If γ ∈ N1(X)R and D ∈ N1(Y )R, then ϕ∗γ.[D] = γ.ϕ∗[D].

(2) If γ ∈ N1(Y )R and D ∈ N1(X)R, then ϕ∗numγ.[D] = γ.ϕ∗[D].

Remark 1.5.4. If we have birational contractions ϕi : Xi 99K Xi+1 between Q-
factorial projective varieties, then the numerical pullbacks are functorial in the sense
that we have (ϕi−1)∗num ◦ (ϕi)∗num = (ϕi ◦ ϕi−1)∗num.

1.5.2 The geometry of the cone of movable curves

By using numerical pull back of curves, Araujo identify part of extremal rays of the
cone of movable curves and (KX + D)-Minimal Model Program with scaling. In
fact, she showed the following theorem.

Theorem 1.5.5 ([A, Theorem 1.1]). Let (X,D) be a Q-factorial, klt pair1. Let
Σ ⊂ N1(X)R be the set of classes of curves on X that are numerical pullbacks of
curves lying on general fibres of Mori Fibre spaces obtaining from X by a (KX +D)-
Minimal Model Program with scaling. Then

NE1(X)(KX+D)≥0 + Mov1(X) = NE1(X)(KX+D)≥0 +
∑

[C]∈Σ
R≥0[C] (1.2)

1A klt pair (X, D) consists of a normal variety X and an effective Weil divisor D on X. For the
precise definition, we refer to [KM98, Section 2.3]
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1 Preliminaries

In the case of toric varieties (more generally, Mori dream spaces), a stronger result
is also known. We can identify faces of the cone of movable curves with rational
contractions. Specifically, we have following theorem.

Theorem 1.5.6 (cf. Theorem 3.4.2). Let X∆ be a Q-factorial, projective, toric
variety associated to fan ∆ ⊂ N . Then for every proper face of Mov1(X∆), we can
associate a rational contraction φF : X∆ 99K X∆F

, such that F is the numerical pull
back of curves classese of a face F ′ of Mov1(X∆F

) ∩ NE1(X∆F
). Furthermore, we

have dimF = dimF ′.

We postpone the proof to Section 3.4.
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2 Algorithm of calculation of
Harder-Narasimhan filtration

In this chatper, we give an algorithm to calculate Harder-Narasimhan filtration with
respect to a given movable curve class. This chapter is divided into three sections.
We present preparatory lemmas of the proof of Theorem 0.0.11 in Section 2.1, then
we prove Theorem 0.0.11 in Section 2.2. As an application, we give a simple way to
determine the Harder-Narasimhan filtration of Q-factorial, projective, toric varieties
with Picard number one in the last section.

2.1 Preparatory lemmas for Theorem 0.0.11

Setting 2.1.1. Throughout this section, we let X∆ be a Q-factorial, toric variety
without torus factors, with fan ∆ in the lattice N ∼= Nn. The affine variety Uρ will
be SpecC[ρ∨ ∩M ] for ρ ∈ ∆(1), which is an open, smooth, affine, toric subvariety
of X∆. For each ρ ∈ ∆(1), we let uρ be the element in N with Z≥0 uρ = ρ.

2.1.1 Invariant vector fields

The following proposition establishes a relation between torus invariant vector fields
of TX∆ and sub vector spaces of NR.

Proposition 2.1.2 ([Oda, Proposition 3.1], [CLS, Theorem 8.16]). Let X∆ be a
Q-factorial, toric variety without torus factors. We can associate to each n ∈ N a
torus invariant derivation on C[M ] by

δn : C[M ]→ C[M ], χm → 〈m,n〉 · χm.

Furthermore, the morphism δ : N → Der(C[M ]), n → δn gives an isomorphism
between

N ⊗OX∆
∼= TX∆(− logD),

where D =
∑
ρ∈∆(1)Dρ.

Remark 2.1.3. We extend the definition of δn to elements in NR by simply taking
the real extension.
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2 Algorithm of calculation of Harder-Narasimhan filtration

2.1.2 Invariant saturated subsheaves
In this subsection, we establish an equivalence between the category of saturated
torus invariant subsheaves of TX∆ and sub vector spaces of NR. The inclusion maps
of sub vector spaces give morphisms between saturated invariant subsheaves.

Definition 2.1.4 (Torus invariant saturated subsheaf FV ). We follow the notation
in Setting 2.1.1. For a given sub vector space V ⊂ NR, we can associate a torus
invariant saturated subsheaf FV of TX∆ as follows. Recall the isomorphism N ⊗
OX∆

∼= TX∆(− logD), which is induced by the morphism δ in Proposition 2.1.2. Via
this isomorphism, a vector subspace V ⊂ NR uniquely determines a torus invariant
subsheaf V ⊗OX∆ ⊂ TX∆(− logD) ⊂ TX∆. We let FV be the saturation of V ⊗OX∆
in TX∆. The saturatedness of FV is automatically satisfied, the invariance of FV
follows, because both V ⊗ OX∆ and TX∆ are torus invariant and the uniqueness of
saturation.

Lemma 2.1.5. We follow the notation in Setting 2.1.1. Then every torus invariant
saturated subsheaves of TX∆ on X∆ are of the form FV for some sub vector space
V ⊂ NR.

Proof. Given a torus invariant saturated subsheaf F of TX∆ , the restriction of F
on big torus TN is a torus invariant saturated subsheaf of TTN , therefore we have
F|TN ∼= VF ⊗OTN for some sub vector space VF of NR via the isomorphism δ given
in Proposition 2.1.2. We find that FVF and F coincide on TN , thus F ∼= FVF .

Theorem 2.1.6. There is an equivalence between the category of saturated invariant
subsheaves of TX∆ with inclusion morphism and the category of sub vector spaces of
NR with inclusion morphism between sub vector spaces of NR.

Proof. If we have FV1 ⊂ FV2 ⊂ TX∆ , then we have FV1 |TN ⊂ FV2 |TN , therefore
V1 ⊂ V2.
Conversely, we have two sub vector spaces V and W with V ⊂ W ⊂ NR. Then

the isomorphism δ in Proposition 2.1.2 gives you

V ⊗OX∆ ⊂W ⊗OX∆ ⊂ TX∆ .

The inclusion V ⊗OX∆ ⊂ W ⊗OX∆ ⊂ TX∆ implies TX∆/(W ⊗OX∆) ⊂ TX∆/(V ⊗
OX∆). Hence we have

TX∆/(W ⊗OX∆)
Tn−1(TX∆/(W ⊗OX∆) ⊂

TX∆/(V ⊗OX∆)
Tn−1(TX∆/(V ⊗OX∆)) ,

where Tn−1(F ) is the maximal subsheaf of F of dimension ≤ n − 1. Since the
saturation FV of V ⊗OX∆ in TX∆ is just the kernel of

TX∆ →
TX∆/(V ⊗OX∆)

Tn−1(TX∆/(V ⊗OX∆) ,

we have FV ⊂ FW .
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2.1 Preparatory lemmas for Theorem 0.0.11

Corollary 2.1.7. Let X∆ be a Q-factorial, projective, toric variety with no torus
factors. Then a Harder-Narasimhan filtration of TX∆ corresponds to an increasing
filtration of sub vector spaces of NR.

2.1.3 Chern classes
In this subsection, we calculate the first Chern class of a given invariant saturated
subsheaf of TX∆ . In fact, for any given V ⊂ NR we are able to write down the local
generators of FV in Uρ for each ρ ∈ ∆(1). The main result of this subsection is the
following Theorem which immediately follows from Lemma 2.1.12.

Theorem 2.1.8. Let X∆ be a Q-factorial, toric variety without torus factors and
V a sub vector space of NR. Then the first Chern class of the invariant saturated
subsheaf FV ⊂ TX∆ is [

∑
ρ⊂V Dρ].

Proof. We observe that Codim X∆ \
⋃
ρ∈∆(1) Uρ ≥ 2, hence it suffices to calculate

the first Chern class of FV |⋃
ρ∈∆(1) Uρ on

⋃
ρ∈∆(1) Uρ. Then Theorem immediately

follows from Lemma 2.1.12, OX∆(Dρ)|Uρ = 1
χmρOUρ .

The rest of this subsection is devoted to the proof of Lemma 2.1.12. Here we start
with a remark of V ⊗OX∆ .

Remark 2.1.9. Let V ⊂ NR a sub vector space and {v1, . . . , vk} its R-basis. Then
V ⊗OX∆ is a free sheaf with generator δvi.

Somehow, sheaf V ⊗ OUρ may not saturated in TX∆ |Uρ . We would like to know
what is the difference. The following lemma gives an expression of TX∆ |Uρ and an
explicit express of derivations δn on Uρ.

Lemma 2.1.10. For ρ = Z≥0uρ ∈ ∆(1), we have

ρ∨ ∩M ∼= Z≥0mρ ⊕ Z≥0m2 ⊕ Z≥0m
−1
2 ⊕ · · · ⊕ Z≥0mn ⊕ Z≥0m

−1
n ,

where m2, . . . ,mn are generators of ρ⊥ ∩M as a lattice and 〈mρ, uρ〉 = 1.
Then

Uρ = SpecAρ,where Aρ = C[mρ,m2,m
−1
2 , . . . ,mn,m

−1
n ],

TX∆ |Uρ is generated by ∂
∂χmρ , χ

m2 ∂
∂χm2 , . . . , χ

mn ∂
∂χmn and we have

δuρ |Uρ = χmρ
∂

∂χmρ
.

Furthermore, we have for all v ∈ NR

δv|Uρ = 〈mρ, v〉 · χmρ
∂

∂χmρ
+

n∑
i=2
〈mi, v〉 · χmi

∂

∂χmi
.
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2 Algorithm of calculation of Harder-Narasimhan filtration

Remark 2.1.11. Lemma 2.1.10 shows that the derivation δuρ |Uρ = χmρ ∂
∂χmρ van-

ishing along divisor (χmρ = 0) and suggesting a candidate of generators of FV |Uρ.

Lemma 2.1.12 (Local generator). We follow notation in Lemma 2.1.10. For a
given vector sub space V ⊂ NR of dimension k and ρ ∈ ∆(1) we assign a vector space
basis of V as follow: If ρ ⊂ V , we choose {v2, . . . , vk} such that {uρ, v2, . . . , vk} is a
basis of vector space V . If ρ 6⊂ V , we take one basis {v1, . . . , vk} of vector space V .
Then

FV |Uρ =


〈

1
χmρ δuρ , δv2 , . . . , δvk

〉
OUρ

if ρ ⊂ V〈
δv1 , . . . , δvk

〉
OUρ

if ρ 6⊂ V.

as a OUρ-module.

Proof. In the course of the proof, we follow the calculation of Remark 2.1.10. We
set an auxiliary sheaf GV,Uρ by following

GV,Uρ :=


〈

1
χmρ δuρ , δv2 , . . . , δvk

〉
OUρ

if ρ ⊂ V〈
δv1 , . . . , δvk

〉
OUρ

if ρ 6⊂ V.

It suffice to show that GV,Uρ ∼= FV |Uρ . We check equality GV,Uρ |TN ∼= V ⊗OTN and
torsionfreeness of TX∆ |Uρ/GV,Uρ . The isomorphism GV,Uρ |TN ∼= V ⊗OTN is clear. It
remains to show that GV,Uρ is saturated, i.e., that TX∆ |Uρ/GV,Uρ is torsion free.

Case 1 (ρ 6⊂ V ). We prove the case ρ 6⊂ V first. On

Uρ = C[mρ,m2,m
−1
2 , . . . ,mn,m

−1
n ],

the tangent sheaf TX∆ |Uρ is generated by

∂

∂χmρ
, χm2 ∂

∂χm2
, . . . , χmn

∂

∂χmn

and we can write

δvj = 〈mρ, vj〉 · χmρ
∂

∂χmρ
+

n∑
l=2
〈ml, vj〉 · χml

∂

∂χml
, j = 1, . . . , k.

Then we consider the short exact sequence (2.1) with respect to the chosen bases
of GV,Uρ and TX∆ |Uρ:

0→ GV,Uρ
φ→ TX∆ |Uρ → TX∆ |Uρ/GUρ → 0 (2.1)

The exact sequnce (2.1) can be written as follows

0→ Akρ
Φ→ Anρ → Coker Φ→ 0 (2.2)
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2.1 Preparatory lemmas for Theorem 0.0.11

where

Φ =


〈mρ, v1〉 · χmρ 〈mρ, v2〉 · χmρ . . . 〈mρ, vk〉 · χmρ
〈m2, v1〉 〈m2, v2〉 . . . 〈m2, vk〉

...
... . . . ...

〈mn, v1〉 〈mn, v2〉 . . . 〈mn, vk〉


n×k

.

The condition ρ 6⊂ V is equivalent to {uρ, v1, . . . , vk} are linearly independent,
thus the matrix

Ψ =


1 = 〈mρ, uρ〉 〈mρ, v1〉 〈mρ, v2〉 . . . 〈mρ, vk〉
0 = 〈m2, uρ〉 〈m2, v1〉 〈m2, v2〉 . . . 〈m2, vk〉

...
... . . . ...

0 = 〈mk,uρ〉 〈mn, v1〉 〈mn, v2〉 . . . 〈mn, vk〉


n×(k+1)

has the rank k + 1. Therefore we can find a (k + 1)× (k + 1) submatrix of Ψ which
is invertible.
Hence, we can run column operations and permutations, i.e., a change of the basis,

to convert Ψ into a matrix Ψ′ of the following form

Ψ′ =



1 b1 b2 . . . bk
0 1 0 . . . 0
... . . . ...
0 0 0 . . . 1
0 ∗ ∗ . . . ∗
...

... . . . ∗
0 ∗ ∗ . . . ∗


n×(k+1)

.

Thus with respect to this new basis {v′i}ki=1 of V the short exact sequence (2.2)
becomes

0→ Akρ
Φ′→ Anρ → Coker Φ′ → 0

with

Φ′ =



b1 · χρ b2 · χρ . . . bk · χρ
1 0 . . . 0
0 1 . . . 0
... 0 . . . 0
0 0 . . . 1
∗ ∗ . . . ∗
...

... . . . ...
∗ ∗ . . . ∗


n×k

.
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2 Algorithm of calculation of Harder-Narasimhan filtration

Now we can directly check that Coker Φ′ is torsion-free. If there exists an f =
f1 · ∂

∂χmρ +
∑n
i=2 fi · χmi · ∂

∂χmi ∈ TX∆ |Uρ and a g ∈ Aρ such that g · f ∈ GV,Uρ, then
there exist {gi} ∈ Aρ and we can write

g · f =
k∑
j=1

gi · δv′j = (
k∑
i=1

gibi) · χmρ
∂

∂χmρ
+ g1 · χm2 ∂

∂χm2
+ . . .

+ gk · χmk+1
∂

∂χmk+1
+

n∑
j=k+2

cij · χmj
∂

∂χmj
. (2.3)

This shows f1 = (
∑k
i=1 bifi+1) ·χmρ. Thus we have f =

∑k
i=1 fi+1δv′i ∈ GV,Uρ. Hence

GV,Uρ is saturated in TX∆ |Uρ and it follows that FV |Uρ ∼= GV,Uρ.

Case 2 (ρ ⊂ V ). For the case ρ ⊂ V , we observe ∂
∂χmρ ∈ GV,Uρ, since δuρ |Uρ =

χmρ 1
∂χmρ . Hence, after choosing a new basis {v′′i }ki=1 of V , the short exact sequence

(2.1) becomes

0→ Akρ
Υ→ Anρ → Coker Υ→ 0 (2.4)

with a matrix

Υ =


1 0 . . . 0
0 〈m2, v

′′
2〉 . . . 〈m2, v

′′
k〉

...
... . . . ...

0 〈mn, v
′′
2〉 . . . 〈mn, v

′′
k〉


n×k

,

with coefficient in C. Thus (2.4) is induced by the exact sequence

0→ Ck Υ→ Cn → Cn−k → 0.

Since Aρ is flat over C, the Coker Υ in (2.4) is locally free. Thus GV,Uρ is saturated
in TX∆ |Uρ.

2.1.4 Special form
To determine the stability of TX∆ on a Q-factorial, projective, toric variety X∆ with
respect to a movable curve class C it suffices to compare µC(FV ) and µC(TX∆) for
all V ⊂ NR, which consist of infinitely many objects. In this subsection we shall
show that the stability of TX∆ with respect to C can be determined by comparing
finitely many µC(FV )’s and µC(TX∆).

Definition 2.1.13. Let S be a subset of ∆(1) and VS to be the minimal vector space
containing all elements in S. We call VS the vector space associated to S ⊂ ∆(1).
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Remark 2.1.14. A sub vector space V ⊂ NR is VS for some S ⊂ ∆(1) if and
only if there exists a vector space basis of V which consists of primary generators
of one-ray’s in the fan ∆. For different subsets S and S′ of ∆(1), we may have
VS = VS′. E.g. if the lattice N is Z, and the fan consists of R≥0, R≤0, and 0, then
both of V{R≥0} and V{R≤0} are R ∼= NR.

There are infinity many sub vector spaces V ⊂ NR, hence infinity many invariant
saturated subsheaves FV ⊂ TX∆ . Then following Lemma assert that the maximal
destabilizing subsheaf must be of the form FVS for some S ⊂ ∆(1).

Lemma 2.1.15. Let X∆ be a Q-factorial, projective, toric variety and C a non-zero
movable curve class of X∆. Then the maximal destabilizing subsheaf of TX∆ is of
the form FVS′ for some S′ ⊂ ∆(1).

Proof. We shall show that the slope of a C-destabilizing subsheaf FV does not
achieve the maximal value if the vector space V is not of form VS for some S ⊂ ∆(1).
First we observe that since FV is a destabilizing subsheaf of TX∆ and C is not
numerically trivial, then µC(FV ) > 0. If V contains no VS except for V∅, then
ρ 6⊂ V for all ρ ∈ ∆(1). Therefore µC(FV ) = 0, which contradicts to the assumption
that FV is a C-destabilizing subsheaf of TX∆ . Now we take the maximal subset
S′ ⊂ ∆(1) with VS′ ( V . Then we have {ρ ∈ ∆(1) : ρ ⊂ V } = {ρ ∈ ∆(1) : ρ ⊂ VS′}.
Therefore µC(FVS′ ) > µC(FV ), since µC(FV ) > 0.

Corollary 2.1.16. The stability of TX∆ with respect to a movable curve class C can
be verified by comparing µC(TX∆) and slopes of finitely many subsheaves of TX∆,
namely {µC(FVS ) : S ⊂ ∆}. In particular, every term of the Harder-Narasimhan
filtration of TX∆ are of the form FVS for some S ⊂ ∆(1).

With the Theorem 2.1.8, we have the following corollary.

Corollary 2.1.17. Let X∆ be a Q-factorial, projective, toric variety and C a mov-
able curve class. Recall that for each movable curve class α, we can associate a
movable subset Σα := {ρ ∈ ∆(1) : α.Dρ > 0}. Then FVΣC

is a term of the Harder-
Narasimhan filtration with respect to C. In fact, we have

HNFC(TX∆) = 0 ⊂ F1 . . . ⊂ FV∆C
⊂ TX∆ .

Proof. It immediately follows from degC(TX∆/FV∆C
) = 0, which can be derived by

Theorem 2.1.8.

Definition 2.1.18 (Destabilizing chamber, [Neu10, Definition 3.3.1]). Let X be a
Q-factorial, projective, normal variety and C a movable curve class. We define an
equivalence relationship on Mov1(X), say C ∼ C ′ if and only that HNFC(TX) =
HNFC′(TX). We call the set of a fixed equivalence class a destabilizing chamber.

Proposition 2.1.19 (Polyhedral property of destabilizing chambers). Let X∆ be
a Q-factorial, projective, toric variety. Then there are finitely many destabilizing
chambers, and destabilizing chambers are convex cones whose closures are polyhedral
cones.
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2 Algorithm of calculation of Harder-Narasimhan filtration

Proof. Finiteness follows from Corollary 2.1.17. The polyhedral property are conse-
quence that each inequality µC(FVS ) ≤ µC(FVS′ ), S, S

′ ⊂ ∆(1) defines a half plane
on Mov1(X∆) and each destabilizing chambers are defined by these finitely many
inequalities µC(FVS ) ≤ µC(FVS′ ).

Remark 2.1.20. Neumann showed that if Mov1(X) is a closed polyhedral cone,
then the number of chambers is finite, and locally polyhedral property holds in the
interior of Mov1(X), cf. [Neu10, Theorem 3.3.4, Proposition 3.3.5]. For the toric
variety, Mov1 is closed polyhedral, hence both properties have been proved in the
paper [Neu10]. The reason we represent Corollary 2.1.19 is that both statements are
much clear in the toric content.

2.2 Proof of Theorem 0.0.11
Proof. By Remark 1.3.23, to determine the Harder-Narasimhan filtration of a given
torsion-free sheaf F with respect to a movable class C, it is equivalent to find an
increasing filtration of sheaves Fi’s such that each Fi is the preimage of the maximal
destabilizing subsheaf of F/Fi−1 in F . Hence the algorithm to find the maximal
destabilizing subsheaf is the algorithm to calculate the Harder-Narasimhan filtration.
The algorithm is the following:

Step 1: We calculate the slope µC(TX∆) of the tangent sheaf with respect to C via
the Euler sequence in Theorem 1.2.18.

Step 2: By comparing µC(FVS ) for all S ⊂ ∆(1) and µC(TX∆), we are able to
determine the stability of TX∆ .

Step 3: If TX∆ is unstable, then we have a non-trivial Harder-Narasimhan filtration.
The first term of the Harder-Narasimhan filtration, which is the maximal
destabilizing subsheaf of TX∆ , was determined in Step 2.

Step 4: Assume that we have already determined the first l-terms 0 ⊂ F1 ⊂ . . . ⊂
Fl = FVl of HNFC(TX∆). The next term of HNFC(TX∆) is the preimage
of the maximal destabilizing subsheaf of TX∆/Fl in TX∆ . To determine the
stability of TX∆ we need to compare the slopes of all the invariant saturated
subsheaves G ⊂ TX∆/Fl and TX∆/Fl. But the preimage G of G in TX∆ is
also invariant and saturated, thus G = FW for some W ⊂ NR. Due to the
short exact sequence

0→ Fl = FVl → G → G → 0,

we see that µ(G) = 1
dimW/Vl

∑
ρ⊂W, ρ6⊂Vk Dρ.C. Therefore the stability of

TX∆/Fl can be tested by comparing µC(TX∆/Fl) and

max
Vl⊂VS ,S⊂∆(1)

1
dimVS/Vl

∑
ρ∈S,ρ6⊂Vl

Dρ.C.
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Since {S ⊂ ∆(1) : Vl ⊂ VS} is a finite set, we can also determine the
maximal destabilizing subsheaf of TX∆/Fl.

There are only finitely many calculations in each step. Therefore we can use
computer to calculate the HNFC(TX∆) for any given Q-factorial, projective, toric
variety X∆ and a movable curve class C.

2.3 The Harder-Narasimhan filtration of Q-factorial, toric
variety with Picard number one

Adopting the algorithm to weighted projective spaces, we have a relatively simple
form in this case. Let P(a0, . . . , an) be a weighted projective space with the toric
structure of 1.2.23 for some a0 ≥ . . . ≥ an.

Definition 2.3.1. For any set of decreasing integers b0 ≥ . . . ≥ bn there are integers
{kj} with the following property:

b0 = . . . = bk1 > bk1+1 = . . . = bk2 > . . . = bkl > . . . = bn, and b−1 := 0

And there exists a number e such that
n∑

i=ke+1
bi/(n− ke) ≥ bke+1 and

n∑
i=ke−1+1

bi/(n− ke−1) < bke = bke−1+1 (2.5)

We call such set {e, {ki}} a mark of decreasing integers {bi}ni=1.

Proposition 2.3.2 (Simple formulation). Consider any given weighted projective
space P(a0, . . . , an) with a0 ≥ . . . ≥ an. Let {e, {ki}} be the mark of decreasing
integers {ai}ni=0, then the Harder-Narasimhan filtration of TX∆ is

0 ⊂ F1 ⊂ . . .Fe ⊂ TX∆ , (2.6)

where Fi = FVSi with Si = {ρ0, . . . , ρki}.

Proof. We adopt the general algorithm and show that its output is exactly the
filtration (2.6) of 2.3.2. Since the Picard number of P(a0, . . . , an) is one, the Harder-
Narasimhan filtration is independent of the choice of the curve class. By Proposi-
tion 1.2.21we have the ratios Dρi .C/Dρj .C = ai/aj , we may pick a curve class C
such that Dρi .C = ai for all i and we simply denote the slope function as µ.

Step 1: The Euler sequence of Theorem 1.2.18 and Dρi .C = ai give us µ(TX∆) =∑n
i=0 ai.

Step 2: For S = {Z≥0ui1 , . . . ,Z≥0uik} we have µ(FVS ) =
∑k
j=1 aij/k for k < n, and

FVS = TX∆ for k ≥ n. Hence we have the following result

max
G(TX∆ ,invariant saturated

µ(G) = a0.
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2 Algorithm of calculation of Harder-Narasimhan filtration

Therefore, TX∆ is semistable if a0 ≤
∑
ai/n and unstable if a0 >

∑
ai/n.

We note that the inequality e ≥ 1 in (2.5) is equivalent to the unstability of
TX∆ .

Step 3: If TX∆ is unstable, then it is clear that FVS1
is the maximal destabilizing

subsheaf of TX∆ with slope µ(FVS1
) = a0 such that

S1 := {Z≥0u1,Z≥0u2, . . . ,Z≥0uk1}.

Step 4: Assume that the first l-terms 0 ⊂ F1 ⊂ . . . ⊂ Fk = FVk of HNFC(TX∆) have
been determined and Fi = FVSi with Si = {Z≥0u1, . . . ,Z≥0ukl}. Then

max
Vl⊂VS ,S⊂∆(1)

1
dimVS/Vl

∑
ρ∈S,ρ6⊂Vl

Dρ.C = akl+1 = akl+1 .

If
∑n
kl+1 ai/(n− kl) ≥ akl+1, then we have l = e and HNF(TX∆) : 0 ⊂ F1 ⊂

. . . ⊂ Fk = FVk ⊂ TX∆ . If
∑n
kl+1 ai/(n − kl) < akl+1, then FSl+1 is the

preimage of maximal destabilizing subsheaf of TX∆/Fl in TX∆ . This is the
next term of HNF(TX∆).

Therefore, the filtration (2.6) equals the output of the general algorithm.

Corollary 2.3.3. We also have a similarly simple algorithm for the fake weighted
projective space P(u0, . . . , un).
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3 Reconstruction of rational contractions

In this chapter, we prove our main result: the relative tangent sheaf Tf of a rational
contraction f between projective, toric varieties is a term of the Harder-Narasimhan
filtrtion with respect to a suitable movable curve class. Furthermore, the choice
of such movable curve class is natural in the sense that we can choose the general
complete intersection curve in a general fibre of such rational map. We also show
the positivity of the relative tangent sheaf along the complete intersection curve in
a general fibre of rational map. We use the positivity to construct a rational map

qf : X 99K Chow(X)
x → Tf -leaf through x,

then q and f coincide on an open set of variety X. Thus we can reconstruct any
rational contraction birationally via the geometry of the cone of movable curves and
the Harder-Narasimhan filtration of the tangent sheaf.
The organization of this chapter is as follows. In the first three sections, we prove

that the relative tangent sheaf of Mori fibre space(Rational maps in Minimal Model
program/rational contractions) is a term of the Harder-Narasimhan filtration of the
tangent sheaf with respect to general complete intersection curve in a general fibre
of such rational map. Then we showed that the restriction of the relative tangent
sheaf on general complete intersection curve in a general fibre is an ample bundle.
Then we concludes that the rational contractions we considered coincides with the
rational map associated to foliations. During the course of proof, we also derived
a Mehta-Ramanathan type theorem for the movable curve in the case of Mori fibre
space. In the fourth section, we give a structure theory of the cone of movable
curves. We discuss when a invariant subsheaf of the tangent sheaf is the relative
tangent sheaf of some rational contraction in the last section.

3.1 Reconstruction of Mori fibre space

In this section we prove that the relative tangent sheaf of the Mori fibre space appears
as a term of Harder-Narasimhan filtration of tangent sheaf of the total space with
respect to a contracted curve, and the contraction map can be recovered from the
foliation associated to such Harder-Narasimhan filtration. We recall the following
necessary results of the toric minimal model program from Reid ([Reid83]).

Setting 3.1.1. Let X = X∆ be a Q-factorial, projective, toric variety. We pick
ω = 〈e1, . . . , en−1〉 ∈ ∆(n− 1) and let ρi ∈ ∆(1) be the 1-ray generated by ei. Since
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3 Reconstruction of rational contractions

∆ is simplicial, there are exactly two rays ρn = Z≥0en, ρn+1 = Z≥0en+1 ∈ ∆(1)
such that

δn+1 = 〈e1, . . . , en−1, en〉 and δn = 〈e1, . . . , en−1, en+1〉

are in ∆. After arranging the indices and rescaling the numbers, we have the fol-
lowing relations

n+1∑
i=1

aiei = 0, ai ∈ Q, and an+1 = 1

with two positive integers βω and αω such that

ai < 0 for 1 ≤ i ≤ αω
ai = 0 for αω + 1 ≤ i ≤ βω
ai > 0 for βω + 1 ≤ i ≤ n+ 1

(3.1)

Lemma 3.1.2 ([Reid83, 2.11]). Let X be a Q-factorial, projective, toric variety, and
suppose that R = R≥0V (ω) is an extremal ray of NE1(X∆). If ω′ ∈ ∆(n − 1) with
V (ω′) ∈ R, then αω = αω′ and βω = βω′. In fact, we have equalities of the sets of
vectors {e1, . . . , eαω} = {e1, . . . , eαω′} and {eβω+1, . . . , en+1} = {eβω′+1, . . . , en+1}.

Notation 3.1.3. Under the assumptions and notation of Setting 3.1.1 we set

δ(ω) = 〈e1, . . . , en, en+1〉.

and

U(ω) = 〈e1, . . . , eα, eβ+1, . . . , en+1〉

By Lemma 6.2 U(ω) only depends on the extremal ray, so we denote it as µ(R).
We also observe that U(R) is a vector space, if α = 0.

Theorem 3.1.4 ([Reid83, Section 2]). Let X∆ be a Q-factorial, projective, toric
variety and suppose that R is an extremal ray of X∆ whose contraction is of Mori
fibre space type. Let us remove an ω ∈ ∆(n−1) with V (ω) ∈ R and replace δn∪δn+1
by δ(ω). Then we get a complete fan ∆∗R and we have:

(1) α = 0,

(2) ∆R = ∆∗R/U(R) is a complete simplicial fan,

(3) The Mori fiber space is φR : X∆ → X∆R
, where the morphism is induced by

the projection NR → NR/U(R). Therefore it is denoted by φR.

Any curve C with C = V (ω) ∈ R is movable. We want to calculate HNFC(TX∆).
Recall that in Definition 2.1.4 we associate each sub vector space V ⊂ NR with an
invariant saturated subsheaf FV of TX∆ .
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3.1 Reconstruction of Mori fibre space

Lemma 3.1.5. Here we follow the notation of the Theorem 3.1.4. Let X∆ be a Q-
factorial, projective, toric variety with the Mori fibre space structure φR : X∆ → X∆R

for an extremal ray R. Let C = V (ω) ∈ R be a contracted curve. Then FU(R) is a
term of HNFC(TX∆). In fact, we have

HNFC(TX∆) : 0 ⊂ F1 ⊂ . . . ⊂ FU(R) ⊂ TX∆ .

Proof. First of all, in our case the cone U(R) is a sub vector space, therefore the
notation FU(R) is valid. We observe that by (3.1) and Proposition 1.2.21 we have
Dρ.C > 0 if and only if that ρ ⊂ U(R). Therefore U(R) is the minimal sub vector
space containing all ρ ∈ ∆(1) with Dρ.C > 0 and µC(TX∆/FU(R)) = 0. Thus both
statement follow from Corollary 2.1.17.

Proposition 3.1.6. We follow the notation of Theorem 3.1.4. Let φR : X∆ →
X∆R

be a Q-factorial, projective, toric, Mori fibre space with extremal ray R. Then
FU(R) = TX∆ /X∆R

.

Proof. We observe that both TX∆ /X∆R
and FU(R) equal the saturation of U(R) ⊗

OX∆ ⊂ TX∆ .

Corollary 3.1.7. We follow the notation of Theorem 3.1.4. The sheaf FU(R) is a
foliation.

Remark 3.1.8. If 0 ⊂ F1 ⊂ . . . ⊂ Fk = FU(R) ⊂ TX∆ is the Harder-Narasimhan
filtration of TX∆ with respect to a movable curve C, then by Proposition 1.3.32 every
Fi is a foliation .

Lemma 3.1.9 (Ampleness of FU(R)|C). Here we follow the assumptions and nota-
tion of Theorem 3.1.4. Let C be a general complete intersection curve in a general
fibre F of the morphism φR : X∆ → X∆R

and HNFC(TX∆) = 0 ⊂ F1 ⊂ . . . ⊂
FU(R) ⊂ TX∆. Then the restriction FU(R)|C is an ample vector bundle on C.

Proof. Recalling that the general fibre F of φR is Q-factorial, projective, normal
with Picard number one (see Proposition 1.2.20). Sheaf TX∆ |F is torsionfree which
follows from the restriction of torsion free sheaves on a general fibre remains torsion
free, cf. [HL97, Corollary 1.1.3]. Now, we can pick a sufficiently general complete
intersection curve C ⊂ F such that C satisfies the following conditions.

(1) C ⊂ Freg, therefore C ⊂ Xreg.

(2) the sheaf FU(R)|C is a subbundle of TX∆ |C .

(3) The curve satisfies the condition of Mehta-Ramanathan theorem for TX∆ |F ,
i.e., we have HNFC(TX∆ |F )|C = HNF(TX∆ |C).

Since the Picard number of F is one, there is only one Harder-Narasimhan filtra-
tion of TX∆ |F on F . Theorem 3.1.11 and condition (3) of the curve imply that
HNFC(TX∆)|C = HNF(TX∆ |C). Therefore Proposition 1.3.34 ensures that FU(R)|C
is an ample vector bundle on C.

37



3 Reconstruction of rational contractions

Corollary 3.1.10 (Reconstruction). Here we follow the assumptions and notation
of Theorem 3.1.4. Then the morphism φR : X∆ → X∆R

can be realized as a rational
map

qR : X∆ 99K Chow(X∆)
x → TX∆ /X∆R

-leaf through x

Proof. We see that FU(R)|C is an ample bundle on C. Therefore Theorem 1.3.31
implies that the general leaves of FU(R) are algebraic, hence we can construct the
map

qR : X∆ 99K Chow(X∆)
x → TX∆ /X∆R

-leaf through x

Let QR = Im(qR), then we have rational map qR : X∆ 99K QR, the map φR coincide
with qR on an open set of X∆.

We may regard the following theorem as a variation of the Mehta-Ramanathan
Theorem.

Theorem 3.1.11 (Mehta-Ramanathan type theorem). Here we follow the assump-
tions and notation of Theorem 3.1.4. Let φ : X∆ → X∆R

be a Mori fibre space of
Q-factorial, projective, complex, toric varieties contracting extremal ray R = R≥0C
with a curve C in a general fibre F . Then we have

HNFC(TX∆)|F = HNFC(TX∆ |F ).

Proof. The Harder-Narasimhan filtration of TX∆ is

HNFC(TX∆) : 0 ⊂ F1 ⊂ . . . ⊂ FU(R) ⊂ TX∆

by Remark 3.1.5. First of all, we note that the restrictions of reflexive( torsion-free)
sheaves on a general fibre remains reflexive( torsion free)[cf.[HL97, Corollary 1.1.14].
Furthermore, the restriction of short exact sequences 0→ Fi → TX∆ → TX∆/Fi → 0
and 0→ Fi → Fi+1 → Fi+1/Fi → 0 to F remain exact by [HL97, Lemma 1.1.12] and
the fact that if we have 0→ F → E and H such that H avoids the associated points
of E/F then 0 → F |H → E|H is exact. Second, by Proposition 1.2.20 a general
fibre F is a Q-factorial, projective, toric variety with Picard number one, hence
there is only one Harder-Narasimhan filtration of TX∆ |F on F . Hence it is suffices
to show that the restriction of 0 ⊂ F1 ⊂ . . . ⊂ FU(R) ⊂ TX∆ satisfies the properties
of the Harder-Narasimhan filtration in Theorem 1.3.20. For torsion-freeness, the
sheaves TX∆/Fi|F = TX∆ |F /Fi|F and Fi|F /Fi−1|F = Fi/Fi−1|F are torsion free by
the choice of F . We note when C is general complete intersection curve on F , we
may regard that C is also a curve on X∆, and degC(F) = degC(F|F ). For the
semi-stability of Fi|F /Fi−1|F , if Fi/Fi−1|F is not semi-stable, then we can find a
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3.2 Reconstruction of Minimal Model

subsheaf GF ⊂ Fi|F /Fi−1|F with larger slope. We recall that φ−1(TNR) ∼= TNR ×F ,
cf. Proposition 1.2.15, where TNR is the big torus of X∆R

. Then we consider G the
saturation of coherent extension of pr∗2(GF ) in Fi/Fi−1, cf [Har77, Exercise II.5.15].
We have µC(G) = µC(GF ) by the fact that Dρ.C > 0 if and only if ρ ⊂ U(R).
Then µC(G|F ) = µC(GF ) > µC(Fi/Fi−1) = µC(Fi|F /Fi−1|F ) contradicts to the
semi-stability of Fi/Fi−1. The strictly decreasing of slopes are clear.

3.2 Reconstruction of Minimal Model
In this section, we show that we can recover the maps in minimal model program.
Definition 3.2.1. Let X be a normal, projective variety. We say that X is log
Fano, if there exists a Q-divisor D such that −(KX +D) is an ample divisors on X
and (X,D) has at worst Kawamata log terminal singularity(klt). We also call such
pair (X,D) a log Fano pair.
Remark 3.2.2. It is well-known that a Q-factorial, projective, toric variety X is
log Fano. A proof can be found, e.g. [Mon13, Proposition 5.2.5].
Remark 3.2.3. A pair (X,D), where X a Q-factorial, projective, toric variety and
D an invariant Q-divisor, has at worst klt singularity if and only if D =

∑
aρDρ

with 0 ≤ aρ < 1, cf. [CLS, Section 15.5].
We recall the a structure theory of the cone of movable curves for the varieties

with following result of Araujo.
Theorem 3.2.4 ([A, Corollary 1.2]). Let X be a Q-factorial, projective, toric variety
and (X,D) a log Fano pair. Let Σ ⊂ N1(X) be the set of the classes of curves on
X that are numerical pullbacks of curves lying on general fibres of Mori fibre space
obtained from X by a (KX + D) -minimal model program with scaling. Then we
have

Mov1(X) =
∑

[C]∈Σ
R≥0[C] (3.2)

Remark 3.2.5. Araujo showed the theorem in a general situation, we only state the
necessary part from it.
Remark 3.2.6. A KX + D negative curve may not be KX negative, hence we are
unable to remove the boundary divisor D.
Definition 3.2.7 (Relative tangent sheaf of rational contraction map). Let f :
X 99K Y be a rational contraction between normal, projective varieties. Let U be the
largest open subset of X where f is well-defined, we observe that Codim(X\U) ≥ 2,
since X is normal and Y is projective, cf. [Har77, Lemma 5.1]. Then we define the
relative tangent sheaf to be i∗(TU/Y ) ⊂ TX , where i : U → X is the inclusion map,
and denote it as TX/Y .
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3 Reconstruction of rational contractions

Remark 3.2.8. Since Codim(X\U) ≥ 2, i∗(TU/Y ) is a reflexive sheaf, in particular,
it is coherent, cf. [S, Proposition 2.12].

Theorem 3.2.9. Let X be a Q-factorial, projective, toric variety, D a Q-divisor on
X with coefficients between 0 and 1 such that KX +D ample, and X ′ an end result
of (KX + D)-minimal model program with scaling with Mori fibre space structure
f : X ′ → Z , i.e., we have diagram

X
φ //

ψ
&&

X ′

f
��
Z,

then there exists a movable curve class C such that the relative tangent sheaf of
ψ = f ◦ φ : X 99K Z is a term of HNFC(TX). In fact, we can choose C to be an
extremal ray of Mov1(X).

Proof. For a given (KX + D)-minimal model program with scaling φ : X 99K X ′

and Mori fibre space f : X ′ → Z. We observe that the Mori fibre space f : X ′ → Z
comes from contracting a KX + D-negative extremal ray R of NE1(X) which is
also an extremal ray of Mov1(X), since D is non-negative on this ray, therefore R
is also a KX -negative ray. Now we pick a general complete intersection curve C ′
lies in a general fibre of f such that C ′ moves in a dominating family of curves
on X ′ and C ′ avoids the indeterminacy locus of φ−1. We let C be the birational
transform of C ′, therefore it moves in a dominating family of curves on X, hence a
movable curve. In fact, we have C = φ∗num(C ′) and KX .C < 0. Furthermore, C is
an extremal point of Mov1(X) by Theorem 3.2.4. We observe that TX/Z and TX′/Z
equal the saturation of V ⊗OX and V ⊗OX′ in TX and TX′ respectively for the same
sub vector space V of NR. We note that HNFC(TX) corresponds to an increasing
filtration of sub vector spaces of NR by Corollary 2.1.7, hence it suffices to show
that V belongs to this filtration of sub vector spaces of NR. We have that TX′/Z is
a term of HNFC′(TX′) by Proposition 3.1.6. Therefore it is sufficient to show that
HNFC(TX) and HNFC′(TX′) assign same filtration of sub vector spaces of NR. But
this is clear since that C does not intersects exceptional locus of φ, hence C.E = 0
for any exceptional divisor E. Therefore degC(F ′V ) = degC′(F ′V ) for any sub vector
space V ′ ⊂ NR, HNFC(TX) and HNFC′(TX′) determine same filtration of sub vector
spaces of NR.

3.2.10. We need to show that TX/Z |C is an ample bundle on C in order to prove the
rational map φ and the rational map

qTX/Z : X 99K Chow(X)
x → TX/Z-leaf through x

are birational equivalent, as we did in Corollary 3.1.10.
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3.3 Reconstruction of contractions

Remark 3.2.11. The rational map X
φ // X ′ is a birational contraction, hence

we can find open sets UX ⊂ X and UX′ ⊂ X ′ with the complement of UX′ in X ′ has
codimension ≥ 2, such that φ : UX → UX′ is an isomorphism. Since we can choose
the complete intersection curve C ′ avoids the complement of UX′, hence C ′ ⊂ UX′,
therefore the birational transform C ⊂ UX . The restriction TX′/Z |C′ is an ample
vector bundle on C ′ by the choice of C ′, but TX′/Z |UX′ ∼= TX/Z |UX , therefore the
ampleness of TX/Z |C follows immediately.

Corollary 3.2.12 (Reconstruction’). Here we follow the assumptions and notation
of Theorem 3.2.9. Then the rational contraction ψ : X 99K Z can be realized as a
rational map

q : X 99K Chow(X)
x → TX/Z-leaf through x

Proof. Since we have the ampleness of TX/Z |C for general complete intersection curve
C. Then the conclusion follows along the same line as Corollary 3.1.10.

Remark 3.2.13 (Reinterpretation). We can restate the Proposition 3.1.6 and The-
orem 3.2.9 by following: Combination of the geometry of Mov1(X) and HNFC(TX),
we can recover all the rational map in the minimal model program in the case of
toric geometry.

3.3 Reconstruction of contractions
In this section, we extend the study to arbitrary rational contraction of fibre type.
We prove that the relative tangent sheaf of a rational contraction of fibre type is a
term of the Harder-Narasimhan filtration with respect to a suitable movable curve.

Setting 3.3.1. Through this section, X will be a Q-factorial, projective, toric variety
associated to a fan in a lattice N . For a subset F of a vector space, we denote the
relative interior of F by F ◦.

3.3.1 Regular contraction

In this subsection, we prove that for a given regular contraction φ : X → Z. The
relative tangent sheaf is a term of HNFC(TX) for a suitable movable curve class
C, and the morphism φ can be reconstructed from the foliation of TX/Z . From
the viewpoint of the cone of movable curves, Section 3.1 deal with extremal rays
of Mov1(X). We prove that the similar result also hold for the higher dimensional
faces of Mov1(X).

Remark 3.3.2. A morphism between projective varieties is uniquely determined by
the curves it contracted. Hence we can describe the morphism by the geometry of the
cone of the curves. A regular contraction corresponds to a face F ⊂ Mov1 ∩NE1.
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3 Reconstruction of rational contractions

Remark 3.3.3. A contraction f : X → Y equals to X → Proj(H0(X,L)), where
L = f∗H, and H an ample divisor on Y . If X is toric, then Y is also toric and f is a
morphism between toric varieties whose restriction on big torus is a homomorphism
between tori by this description.

Theorem 3.3.4. Let X be a Q-factorial, projective, toric variety,

F ⊂ ∂Mov1(X)
⋂
∂NE1(X)

a face of NE1(X), and φF : X → XF the regular contraction contracts all curves
of F . Then there is a movable curve class C such that the relative tangent sheaf of
φF is a term of HNFC(X). In fact, the curve class C can be chosen to be the curve
class lies in the relative interior of F .

Proof. We start with a footnote that a general complete intersection curve in a
general fibre is movable. Let set

F⊥ := {D|D ∈ Eff(X), D.C = 0 for C ∈ F ◦} ,

then by the definition of F we see that every element D ∈ F⊥ is nef, hence semi-
ample. Furthermore, the morphism φF is the morphism associated divisor D ∈
(F⊥)◦. We set ΣF := {ρ ∈ ∆(1)|Dρ.C > 0 for C ∈ F ◦}. It is clear that if we pick
C ∈ F ◦, then FVΣF

is a term of HNFC(TX) and HNFC(TX) = 0 ⊂ F1 . . . ⊂ Fi ⊂
FVΣF

⊂ TX . Hence it suffices to show that TX∆ /Z = FVΣF
. We prove the theorem in

the case that Z is Q-factorial first, then show that the general case can be reduced
to Q-factorial case.

3.3.5 (Assuming Z is Q-factorial). The morphism φF is the contraction map of F ,
hence Dρ is Q-linearly equivalent to a pull back of a Cartier divisor from Z if and
only if ρ /∈ ΣF via the Cone theorem cf. [KM98, Theorem 3.7]. Since we can choose
a fan structure on Y such that the morphism φF arise from a fan map ϕ : N → N ′

by Theorem 1.2.13.
Claim 3.3.6 implies that the kernel of ϕR, the R-extension of ϕ, equal to the

minimal sub vector space containing all rays of ΣF . Therefore we have

0→ VΣF → NR → N ′R → 0,

and TX/Z = FVΣF
immediately follows from Lemma 1.2.16.

Claim 3.3.6. The divisor Dρ is Q-linearly equivalent to a a pull back of a Cartier
divisor on Z if and only if ϕ(ρ) = 0 in N ′.

Proof of Claim 3.3.6. If Dρ = φ∗F (L) for some Cartier divisor L on Z, then we have
φF∗(Dρ) is a proper torus invariant divisor of Z, hence φ(ρ) 6= 0. If φ(ρ) 6= 0, then
φF∗(Dρ) is a divisor. Since Z is Q-factorial, we may assume that φF∗(Dρ) is Cartier.
Then we consider φ∗FφF∗(Dρ) which is an effective divisor whose support containing
D. From the fact that C · φ∗FφF∗(Dρ) = 0, and C is a movable curve. We get that
Dρ · C = 0, hence Dρ comes from Z.
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3.3 Reconstruction of contractions

3.3.7 (Reduce to the case Z is Q-factorial). If Z is not Q-factorial, since Z is a toric
variety, hence there exists a small Q-factorialization f : Z ′ → Z of Z by Theorem
1.2.22. Then the composition of f−1◦φF : X 99K Z ′ is a rational contraction. Hence
there exists a SQM X ′ 99K X such that the composition g : X ′ → Z ′ is a regular
contraction by Proposition 1.4.15. Thus we have commutative diagram

X ′

g

��

f ′ // X

φF
��

Z ′
f // Z,

and there are open sets UX ⊂ X, UX′ ⊂ X ′ such that the complements are of
codimension ≥ 2, f ′ : UX′ → UX is an isomorphism. We observe that

(1) TX′/Z′ and TX/Z are the saturation of V ⊗OX′ ⊂ TX′ and V ⊗OX ⊂ TX with
same V ⊂ NR; and

(2) once we choose the general complete intersection curve C in side a general
fibre of φF , and C ′ be its birational transform in X ′. Then HNFC(TX) and
HNFC′(TX′) determine same filtration of sub vector spaces of NR. And both
C and C ′ lies in the cone of contracted curves respectively.

Therefore we reduce to Z is Q-factorial.

Remark 3.3.8. For a regular contraction φF , we found that

{ρ ∈ ∆(1) : ρ ⊂ VΣF } = ΣF .

We have observed such phenomenon in the case of Mori fibre space case, cf. Theo-
rem 3.1.4.

3.3.9. In the Section 3.1, we use a Mehta-Ramanathan type theorem to show the
ampleness of the restriction of TX/Z on the general complete intersection curve on
a general fibre. Nevertheless, the Picard number of the general fibre G of φF is not
one, hence we do not have Theorem 3.1.11 in this content. Furthermore a general
fibre G of φF may not be Q-factorial, we need to take care what is the intersection
number between a Weil divisor and a movable curve in this setting. Second, we have
following weak version of Theorem 3.1.11.

Remark 3.3.10 (Harder-Narasimhan filtration on non Q-factorial spaces). In the
following theorem, we need to consider Harder-Narasimhan filtration on non-Q-factorial
spaces. The major issue lies in how to define intersection number between Weil divi-
sors and movable curves. Nevertheless, the intersection theory between Weil divisors
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3 Reconstruction of rational contractions

and complete intersection curves remain valid as follows: C is a complete intersec-
tion curve, we may write C = D1 ∩ . . . ∩DdimX−1. Then

D.C := D1 · . . . ·DdimX−1 ·D

the intersection of dimX − 1 Cartier divisors and a codimension one irreducible
subvariety, cf. [Lar04, Section 1.1.C].

Theorem 3.3.11. We follow the notation of Theorem 3.3.4. Let G be a general
fibre of φF which is projective, toric and C a general complete intersection curve on
G. Then TX/Z |G is a term of HNFC(TX |G).

Proof. As G is general, we have TX |G is torsion free, hence we can talk about
HNFC(TX |G). As we have HNFC(TX |G) = {GG,i}, we can extend this filtration by
taking consecutive saturation Gi of coherent extensions of sheaves of HNFC(TX |G)
as we did in the course of the proof of Theorem 3.1.11 and we have degC(Gi) =
degC(GG,i), Gi|G = GG,i. We check that {Gi} = HNFC(TX). Furthermore, we have
equality TX/Z ∈ HNFC(TX) by Corollary 2.1.17, then conclusion follows.

Remark 3.3.12. If C is a general complete intersection curve on G, then C ∈ F ◦.

Remark 3.3.13. By the formula degC(F) = degC(F|G), we also know that

HNFC(TX |G) = 0 ⊂ F1 ⊂ . . . ⊂ Fk ⊂ TX/Z |G ⊂ TX |G,

and µC(TX/Z |G/Fk) > 0.

Corollary 3.3.14 (Ampleness of relative tangent sheaf, II). We follow the assump-
tions and notation of Theorem 3.3.4. Let C be a sufficiently general complete inter-
section curve of a general fibre G of φF . Then TX/Y |C is an ample vector bundle on
C.

Proof. It is along the same line of Proof of Lemma 3.1.9, except that Theorem 3.1.11
is replaced by Theorem 3.3.11.

Corollary 3.3.15 (Reconstruction II). Here we follow the assumptions and notation
of Theorem 3.3.4. Then the morphism φF : X → Z can be realized as a rational
map

q : X 99K Chow(X)
x → TX/Z-leaf through x

Proof. It is along the same ling of the proof of Corollary 3.1.10.
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3.4 Geometry of the cone of movable curves

3.3.2 Rational contraction
In this subsection, we prove that the relative tangent sheaf of a rational contraction
φ : X 99K Z is a term of the Harder-Narasimhan filtration of the tangent sheaf with
respect to a suitable movable curve, and we can reconstruct the rational map φ by
the foliation associated to TX/Z .

Theorem 3.3.16. Let φ : X 99K Z be a rational contraction, Z is normal, pro-
jective. Then the relative tangent sheaf of φ is a term of the Harder-Narasimhan
filtration of the tangent sheaf TX with respect to a suitable movable curve class.

Proof. Since X is a Q-factorial, projective, toric variety, and φ is a rational con-
traction. Proposition 1.4.15 ensures that there exists a SQM X ′ of X filling the
diagram

X
g //

φ   

X ′

h
��
Z,

and h is a regular contraction. By Theorem 3.3.4, we have TX′/Z is a term of
HNFC′(TX′), where C ′ is a general complete intersection curve in a general fibre of
h. The rational map g is small, hence the birational transform C of C ′ is also a
general complete intersection curve of the fibre of φ, and movable. The HNFC(TX)
and HNFC′(TX′) determine same sub vector spaces of NR by the fact that C is the
birational transform of C ′ and g is small. The sheaves TX/Z and TX′/Z also determine
same sub vector space of NR, therefore we derive the desired conclusion.

Corollary 3.3.17 (Reconstruction). Here we follow the assumptions and notation
of Theorem 3.3.16. Then the rational contraction φ can be realized as a rational
map

q : X 99K Chow(X)
x → TX/Z-leaf through x

Proof. The ampleness of TX/Z |C follows from ampleness of TX′/Z |C′ , the rest is along
the same line of the proof of Corollary 3.1.10.

3.4 Geometry of the cone of movable curves
In this section, we prove a promised Araujo type theorem of the cone of movable
curves. We start with a remark of cones between small Q-factorial modification.

Remark 3.4.1. If X is Q-factorial, projective, normal variety, and X ′ a SQM of
X. Then birational transform of divisors gives the isomorphism between Eff(X) and
Eff(X ′); the numerical pull back of curves gives the isomorphism between Mov1(X)
and Mov1(X ′).
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3 Reconstruction of rational contractions

Theorem 3.4.2 (Contraction). Let X∆ be a Q-factorial, projective, toric variety
associated to fan ∆ ⊂ N . Then for every proper face of Mov1(X∆), we can associate
a birational contraction φF : X∆ 99K X∆F

, such that F is the numerical pull back
of a face F ′ of Mov1(X∆F

) ∩NE1(X∆F
). Furthermore, we have dimF = dimF ′.

Proof. Let ΣF ⊂ ∆(1) be the movable set associated to the face F ⊂ Mov1(X∆)
and ΣF = {ρ ∈ ∆(1) : Dρ.C > 0, for all C ∈ F} ⊂ ∆(1). Since F is a face, we have
that ΣF ( ∆(1) is a proper set. Then the we see that E :=

∑
ρ∈∆(1)\ΣF Dρ is the

defining effective divisor of F ⊂ Mov1(X∆). If E is nef, then it is semi-ample, and
we can build up a regular contraction, which contracts the face F, via the linear
system |E|. If E is not nef, then we can run the E-minimal model program,

φF : X 99K XF ,

and EF := (φF )∗(E) is nef. We note that XF is also a toric variety, and we denote
its fan by ∆F . We also observe that the flip does not change the set of one cones; the
divisorial contraction contracts the invariant divisors which covered by a E-negative
curve C, then C ⊂ Supp(E) and C ⊂ Dρ for some ρ ∈ ∆(1)\ΣF . Hence we have
ΣF ⊂ ∆F (1), and EF =

∑
ρ′∈∆F (1)\ΣF Dρ′ on XF . The nef divisor EF defines a face

F ′ ⊂ Mov1(XF ) ∩ NE1(XF ). We observe that C ⊂ F ′ if and only if EF · C = 0, if
and only if ΣC ⊂ ΣF , therefore we have Σ′F = ΣF as set of rays in NR.

Claim 3.4.3. If φ : X 99K X ′ a birational contraction between Q-factorial, projec-
tive, toric varieties. Let C ′ ⊂ X ′ a movable curve and C = φ∗numC

′ its numerical
pull back. Then we have ΣC = ΣC′

Proof of Claim. It follows from E.C = φ∗E.C
′.

Hence we find that (φ∗F )num(F ′) = F which follows from ∆F = ∆F ′ and the
claim. For the dimension property, it follows from that the dimension of F be can
read from ΣF .

Remark 3.4.4. Since EF is nef on XF , and XF is a toric variety. Therefore
EF is basepoint-free. We set ψF : XF → ZF the induced morphism by EF , and
πF = ψF ◦ φF . Then we have following diagram.

X
φF //

πF !!

XF

ψF
��

ZF ,

Remark 3.4.5. For a fixed face F of the cone of movable curves, it may has different
birational contraction φF .

Remark 3.4.6. The existence of birational contraction φF a face F of Mov1(X∆) for
toric varieties or log Fano varieties is well-known, e.g.[BCHM, Corollary 1.3.5]. We
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3.5 When FV is a relative tangent sheaf

reproduce the proof here for reader’s convenience and use the property of Mori dream
space instead, e.g. Theorem 1.4.17. Furthermore, we use that φF is a composition
of E-minimal model program maps to get the information of contracted divisors in
order to have a simple proof of the dimension condition.

Remark 3.4.7. A weak toric(or Mori dream spaces) version of Araujo theorem(cf.
Theorem 1.5.5) can be recovered by Theorem 3.4.2. In fact, Theorem 3.4.2 gives a
directly proof of the equality (1.2). We identify the extremal rays of Mov1(X) at very
beginning, then build up the desired rational contraction, and show this extremal ray
is indeed a numerical pull back of the contracting curve of Mori fibre space.

Remark 3.4.8. In the proof we also showed that the numerical pull back of an
extremal face of Mov1(XF ) remains an extremal face for Mov1(X). During the
preparation of this work, the author learned that Monôres showed similar result for
Log Fano varieties(which can be easily extend to Mori dream spaces). Our methods
is explicit.

Corollary 3.4.9 (Lower bound of necessary divisorial contractions). Let F ⊂
Mov1(X∆) be a face, then we have a lower bound of necessary divisorial contrac-
tions in the rational contraction φF .

Proof. We observe that for the face F ′ ⊂ Mov1(XF ),
{
ρ : ρ ⊂ V∆F ′

}
= ∆F ′ by

Remark 3.3.8. Hence the rational contraction φF has at least eliminated #(ρ ∈
∆(1) : ρ ⊂ V∆F

, ρ 6∈ ∆F ) many divisors.

3.5 When FV is a relative tangent sheaf
It is natural to ask what kind of subsheaves can be realized as a tangent sheaf for
some rational contraction. We give a necessary and sufficient condition.

Definition 3.5.1. Let ∆ ⊂ N be a fan. We say V ⊂ NR is a cone sub vector space
with respect to ∆, if V = Cone(uρ : Z≥0 uρ = ρ ⊂ V, ρ ∈ ∆(1))

We have shown the following proposition.

Proposition 3.5.2. Let X∆ be a Q-factorial, projective, toric variety associated to
fan ∆ ⊂ N . If F ⊂ TX∆ is the relative tangent sheaf for a rational contraction, then
F = FV for some cone sub vector space V ⊂ NR.

Proposition 3.5.3. Let X∆ be a Q-factorial, projective, toric variety associated to
fan ∆ ⊂ N , and W ⊂ NR a cone sub vector space with respect to ∆. Then there
exists a rational contraction φ such that FV ⊂ TX∆ is the relative tangent sheaf of
φ.

Proof. Since W is a cone sub vector space, then there exists a movable subset S ⊂
∆(1) such that W = VS , we refer Definition 1.3.11 and Definition 2.1.13 for the
definitions of movable subset and VS . Then Corollary 1.3.15 implies that if S ( ∆(1),
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3 Reconstruction of rational contractions

then S = ΣF for some face F ⊂ ∂Mov1(X∆), and Theorem 3.4.2 implies that
W = VS is the relative tangent of πF in Remark 3.4.4,

X
φF //

πF   

XF

ψF
��

ZF

.

If S = ∆(1), then we take X → point.

Remark 3.5.4. Neumann showed that for smooth Fano 3-folds, every term of the
Harder-Narasimhan filtration of the tangent sheaf is relative tangent for some regular
contraction, cf. [Neu10, Theorem 4.1]. The proposition implies that this is wrong
for the singular Fano 3-folds.

We give an example for the the existence of terms of the Harder-Narasimhan
filtration which are not relative tangent sheaves.

Example 3.5.5. Let X be the weighted projective space P(1, 1, 1, 2), then the Harder-
Narasimhan filtration is not trivial, but P(1, 1, 1, 2) admit only one rational contrac-
tion of fibre type, the trivial one f : P(1, 1, 1, 2)→ {pt}.

Remark 3.5.6. In fact, P(1, 1, 1, 2) has at worst terminal singularity by Reid’s
theorem(cf. [Reid87, Section 4.11]), hence we are unable to remove the smoothness
condition in Neumann’s theorem to the other singularities types in the minimal model
program.

Remark 3.5.7. The foliation O(2) → TX corresponding the ruling of projective
cone over Veronese surface v2(P2), and associated rational map is not a rational
contraction. Nevertheless, if we blow up the only singular point of P (1, 1, 1, 2), then
we get PP2(O⊕O(2)), and ruling becomes the fibres of projection PP2(O⊕O(2))→ P2
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