
Connecting a C++ based Structural Veri�cation Tool to the Web

A new bridge between C++ and the Web

Carsten Schmitt, Christoph Jäschke, Claudia Wolkober, Ulla Herter
IBM Deutschland Research & Development GmbH

Schönaicherstr. 220
71032 Böblingen, Germany

{carsten.schmitt,jaeschke,ck,ulla.herter}@de.ibm.com

Abstract.

This paper presents a new approach to combine a web front-end with a C++ applica-
tion. It is based on the integration of a web server and an interpreter into the C++
application using dynamic linking while the interface between the web scripts and the
application is automatically generated using the open source Simpli�ed Wrapper and
Interface Generator (SWIG). This way accessing data and functionality of the C++
process from web scripts is possible. Recompiling is only required if either the C++
application or its interface to the front-end changes. All other changes to the web front-
end can even be made while the C++ application is running. This kind of software
architecture has proven to work well in context of a C++ based structural veri�cation
tool. The described concept is used to present the veri�cation results and the tool's
functionality to the user in a web browser and thus improves the overall usability. Es-
pecially visualizing parts of the circuit logic in the browser is helpful and improves the
collaboration of the hardware development teams across multiple sites while keeping
the development e�ort of the front-end under control.

1. Introduction

The development and veri�cation of today's server processors is getting more and more com-
plex. In the �eld of hardware veri�cation many di�erent methods and tools exist to perform
this task. A global, distributed environment puts new demands on developers and toolchains.
One aspect in this context is the usability of tools and their support for collaboration. While
there are many applications which have already been moved to the cloud1, there exist lots
of applications which have been developed prior to the web area or without the intention
of providing a web front-end to the user. Many of those applications have been developed
using C++ for various reasons. In this work, a concept is presented which allows the elegant
combination of a C++ application for structural hardware veri�cation and a web front-end
in order to improve the usability of the tool.

1Especially newly developed social platforms and a variety of business services.

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

22

The paper is arranged in eight sections. After this introduction, section 2 provides a
quick overview on the concept of grammar based structural veri�cation. Afterwards, a C++
structural veri�cation tool is introduced, for which we have developed a web front-end based
on the concept described in this paper. As a basis of understanding, section 3 then introduces
some key terms and concepts from the �eld of web technology. Following, section 4 discusses
the requirements and circumstances, which led to the conclusion that using web technology
in combination with our C++ tool is advantageous. The next section provides an overview
on related work which has been evaluated in context of this paper. The main section 6
then in detail describes our concept of bridging a C++ application and a web front-end.
Subsequently, section 7 provides a small example which should help to better understand
the previously described concept. The paper concludes with section 8 where the overall
results are summarized and possible future items are discussed.

2. Grammar based Structural Veri�cation with a C++ Tool

Grammar based structural veri�cation is one method to verify that circuits are logically cor-
rect before they go into production. In contrast to performing a simulation by stimulating
the inputs of a black box and checking if the outputs behave as expected, structural veri�ca-
tion works di�erently. As the name suggests, in structural veri�cation one performs a static
analysis looking at the structure of a circuit. In this context structure roughly means the
connectivity and combination of the di�erent hardware gates and components. The analy-
sis usually takes place on a netlist. For example the clocking of a chip makes use of some
typical components like Clock Controllers (CCs), Local Clock Bu�ers (LCBs) and latches.
Those components have to be interconnected in a certain manner to make the clocking work
properly. In structural veri�cation, one indirectly veri�es the functionality of the chip by
verifying that the components are hooked up correctly. There are di�erent ways to perform
this task - one is to use a kind of EBNF grammar to de�ne the expected structures. One
advantage of this approach is the compact description of the expected structures.
We have developed a C++ veri�cation tool [6] which is able to verify the structure on netlists
which reach from a small component to a huge full chip (millions of gates). The tool has
been implemented in C++ to meet the resulting memory and performance requirements.
The language o�ers many degrees of freedom and hence allows �ne grained design decisions
for example with respect to memory usage. From the user perspective, the C++ program
is a console application without interaction. Once started with a certain con�guration, it
performs the analysis task and writes the results into various text �les after completion.
Beside other results one is a list with detected design problems. Over the time, a list of
usability requirements arose - especially with respect to the readability of the output.

3. Web Technologies Overview

This section covers some basic web concepts which are used later in this paper. More or
less the World Wide Web is based on three core ideas - the Hypertext Markup Language
(HTML), the Hypertext Transfer Protocol (HTTP) and Uniform Resource Locators (URLs).
Basically the web content itself is written in HTML. The content is hosted by a web server
which can be accessed using HTTP while a certain content is available under a certain

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

23

URL. A client (usually a browser) now requests a certain URL from the web server2. The
HTML content is transferred from the web server to the client and afterwards interpreted
and rendered by the browser.
While the content on the web server has been static at �rst, it nowadays can be dynamic as
well. Dynamic in this context, means that the HTML returned to the browser is generated on
server-side right after the request comes in. Instead of reading in plain HTML content, the
web server reads in a script which is then passed to an interpreter. One of those interpreters
developed over time is the Hypertext Preprocessor (PHP) [15]. The interpreter executes the
script and returns the generated HTML back to the web server. This allows the creation of
dynamic contents - for example based on a database.
However, even a dynamically generated website would remain static within the browser
without an additional scripting language executed directly in the browser. In this context
JavaScript established itself as a standard. Initially it is stored on the web server like the
HTML content and likewise transferred to the client where it is then executed. JavaScript
allows manipulating the HTML tags and thus the appearance of the website. In addition it
allows asynchronous HTTP calls (i.e. without reloading the complete website) to the web
server in order to reload additional content3. This concept is also known as Asynchronous
JavaScript and XML (AJAX).
The last item to address here is the Scalable Vector Graphics (SVG), which is a vector
image format for two-dimensional graphics with support for interactivity and animation.
SVGs can be stored or generated on server-side and then e�ciently transferred to the client.
Afterwards, the browser takes over the rendering of the SVG. Using JavaScript the developer
is able to manipulate the appearance of the SVG in the browser and it is even possible to
embed JavaScript code inside the SVG which can be hooked up to certain SVG events. In
this work, SVGs are used to display an interactive circuit [13] to the user directly in the
browser as shown in �gure 1.

TC_GPTR_SL_THOLD_0 (chpl …

Box_1

THOLD

CLKOFF_B <1>

+1

SG

#15

#16 <1>

THOLD_B

Box_2

THOLD THOLDB

SubBox_2.1

THOLD_B

GPTR_THOLD_B

Box_3

THOLD_B

Figure 1: Interactive circuit SVG rendered by the C++ application and displayed in the browser.

2The URL addresses the web server and the desired content.
3Search engines use this mechanism to propose search results to the user while still typing.

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

24

4. New Requirements and Considerations for a Web Front-end

As mentioned in section 2, new usability requirements came up. In general, a more intu-
itive processing of the results and interactive usage of the available data were requested.
Translated to features, this more or less boiled down to a graphical representation of the
traversed circuit parts, a list of detected design problems, a search engine for components,
and some other convenience functions4. From the perspective of front-end development the
requirements so far could all be met by a variety of GUI toolkits.
However, there are further requirements which led us to the development of a web application
instead of a C++ GUI. One is the ability to run on multiple host- and client environments.
When building a web application, the support for all platforms comes for free5. Furthermore,
accessing the application boils down to clicking a link instead of starting an executable. This
also implies that no additional deployment of the software to the user is required.
Another important aspect is collaboration. Debugging a hardware problem often involves
multiple hardware designers and veri�cation engineers from various sites and components.
This implies the need for sharing data across sites. In case of using a web front-end, a user
is able to share data just by copy-pasting a link to colleagues. In this context the security
aspect also plays an important role. Web applications nowadays provide some standard se-
curity concepts. For example, an encryption between client and web server via HTTPS is
already built-in into most browsers.
Still, one constraint to keep in mind is implied by the web architecture itself. Conceptually,
having a network between back end and front-end can increase the response time of the
front-end. The delays can usually be kept low by only transferring a subset of the data to
the client6.
For the given reasons, we have decided to build a web front-end for our C++ veri�cation
tool. In this context, beside the development of the front-end itself, the aspect of bridging
the C++ application and the web front-end became a central task. Our solution is presented
in section 6.

5. Related Work

There already exist di�erent ways to bring C++ and web development together. The C++
Web Toolkit (WT) project [4] is a library for developing web applications with C++. The
API is widget-centric and uses patterns of desktop GUI development tailored to the web.
The web design itself takes place in C++ using the o�ered components. CPPCMS [3] uses
its own template language which then is converted into a C++ source �le. TreeFrog [7] is a
web application framework that generates MVC like C++ code patterns based on the input
parameters. Afterwards, the generated code framework can be enriched with functionality
and compiled. C++ Server Pages (CSP) [11] allow an integration of C++ code into a HTML
template. A CSP compiler then takes the template �le and translates it into a C++ �le.

4For example, viewing the HDL, generating status charts or linking to a design documentation.
5The availability of a suitable browser is su�cient.
6In our case this is for example relevant when displaying entries of the netlist.

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

25

This �le is compiled using a C++ compiler7. All those approaches have in common that
they require a recompilation of the C++ source code after each front-end change.
Another way to connect a C++ application with a web front-end is the Common Gateway
Interface (CGI). CGI is an extension of a common HTTP server which allows the execution
of scripts and binaries8 located in a con�gured directory. The script or binary is executed
by the web server in another process. The communication between the web server and the
executed program takes place via pipes. Hence, there is no way to directly access any data
structures of the executable - especially not of an already running process.

6. Creating a Bridge between C++ and the Web

In order to build the web front-end described in this work, we use state-of-the-art web tech-
nologies like PHP, HTML, CSS and JavaScript. However, note that the presented concept is
generic and not necessarily bound to the use of PHP. Thus, the more generic term scripting
language will be used for the following concept description.
As described in section 3, the web is based on a client-server concept. Hence, in order to
allow a client (browser) to access any kind of data, a web server is required. There are
multiple implementations available which could be used to embed a web server into a C++
application - for example mongoose [9], libhttpserver [10] and libmicrohttpd [5]. Up to this
point, the idea of having an embedded web server as shown in �gure 2 is not new. Well
known applications like the Open source VideoLAN Media Player (VLC) [12] provide web
interfaces to the user using a built-in web server. The C++ web toolkits described in sec-
tion 5 are supplied with an embedded web server as well. However, one major drawback
of this approach is, that each modi�cation of the web front-end requires a recompilation
of either a template or the (mostly generated) C++ code. In addition, some approaches
force the developer to use partly inappropriate languages to create the web front-end. The
concept presented in this work avoids those drawbacks.

C++ Process
Functionality Data

Webserver

Browser

Figure 2: A C++ application with an integrated
web server.

C++ Process
Functionality Data

Webserver

.js
.html

.php

Script
Interpreter

Browser

Figure 3: Front-end described by web �les stored
outside the C++ application.

In order to avoid the recompilation step, the web front-end source code and the C++ code
have to be split. That means the front-end can no longer be part of the C++ application as
well as the C++ code cannot be part of a scripting language any longer. In order to achieve
that, the concept shown in �gure 2 has to be extended to what is shown in �gure 3.

7This works similar to the Active Server Pages (ASP) - http://www.asp.net
8This can be any kind of executable - for C++ see http://www.gnu.org/software/cgicc

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

26

The web front-end �les (e.g. HTML, JavaScript, CSS, PHP, images and other web sources)
are located in a folder and therefore are independently stored from the C++ application (just
like in a common web server setup). Once a request comes in to the web server, the respective
resource is read and processed. In this context, the processing of script �les requires a suitable
script interpreter. The concept as shown can already execute scripts using the interpreter. In
case the user accesses a PHP �le, the script is read and handed over to the interpreter. The
interpreter executes the script and �nally returns the result to the web server. Afterwards,
the web server sends the result further back to the client which issued the initial request.
Typically this concept is implemented using a fork-exec construct [8]. The web server forks
itself and the new child process then does an exec call to the interpreter. The original web
server process (the parent process) now can communicate via pipes with the interpreter (the
child process). However, so far there is no mechanism which allows accessing any C++ data
or functionality from a script. In order to make that possible, two additional changes have
to be made to the concept.

C++ Process
Functionality Data

Webserver

.js
.html

.php

Script
Interpreter

Browser
C++ Library
Functionality

SWIG generated
interface library

Figure 4: Interface to C++ library outside actual
application generated by SWIG.

C++ Process
Functionality Data

Webserver

.js
.html

.php

Interpreter

SWIG generated
interface libraryBrowser

Figure 5: Interface to C++ application with inte-
grated interpreter generated by SWIG.

Figure 4 shows the next concept stage. In order to allow access from a script to a C++
application, a software development tool called Simpli�ed Wrapper and Interface Generator
(SWIG) can be used [2]. This software package allows the generation of an interface between
a C++ application and a scripting language. Currently about 25 di�erent scripting languages
are supported. The only required input to this tool is an interface description which lists the
C++ classes and functions which should be made available to the scripting language. For
example, when choosing PHP as scripting language, the code for a shared interface library
and a .php �le is generated. After compilation, the shared interface library can be loaded
as a PHP extension by the interpreter and the .php �le is just included. Finally, calling a
C++ function from a PHP script just looks like a call to a PHP function (see listing 3). This
way, recompiling the C++ source is only required if it has changed. Furthermore, executing
the SWIG compiler is only required if the C++ interface has been modi�ed. Changes to the
web front-end, which do not involve interface changes, do not require any recompiling and
can even be issued while the C++ application is running.
Finally, the only remaining problem is that the interpreter has been started as a new process
in a completely new address space. That means, so far the only way to communicate between
parent- and child-process is the pipe between them. This implies that even loading the
generated shared interface library as an extension does not allow access to the parent-process.

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

27

Instead, an unde�ned reference problem will be issued when the shared interface library is
loaded. This can be solved by doing a fourth concept modi�cation as shown in �gure 5.
One way to achieve that is moving the interpreter into the same process instead of calling it
as a child-process from the web server. This turned out to be relatively simple since many
interpreters are itself implemented in C and hence have a suitable C API. The web server
then needs to be modi�ed, so that instead of executing the interpreter as a child-process,
it executes the interpreter directly via its C API. We managed to embed Python, Perl and
PHP interpreters for testing purposes using their C APIs 9. Finally, all components - the
web server, the interpreter and some additional program logic - are packed into one dynamic
library which then is loaded dynamically by the main C++ application.
Based on this �nal concept, the front-end can be modi�ed without recompiling the C++
source code and even without restarting the C++ application - at least as long as the
interface does not change. Furthermore, no export or import of data is required and C++
functionality can directly be executed from the browser. This turned out to be very helpful
for the software project presented in this paper. It allows executing the C++ hardware
traversal engine and rendering its result in the C++ process and just returning an SVG
vector graphic to the browser. From the perspective of software development, this also
has the advantage that only the SWIG interface �le is to be maintained and that the web
front-end developer can interact almost independently and in parallel to the C++ developer.

7. Sample Implementation

myapp.i

myapp_php_wrap.C
myapp_php_wrap.php

libmyapp_php_wrap.so

Webserver
source .C / .h

webserver.so

libphpembedded.so

Web content
.html/.php/.js

SWIG Compiler

C++ Compiler

App src .C / .h

myapp executable

C++ Compiler

<<link>>
<<loads>>

C++ Compiler <<includes>>

Application specific Common / Automated

myapp

<<execution>>

<<loads>>

<<reads>>

server
loop

Compile time data flow
from src to dest.
Linking / Including

Runtime dynamic loading /
execution / file read

Legend

(1)

(2)

(3)

(4)

(5)

Figure 6: Compile, link and execution �ow Left:
Application speci�c part, Right: Com-
mon/automated part.

This section provides details of our imple-
mentation and demonstrates the previously
described concept. For this implementation,
the PHP interpreter has been selected since
PHP is quite popular in the �eld to web devel-
opment and hence supports lots of features.
Figure 6 provides an overview on the whole
compile and execution process. In addition,
some code snippets are shown further below.
At �rst, a C++ application is compiled (1).
Listing 1 and 6 illustrate a small application
holding an STL vector of integers which is
initially �lled with a few numbers.
Secondly, a SWIG interface speci�cation as
shown in listing 2 is necessary to allow PHP
scripts accessing the required parts of the
C++ application. This description language
is very close to the C++ syntax. Its purpose
is to specify the subset of classes and func-
tions to be used by the scripting language10.

9For PHP there is a package called php-embed [14].
10A detailed description of the syntax can be found at http://www.swig.org/doc.html

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

28

In the next step the SWIG interface �le is passed to the SWIG compiler (2) as shown in
listing 4. This step generates a PHP interface �le (here myapp_php_wrap.php) and a C �le
(here myapp_php_wrap.C).

#inc lude <vector>
c l a s s MyAppT {
pr i va t e :

s t a t i c std : : vector<int> sMyVec ;
pub l i c :

s t a t i c void i n i t () ;
s t a t i c const std : : vector<int> * getMyData () ;

} ;

Listing 1: myapp.h - Header �le of the C++
application.

%inc lude " std_vector . i "

%template (vector_int) std : : vector<int >;
c l a s s MyAppT {
pub l i c :

s t a t i c const std : : vector<int> * getMyData () ;
} ;

Listing 2: myapp.i SWIG interface �le de-
�nes the C++ functionality avail-
able from the scripting language.

<?php
header (' Content−Type : text /html ; char s e t=utf −8 ') ;
include_once ("myapp_php_wrap . php") ;

$vec = MyAppT : : getMyData () ;

f o r ($ i = 0 ; $ i < $vec−>s i z e () ; $ i++) {
echo " i=" . $ i . " −> " . $vec−>get ($ i) . "
" ;

}
?>

Listing 3: myapp.php includes the generated
myapp_php_wrap.php and repre-
sents the actual web front-end.

. / swig −php −c++ −o myapp_php_wrap .C myapp . i

Listing 4: Executing the SWIG compiler
myapp_php_wrap.so generates and
myapp_php_wrap.php.

i=0 −> 123
i=1 −> 456
i=2 −> 789

Listing 5: Output of myapp.php in a browser.

#inc lude "myapp . h"

std : : vector<int> MyAppT : : sMyVec ;

void MyAppT : : i n i t () {
sMyVec . push_back (1 23) ;
sMyVec . push_back (4 56) ;
sMyVec . push_back (7 89) ;

}

const std : : vector<int> * MyAppT : : getMyData () {
return & sMyVec ;

}

void main (void) {
MyAppT : : i n i t () ;

// Do something e l s e . . .

// Fina l ly , ente r the web s e rv e r loop

}

Listing 6: myapp.C - The source �le of the
C++ application. First, a static
STL vector is initialized. Instead of
exiting the program, the web server
library is loaded and the server is
started (code is not shown).

Afterwards, the generated myapp_php_wrap.php is included from the actual front-end
PHP script as shown in listing 3. In this case, the STL vector is �rst requested using the
static function getMyData(). Then the PHP code iterates through the vector and prints out
all elements. The PHP interface to the STL vector (for example the size() and the get()
functions) are generated by SWIG using the already prede�ned std_vector.i �le11. It is
included in the SWIG interface de�nition in listing 2.
In step (3) the generated myapp_php_wrap.C �le is compiled to a shared library which can
be dynamically loaded by the PHP interpreter as an extension (4). At this point, it is
important to note that generally there are two di�erent scenarios. The �rst one is that all
required symbols are linked into the shared library (see �gure 4). In this case no independent
C++ application is running and only the C++ functionality provided by the shared library
can be used by the PHP script. This for example makes sense if certain algorithms have
to be implemented in C++ for some reason. The second scenario is the one used in this

11The list of STL containers supported by SWIG depends on the selected scripting language.

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

29

work. In this case most of the functionality is not part of the shared library itself - that
means the symbols in the library are unde�ned at compile time (see �gure 5). However, once
this shared library is dynamically loaded by the main application the previously unde�ned
symbols will become available since they are de�ned by the application itself12. Basically
this is how access to the running C++ process is realized.
When running the myapp executable, the vector is �lled with some numbers. Finally, in-
stead of exiting the application, the web server library is loaded and the execution loop
is entered (this code is not shown). This also includes loading the SWIG interface library
libmyapp_php_wrap.so as a PHP extension. The process is now listening on a con�gurable
HTTP port.
Visiting a certain URL from the browser13 results in a request to the web server's web
content folder (5). In case of a PHP script, the �le is read and passed to the linked PHP
interpreter via the C API. The PHP script is now executed. As described in section 6, the
calls to C++ functions have been wrapped by PHP functions. The generated PHP code calls
functionality of the loaded PHP extension which is the link to the actual C++ application.
The result is returned by the interpreter and the web server �nally sends it back to the
browser where it is displayed as shown in listing 5.
As already mentioned in section 6, the implementation of the described concept requires a
few modi�cations of the web server. Basically, the web server's processing of PHP scripts
has to be changed. Instead of reading the PHP script and passing the content to the PHP
interpreter via a pipe, the PHP interpreter's C API has to be used. This requires some
additional setup code to initialize the interpreter. Once the described implementation is in
place, only the application speci�c part (see left side of �gure 6) is subject to changes. The
only interface speci�cation to maintain between C++ application and front-end is the SWIG
interface �le.

8. Results and Future Work

In this paper, we present a new approach to build a front-end for a C++ application based
on standard web technologies. The concept allows the powerful combination of a C++
application with the advantages of a web front-end while the front-end can be developed
using the standard web development techniques. This kind of software architecture has
proven to work well and might serve as a role model for other C++ based projects not
necessarily bound to hardware veri�cation. Figure 1 from section 3 shows a circuit generated
by our C++ veri�cation tool and rendered by the browser.
Our web front-end is developed with respect to the requirements described in section 4 and
is based on the presented concept. It greatly improves the usability of our C++ structural
veri�cation tool while keeping the development e�ort of the front-end under control. In this
context, especially developing the front-end independently from the C++ application and
without the need of recompiling turns out to be helpful. Moreover, supplying a front-end �x
for a running session turned out to be practical since running the C++ veri�cation tool on
a full chip model can take multiple hours.

12The �ags RTLD_GLOBAL and RTLD_LAZY are required for dlopen() - cf. [1]
13For example https://127.0.0.1:4321/myapp.php.

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

30

As described in section 4, the deployment process does not involve any installation on the
user-side. Hence, it is quite easy to extend the web front-end step-by-step. The ability
to use existing JavaScript and PHP frameworks improves the development e�ciency and
thus quickly led to a working front-end. In general, using the standard web presentation
mechanisms helps to keep the front-end clear while still keeping the development e�ort low.
Furthermore, it greatly improves the collaboration in distributed teams14.
The web front-end, and especially the SVG based graphical circuit representation in the
browser helps users to get a much better understanding of the tool output. Here the SVG
mechanism turned out to be well suited for the interactive presentation of circuits to a user.
It allows users to interactively traverse forward or backward through the circuit and share the
results with colleagues by just copy-pasting the link. Beside a rendering engine implemented
in C++ and a few lines of JavaScript code to navigate through the SVG, this feature did
not require any more coding. Related content and other views on the data are reachable by
clicking links. This way, the user can decide on its own whether to open the new content in
a new browser tab or window.
For the future, there are plans to further extend the front-end of the presented structural
veri�cation tool. All this work will be based on the introduced concept. Beside other features,
the search engine and the generation of status reports will be improved. In addition, a
visualization of parent/child relationships between components is planned.

References

[1] Standard for Information Technology Portable Operating System Interface
(POSIX(R)) Base Speci�cations, Issue 7. IEEE Std 1003.1, 2013 Edition (incorporates
IEEE Std 1003.1-2008, and IEEE Std 1003.1-2008/Cor 1-2013), pages 1�3906, April
2013.

[2] Beazley, David M.: SWIG: An Easy to Use Tool for Integrating Scripting Languages
with C and C++. In Proceedings of the 4th Conference on USENIX Tcl/Tk
Workshop, 1996 - Volume 4, TCLTK'96, pages 15�15, Berkeley, CA, USA, 1996.
USENIX Association.

[3] Beilis, Artyom: CppCMS - High Performance C++ Web Framework.
http://cppcms.com. Accessed: 2015-10-13.

[4] EMWEB bvba: C++ Web Toolkit. http://www.webtoolkit.eu/wt. Accessed:
2015-10-13.

[5] Grotho�, Christian: libmicrohttpd - Small C based web server library.
https://www.gnu.org/software/libmicrohttpd. Accessed: 2015-10-13.

[6] Jäschke, Schmitt C., Herter U., Wich T., and Rust J.: Strukturelle Veri�kation mittels
parser-gesteuerter Netzlisten-Traversierung. In Methoden und Beschreibungssprachen
zur Modellierung und Veri�kation von Schaltungen und Systemen (MBMV), Dresden,
Germany, February 22-24, 2010, pages 227�236, 2010.

14For example, sharing information by just copy-pasting a link is very helpful.

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

31

[7] Kazuharu, Aoyama: High-speed C++ MVC Framework for Web Applications.
http://www.treefrogframework.org. Accessed: 2015-10-13.

[8] Kerrisk, Michael: The Linux Programming Interface: A Linux and UNIX System
Programming Handbook. No Starch Press, San Francisco, CA, USA, 1st edition, 2010,
ISBN 1593272200, 9781593272203.

[9] Lyubka, Sergey: Mongoose - Embedded web server for C/C++.
https://github.com/cesanta/mongoose. Accessed: 2015-10-13.

[10] Merlino, Sebastiano: C++ Library for creating an embedded Rest HTTP server.
https://github.com/etr/libhttpserver. Accessed: 2015-10-13.

[11] Real Time Logic, LLC.: C++ Server Pages (CSP).
https://realtimelogic.com/products/barracuda-web-server. Accessed: 2015-10-13.

[12] Video LAN Development Team: VideoLAN Media Player.
http://www.videolan.org/vlc. Accessed: 2015-10-13.

[13] Wurm, Christoph: Visualizing hierarchical structures for hardware chip veri�cation.
B.S. Thesis, DHBW Duale Hochschule Baden-Würtemberg, August 2012.

[14] Zend Technologies Ltd.: Embedded PHP SAPI Library. http://www.php.net.
Accessed: 2015-10-14.

[15] Zend Technologies Ltd.: Hypertext Preprocessor (PHP). http://www.php.net.
Accessed: 2015-10-14.

Connecting a C++ based Structural Verification Tool to the Web

R. Wimmer (Hrsg.): MBMV 2016
ISBN: 978-3-00-052380-9

32

