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1 Introduction

The η-invariant was introduced by Atiyah, Patodi and Singer [APS75a] as a correction
term from the boundary in their generalization of the Atiyah-Singer-Index theorem to
manifolds with boundary. It is a spectral invariant of the Dirac operator on the boundary
or more generally for any Dirac operator D on an odd-dimensional manifold. It is defined
to be the value at s = 0 of the meromorphic continuation of

η(D, s) =
∑
λ 6=0

sign(λ) |λ|−s =
1

Γ
(
s+1

2

) ∞∫
0

t
s−1

2 tr
(
De−tD

2
)
dt,

where the summation is taken over all eigenvalues λ of D. Thus formally

η(D) = η(D, 0) = #{|λ| > 0} −#{|λ| < 0}

measures the asymmetry of the spectrum specD. One can define η-invariants for a larger
class of operators than Dirac operators, namely for any elliptic self-adjoint pseudo-
differential operator of positive order. In the present article we will focus on Dirac
operators though. These operators are by definition directly coupled to the geometry
which makes them easier to study. On the other hand they still give a very large class
of examples and are important for many applications.
Since then many more applications of the η-invariant besides its boundary contribution
in the index theorem have been discovered. Many differentialtopological invariants, as
for example the ρ-invariant [APS75b] or the Eells-Kuiper-invariant [EK62], are defined
or in certain cases can be calculated with the help of η-invariants. A very nice survey
about these applications can be found in [Goe12, Section 4]. Goette [Goe14] also used
an adiabatic limit formula for η-invariants to compute Eells-Kuiper invariants for certain
seven-dimensional manifolds which possibly allow positive sectional curvature metrics.
Recently Tang and Zhang [TZ14] gave an application into another direction. They com-
puted η-invariants to obtain a result on closed geodesics of the Eells-Kuiper quaternionic
projective plane.
For an arbitrary Riemannian manifold M and Dirac operator D it is very hard to com-
pute the η-invariant since one needs knowledge about the whole spectrum of D. As
already pointed out in the introduction of [APS75a] specific examples show that it can-
not be written down in terms of local curvature expressions, since it does not behave
multiplicatively with respect to finite coverings. Therefore the η-invariant is indeed a
global metric invariant, it has just been calculated in few examples and one would like
to have formulas which simplify the calculation.
Bismut and Cheeger [BC89] proved, that for the total space M of a Riemannian fibre
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1 Introduction

bundle X ↪→M
π
� B of compact spin manifolds the adiabatic limit of the η-invariant at

least partially localizes if the fibrewise Dirac operators DX are invertible. Dai [Dai91]
generalized their result to the case of constant kernel dimension of DX . Passing to
the adiabatic limit means that we scale the product metric along the base directions
gε = gX ⊕ 1

ε2
π∗gB and consider the limiting behaviour as ε → 0. Therefore the metric

along the base directions is blown up whereas the metric along the fibre directions is
fixed. Note that for the η-invariant we could equivalently fix the metric along the base
and shrink the fibres, since it is invariant under scaling of the metric of the total space
M . For convenience we state the theorem of Bismut, Cheeger and Dai for dimX odd
and dimB even, the other case is up to some small technical details analogous.

1.0.1 Theorem ([BC89, Theorem 4.35],[Dai91, Theorem 0.1]). If kerDX → B forms a
smooth vector bundle and there exists an ε0 > 0 such that dim kerDM,ε is constant for
all ε ∈ (0, ε0), the adiabatic limit of the η-invariant can be computed by

lim
ε→0

η (DM,ε) = 2

∫
B

Â (TB) η̃ + η (DB) +

dim kerDB∑
ν=1

sign (λν(ε)) ,

where λν(ε) denote the finitely many eigenvalues of DM,ε which decay at least quadrati-
cally and DB denotes the twisted Spin-Dirac operator on ΣB⊗kerDX → B. The η̃-form
for the Bismut superconnection At =

√
tDX +∇π∗V − c(T )

4
√
t

is defined to be

η̃ =
∑
j

(2πi)−j

 1√
π

∞∫
0

trev

(
dAt
dt

e−A
2
t

)
dt


[2j]

∈ Ωev(B)

and its exterior differential makes the cohomological index exact

dη̃ =

∫
M/B

Â (TX) ch (V/ΣX) .

The η̃-form is actually a generalization of the η-invariant of the fibres. In degree 0 it is
the smooth function η̃[0] : B → R, b 7→ η ((DX)b), where (DX)b is the Dirac operator on
the fibre Mb. The η̃-form also plays the role of the correction term of the boundaries
in the family index theorem for manifolds with boundary, which was proven by Bismut
and Cheeger [BC90].
Both proofs of the adiabatic limit theorem above rely on a good knowledge of the be-
haviour of the eigenvalues λ(ε) of DM,ε as ε → 0. The first term 2

∫
B Â(TB)η̃ comes

from the bounded eigenvalues, the second term η (DB) from the eigenvalues that decay
at least linearly in ε and as already explained, the last term comes from the finitely
many that decay at least as ε2. Dai proved that if dim kerDX ≡ const these are the
only possible behaviours of eigenvalues of DM,ε.
The behaviour of eigenvalues of certain geometric operators in the adiabatic limit is also
a topic of interest in mathematical physics. For example very recently in [HLT15], Haag,
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Lampart and Teufel considered so-called generalized quantum waveguides, where quan-
tum waveguides are ε-tubular neighbourhoods of curves in R3. They investigated the
spectral properties of the Dirichlet Laplacian and even computed explicitly the adiabatic
operator to all significant orders.
However, if the fibres X are odd-dimensional, the assumption that the kernels of the
fibrewise Dirac operators have constant dimension is very restrictive. There are topo-
logical obstructions to this. For odd-dimensional fibres the family of fibrewise Dirac
operators defines an element in the K-group K−1(B) and if this cohomology class is not
trivial, the dimension does indeed vary. So the obvious question to ask would be

”
Does

there exist a formula for limε→0 η(DM,ε) if the kernel dimension of DX might vary?“.
But before one can answer this question there are mainly two questions for which one
needs to find an answer first:

� We know that
∫ T

0 trev
(
dAt
dt e
−A2

t

)
dt cannot converge to a smooth differential form

η̃ ∈ Ωev(B) as T → ∞, if the kernel dimension of DX varies, since already the
η-invariant η(DX) = η̃[0] has integer jumps at points where eigenvalues cross 0.
But does the limit exist in a weaker sense? Does η̃ exist at least as a current in
(Ωev (B))∗?

� Which eigenvalue behaviour as ε→ 0 can occur and which operators model these
small eigenvalues? So in particular what η-invariants of which operators do we see
in the large time contribution, 0 < α < 1

1√
π

∞∫
εα−2

tr
(
DM,εe

−tD2
M,ε

) dt√
t

to η (DM,ε) as ε→ 0?

These are the problems we are concerned with in this thesis and we will solve them in
Chapter 3 and Chapter 4 in a special case. Considering the most general case without
any further assumptions on kerDX seems impossible to handle since the eigenvalues
of DX can behave very wildly. We will still consider a case where we have a good
control on how they vanish. So we will focus on the next interesting case after constant
kernel dimension in which locally one eigenvalue of multiplicity one of DX crosses 0
transversally:

1.0.2 Assumption. We assume that we can find a covering {Ui}1≤i≤k for B such that on
each Ui either (DX)b is invertible or we have a smooth function fi : Ui → (−K,K) which
has 0 as a regular value, such that for all b ∈ Ui, spec (DX)b∩ (−K − δ,K + δ) = {fi(b)}
and fi(b) is of multiplicity 1.

One should note that our assumption excludes two rather prominent examples of Dirac
operators. The first one is the signature operator. Its kernel is given by the deRham-
cohomology H•dR (Mb) of the fibres Mb

∼= X, b ∈ B and hence the dimension cannot
vary. The second one is the Dolbeault operator. Its kernel is given by the Dolbeault
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1 Introduction

cohomology H• (Mb,O (Wb)) of the fibres and the dimension can indeed vary. Yet a
corollary of the proper base change theorem implies that the dimension can just increase
on complex subvarieties which cannot have real codimension one as in our assumption.
We will see an example satisfying the assumption in Section 3.1.

1.0.3 Assumption. Furthermore we assume that the metric gB on B is such that if
we consider a tubular neighbourhood of the hypersurface B0 = ∪if−1

i ({0}), exp: B0 ×
(−a, a)→ Na the functions fi describing the small eigenvalue of DX are given by

fi (exp (x, y)) = y.

This assumption will not be a restriction in Chapter 3, where we just consider the
fibrewise situation and where we are allowed to change a chosen metric on the base. On
the other hand in Chapter 4, where we consider the Dirac operator on the total space,
this is of course a restriction. However if one wants to calculate η-invariants there is a
formula connecting η-invariants of different metrics. Let D0

M , D
1
M be Dirac operators

associated to metrics g0
M and g1

M . Then a corollary of the Atiyah-Patodi-Singer index
theorem and [APS76, Theorem 7.4] proves(

η
(
D1
M

)
+ h

(
D1
M

))
−
(
η
(
D0
M

)
+ h

(
D0
M

))
= sf

(
(Ds

M )s∈[0,1]

)
+

∫
M

(
˜̂
A
(
TM,∇TM,0,∇TM,1

)
ch
(
E/Σ,∇E,0

)
−Â

(
TM,∇TM,1

)
c̃h
(
E/Σ,∇E,0,∇E,1

))
,

where h denotes the dimension of the kernel of the inserted operator, sf
(

(Ds
M )s∈[0,1]

)
denotes the spectral flow and

˜̂
A and c̃h denote the transgression forms of Chern-Weil

theory.

Outline of the dissertation

In Chapter 2 we will give the basic definitions and preliminaries to understand the later
chapters and set notation. We will introduce families of manifolds and associated curva-
ture tensors as well as the Dirac operators we need and the notion of adiabatic limits. We
will also explain in more detail why we are interested in varying kernel dimension of DX .

Chapter 3 is concerned with the fibrewise situation. Before considering the question of
existence of the η̃-form we will investigate the behaviour of trodd

(
exp

(
−A2

t

))
as t→∞.

This is the first step to prove that η̃ exists, see also [BGV04, Section 9,10]. Furthermore
we already know by [BF86, Theorem 2.10] that trodd

(
exp

(
−A2

t

))
is a representative for

the odd Chern character of the family DX . But we do not have a concrete analytical
representative just depending on the spectral properties of DX as in the even-dimensional
case. The question for such a representative was already raised in [DK10] where in
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contrast to the present article they investigated the influence of multiplicities on the
analytical index. In Theorem 3.2.17, assuming Assumption 1.0.2, we calculate the limit

lim
t→∞

∑
k

(2πi)−k trodd
(
exp

(
−A2

t

))
[2k+1]

= −δB0 ch
(

kerDX → B0,∇kerDX
)

as a current in (Ωev(B))∗, where B0 ⊂ B is the hypersurface where the kernels of the
fibrewise Dirac operators form a line bundle kerDX → B0. For the proof we make use
of holomorphic functional calculus and generalize the ideas of [Bis90]. So in this case
we really get a representative for the analytical index depending just on the kernels
of the operators. In degree one we see the spectral flow of the operators which was
already discovered and pointed out in [APS76, Section 7]. From the asymptotics of
limt→∞ trodd

(
exp

(
−A2

t

))
we can then prove in Proposition 3.2.19 that

η̃ =
1√
π

∑
k

(2πi)−k

 ∞∫
0

trev

(
dAt
dt

exp
(
−A2

t

))
dt


[2k]

∈ L1 (B,ΛevT ∗B)

exists as a differential form with integrable coefficients and its differential as a current
is given by

dη̃ =

∫
M/B

Â
(
TX,∇X

)
ch (V/ΣX) + δB0 ch

(
kerDX → B0,∇kerDX

)
,

which represents the Atiyah-Singer family index theorem for odd-dimensional fibres, see
[APS76, Theorem 3.4].
The content of this chapter was prepublished in [Wit15].

The question remains which eigenvalues we see for large times. This is dealt with
in Chapter 4. We start by motivating where the small eigenvalues of DM,ε are sup-
posed to come from. The operator which gives the small eigenvalues should and will be
the twisted Dirac operator DB0 on kerDX ⊗ ΣB0 → B0. We will define an isometry
Jε : L2 (B0, kerDX ⊗ ΣB0) → L2 (M,V ⊗ π∗ΣB) and prove that 1

εJ
−1
ε qεDM,εqεJε con-

verges to −DB0 as ε→ 0, see Theorem 4.2.11, where qε denotes the projection onto the
image of Jε. Furthermore we develop the technical tools to use holomorphic functional
calculus for proving that there exists an 0 < α < 1 such that

lim
ε→0

1√
π

∞∫
εα−2

tr
(
DM,εe

−tD2
M,ε

) dt√
t

= −η (DB0) +

dim kerDB0∑
ν=1

sign (λν(ε)) ,

for some ε small enough, provided that there exists an ε0 > 0 such that dim kerDM,ε is
constant for all ε ∈ (0, ε0), see Theorems 4.3.11 and 4.3.12. Parts of the proof are based
on ideas in [BL91] and also in [Goe14].
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2 Preliminaries: Geometry of Families

In this chapter we will fix notation and introduce the situation of families of manifolds
which we use in the following chapters. The definitions and the setup is based on [BC89,
Chapter 4], [Goe14] and [BGV04, Chapter 9, 10], which will also provide more details
and background.

We consider an oriented Riemannian fibre bundle X ↪→ M
π
� B where the fibres Mb =

π−1({b}) ∼= X are closed and n = dimX is odd. We assume the base (B, gB) also to
be closed and oriented and of even dimension m = dimB, such that the total space M
is odd-dimensional. We denote the vertical tangent bundle by TX = ker dπ, choose a
horizontal distribution THM ∼= π∗TB such that TM = TX ⊕ THM and consider the
metric g = gX⊕π∗gB. We will denote vertical local frames by {ei}i=1,...,n and horizontal

ones by {fα}α=1,...m. On TM we have the Levi-Civita connection ∇M and the Euclidean

connection ∇⊕ = ∇X ⊕ π∗∇B where ∇X is the projection of ∇M onto TX and ∇B is
the Levi-Civita connection on B. The difference tensor of the two connections

S(Y )Z = ∇MY Z −∇⊕Y Z

can be used to compute the torsion tensor of ∇⊕ (or curvature of M/B)

T (U, V ) = ∇⊕UV −∇
⊕
V U − [U, V ] (2.0.1)

= S(U)V − S(V )U ∈ TX

for horizontal vectors U, V ∈ THM . We define the mean curvature k ∈ Ω1(M) to be

k(U) =

n∑
i=1

g (S(ei)ei, U)

for a local orthonormal frame {ei}i=1,...,n of TX.

2.1 Fibrewise situation and the Bismut superconnection

Assume that we have a vertical Dirac bundle
(
V, gV ,∇V , cX

)
, by which we mean a

Hermitian vector bundle
(
V, gV

)
→ M , a compatible connection ∇V and a smooth

linear map cX : TX → EndV which satisfies the following

� cX(Y ) is skew-symmetric for all Y ∈ TX,

� for all Y ∈ Γ (M,TM), Z ∈ Γ (M,TX) and σ ∈ Γ (M,V )

∇VY (cX(Z)σ) = cX
(
∇XY Z

)
σ + cX(Z)∇VY σ,

11



2 Preliminaries: Geometry of Families

� cX is a Clifford multiplication, that means

cX(Y )cX(Z) + cX(Z)cX(Y ) = −2gX(Y, Z), for all Y, Z ∈ Γ (M,TX) .

For a vertical Dirac bundle we can associate the fibrewise Dirac operator

DX =

n∑
i=1

cX (ei)∇Vei : Γ (M,V )→ Γ (M,V ) ,

where e1, ..., en is a local orthonormal frame of TX. We can also write

DX = cX ◦ g−1
X ◦ ∇

V
∣∣
TX

.

Since we just differentiate into vertical directions, DX restricts to fibrewise sections
Γ (Mb, Vb) and we get a family b 7→ (DX)b of fibrewise Dirac operators. For a vector bun-
dle V → M we get the associated Fréchet bundle π∗V → B whose infinite-dimensional
fibres are the fibrewise smooth sections of V . We will make use of the natural isomor-
phism Γ (B, π∗V ) ∼= Γ (M,V ) without actually mentioning it. The induced connection

∇π∗V = ∇V − 1

2
k (2.1.1)

is Euclidean with respect to the L2-metric gπ∗V on π∗V . The Bismut superconnection
[Bis85, Definition 3.2] is then defined by

At =
√
tDX +∇π∗V − 1

4
√
t
cX(T ) : Ω• (B, π∗V )→ Ω• (B, π∗V ) ,

where we assume that horizontal one-forms fα and Clifford multiplication by vertical
vectors cX(ei) anticommute. As for usual connections we define its curvature by A2

t ∈
Ω• (B,Endπ∗V ). It follows from the transgression formula, see for example [BC89, Eq.
(4.38)], that

d

s∫
T

trev

(
dAt
dt

exp
(
−A2

t

))
dt = trodd

(
exp

(
−A2

T

))
− trodd

(
exp

(
−A2

s

))
. (2.1.2)

If the dimension of the kernels of DX is constant, they form a smooth vector bundle
kerDX → B. In this situation we know by [BC89] and [BGV04] that

η̂ =
1√
π

∞∫
0

trev

(
dAt
dt

e−A
2
t

)
dt ∈ Ωev(B,C)

is a smooth differential form and the differential of its rescaled version

η̃ =
∑
j

(2πi)−j η̂[2j] ∈ Ωev(B)

12



2.2 Dirac operator DM,ε on the total space

fulfills

dη̃ =

∫
M/B

Â
(
TX,∇X

)
ch
(
L,∇L

)
,

if V = ΣX ⊗L where we assume that TX is spin and ΣX denotes the spinor bundle for
a chosen spin structure. The formula follows from the transgression formula (2.1.2) and
by [BF86, Theorem 2.10] which states that

1√
π

lim
T→0

∑
k

(2πi)−k trodd
(
exp

(
−A2

T

))
[2k+1]

=

∫
M/B

Â
(
TX,∇X

)
ch
(
L,∇L

)
,

since for constant kernel dimension limt→∞ trodd
(
exp

(
−A2

t

))
= 0. But also for non-

constant kernel-dimension the differential form
∫

M/B

Â
(
TX,∇X

)
ch
(
L,∇L

)
is always a

representative for the odd Chern character of the family {(DX)b}b∈B ∈ K−1(B) by the
Atiyah-Singer family index theorem. One should notice that we use Chern-Weil forms
of the form P (F/2πi) for the curvature F of a connection.

2.2 Dirac operator DM,ε on the total space

In the following we introduce an extra parameter ε > 0 by which we scale the base
directions. Let

gε = gX ⊕
1

ε2
π∗gB.

In the limit ε → 0 the metric becomes singular since the base becomes infinitely large
and the fibres are separated. This limiting process is called the adiabatic limit.

We will assume that we have a fibration X ↪→ M
π
� B of spin manifolds and let

ΣM ∼= ΣX ⊗ π∗ΣB be a spinor bundle. Let
(
L, gL,∇L

)
→ M be a Hermitian vector

bundle with compatible connection, then we consider the twisted Dirac operator DM,ε

on L⊗ ΣX ⊗ π∗ΣB = V ⊗ π∗ΣB associated to the metric gε. We know by [BC89, Eq.
(4.26)] that DM,ε decomposes as

DM,ε = D̃X + εD̃B + ε2T̃ ,

where

D̃X =
n∑
i=1

c(ei)∇V⊗π
∗ΣB

ei = DX ⊗ ω +

n∑
i=1

c(ei)1⊗∇π
∗ΣB
ei

D̃B =
m∑
α=1

c(fα)

(
∇V⊗π∗ΣBfα

− 1

2
k(fα)

)

T̃ =
1

4

m∑
α,β=1

c (T (fα, fβ)) c(fα)c(fβ),

13



2 Preliminaries: Geometry of Families

see [Goe14, Section 2.a] for the actual calculation. ω ∈ End ΣB denotes the Z2-grading
of ΣB (remember that dimB = m is even) and Clifford multiplication is given by

c(ei) = cX(ei)⊗ ω

for ei vertical and
c(fα) = 1⊗ cB(fα)

for fα horizontal. Note that if we identify π∗ (V ⊗ π∗ΣB) ∼= π∗V ⊗ΣB the operator D̃X

acts as DX ⊗ ω.

2.2.1 Theorem ([BC89, Theorem 4.35],[Dai91, Theorem 0.1]). If kerDX → B forms a
smooth vector bundle and there exists an ε0 > 0 such that dim kerDM,ε is constant for
all ε ∈ (0, ε0), the adiabatic limit of the η-invariant can be computed by

lim
ε→0

η (DM,ε) = 2

∫
B

Â (TB) η̃ + η (DB) +

dim kerDB∑
ν=1

sign (λν(ε)) , (2.2.1)

where λν(ε) denote the finitely many eigenvalues of DM,ε which decay at least quadrati-
cally, DB the twisted Dirac operator on kerDX ⊗ ΣB → B and ε is small enough. The
η̃-form for the Bismut superconnection At =

√
tDX +∇π∗V − c(T )

4
√
t

is defined to be

η̃ =
∑
j

(2πi)−j

 1√
π

∞∫
0

trev

(
dAt
dt

e−A
2
t

)
dt


[2j]

∈ Ωev(B)

and its exterior differential makes the cohomological index exact

dη̃ =

∫
M/B

Â (TX) ch (L) .

Both proofs rely on a decomposition of the integral

η (DM,ε) =
1√
π

∞∫
0

tr
(
DM,εe

−tD2
M,ε

) dt√
t

into three parts, for a certain choice of 0 < α, β < 1 the integral is split into

εβ−1∫
0

+

εα−2∫
εβ−1

+

∞∫
εα−2

(2.2.2)

Bismut and Cheeger proved that the first part converges to

lim
ε→0

1√
π

εβ−1∫
0

tr
(
DM,εe

−tD2
M,ε

) dt√
t

= 2

∫
B

Â(B)η̃,
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2.3 Varying kernel dimension of the fibrewise operators DX

see step (ii) in the proof of [BC89, Theorem 4.35]. Then they prove that if the fibrewise
Dirac operators DX are invertible, there exists a constant C > 0 such that all eigenvalues
λ(ε) of DM,ε have absolute value bounded below by C, i.e., |λ(ε)| ≥ C for all ε small
enough and therefore the large time contribution is negligible (see step (i) and (iii) in
the proof of [BC89, Theorem 4.35])

lim
ε→0

1√
π

∞∫
εβ−1

tr
(
DM,εe

−tD2
M,ε

) dt√
t

= 0.

Dai considers the case where the dimension of the kernels of DX is constant but not
zero. In this case he proves that either

|λ(ε)| ≥ C > 0

or
λ(ε) ∼ λ1ε+ λ2ε

2 + ...,

where λ1 ∈ spec (DB), see [Dai91, Theorem 1.5]. This proves that there are just finitely
many eigenvalues that decay at least quadratically and the fact that we see the eigenval-
ues of 1

εDM,ε for large times t ∈ (εα−2,∞) explains the η-invariant of DB. Last [Dai91,
Proposition 1.8] proves that the second term in (2.2.2) vanishes as ε→ 0.

2.3 Varying kernel dimension of the fibrewise operators DX

We already explained in Section 2.2 the results on adiabatic limits of η-invariants in
the case of constant dimension of kerDX . We want to omit that assumption since
there are topological obstructions for constant kernel dimension if the fibres X are odd-
dimensional. We will explain these obstructions, state our assumptions and explain
heuristically what to expect as a representative for the analytical index in our case.
Let H0 and H1 be separable complex Hilbert spaces where furhermore H0 is Z/2Z-
graded. We denote by B (H0) and B (H1) bounded linear operators on H0 and H1. Then
we define

K0 = {F ∈ B(H0) |F self-adjoint Fredholm operator, F odd, F 2 − 1 compact},

and

K1 = {F ∈ B(H1) |F self-adjoint Fredholm operator,

F has infinite dimensional positive and negative eigenspaces, F 2 − 1 compact
}
.

We consider K∗ as topological spaces with the smallest topology such that evaluation and
F 7→ 1− F 2 are continuous. Then we know by [Bun09, Section 1.1.1] or rather [BJS03]
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2 Preliminaries: Geometry of Families

that the topological K-theory of a compact topological space B is given by homotopy
classes of continuous maps from B to K∗

K∗(B) = [B,K∗].

A reader not familiar with K-theory might take this as a definition. Note that we use
weaker topologies than the ones of the more classical classifying spaces using Fredholm
operators of Atiyah and Jänich [Ati67] and Atiyah and Singer [AS69].
A family of Dirac operators b 7→ (DX)b as in Section 2.1 defines an element in the
topological K-theory K∗(B) = [B,K∗] of B by taking the homotopy class of the map

B → K∗

b 7→ (DX)b

(
1 + (DX)2

b

)−1/2

where ∗ ≡ dimX mod 2. Note that we already presume Bott periodicity at this point.
The class DX

(1+D2
X)

1/2 ∈ K∗(B) is called analytical index of DX .

We already know by [AS71, Section 2] how to modify the family DX for even dimensional
fibres to obtain a family of operators with constant kernel dimension and to define a
vector bundle indDX which represents the analytical index under the identification of
K0(B) with the Grothendieck group of isomorphism classes of vector bundles (see also
[BGV04, Section 9.5]).
In contrast to this we know by [Ebe13, Theorem 4.1] that in odd dimensions, constant
kernel dimension implies that the map above is homotopic to a constant map. So if the
family of fibrewise Dirac operators DX defines a non-trivial element in K1(B), one needs
to consider varying kernel dimension. One can easily see such non-trivial elements if the
base B = S1 is a one-dimensional sphere, where the element in K1(S1) ∼= Z is given by
the spectral flow. The example of Section 3.1 will also provide a non-trivial element in
K1(B).
Therefore we will consider odd-dimensional fibres and varying kernel dimension of the
fibrewise Dirac operators DX . We will not consider the most general case but focus on
the next interesting case:

2.3.1 Assumption. We assume that we can find a covering {Ui}1≤i≤k for B such that
on each Ui either (DX)b is invertible or we have a smooth function fi : Ui → (−K,K)
which has 0 as a regular value, such that spec (DX)b ∩ (−K − δ,K + δ) = {fi(b)} and
fi(b) is of multiplicity 1.

We will assume this condition in Chapter 3 as well as in Chapter 4, but to remind the
reader we will mention it again.

2.3.2 Remark. It follows from the assumption and the regular value theorem that we
get a compact hypersurface

B0 =
⋃

1≤i≤k
f−1
i ({0}) ⊂ B

16



2.3 Varying kernel dimension of the fibrewise operators DX

where we have a line bundle kerDX → B0 and DX is invertible on B\B0. We denote
by i : B0 → B the inclusion. Since we assumed B to be oriented we get an orientation
on B0 by

(v2, ..., vm) ∈ ox(B0)⇔ (gradx fi, v2, ..., vm) ∈ ox(B).

Let νB0 → B0 be the normal bundle, which is then trivial νB0
∼= B0 × R. Since B0 is

compact we find a constant 0 < a ≤ K small enough, such that

exp: B0 × (−a, a)→ B

is a diffeomorphism onto its image Na. We will not fix a since we may take it as small
as needed in the proofs.
In Chapter 3 we may assume without loss of generality that

fi (x, y) = y.

To achieve that we maybe need to change the metric on B near B0. But we know
by [BGV04, Proposition 10.2] that ∇X is independent of gB and we can also give a
gB-independent formula for the torsion tensor T namely

T (U, V ) = −P [U, V ]

for U, V ∈ Γ (M,THM) and P : TM → TX the projection. These are the only definitions
in Chapter 3 where we used the metric on B. Therefore the assumption fi(x, y) = y is
no restriction in Chapter 3. However, in Chapter 4 we consider not just the fibrewise but
the situation on the total space, so there it will actually be a restriction. Nevertheless
we already explained in the introduction, how one can receive the desired η-invariant of
a metric gB by the knowledge of the η-invariant of a different metric g′B.

2.3.3 Remark. We can already see from our assumptions what we have to expect as
analytical index of the family of fibrewise operators. Since DX is invertible on B \ Na

it defines an element in K1 (B,B \Na) = K1
c (Na). The family of operators corresponds

under desuspending twice K1
c (Na) ∼= K0 (B0), by the Thom isomorphism, to the family

DX which maps x ∈ B0 to the operator(
0 DX,(x,y) + ∂

∂y

DX,(x,y) − ∂
∂y 0

)
: Γ (Mx × (−a, a), Vx ⊕ Vx)→ Γ (Mx × (−a, a), Vx ⊕ Vx)

where we use B0 × (−a, a) ∼= Na. We can check that the kernel dimension of this
family is constant and therefore the index in K0 (B0), seen as the Grothendieck group
of isomorphism classes of vector bundles, is given by[

ker

(
DX +

∂

∂y

)]
−
[
ker

(
DX −

∂

∂y

)]
= 0−

[
e−y

2/2 kerDX

]
∼= − [kerDX ] .

The diagram

17



2 Preliminaries: Geometry of Families

K0 (B0) K0
c

(
B0 × R2

)

Hev
dR (B0) Hev

dR,c

(
B0 × R2

)chev

Thom
∼

∼
Thom

chev

usually just commutes up to the Todd class of the vector bundle. Now we use that the
correction term is Td (B0 × C) = 1 and the odd chern character is by construction given
by

K1
c (Na) = K0

c

(
B0 × R2

) chev

−−→ Hev
dR,c

(
B0 × R2

) ∫
B0×R2/R
−−−−−→ Hodd

dR,c (Na) .

This implies that

ch

([
DX

(1 +D2
X)1/2

])
= Thom ◦ ch ◦Thom−1

([
DX(

1 +D2
X

)1/2
])

= Thom ◦ ch (− kerDX)

= −δB0 ch (kerDX) ,

where δB0 denotes the fundamental class or current of integration of B0 and we used
Poincaré duality without mentioning it.

18



3 A representative for the odd Chern
character and existence of the η̃-form

In this chapter we will just consider the fibrewise situation. The content is up to some
small changes of notation identical with that in [Wit15, Section 3,4].
The only Dirac operator occuring in this chapter will be the fibrewise operator DX .
Thus for simplicity we will just write D.
First in Section 3.1 we will consider an example where Assumption 1.0.2 from the
introduction and the preliminaries is actually fulfilled. We will explicitly calculate

η̂ =
∞∫
0

trev
(
dAt
dt exp

(
−A2

t

))
dt as a differential form with integrable coefficients and

limt→∞ trodd
(
exp

(
−A2

t

))
as a current.

In Section 3.2 we will calculate

lim
t→∞

trodd
(
exp

(
−A2

t

))
= −δB0 ch

(
kerDX → B0,∇ker

)
in the general case, but still assuming 1.0.2. This reassures what we expected from the
considerations in Remark 2.3.3 about the odd analytical index in this case. Then we
will prove that η̃ ∈ L1 (B,ΛevT ∗B) is a differential form with integrable coefficients.

3.1 Example of a S1-bundle

Before we start with the more general case, we will consider one special example of a
family of Dirac operators. We follow the requirements in [Zha94], where we adopt the
construction of the fibre bundle but change the Dirac bundle.
Let

(
E, gE

) π−→ (B, gB) be a real, Euclidean, oriented vector bundle of rank 2 and
denote by ∇E a Euclidean connection on it. We write THE ∼= π∗TB for the horizontal
bundle of TE, which is specified by ∇E . We define the metric gTE = π∗gE ⊕ π∗gB on
TE = π∗E ⊕ THE. Let

M = {v ∈ E | gE(v, v) = 1},
THM = THE|M ,
TM = ker dπ ⊕ THM = TX ⊕ THM,

g = gTE |M = gX ⊕ π∗gB.

M → B is an oriented, Riemannian fibre bundle with fibres X ∼= S1. Let e ∈ Γ (M,TX)
be the unique section which is positive oriented and of length

gX(e, e) = 1.
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3 A representative for the odd Chern character and existence of the η̃-form

Let
(
V, gV ,∇V

)
→M be a Hermitian line bundle with compatible connection. By setting

c(e) = −i we make it into a vertical Dirac bundle with Dirac operator D = −i∇Ve . The

fibrewise holonomies e−2πif give rise to a smooth function f : B → R/Z.

3.1.1 Assumption. f : B → R/Z crosses [0] transversally.

We denote the codimension 1 submanifold f
−1

([0]) ⊂ B by B0.

3.1.2 Remark. If the holonomies give rise to a non-constant f : B → R/Z we can
always modify the connection ∇V to fulfill Assumption 3.1.1. Sard’s Theorem makes
sure that there exists an element [x] ∈ im f which is a regular value. The connection

∇̃V = ∇V − ixe∗

then leads to
f̃ = f − [x] : B → R/Z

which crosses zero transversally.

3.1.3 Lemma. We have a vector bundle kerD → B0 of rank 1 over the hypersurface
B0 and Db is invertible for b ∈ B\B0.

Proof. We choose open neighbourhoods Uj ⊆ B where π−1(Uj) ∼= Uj × S1 such that we
can find local trivializations σ0 : Uj × S1 → V |Uj×S1 of V on Uj × S1 coming from a
local eigensection of D

Dσ0 = fjσ0,

where fj : Uj → R is smooth. For coordinates ϕ of S1 such that ∂
∂ϕ = e we can see that

eikϕσ0 is an eigensection of D corresponding to the eigenvalue k + fj . Therefore the
spectrum of Db for b ∈ Uj is (k + fj(b))k∈Z where each eigenvalue is of multiplicity one.
Since we can easily check by the same argument as above that

fj mod Z = f,

the statement follows by [BGV04, Corollary 9.11].

In the following we will for simplicity just write f for fj . We orient B0 such that

(v2, ..., vm) ∈ ox(B0)⇔ (grad fx, v2, ..., vm) ∈ ox(B).

Since D = −i∇Ve , the connection ∇V locally looks like

∇V = d+ ife∗ + γ,

for some γ ∈ Γ (U, T ∗HM |U ⊗R C). We will assume that γ = π∗β for an element β ∈
Γ
(
π(U), T ∗B|π(U) ⊗R C

)
.
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3.1 Example of a S1-bundle

3.1.4 Lemma ([Zha94, Lemma1.3]). Let T be the torsion of ∇⊕ as in (2.0.1).Then

g(T (U, V ), e) = de∗ (U, V )

and hence T defines a two-form which we will also denote by T ∈ Ω2(B).

3.1.5 Lemma ([Zha94, Lemma 1.6]). The mean curvature k of the fibres vanishes and
therefore (2.1.1) leads to

∇π∗VX σ = ∇VXHσ.

3.1.6 Remark. To facilitate the computations for the next theorem we calculate the
following summands of the curvature A2

t of the Bismut superconnection. We write [., .]
for the supercommutator with respect to the grading of Ω•(B) and keep in mind that
dyα and c(ei) anticommute.

[c (T ) ,∇π∗V ] = 0

[D, c(T )] = 2Dc(T )

c(T )2 = −T 2.

In our chosen trivialization

[D,∇π∗V ] = df(
∇π∗V

)2
= dβ + ifT − T∇Ve .

3.1.7 Theorem. Set

α(T ) :=
1√
π

T∫
0

trev

(
dAt
dt

exp
(
−A2

t

))
dt ∈ Ω2•(B,C).

For each b ∈ B the differential form α(T )b converges as T →∞ to

η̂b = lim
T→∞

α(T )b ∈ Λ2•T ∗b B

and we get that

η̃b =
∑
j

1

(2πi)j
η̂[2j]

= exp

(
−dβ + ifT

2πi

)
∞∑
k=1

Bk(f)
k!

(
T
2π

)k−1
, if b ∈ B\B0

∞∑
k=1

B2k
(2k)!

(
T
2π

)2k−1
, if b ∈ B0

= exp

(
−dβ + ifT

2πi

)(
− T

2π

)−1

(

T/2π
exp(T/2π)−1 exp

(
fT
2π

)
− 1
)
, if b ∈ B\B0(

T/2π
exp(T/2π)−1 − 1 + T

4π

)
, if b ∈ B0

where f : U → R describes a local eigenvalue of D, f = f mod Z, β is the corresponding
horizontal connection form of the Dirac bundle in this trivialization and B2k are the
Bernoulli numbers and Bk(f) the Bernoulli polynomials.
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3 A representative for the odd Chern character and existence of the η̃-form

3.1.8 Remark. An easy computation shows that our formula for η̂ corresponds to the
one given in [Sav14, (5.23)] for r = f . The difference lies in the fact that in our case
f is a function depending on the parameter b ∈ B such that we get a differential form
which has jumps, whereas in [Sav14] r ∈ R is seen as a fixed real number and η̂ is seen
as a smooth differential form for each r ∈ R.

3.1.9 Remark. We prove that the right hand side of the formula in Theorem 3.1.7 is
independent of the chosen trivialization. Therefore we take another local eigensection
σ1 with

Dσ1 = f1σ1.

Since the eigenvalues of D differ by integers, there exists a k ∈ Z such that f1 = f + k
and σ1 = eikϕσ0. The local horizontal connection 1-form β1 in this trivialization is then
defined by

β1 =
gV
(
∇V σ1, σ1

)
gV (σ1, σ1)

and we can conclude that

β1 = d
(
e−ikϕ

)
eikϕ + β

= −ike∗ + β.

It follows by Lemma 3.1.4 that

dβ1 = −ikT + dβ

and therefore

exp

(
−dβ + ifT

2πi

)
= exp

(
−dβ1 + if1T

2πi

)
.

Proof of Theorem 3.1.7:

η̂ =
1√
π

∞∫
0

trev

(
dAt
dt

exp
(
−A2

t

))
dt

=
1√
π

∞∫
0

trev

((
D − iT

4t

)

· exp

(
−tD2 −

√
tdf − dβ − ifT + T∇Ve +

Dc(T )

2
+
T 2

16t

))
dt

2
√
t
.

We see that df is the only odd differential form and because of df ∧ df = 0, it does not
contribute to trev. Since the eigenspaces of D are preserved by all occuring operators,
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3.1 Example of a S1-bundle

we can write the trace as

η̂ =
1√
π

exp (−dβ − ifT )

∞∫
0

∑
k∈Z

((
k + f − iT

4t

)

exp

(
−t(k + f)2 +

(k + f)iT

2
+
T 2

16t

))
dt

2
√
t

=
1√
π

exp (−dβ − ifT )

∞∫
0

∑
k∈Z

((
k + f − iT

4t

)

exp

((
i
√
t(k + f) +

T

4
√
t

)2
))

dt

2
√
t
.

This is why we have to calculate

∑
k∈Z

(
k + f − iT

4t

)
exp

((
i
√
t(k + f) +

T

4
√
t

)2
)

def
=
∑
k∈Z

g(k + f).

We denote by ĝ the Fourier transform of g and use the generalized Poisson summation
formula to see that∑

k∈Z
g(k + f) =

∑
k∈Z

ĝ(k) · exp (2πikf)

= −
∑
k∈Z

ik
(π
t

)3/2
exp

(
−π

2k2

t
+ 2πikf +

πkT

2t

)
.
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3 A representative for the odd Chern character and existence of the η̃-form

We insert that into the formula of η̂ and get

η̂ = π exp (−dβ − ifT )

∞∫
0

∑
k∈Z

k

i

1

t3/2
exp

(
−π

2k2

t

)
exp

(
2πikf +

πkiT

2it

)
dt

2
√
t

= −π exp (−dβ − ifT )

∞∑
k=1

∞∫
0

k exp

(
−π

2k2

t

)
sin

(
−2πkf +

πkiT

2t

)
dt

t2

= −π exp (−dβ − ifT )
∞∑
k=1

k

∞∫
0

exp
(
−π2k2x

)
sin

(
−2πkf +

πkiT

2
x

)
dx

= −π exp (−dβ − ifT )
∞∑
k=1

(
4k

4π2k2 − T 2
sin (−2πkf)

+i
2T

4π3k2 − πT 2
cos (−2πkf)

)
= exp (−dβ − ifT )

( ∞∑
k=1

dimB∑
n=0

T 2n

22nπ2n+1k2n+1
sin(2πkf)

−i
∞∑
k=1

dimB∑
n=0

T 2n+1

22n+1π2n+2k2n+2
cos(2πkf)

)
.

We define

gn(x) =


∞∑
k=1

(
2nπn+1kn+1

)−1
sin (2πkx) , for n even

−i
∞∑
k=1

(
2nπn+1kn+1

)−1
cos (2πkx) , for n odd

such that
η̂ = exp (−dβ − ifT )

∑
n

gn(f)Tn.

We see that the functions gn just depend on f = f − bfc ∈ [0, 1).
First of all we look at the case f(b) ∈ Z and see immediately that gn = 0 for n ∈ 2N. If
n = 2k + 1 ∈ 2N + 1 we compute

gn(f) = − i

2nπn+1
ζ(n+ 1) = − i

22k+1π2k+2
ζ(2k + 2)

and therefore

η̂|B0
= − exp (−dβ − ifT )

∑
k

i

22k+1π2k+2
ζ(2k + 2)T 2k+1

= − exp (−dβ − ifT )
∑
k

i2k+1

(2k + 2)!
B2k+2T

2k+1,
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3.1 Example of a S1-bundle

where Bi are the Bernoulli numbers, so Bi = dih(x)
dxi

∣∣∣
x=0

where h(x) = x
ex−1 . We have

B2k+1 = 0 if k ≥ 1 and get

η̂|B0
= − exp (−dβ − ifT ) (iT )−1

∑
k

d2k+2h(x)

dx2k+2

∣∣∣∣
x=0

1

(2k + 2)!
(iT )2k+2

= exp (−dβ − ifT ) (−iT )−1

(
iT

eiT − 1
− 1 +

iT

2

)
.

For points where f 6∈ Z up to a constant the functions gn : (0, 1) → R are the Fourier
series of the Bernoulli polynomials

gn(x) =
(−1)n+1

in(n+ 1)!
Bn+1(x) = − in

(n+ 1)!
Bn+1(x).

For Bernoulli polynomials we know that

Bn(x) =
n∑
k=0

(
n

k

)
Bkx

n−k,

where the Bk are again the Bernoulli numbers. So we get

η̂|B\B0
= − exp (−dβ − ifT )

∞∑
n=0

1

(n+ 1)!
Bn+1(f)(iT )n

= − exp (−dβ − ifT ) (iT )−1
∞∑
n=0

n+1∑
k=0

1

k!

dkh(x)

dxk

∣∣∣∣
x=0

(iT )k
1

(n+ 1− k)!
(ifT )n+1−k

= − exp (−dβ − ifT ) (iT )−1

(( ∞∑
n=0

1

n!

dnh(x)

dxn

∣∣∣∣
x=0

(iT )n

)( ∞∑
n=0

1

n!
(ifT )n

)
− 1

)

= exp (−dβ − ifT ) (−iT )−1

(
iT

eiT − 1
exp

(
ifT

)
− 1

)
.

It follows that

η̂ = exp (−dβ − ifT ) (−iT )−1


(

−iT
exp(−iT )−1 − 1− iT

2

)
, for b ∈ B0(

iT
exp(iT )−1 exp

(
ifT

)
− 1
)
, for b ∈ B\B0

and

η̃ =
∑
k

1

(2πi)k
η̂[2k]

= exp

(
−dβ + ifT

2πi

)(
− T

2π

)−1

(

−T/2π
exp(−T/2π)−1 − 1− T

4π

)
, b ∈ B0(

T/2π
exp(T/2π)−1 exp

(
fT
2π

)
− 1
)
, b ∈ B\B0.
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3 A representative for the odd Chern character and existence of the η̃-form

3.1.10 Theorem. We define dη̃ : Ωodd(B)→ R as a current by∫
B

(dη̃) ∧ ω := −
∫
B

η̃ ∧ dω.

The following formula for the differential holds

dη̃ =

∫
M/B

ch
(
V,∇V

)
+ δB0 ch

(
kerD → B0,∇ker

)
,

where ∇ker = P0∇π∗V P0 and P0 is the orthogonal projection P0 : π∗V |B0
→ kerD.

Proof. We have two different possibilities to calculate the differential of η̃. On the one
hand we have the transgression formula (2.1.2)

d

T∫
s

trev

(
dAt
dt

e−A
2
t

)
= trodd

(
e−A

2
s

)
− trodd

(
e−A

2
T

)
By [BF86, Theorem 2.10] we know the limit for s→ 0 is

lim
s→0

1√
π

trodd
(
e−A

2
t

)
= (2πi)−1

∫
M/B

det

(
RM/B/2

sinh
(
RM/B/2

))1/2

tr
(

exp
(
−
(
∇V
)2))

and since Â
(
TX,∇X

)
= Â

(
TS1

)
= 1 we get the first summand. For the second we

need to proof that

lim
T→∞

trodd
(
e−A

2
T

)
= −
√
πδB0 tr

(
exp

(
−
(
∇ker

)2
))

.

For that we know that for all eigenvalues k + f , k 6= 0 and all C`-norms∥∥∥∥exp

(
−t(k + f)2 −

√
tdf − dβ − ifT + i

(k + f)T

2
+
T 2

16t

)∥∥∥∥
C`
≤ Ce−ct.

For k = 0 we see that we cannot take the limit as a differential form, we have to integrate
over the normal direction of a tubular neighbourhood Na

∼= B0 × (−a, a) of B0 where
f(x, y) = y. Let ω ∈ Ω•(B) where suppω ⊂ Na

a∫
−a

exp

(
−ty2 −

√
tdy − dβ − iyT +

iyT

2
+
T 2

16t

)
ω

=

a
√
t∫

−a
√
t

exp

(
−y2 − dy − f∗t dβ −

iyf∗t T

2
√
t

+
f∗t T

2

16t

)
f∗t ω
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3.2 Transversal zero-crossing of a single eigenvalue

where ft : (−a
√
t, a
√
t) → (−a, a), x 7→ x√

t
. Now we can see that we have a Gaussian

bell curve and therefore

lim
t→∞

a∫
−a

exp

(
−ty2 −

√
tdy − dβ − iyT

2
+
T 2

16t

)
ω

= −
√
πi∗ exp (−dβ) i∗ω,

where i : B0 → B denotes the inclusion.
On the other hand we can directly calculate the formula for dη̃ by the formula for η̃ of
Theorem 3.1.7 and∫

B

(dη̃)ω = −
∫
B

η̃dω

= − lim
a→0

∫
B\Na

η̃dω

= lim
a→0

∫
B\Na

(dη̃)ω − lim
a→0

∫
B\Na

d (η̃ω)

= lim
a→0

∫
B\Na

(dη̃)ω − lim
a→0

∫
B0−a

i∗ (η̃ω) + lim
a→0

∫
B0+a

i∗ (η̃ω) ,

which will lead to the same formula as the reader may easily check.

3.2 Transversal zero-crossing of a single eigenvalue

We will now turn to a more general setting. Let M → B be a Riemannian fibre bundle
and V → M a vertical Dirac bundle as in Section 2.1. The transgression formula in
[BC89, Theorem 4.95] holds for invertible vertical Dirac operators, it was generalized by
[BGV04, Theorem 10.32] for vertical Dirac operators with constant kernel dimension (see
also [Dai91, Theorem 0.1] for odd-dimensional fibres). We want to take the next step
and give a generalization for a transversal zero-crossing of one eigenvalue of multiplicity
one. For the proof we adopt many ideas of the proof of [Bis90, Theorem 3.2]. However,
we have to be very careful which norms we use, since our operators are endomorphisms
of an infinite rank vector bundle. We also use different contours as in [Bis90] which
comes from the fact that we want to use holomorphic funtional calculus of the form

exp
(
−A2

t

)
=

1

2πi

∫
Γ

e−z

z − A2
t

dz

rather than

exp
(
−A2

t

)
=

1

2πi

∫
Γ̃

e−z
2

z − At
dz.
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3 A representative for the odd Chern character and existence of the η̃-form

3.2.1 Assumption. We assume that we can find a covering {Ui}1≤i≤k for B such that
on each Ui either Db is invertible or we have a smooth function fi : Ui → (−K,K) which
has 0 as a regular value, such that specDb ∩ (−K − δ,K + δ) = {fi(b)} and fi(b) is of
multiplicity 1.

3.2.2 Remark. We want to remind the reader of Remark 2.3.2 in the premliniaries. By
the above assumption we get a codimension 1 submanifold

B0 =
⋃

1≤i≤k
f−1
i ({0}) ⊂ B

where we have a complex line bundle kerD → B0 of rank 1 and Db is invertible for
all b ∈ B \ B0. We denote by i : B0 → B the inclusion. As in section 3.1 we get an
orientation on B0 by

(v2, ..., vm) ∈ ox(B0)⇔ (grad fx, v2, ..., vm) ∈ ox(B).

Let νB0 → B0 be the normal bundle, which is trivial νB0
∼= B0 × R. Then we find a

constant 0 < a ≤ K small enough such that

exp: B0 × (−a, a)→ B

is a diffeomorphism onto its image Na. We will not fix a since we may take it as small as
needed in the proofs. Without loss of generality we may assume that in this identification

f (x, y) = y.

3.2.3 Proposition and Definition. Let Pb, b ∈ Na be the orthogonal projections onto
the spectral subspace (−a− δ, a+ δ) of Db. Then

L = imP → Na

is a smooth line bundle on the tubular neighbourhood Na of B0. We denote the projection
onto the orthogonal complement W by Q = 1 − P and the projection of the connection
∇π∗V onto the subbundles L and W by

∇L⊕W = P∇π∗V P ⊕Q∇π∗VQ.

The projections of D are denoted by D− = DP = yP and D+ = DQ.

Proof. The first part follows from [BGV04, Proposition 9.10], since ±a ± δ is not an
eigenvalue of Db for b ∈ Na.

3.2.4 Lemma. If we are working locally around B0 we consider the isometry(
exp∗ π∗V |Na , exp∗ gπ∗V |Na

) ∼−→
G

(
π∗V |B0

× (−a, a), gπ∗V |B0
× (−a, a)

)
,

where G is given by parallel transport along normal geodesics with respect to the con-
nection ∇π∗V . (Note that it is in general not possible to trivialize with respect to the
connection ∇L ⊕∇W !)
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3.2 Transversal zero-crossing of a single eigenvalue

Proof. Let us fix b ∈ B0. The lifts of the geodesic expb : (−a, a) → Na gives a family
of geodesics ẽxpb : Mb × (−a, a)→ π−1(Na), see [Kli82, Corollary 1.11.11]. By taking a
small enough we may assume that ẽxpb(·, t) : Mb → Mexpb(t)

is an isomorphism for all

t ∈ (−a, a). Therefore if σ ∈ (π∗V )b = Γ
(
Mb, V |Mb

)
we can use parallel transport for

each σx ∈ Vb,x with respect to the connection ∇V − 1
2k to get a vector in Vẽxpb(x,t)

. This
depends smoothly on x ∈Mb so we get a smooth section in (π∗V )expb(t)

.

3.2.5 Definition. We denote by

Et := A2
t − tD2 =

√
t[∇π∗V , D] +

(
∇π∗V

)2 − [D, c(T )]

4
− [∇π∗V , c(T )]

4
√
t

+
c(T )2

16t
.

Let λ0(x, y) = f(x, y) be the small eigenvalue of D(x,y) which crosses zero and denote
the other eigenvalues by λk for k ∈ Z\{0}. Then by our assumption

∃K̃ > 0 : sup
(x,y)∈N

λ2
0(x, y) + K̃ = a2 + K̃ ≤ inf

(x,y)∈N
λ2
k(x, y) ∀k 6= 0.

Let K := a2 + K̃
2 and define the contours Γt,Ωt ⊂ C by:

Kt

i

−i

Re

Im
Γt

Re

Im

i

−i

Kt−1

Ωt

Since (
z − A2

t

)−1
=

dimB∑
n=0

(
z − tD2

)−1
(
Et
(
z − tD2

)−1
)n

the spectrum of A2
t equals the spectrum of the generalized Laplace operator tD2. By

holomorphic functional calculus [GGK90, Chapter XV, Proposition 1.1] we know that
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3 A representative for the odd Chern character and existence of the η̃-form

on Na

exp
(
−A2

t

)
=

1

2πi

∫
Ωt∪Γt

exp (−z)
(
z − A2

t

)−1
dz

=
1

2πi

∫
Ωt

exp (−z)
(
z − A2

t

)−1
dz +

1

2πi

∫
Γt

exp (−z)
(
z − A2

t

)−1
dz

= Pt
(
exp

(
−A2

t

))
+ (1− Pt)

(
exp

(
−A2

t

))
.

Note that the projection

Pt =
1

2πi

∫
Γt

(
z − A2

t

)−1
dz : Λ•T ∗B ⊗ π∗V → Λ•T ∗B ⊗ π∗V

coincides in degree 0 with the spectral projection P : π∗V → L ⊂ π∗V .

3.2.6 Definition. We take the pullback of the bundle kerD → B0 via g : B0×R→ B0

with the connection g∗∇ker which, by abuse of notation, will also be denoted by ∇ker.
We denote the second coordinate of B0 × R by y and consider the superconnection

y +∇ker : Ω• (B0 × R, g∗ kerD)→ Ω• (B0 × R, g∗ kerD) ,

where we assume that multiplication by y and 1-forms anticommute. Note that this
differs slightly from the superconnection B introduced in [Bis90, III.a]. One should
also point out at this point that the bundles L → Na

∼= B0 × (−a, a) and g∗ kerD =
kerD × (−a, a)→ B0 × (−a, a) correspond at B0 but in general not on Na\B0. This is
because the spectral subspace L ⊂ π∗V |Na is in general not constant in the trivialization

of Lemma 3.2.4 where we used parallel transport with respect to the connection ∇π∗V .
If |y| ≤ a

√
t we can proceed as in the previous definition and write

exp

(
−
(
y +∇ker

)2
)

=
1

2πi

∫
Ωt

exp(−z)
(
z −

(
y +∇ker

)2
)−1

dz.

Notation. We will need different kinds of norms in the following statements and proofs
which we will introduce here. See also [RS75, Appendix of IX.4, Example 2].
We denote by W k = W (k,2) (Mb, Vb) the kth Sobolev space of sections with Sobolev norm
|·|k, W 0 = L2 (Mb, Vb). For a linear operator A : W k → W k′ we define the operator
norm

‖A‖k,k′ = sup
|x|k=1

|A(x)|k′ .

We say a bounded linear operator A ∈ B
(
W 0
)

is trace-class if

‖A‖1 = tr |A| <∞.
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3.2 Transversal zero-crossing of a single eigenvalue

For 1 ≤ p <∞ the p-Schatten norm is defined by

‖A‖p = (tr (|A|p))1/p .

For a smooth differential form ω ∈ Ω•(B) we denote by ‖ω‖C`(B) the C`-norm. For
ω ∈ Ω•(B0 × (−a, a)) we see ‖ω‖C`(B0) as a function on (−a, a).

3.2.7 Remark. The trivialization of Lemma 3.2.4 provides us with an isometry

L2 (Mx, Vx) ∼= L2
(
M(x,y), V(x,y)

)
for all (x, y) ∈ B0 × (−a, a). If we work with Sobolev-sections for k > 0 we still get an
isomorphism but not an isometry. However we know that the topology of the Banach
spaces is the same and therefore the Sobolev norms are equivalent. In particular since
B0 is compact and if a is small enough we find constants C, c > 0 such that for all
(x, y) ∈ B0 × (−a, a) and all sections σ ∈ W k,2 (Mx, Vx) ∼= W k,2

(
M(x,y), V(x,y)

)
the

following estimate holds

C |σ|k,(x,y) ≤ |σ|k,x ≤ c |σ|k,(x,y) .

So in the following estimates we will make no difference for which y ∈ (−a, a) we use
the Sobolev norms because by changing the constants the estimates hold for all points
y and we get the same speed of convergence.

3.2.8 Lemma. Let z ∈ Γt or z ∈ Ωt, p ≥ dimMb + 1 and t big enough, then we have
the following estimates ∥∥∥(z − tD2

b

)−1
∥∥∥

0,0
≤ C1, (3.2.1)∥∥∥(z − tD2

b

)−1
∥∥∥

0,2
≤ C2

(
1 +
|z|
t

)
, (3.2.2)∥∥∥(z − tD2

b

)−1
∥∥∥
p
≤ C3

(
1 +
|z|
t

)
, (3.2.3)

for every b ∈ Na.

Proof. (3.2.1) follows from the choice of the contours Γt and Ωt.
(3.2.2) and (3.2.3) follow as in [BG00, Proposition 7.2] by writing(

z − tD2
)−1

= t−1
(
i−D2

)−1 −
(
i−D2

)−1
(z
t
− i
) (
z − tD2

)−1
.

We then use the well-known facts that there exist constants such that∥∥∥(i−D2
)−1
∥∥∥
p
≤ C

for p ≥ dimMb + 1, this follows for example by [Roe98, Remark 5.32, Propostision 8.9],
and ∥∥∥(i−D2

)−1
∥∥∥

0,2
≤ C
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3 A representative for the odd Chern character and existence of the η̃-form

see [BG00, Equation (7.7)]. Together with estimate (3.2.1) these prove the claimed
inequalities (3.2.3) and (3.2.2).

3.2.9 Proposition. On the tubular neighbourhood Na
∼= B0 × (−a, a) of B0 in B the

following estimate holds true∥∥∥trodd
(
(1− Pt)

(
exp

(
−A2

t

)))∥∥∥
C0
≤ cf(t) exp (−Ct) ,

where f(t) ∈ R[t, t−1] is polynomial in t and t−1.

Proof. By the definition of Et and since B is compact we know that

‖Et‖2,0 ≤ C
√
t.

Combining this with the estimates (3.2.2) and (3.2.3) we get∥∥∥(z − A2
t

)−p∥∥∥
1
≤
∥∥∥(z − A2

t

)−1
∥∥∥p
p

≤

(
dimB∑
n=0

∥∥∥(z − tD2
)−1
∥∥∥n

0,2
‖Et‖n2,0

∥∥∥(z − tD2
)−1
∥∥∥
p

)p

≤

(
m∑
n=0

C

(
1 +
|z|
t

)n+1

tn/2

)p

≤ C
(

1 +
|z|
t

)(m+1)p

tmp/2,

where m = dimB and constants C varying from line to line. It follows that∥∥∥trodd
(
(1− Pt)

(
exp

(
−A2

t

)))∥∥∥
C0

≤
∥∥(1− Pt)

(
exp

(
−A2

t

))∥∥
1

=

∥∥∥∥∥∥ 1

2πi

∫
Γt

exp(−z)
z − A2

t

dz

∥∥∥∥∥∥
1

=
1

2πp!

∥∥∥∥∥∥
∫
Γt

exp(−z)(
z − A2

t

)pdz
∥∥∥∥∥∥

1

≤ 1

2πp!

∫
Γt

|exp(−z)|C
(

1 +
|z|
t

)(m+1)p

tmp/2dz

≤ Cf(t) exp(−Kt),

where f ∈ R[t, t−1].
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3.2 Transversal zero-crossing of a single eigenvalue

3.2.10 Definition. We define the functions g, ft and i to be

g : B0 × (−a
√
t, a
√
t)→ B0, (x, y) 7→ x,

ft : B0 × (−a
√
t, a
√
t)→ B0 × (−a, a), (x, y) 7→

(
x,

y√
t

)
and

i : B0 → B0 × (−a, a), x 7→ (x, 0).

Note that we use g for any projection onto the first coordinate B0×I → B0, independent
of the interval I.
For y ∈ (−a

√
t, a
√
t) and |y| ≥ 1 the contour Θy ⊂ C is defined to be

Re

Im

i

−i

y2

2 K ′y2y2

Θy

where K ′ is taken small enough, such that Ωy only contains the small eigenvalue of D2
(x,y)

for all x ∈ B0. Then we can write the spectral projection Pt as

Pt
(

exp
(
−f∗t A2

t

)
(x,y)

)
=

1

2πi

∫
Θy

exp(−z)
(
z − f∗t A2

t

)−1
dz

and also

exp

(
−
(
y +∇ker

)2
)

=
1

2πi

∫
Θy

exp(−z)
(
z −

(
y +∇ker

)2
)−1

dz.

3.2.11 Remark. It is clear by the definition of the contour Θy that the estimates in
Lemma 3.2.8 also hold for z ∈ Θy

√
t.

3.2.12 Lemma. If ω is a differential form on B with support in B0 × (−a, a) and α a
multiindex of length ` then∣∣∣Dα ((i ◦ g)∗ω − f∗t ω)(x,y)

∣∣∣ ≤ C√
t
‖ω‖C`+1(B) (1 + |y|) .

Proof. This follows by a straight-forward calculation, see also [Bis90, Eq. (3.107)] for
the statement.
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3 A representative for the odd Chern character and existence of the η̃-form

3.2.13 Lemma (cf. [Bis90, Proposition 3.4]). Let (x, y) ∈ B0 × (−a, a) and z ∈ Ωt or

z ∈ Θy
√
t, a small enough and t big enough. By abuse of notation we write

(
D+

(x,y)

)−1

instead of
(
D+

(x,y)

)−1
Q(x,y). Then the following inequalities hold∥∥∥∥∥

(
z − t

(
D+

(x,y)

)2
)−1

∥∥∥∥∥
0,2

≤ C

t
(1 + |z|)∥∥∥∥∥

(
z − t

(
D+

(x,y)

)2
)−1

+ t−1
(
D+

(x,0)

)−2
∥∥∥∥∥

0,2

≤ C

t

(
|y|+ t−1 |z|+ t−1 |z|2

)
.

Proof. The proof follows the ideas of the proof of [Bis90, Proposition 3.4]. Our constants
C > 0 may vary from line to line but they are all indepenent of t, y and z and since B0

is compact also of x.
For the first estimate we write(

z − t
(
D+

(x,y)

)2
)−1

= −t−1

(
1− z

t

(
D+

(x,y)

)−2
)−1 (

D+
(x,y)

)−2
. (3.2.4)

As in [Bis90, Eq. (3.37)] we know that for |Im z| = 1∥∥∥∥∥
(

1− z

t

(
D+

(x,y)

)−2
)−1

∥∥∥∥∥
0,0

≤ sup
x∈R
|1− xz|−1

=
1

infx∈R |1− xz|
= |z| .

If |Im z| < 1 we know that either Re z = Kt, Re z = −1 or Re z = Cty2. We find a
constant C > 0 such that for t big enough in each of these three cases∥∥∥∥Re z

t

(
D+

(x,y)

)−2
∥∥∥∥

0,0

≤ Ca2,

in particular for a small enough∥∥∥∥Re z

t

(
D+

(x,y)

)−2
∥∥∥∥

0,0

≤ 1

2

and therefore ∥∥∥∥∥
(

1− z

t

(
D+

(x,y)

)−2
)−1

∥∥∥∥∥
0,0

≤ 2.

So for all z in the contours Ωt and Θy
√
t the inequality∥∥∥∥∥

(
1− z

t

(
D+

(x,y)

)−2
)−1

∥∥∥∥∥
0,0

≤ C (1 + |z|)
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3.2 Transversal zero-crossing of a single eigenvalue

holds. Also for a small enough we find a constant C sucht that for all (x, y) ∈ B0×(−a, a)∥∥∥∥(D+
(x,y)

)−2
∥∥∥∥

0,2

≤ C.

Inserting this into equation (3.2.4) leads to∥∥∥∥∥
(
z − t

(
D+

(x,y)

)2
)−1

∥∥∥∥∥
0,2

≤ C

t
(1 + |z|)

which completes the first part of the lemma.
For the second inequality of the lemma we write∥∥∥∥∥
(
z − t

(
D+

(x,y)

)2
)−1

+ t−1
(
D+

(x,0)

)−2
∥∥∥∥∥

0,2

≤

∥∥∥∥∥
(
z − t

(
D+

(x,y)

)2
)−1

zt−1
(
D+

(x,y)

)−2
∥∥∥∥∥

0,2

+

∥∥∥∥t−1
(
D+

(x,0)

)−2
− t−1

(
D+

(x,y)

)−2
∥∥∥∥

0,2

.

By Taylor approximating, see [Růž04, Satz 2.8], we know that

t−1

∥∥∥∥(D+
(x,0)

)−2
−
(
D+

(x,y)

)−2
∥∥∥∥

0,2

≤ C

t
|y|

and by using the first part we have∥∥∥∥∥
(
z − t

(
D+

(x,y)

)2
)−1 z

t

(
D+

(x,y)

)−2
∥∥∥∥∥

0,2

≤ C

t2

(
|z|+ |z|2

)
.

Combing these leads to∥∥∥∥∥
(
z − t

(
D+

(x,y)

)2
)−1

− t−1
(
D+

(x,0)

)−2
∥∥∥∥∥

0,2

≤ C

t

(
|y|+ t−1 |z|+ t−1 |z|2

)
which completes the second part of the lemma.

3.2.14 Proposition ([Bis90, Proposition 3.5]). For x ∈ B0 and X ∈ TxB

∇π∗VX −∇L⊕WX =

(
0 P∇π∗VX (D)Q (D+)

−1

− (D+)
−1
Q∇π∗VX (D)P 0

)

with respect to the decomposition π∗V |Na = L⊕W . Therefore on B0(
∇ker

)2

x
= P

(
∇π∗V

)2
P − P∇π∗V (D)

(
D+
)−2∇π∗V (D)P.
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3 A representative for the odd Chern character and existence of the η̃-form

3.2.15 Proposition. We define for (x, y) ∈ B0 ×
(
−a
√
t, a
√
t
)
, z ∈ Ωt or Θy the

operator α by (
Pf∗t EtP + Pf∗t EtQ

(
z − tf∗t D2

)−1
Qf∗t EtP

)∣∣∣
(x,y)

= g∗
(
dy +

(
∇ker

)2
)∣∣∣∣

(x,y)

+ α (x, y, z, t)

where we identify L(x,y/
√
t) and kerD(x,0) by parallel transport along the geodesic s 7→

(x, sy/
√
t) with respect to ∇L. Then there exists a constant C > 0 such that for t big

enough

‖α (x, y, z, t)‖2,0 ≤ Ct
−1/2

(
1 + |y|+ |z|+ |z|2

)
.

Proof. First we use Proposition 3.2.14 to see that∥∥∥∥Pf∗t EtP + Pf∗t EtQ
(
z − tf∗t D2

)−1
Qf∗t EtP − g∗

(
dy +

(
∇ker

)2
)∥∥∥∥

2,0

=
∥∥∥Pf∗t EtP + Pf∗t EtQ

(
z − tf∗t D2

)−1
Qf∗t EtP

−g∗
(
dy + P

(
∇π∗V

)2
P − P∇π∗V (D)

(
D+
)−2∇π∗V (D)P

)∥∥∥
2,0

≤
∥∥∥Pf∗t EtP − g∗ (dy + P

(
∇π∗V

)2
P
)∥∥∥

2,0

+
∥∥∥Pf∗t EtQ (z − tf∗t D2

)−1
Qf∗t EtP + g∗

(
P∇π∗V (D)

(
D+
)−2∇π∗(D)P

)∥∥∥
2,0
.

By definition, our trivialization, Lemma 3.2.12 and again Taylor approximation [Růž04,
Satz 2.8] ∥∥∥Pf∗t EtP − g∗ (dy + P

(
∇π∗V

)2
P
)∥∥∥

2,0
≤ C√

t
(1 + |y|) .

For the second summand we have∥∥∥∥∥Pf∗t EtQ
(
z − tD2

(
x,

y√
t

))−1

Qf∗t EtP + g∗
(
P∇π∗V (D)

(
D+
)−2∇π∗V (D)P

)∥∥∥∥∥
2,0

≤

∥∥∥∥∥Pf∗t EtQ
(
z − tD2

(
x,

y√
t

))−1

Q
(
f∗t Et −

√
t∇π∗V (D)

)
P

∥∥∥∥∥
2,0

+

∥∥∥∥∥Pf∗t EtQ
((

z − tD2

(
x,

y√
t

))−1

+ t−1
(
D+
)−2

(x, 0)

)
Q
√
t∇π∗V (D)P

∥∥∥∥∥
2,0

+
∥∥∥P (−f∗t Et +

√
t∇π∗V (D)

)
t−1
(
D+
)−2

(x, 0)
√
t∇π∗V (D)P

∥∥∥
2,0

≤ C1t
−1/2

(
1 + |z|+ |z|2

)
+ C2t

−1/2
(
|y|+ |z|+ |z|2

)
+ C3t

−1/2

where we used Lemma 3.2.13 and the definition of Et.
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3.2 Transversal zero-crossing of a single eigenvalue

3.2.16 Proposition. Let (x, y) ∈ B0×
(
−a
√
t, a
√
t
)
, z ∈ Ωt or z ∈ Ωy and t big enough.

We define (
z − f∗t A2

t

)−1 −
(
z −

(
y +∇ker

)2
)−1

=: γ (x, y, z, t) .

Then there exist constants C1, C2, C3, C4 > 0 and polynomials p1, p2, p3, p4, p5 such that

‖PγP‖0,0 ≤ C1t
−1/2 (1 + p1 (|y|) + p2 (|z|))

‖PγQ‖0,0 ≤ C2t
−1/2 (1 + p3 (|z|))

‖QγP‖0,0 ≤ C3t
−1/2 (1 + p4 (|z|))

‖QγQ‖0,0 ≤ C4t
−1 (1 + p5 (|z|)) .

Proof. Throughout the proof we will denote by p some polynomial in |z| or |y| which
may vary from line to line but is independent of x, t and y or z respectively. The
constants C > 0 may also vary but again are indepenent of x, y, z and t. For simplicity
but by abuse of notation we define just for this proof A :=

(
z − tf∗t D2

)−1
, B := f∗t Et,

X :=
(
z − y2

)−1
and Y := dy +

(
∇ker

)2
. Then we know that

(
z − f∗t A2

t

)−1 −
(
z −

(
y +∇ker

)2
)−1

=
∑
n≥0

A(BA)n −X(Y X)n,

where the sum is finite.
Let us first look at

P

∑
n≥0

A(BA)n −X(Y X)n

P

=
∑
n≥0

XP (BA)nP −X(Y X)n

=
∑
n≥0

XP ((PBP + PBQ+QBP +QBQ)A)nP −X(Y X)n

Since PQ = QP = 0 the only combination in which QBQ can occur is of the following
form

PBQA(QBQA)kQBP.

But since we know by Lemma 3.2.13 that

‖QAQ‖0,2 =

∥∥∥∥∥
(
z − t

(
D+
)2(

x,
y√
t

))−1
∥∥∥∥∥

0,2

≤ C

t

(
1 + |z|+ |z|2

)
and by the definition of Et that

‖B‖2,0 = ‖f∗t Et‖2,0 ≤ C
√
t,
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3 A representative for the odd Chern character and existence of the η̃-form

it follows that ∥∥∥PBQA(QBQA)kQBP
∥∥∥

2,0
≤ Ct−k/2 (1 + p(|z|)) .

By the same argument as above, PBQ and QBP can only occur as

PBQAQBP.

Combining these together with inequality (3.2.2) of Lemma 3.2.8 yields to∥∥∥∥P ((z − f∗t A2
t

)−1 −
(
z −

(
y +∇ker

))−1
)
P

∥∥∥∥
0,0

≤

∥∥∥∥∥∥
∑
n≥0

XP ((PBP + PBQ+QBP )A)nP −X(Y X)n

∥∥∥∥∥∥
0,0

+ Ct−1/2 (1 + p(|z|))

≤
∑
n≥0

‖X((PBP + PBQAQBP )X)n −X(Y X)n‖0,0 + Ct−1/2 (1 + p(|z|))

≤ Ct−1/2 (1 + p1 (|y|) + p2 (|z|)) ,

where we used Proposition 3.2.15 and inequality (3.2.2) in the last step.
For the other estimates we don’t need X(Y X)n, since PX(Y X)nP = X(Y X)n. We
know that

A =

(z − y2
)−1

0

0
(
z − tf∗t (D+)

2
)−1

 .

As before we know by Lemma 3.2.8 that

‖A‖0,2 ≤ C
(

1 +
|z|
t

)
and by Lemma 3.2.13 ∥∥∥∥(z − tf∗t (D+

)2)−1
∥∥∥∥

0,2

≤ Ct−1 (1 + |z|) .

In general ‖B‖2,0 = ‖f∗t Et‖2,0 ≤ Ct1/2 but for PBP we even get

‖PBP‖2,0 ≤ C,

since the only summand involving t with a positive exponent is
√
tf∗t P∇π∗V (D)P =

√
tf∗t dy = dy.

Now one can easily check inductively that

‖PA(BA)nQ‖0,0 ≤ Ct
−1/2 (1 + p (|z|))

‖QA(BA)nP‖0,0 ≤ Ct
−1/2 (1 + p (|z|))

‖QA(BA)nQ‖0,0 ≤ Ct
−1 (1 + p (|z|))

which proves the other three estimates in the statement.
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3.2 Transversal zero-crossing of a single eigenvalue

3.2.17 Theorem. There exist constants C, c > 0 depending on `, such that for t big
enough we get the following estimates. On B\Na/2∥∥∥tr

(
exp

(
−A2

t

))∣∣
B\Na/2

∥∥∥
C`(B\Na/2)

≤ Ce−ct.

for all C`-norms on Ω•(B\Na/2). Furthermore for all ω ∈ Ω•(B) with suppω ∈ Na∥∥∥∥∥∥
 a∫
−a

tr
(
exp

(
−A2

t

))ω +
√
π tr

(
exp

(
−
(
∇ker

)2
))

i∗ω

∥∥∥∥∥∥
C0(B0)

≤ Ct−1/2 ‖ω‖C1(B) .

If we combine the estimates we have∣∣∣∣∣∣
∫
B

trodd
(
exp

(
−A2

t

))
ω +
√
π

∫
B0

tr

(
exp

(
−
(
∇ker

)2
))

i∗ω

∣∣∣∣∣∣ ≤ C√
t
‖ω‖C1(B) .

Proof. In the following we have constants C > 0 which may vary from line to line and
depend on ` but not on t, y, z and x.
Since Db is invertible for all b ∈ B\Na/2, we know that∥∥tr

(
exp

(
−A2

t

))∣∣
B\Na/2

∥∥∥
C`(B\Na/2)

≤ Ce−ct

on B\Na/2 for all C`-norms.
On Na we know by Proposition 3.2.9 that∥∥tr

(
(1− Pt)

(
exp

(
−A2

t

)))∥∥
C0(N)

≤ Cf(t) exp (−Kt)

where f(t) ∈ R[t, t−1] is a polynomial in t and t−1. It remains to prove that a∫
−a

tr
(
Pt
(
exp

(
−A2

t

)))ω +
√
π tr

(
exp

(
−
(
∇ker

)2
))

i∗ω ∈ Ω•(B0)
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3 A representative for the odd Chern character and existence of the η̃-form

is of O
(
t−1/2

)
for the C0-norm on Ω•(B0).∥∥∥∥∥∥

 a∫
−a

tr
(
Pt
(
exp

(
−A2

t

)))
ω

+
√
π tr

(
exp

(
−
(
∇ker

)2
))

i∗ω

∥∥∥∥∥∥
C0(B0)

≤

∥∥∥∥∥∥∥
a
√
t∫

−a
√
t

tr

(
Pt
(
exp

(
−f∗t A2

t

))
f∗t ω − tr

(
exp

(
−
(
y +∇ker

)2
)))

g∗i∗ω

∥∥∥∥∥∥∥
C0(B0)

+ Ct−1/2e−ct

≤
a
√
t∫

−a
√
t

(∥∥tr
(
Pt
(
exp

(
−f∗t A2

t

)))∥∥
C0(B0×{y}) ‖f

∗
t ω − g∗i∗ω‖C0(B0×{y})

+

∥∥∥∥tr

(
Pt
(
exp

(
−f∗t A2

t

))
− exp

(
−
(
y +∇ker

)2
))∥∥∥∥

C0(B0×{y})
‖g∗i∗ω‖C0(B0×{y})

)
dy

+ Ct−1/2e−ct.

We write the projection Pt via holomorphic functional calculus. We use the contour
Ωt for |y| ≤ 1 and the contour Θy for 1 ≤ |y| ≤ a

√
t. Since Pt projects our operators

onto a one-dimensional subspace we make our estimates in the operator instead of the
‖.‖1-norm.
First case: |y| ≤ 1.∥∥∥∥tr

(
Pt
(
exp

(
−f∗t A2

t

))
− exp

(
−
(
y +∇ker

)2
))∥∥∥∥

C0(B0×{y})

≤ C

∥∥∥∥∥∥ 1

2πi

∫
Ωt

e−z
((
z − f∗t A2

t

)−1 −
(
z −

(
y +∇ker

))−1
)
dz

∥∥∥∥∥∥
0,0

≤ C

2π

∫
Ωt

∣∣e−z∣∣ ∥∥∥∥∥(z − f∗t A2
t

)−1 −
(
z −

(
y +∇ker

)2
)−1

∥∥∥∥∥
0,0

dz

≤ C

2π

∫
Ωt

e−Re zCt−1/2 (1 + p(|Re z|+ 1)) dz

here we used Proposition 3.2.16, |y| ≤ 1 and |Im z| ≤ 1. Calculating the integral leads
to ∥∥∥∥tr

(
Pt
(
exp

(
−f∗t A2

t

))
− exp

(
−
(
y +∇ker

)2
))∥∥∥∥

C0(B0×{y})
≤ Ct−1/2. (3.2.5)
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3.2 Transversal zero-crossing of a single eigenvalue

Second case: 1 ≤ |y| ≤ a
√
t.∥∥∥∥tr

(
Pt
(
exp

(
−f∗t A2

t

))
− exp

(
−
(
y +∇ker

)2
))∥∥∥∥

C0(B0×{y})

≤

∥∥∥∥∥∥∥
C

2πi

∫
Θy

e−z

((
z − f∗t A2

t

)−1 −
(
z −

(
y +∇ker

)2
)−1

)
dz

∥∥∥∥∥∥∥
0,0

≤ C

2π

∫
Θy

e−Re zCt−1/2 (1 + p1(|y|) + p2(|Re z|+ 1)) dz

≤ Ct−1/2e−y
2/2 (1 + p(|y|)) .

If we now split the integral over
(
−a
√
t, a
√
t
)

into an integral over |y| ≤ 1 and an integral

over 1 ≤ |y| ≤ a
√
t and insert the estimates respectively we obtain∥∥∥∥∥∥

a∫
−a

tr
(
Pt
(
exp

(
−A2

t

)))
ω +
√
π tr

(
exp

(
−
(
∇ker

)2
))

i∗ω

∥∥∥∥∥∥
C0(B0)

≤ Ct−1/2 ‖ω‖C1

where we used Lemma 3.2.12 which states in particular that∣∣∣(f∗t ω − g∗i∗ω)(x,y)

∣∣∣ ≤ Ct−1/2 ‖ω‖C1 (1 + |y|) .

3.2.18 Remark. D. Cibotaru calculated explicitly limt→∞ ch(At) for superconnections
At = ∇+ tA on finite rank vector bundles E → B, see [Cib14, Theorem 9.4, 9.5]. Theo-
rem 3.2.17 can be seen as a generalization to infinite dimensions. In exchange we restrict
ourselves to a vector bundle of rank one kerD → B0. In any case the currents we obtain
are not surprising considering what we know from finite dimensions.
The top cohomology class of our representative −δB0 ch

(
kerD → B0,∇ker

)
of the ana-

lytical index also agrees with the formula given in [Cib11, Proposition 1.1] for dimB = 3.

3.2.19 Proposition.

β := trev

(
dAt
dt

exp
(
−A2

t

))
dt ∈ Ω• (B × (0,∞),C)

is an integrable differential form.

Proof. We know from [BGS88, Theorem 2.11] that ‖β‖C`(B) ≤ C for small t and therefore

trev
(
dAt
dt exp

(
−A2

t

))
dt is integrable as t→ 0.

Since Db is invertible for all b ∈ B \Na we know that β is integrable on B \Na× (0,∞)
[BC89, p. 57]. So let us now consider β on Na

∼= B0 × (−a, a) as t → ∞. Set

S = (1 − δ, 1 + δ) and consider the fibre bundle M̃ = M |Na × S → Ña = Na × S as
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3 A representative for the odd Chern character and existence of the η̃-form

in the proof of [BGV04, Theorem 10.32]. We denote the extra coordinate in S by s
and define the vertical metric by g

M̃/B̃
= s−1gM/B. The vertical Dirac bundle will be

Ṽ = V ×S → M̃ , where we take the natural extensions of the given connections. We will
write ∼ over all induced objects on this family. So let Ã be the Bismut superconnection
in this situation which we scale again by the parameter t ∈ (0,∞) as follows

Ãt =
√
tD̃ + ∇̃π∗V − 1

4
√
t
c̃(T ).

We made assumption 3.2.1 for the Dirac operators D, but

D̃(b,s) =
√
sDb

implies that it also holds for D̃. The assumption on the small eigenvalue (λ̃0

(
expb,s(y)

)
=

y) is fullfilled for D̃ if we choose the metric

1

s
gB ⊕ 1

on Na × S, where gB is the metric on B such that the small eigenvalue of D is given by
λ0 (expb(y)) = y.
We have a bundle ker D̃ → B̃0 = B0 × S which is just the pullback of kerD → B0. The
submanifold B0×S is of course not compact, but if we allow δ to become smaller, we get
the same uniform estimates as in Theorem 3.2.17. By combining the estimates (3.2.5)
and the following in the proof of Theorem 3.2.17 we see that for t big enough∥∥∥∥tr

(
P̃t
(

exp
(
−f∗t Ã2

t

))
− exp

(
−
(
y + ∇̃ker

)2
))∥∥∥∥

C0(B0)

≤ C√
t
e−y

2/2. (3.2.6)

Now we know by [BGV04, Lemma 10.31] or by a straight forward calculation that

trodd
(

exp
(
−Ã2

t

))∣∣∣
s=1

= trodd
(
exp

(
−A2

t

))
− t trev

(
dAt
dt

exp
(
−A2

t

))
ds

and ∇̃ker is just a pullback from B0 and therefore its curvature
(
∇̃ker

)2
does not involve

ds. So equation (3.2.6) tells us∥∥∥∥f∗t trev

(
Pt
(
dAt
dt

exp
(
−A2

t

)))∥∥∥∥
C0(B0)

≤ C

t3/2
e−y

2/2.

Using the estimate of Proposition 3.2.9 for the projection 1− Pt we see that∥∥∥∥f∗t trev

(
dAt
dt

exp
(
−A2

t

))∥∥∥∥
C0(B0)

≤ C

t3/2
e−y

2/2.

This proves that f∗t trev
(
dAt
dt exp

(
−A2

t

))
is integrable on B0×

(
−a
√
t, a
√
t
)
× (0,∞). By

the transformation theorem trev
(
dAt
dt exp

(
−A2

t

))
is integrable on B0 × (−a, a)× (0,∞)

and therefore on all of B × (0,∞).
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3.2 Transversal zero-crossing of a single eigenvalue

3.2.20 Definition. We define

η̂ :=
1√
π

∞∫
0

trev

(
dAt
dt

exp
(
−A2

t

))
dt ∈ L1 (B,ΛevT ∗B ⊗ C) ,

which is a well-defined differential form on B with coefficients in L1(B) by Proposition
3.2.19 and the Fubini theorem. We define η̃ by

η̃ =
∑
k

(2πi)−k η̂[2k] ∈ L1 (B,ΛevT ∗B) .

We can see η̃ as a current

η̃ : Ω•(B)→ R,

ω 7→
∫
B

η̃ ∧ ω

and define its differential as a current

dη̃ (ω) = −η̃ (dω) .

3.2.21 Remark. We know even more about the coefficients of η̃ than just being inte-
grable. Since we can prove that η̃ is smooth outside the tubular neighbourhood Na of
B0 for all a > 0, it is smooth if restricted to B\B0. But since our estimates where in
the C`-norm on B0, we also know that i∗η̃ ∈ Ω•(B0) is smooth (dominated convergence
theorem). Therefore the only singularity occurs if one crosses B0.

3.2.22 Theorem. We assume that TX admits a spin structure and denote by ΣX the
corresponding spinor bundle. If the Dirac bundle V is of the form ΣX ⊗ L then

dη̃ =

∫
M/B

Â
(
TX,∇X

)
ch
(
L,∇L

)
+ δB0 ch

(
kerD → B0,∇ker

)
, (3.2.7)

where δB0 is the current of integration over the hypersurface B0.

Proof. Equation (3.2.7) follows from the transgression formula (2.1.2)

d

T∫
s

trev

(
dAt
dt

e−A
2
t

)
= trodd

(
e−A

2
s

)
− trodd

(
e−A

2
T

)
since we know by [BF86, Theorem 2.10] that for n = dimMb

lim
s→0

1√
π

trodd
(
e−A

2
s

)
= (2πi)−(n+1)/2

∫
M/B

det

(
RX/2

sinh (RX/2)

)1/2

tr
(

exp
(
−
(
∇L
)2))
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3 A representative for the odd Chern character and existence of the η̃-form

and by Theorem 3.2.17 that

lim
T→∞

1√
π

trodd
(
e−A

2
T

)
= −δB0 tr

(
exp

(
−
(
∇ker

)2
))

.

If we define the 2πi-scaling as above the resulting formula is

dη̃ =

∫
M/B

det

(
RX/4πi

sinh (RX/4πi)

)1/2

tr
(

exp
(
−
(
∇L
)2
/2πi

))

+ δB0 tr

(
exp

(
−
(
∇ker

)2
/2πi

))
=

∫
M/B

Â
(
TX,∇X

)
ch
(
L,∇L

)
+ δB0 ch

(
kerD → B0,∇ker

)
.

44



4 Large time contribution for η (DM,ε)

In Section 4.1 we will define and study the projections qε onto the subspace of
L2 (M,V ⊗ π∗ΣB) which will model eigensections of DM,ε corresponding to eigenvalues
that decay at least as ε as ε→ 0. We will write DM,ε with respect to the decomposition
coming from qε and 1− qε as (

DM,ε,1 DM,ε,2

DM,ε,3 DM,ε,4

)
and give operator estimates on the matrix entries in Section 4.2. We will see that
ε−1DM,ε,1 converges to the twisted Dirac operator DB0 on kerDX ⊗ ΣB0 → B0. Then
we will prove that the off-diagonals ε−1DM,ε,2 and ε−1DM,ε,3 are small enough and the
operator ε−1DM,ε,4 is bounded below.
In the last Section 4.3 of this chapter we will first use the approximations of Section
4.2 to get estimates of the resolvent of ε−1DM,ε using the Schur complement method.
Finally we argue with holomorphic functional calculus that there exists an 0 < α < 1
such that

lim
ε→0

1√
π

∞∫
εα−2

tr
(
DM,εe

−tD2
M,ε

) dt√
t

= −η (DB0) +

dim kerDB0∑
ν=1

sign (λν(ε)) ,

where λν(ε) are the finitely many eigenvalues of DM,ε that decay faster than ε.
The main ideas for the projections and estimates in this chapter are inspired by [BL91,
Section VIII, IX]. We replace the twisting bundle ξ of [BL91] by π∗V so we have to be
very careful by which norms we estimate. We will point out where we follow and where
we deviate from [BL91]. If a statement is very similar but not the same as one in [BL91]
we will cite it as

”
cf. [BL91, Lemma XY]“.

Let us recall the assumptions we made in the preliminaries.

4.0.23 Assumption. We assume that we can find a covering {Ui}1≤i≤k for B such that
on each Ui either (DX)b is invertible or we have a smooth function fi : Ui → (−K,K)
which has 0 as a regular value, such that spec (DX)b ∩ (−K − δ,K + δ) = {fi(b)} and
fi(b) is of multiplicity 1.
Furthermore we assume that the metric gB on B is such that in a tubular neighbourhood
exp: B0 × (−a, a)

∼−→ Na the small eigenvalue is given by fi(x, y) = y.
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4 Large time contribution for η (DM,ε)

4.1 Modelling the eigensections for small eigenvalues of DM,ε

We know by [BC89] and also by [Dai91] that eigenvalues λ(ε) of DM,ε which are bounded
below for small ε are negligible for large times. As ε→ 0 just eigenvalues that decay at
least as ε can be seen in the integral

∞∫
εα−2

tr
(
DM,εe

−tD2
M,ε

) dt√
t
.

We first want to motivate and try to explain heuristically what happens in the limit
ε→ 0 to ε−1DM,ε and which parts of our operators give rise to small eigenvalues.
Since the vertical Dirac operators DX are bounded below outside a tubular neighbour-
hood of B0, eigensections corresponding to small eigenvalues are approximately sup-
ported in the neighbourhood Na

∼= B0 × (−a, a) of B0, where DX has a kernel. Locally
the bundle looks like

π∗V ⊗ ΣB|B0×(−a,a)
∼= ((kerDX ⊕ imDX)⊗ (ΣB0 ⊕ ΣB0))× (−a, a).

The part in imDX should be 0 if we want the eigenvalue to be small. So we are
considering sections of ((kerDX ⊗ ΣB0)⊕ (kerDX ⊗ ΣB0)) × (−a, a) → B0 × (−a, a).
If we write the operator DM,ε restricted to that space we get as an approximation (up
to an error of O(ε2)) the operator

DM,ε ∼ Aε =

(
0 y
y 0

)
+ ε

(
DB0 0

0 −DB0

)
+ ε

(
0 ∂y
−∂y 0

)
where DB0 denotes the twisted Dirac operator on kerDX ⊗ ΣB0 → B0.
We see that if σλ ∈ Γ (B0, kerDX ⊗ ΣB0) is an eigensection of DB0 corresponding to an
eigenvalue λ, the section (

0

exp
(
−y2

2ε

)
σλ

)
is an eigensection of Aε with eigenvalue −ελ.
We also observe that in contrast to [Dai91, Theorem 1.5] we might have eigenvalues that
decay as

√
ε. If DB0 has a kernel, Aε has eigenvalues ±

√
ε2n for all n ∈ N, since these

are the eigenvalues of (
0 y + ε∂y

y − ε∂y 0

)
.

We will not be concerned with these
√
ε-eigenvalues in this chapter though, since we

are just interested in large times t ≥ εα−2. However if one wants to calculate the value
of the whole integral for the adiabatic limit of η(DM,ε), these eigenvalues could cause
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4.1 Modelling the eigensections for small eigenvalues of DM,ε

another summand for εβ−1 ≤ t ≤ εα−2 in the splitting

η (DM,ε) =
1√
π

εβ−1∫
0

tr
(
DM,εe

−tD2
M,ε

) dt√
t

+
1√
π

εα−2∫
εβ−1

tr
(
DM,εe

−tD2
M,ε

) dt√
t

+
1√
π

∞∫
εα−2

tr
(
DM,εe

−tD2
M,ε

) dt√
t
,

for 0 < α, β < 1.

4.1.1 Remark. Recall Remark 2.3.2 of the preliminaries. The normal bundle νB0 → B0

is trivial, νB0
∼= B0×R, since the small eigenvalue of the vertical Dirac operators comes

with a distinguished sign. We choose a > 0 small enough such that

exp: B0 × (−a, a)→ Na

(b, y) 7→ expb (y)

is a diffeomorphism onto a tubular neighbourhood Na of B0 in B. On B0 × (−a, a) we
consider the metric exp∗ gB, such that exp becomes an isometry. The Gauß lemma, see
for example [Kli82, Lemma 1.9.1], shows that with respect to T (B0×(−a, a)) = TB0⊕R

exp∗ gB =

(
g̃B0 0
0 1

)
where g̃B0 |(b,0) = gB0 |b, but in general g̃B0 depends on y ∈ (−a, a).
We trivialize the vector bundle π∗V ⊗ ΣB as in Lemma 3.2.4 of Section 3.2 by parallel
transport along normal geodesics with respect to the connection

∇π∗V⊗ΣB,0 = ∇π∗V ⊗ 1 + 1⊗∇ΣB =

(
∇V − 1

2
k

)
⊗ 1 + 1⊗∇ΣB.

So if we denote the projection onto the first component by g : B0×(−a, a)→ B0 the bun-
dles exp∗

(
π∗V ⊗ ΣB|Na

) ∼= g∗
(
π∗V ⊗ ΣB|B0

)
are isomorphic. We will switch between

the two pictures without actually mentioning it.

4.1.2 Definition ([BL91, Equation (8.21)]). The two differential forms d volB0 ∧dy and
d volexp∗ gB both define volume forms on B0 × (−a, a) so at each point they agree up to
a positive constant. We define h : B0 × (−a, a)→ R by

d volexp∗ gB |(x,y) = h(x, y) d volB0 |x dy.

By the discussion of Remark 4.1.1 it is obvious that h(x, 0) = 1 for all x ∈ B0 and we
choose a small enough such that there exist C, c > 0 such that c ≤ h(x, y) ≤ C for all
|y| ≤ a and x ∈ B0.
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4 Large time contribution for η (DM,ε)

Since B0 ⊂ B is oriented and of codimension one we have the scalar second fundamental
form A : Γ (B0, TB0)× Γ (B0, TB0)→ C∞(B0) which is defined by

A(X,Y ) = gB

(
∇BXY,

∂

∂y

)
,

for X,Y ∈ Γ (B0, TB0) and ∂
∂y ∈ Γ (B0, νB0) the unique positive oriented, orthonormal

section of the normal bundle.

4.1.3 Lemma. For a local orthonormal frame f1, ..., fm−1 of TB0 the following equation
holds

∂h

∂y
(x, 0) = −

m−1∑
α=1

A(fα, fα)x = − trAx.

Proof. The statement follows by a proposition of Gauß, see [MS86, Appendix I, Section
1.4].

4.1.4 Definition. We define L2-products 〈〈·, ·〉〉L2,L2 and 〈〈·, ·〉〉L2,W 1 on Γ (B, π∗V ⊗ ΣB)

by using the fibrewise L2-metric gπ∗V or Sobolev-1-product gπ∗V,1 respectively. We define
a Sobolev-1-product 〈〈·, ·〉〉W 1,L2 on Γ (B, π∗V ⊗ ΣB) the same way by using the fibre-

wise L2-metric and the connection ∇π∗V⊗ΣB,0 to differentiate into the base directions.
We denote the corresponding norms by ‖·‖L2,L2 , ‖·‖L2,W 1 and ‖·‖W 1,L2 .
If we have a section of π∗V ⊗ ΣB whose support is contained in Na we can integrate
with respect to the volume form d volB0 ∧dy. We will denote the corresponding products
by 〈·, ·〉L2,L2 , 〈·, ·〉L2,W 1 and 〈·, ·〉W 1,L2 and the corresponding norms by |·|L2,L2 , |·|L2,W 1

and |·|W 1,L2 . We again use the connection ∇π∗V⊗ΣB,0 for |·|W 1,L2 .

4.1.5 Remark. Note that for the norms defined above changing the connection on ΣB
gives an equivalent norm, but changing the connection on π∗V does in general not.
We also check that under the identification Γ (B, π∗V ⊗ ΣB) ∼= Γ (M,V ⊗ π∗ΣB) the
norm ‖·‖L2,L2 equals ‖·‖L2(M,V⊗π∗ΣB). For the Sobolev-1-norms we see that there exist
constants c, C > 0 such that

c ‖·‖W 1(M,V⊗π∗ΣV ) ≤ ‖·‖W 1,L2 + ‖·‖L2,W 1 ≤ C ‖·‖W 1(M,V⊗π∗ΣB) .

4.1.6 Lemma. For a section τ ∈ Γ (B, π∗V ⊗ ΣB) whose support is included in Na the
following equation holds true ∣∣∣h1/2τ

∣∣∣
L2,L2

= ‖τ‖L2,L2 .

If we denote the connection g∗∇(ker⊕ im)⊗(ΣB0⊕ΣB0) by ∇, where g : B0 × (−a, a) → B0

is the projection onto the first component,∣∣∣∇π∗V⊗ΣB,0
∣∣
TB0

τ
∣∣∣
L2(B0×{y},T ∗B0⊗π∗V⊗ΣB)

≤ C (1 + |y|)
∣∣∇|TB0

τ
∣∣
L2(B0×{y},T ∗B0⊗π∗V⊗ΣB)
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4.1 Modelling the eigensections for small eigenvalues of DM,ε

Proof. The first statement follows by the Definition 4.1.2 of the function h.
Since Γ (B, π∗V ⊗ ΣB) ∼= Γ (M,V ⊗ π∗ΣB) we consider for the second statement the
situation on π−1(Na) ∼= π−1(B0)×(−a, a) as in Lemma 3.2.4 and denote the projection by
g̃ : π−1(B0)×(−a, a)→ π−1(B0). We replace the connection∇π∗V⊗ΣB,0 = ∇V⊗π∗ΣB− 1

2k

by g̃∗
(
∇V⊗π∗ΣB

∣∣
π−1(B0)

− 1
2k
)

. This difference is an element

ω ∈ Ω1
(
π−1(B0)× (−a, a),End (V ⊗ π∗ΣB)

)
which is zero restricted to π−1(B0). Therefore, since the fibres are compact, it follows
(by locally Taylor expanding and using that B0 is compact) that

‖ω‖C`(B0×{y}) ≤ C(`) |y|

and hence ∣∣∣∇π∗V⊗ΣB,0
∣∣
TB0

τ
∣∣∣
L2(B0×{y},T ∗B0⊗π∗V⊗ΣB)

≤ C (1 + |y|)
∣∣∣g∗∇π∗V⊗ΣB,0

∣∣
B0
τ
∣∣∣
L2(B0×{y},T ∗B0⊗π∗V⊗ΣB)

.

Now we want to replace g∗∇π∗V⊗ΣB,0 by ∇ = g∗∇(ker⊕ im)⊗(ΣB0⊕ΣB0). Changing ∇ΣB

into ∇ΣB0⊕ΣB0 gives an equivalent norm. So let us consider the difference ∇π∗V
∣∣
B0
−

∇ker⊕ im. We know by Proposition 3.2.14 that for Y ∈ TB0

∇π∗VY −∇ker⊕ im
Y =

(
0 P0∇π∗VY (DX)Q0

(
D+
X

)−1
Q0

−Q0

(
D+
X

)−1
Q0∇π∗VY (DX)P0 0

)
,

where P and Q denote the projections onto L and W respectively as in Proposition and
Definition 3.2.3 of Chapter 3, so P0 and Q0 are the projections onto kerDX and imDX

on B0.
One can check by a straight-forward calculation that ∇π∗VY (DX) is the sum of a fibre-

wise differential operator of order one and an endomorphism of V . Therefore ∇π∗VY −
∇ker⊕ im
Y ∈ Endπ∗V does not involve differentiation and the following estimate holds

true ∥∥∥(∇π∗VY −∇ker⊕ im
Y

)
τ
∥∥∥
gπ∗V

≤ C ‖τ‖gπ∗V .

Therefore∣∣∣∇π∗V⊗ΣB,0
∣∣
B0
τ
∣∣∣
L2(B0,T ∗B0⊗π∗V⊗ΣB)

≤ C
∣∣∇|B0

τ
∣∣
L2(B0,T ∗B0⊗π∗V⊗ΣB)

which proves the second part of the lemma.

4.1.7 Lemma. For all X ∈ Γ (B0 × (−a, a), TB0) there exists a constant C > 0 such
that for all s ∈ Γ (B0, kerDX) the following estimate holds true∣∣∣g∗∇ker⊕ im

X ι(s)− ι
(
∇ker
X s
)∣∣∣
L2(B0×{y},π∗V )

≤ C |y| ‖s‖L2(B0,kerDX) ,

49



4 Large time contribution for η (DM,ε)

where ι : kerDX × (−a, a)
∼−→ L is given by parallel transport along normal geodesics

with respect to ∇L = P∇π∗V P .

Proof. Let us define

ψ(y) =
∣∣∣g∗∇ker⊕ im

X ι(s)− ι
(
∇ker
X s
)∣∣∣
L2(B0×{y},π∗V )

.

Then we see that ψ(0) = 0 and the statement follows by Taylor approximation.

4.1.8 Remark. We want to analyze the spin structure of ΣB when being restricted
to B0. Note that since B is even-dimensional and B0 is a hypersurface, B0 is odd-
dimensional and TB|B0

= TB0 ⊕ R. Therefore ΣB|B0
= ΣB0 ⊕ ΣB0. For a local

orthonormal frame f1, ..., fm−1,
∂
∂y of TB0 ⊕ R → B0, Clifford multiplication and Z2-

grading ω can be written as

ω =

(
0 1
1 0

)
cB(fα) =

(
cB0(fα) 0

0 −cB0(fα)

)
cB

(
∂

∂y

)
=

(
0 1
−1 0

)
.

Now if by abuse of notation we denote by f1, ..., fm−1,
∂
∂y also the parallel transport of this

basis along normal geodesics we get a local orthonormal frame of (TB0 ⊕ R)×(−a, a)→
B0 × (−a, a). We know that Clifford multiplication is compatible with the connection
∇ΣB, therefore

∇ΣB
∂
∂y

(cB(fα)) = 0

as well as

∇ΣB
∂
∂y

(
cB

(
∂

∂y

))
= 0.

But since we used the connection ∇ΣB to trivialize ΣB along normal geodesics this
implies that Clifford multiplication is constant in y in this trivialization.

4.1.9 Definition ([BL91, Section IX.a)]). 1. For a constant a1 ∈ (0, a/2], which will
be specified in Proposition 4.2.9, let ρ : R → [0, 1] be a smooth cut-off function
such that

ρ(y) =

{
1, for all |y| ≤ a1/2,

0, for all |y| ≥ a1.

2. We define the constant αε by

C
√
ε ≤ αε =

∫
R

e−y
2/ερ2(y)dy ≤

√
π
√
ε.
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4.1 Modelling the eigensections for small eigenvalues of DM,ε

3. The isometry (with respect to the L2-metric on the left and 〈·, ·〉L2,L2 on the right)

Iε : L2 (B0, kerDX ⊗ ΣB0)→ L2
(
Na, (π∗V ⊗ ΣB)|Na

)
is defined by

(Iεs) (b, y) = α−1/2
ε ρ(y)e−y

2/2ε

(
ι(b,y) ⊗

(
0
1

))
(s(b))

where ι : (kerDX) × (−a, a)
∼−→ L ⊂ π∗V is given by parallel transport along

normal geodesics with respect to the connection ∇L = P∇π∗V P and

(
0
1

)
is with

respect to the decomposition ΣB|B0×(−a,a) = (ΣB0 ⊕ ΣB0)× (−a, a).

4. We define the isometry (with respect to the L2-metric on the left and 〈〈·, ·〉〉L2,L2

on the right)

Jε : L2 (B0, kerDX ⊗ ΣB0)→ L2 (B, π∗V ⊗ ΣB)

by
Jε(s) = h−1/2Iε(s).

5. Let

pε : L2

(
Na,

(
πL

2

∗ V ⊗ ΣB
)∣∣∣
Na

)
→ L2

(
Na,

(
πL

2

∗ V ⊗ ΣB
)∣∣∣
Na

)
be the orthogonal projection (with respect to |·|L2,L2 ) onto im Iε, where πL

2

∗ V

denotes the fibrewise L2-sections, and

qε : L2
(
B, πL

2

∗ V ⊗ ΣB
)
∼= L2 (M,V ⊗ π∗ΣB)→ L2 (M,V ⊗ π∗ΣB)

the orthogonal projection (with respect to ‖·‖L2,L2) onto im Jε.

4.1.10 Remark. We will see in the next chapter that sections τ ∈W 1 (M,V ⊗ π∗ΣB)
which lie in the image of Jε model the small eigenvalues of DM,ε which behave at least
as ε as ε → 0 and that the operator 1

εJ
−1
ε qεDM,εJε converges to −DB0 , where DB0 is

the twisted Dirac operator on kerDX ⊗ ΣB0 → B0.

4.1.11 Lemma (cf. [BL91, Proposition 9.2, 9.5]). Let

τ = τ1 ⊗
(
τ2

τ3

)
∈ L2

(
Na,

(
πL

2

∗ V ⊗ ΣB
)∣∣∣
Na

)
with respect to the decomposition ΣB|Na ∼= (ΣB0 ⊕ ΣB0) × (−a, a) and let {Ui} a cov-
ering of B0 with a subordinate partition of unity ψi such that for each i there is a local
orthonormal frame σi : Ui → kerDX of kerDX . Then the projection pε is given by

pε (τ) (x, y) =α−1
ε ρ(y)e−y

2/2ε
∑
i

ψi(x)

·
∫
R

ρ (ỹ) e−ỹ
2/2εgπ∗V

(
ι(x,ỹ)(σi), τ1(x, ỹ)

)
ι(x,y)(σi)⊗

(
0

τ3(x, ỹ)

)
dỹ.
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4 Large time contribution for η (DM,ε)

The projection qε is given by
qε = h−1/2pεh

1/2.

Proof. One can check the formula by a straightforward calculation. See also the very
similar formulas in [BL91, Proposition 9.2, 9.5]. It is also easy to see that the formula
is independent of the choice of Ui, ψi and σi.

4.1.12 Lemma ([BL91, Proposition 9.3]). 1. For any γ ∈ N>0 we find a constant
C = C(γ) > 0 such that for all τ ∈ L2

(
Na, (π∗V ⊗ ΣB0)|Na

)
|pε (yγτ)|L2,L2 ≤ Cεγ/2 |τ |L2,L2 . (4.1.1)

2. There exist constants C, ε0 > 0 such that for all ε ∈ (0, ε0) and all sections τ ∈
W 1

(
Na, (π∗V ⊗ ΣB)|Na

)
|pετ |W 1,L2 ≤ C

(
|τ |W 1,L2 +

1√
ε
|τ |L2,L2

)
. (4.1.2)

3. We find a constant C > 0 and an ε0 > 0 such that for all ε ∈ (0, ε0) and all
sections s ∈W 1 (B0, kerDX ⊗ ΣB0)

|Iε(s)|W 1,L2 ≤ C
(
‖s‖W 1(B0,kerDX⊗ΣB0) +

1√
ε
‖s‖L2(B0,kerDX⊗ΣB0)

)
. (4.1.3)

Proof. For the first estimate (4.1.1) one checks that∫
R

e−y
2/2ε |y| dy = Cε (4.1.4)

and α−1
ε ≤ c

√
ε
−1

. Together with the previous Lemma 4.1.11 this proves that

|pε (yσ)|L2,L2 ≤ C
√
ε |σ|L2,L2

and by induction equation (4.1.1) follows.
For the second estimate (4.1.2) we assume that

τ = τ1 ⊗
(
τ2

τ3

)
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4.1 Modelling the eigensections for small eigenvalues of DM,ε

and write

|pε(τ)|W 1,L2

≤ C |τ |L2,L2

+

∣∣∣∣∣α−1
ε

(
∂ρ(y)

∂y
− ρ(y)

y

ε

)
e−y

2/2ε
∑
i

ψi(x)

·
∫
R

ρ (ỹ) e−ỹ
2/2εgπ∗V

(
ι(x,ỹ)(σi), τ1(x, ỹ)

)
ι(x,y)(σi)⊗

(
0

τ3(x, ỹ)

)
dỹ

∣∣∣∣∣∣
L2,L2

+

∣∣∣∣∣∣α−1
ε ρ(y)e−y

2/2ε
∑
i

ψi(x)

∫
R

ρ (ỹ) e−ỹ
2/2ε

· ∇π∗V⊗ΣB,0
∣∣
TB0

(
gπ∗V

(
ι(x,ỹ)(σi), τ1(x, ỹ)

)
ι(x,y)(σi)⊗

(
0

τ3(x, ỹ)

))
dỹ

∣∣∣∣
L2,L2

.

A straightforward calculation shows that∣∣∣∣∣∣α−1
ε

(
∂ρ(y)

∂y
− ρ(y)

y

ε

)
e−y

2/2ε

∫
R

ρ (ỹ) e−ỹ
2/2ε

gπ∗V
(
ι(x,ỹ)(σi), τ1(x, ỹ)

)
ι(x,y)(σi)⊗

(
0

τ3(x, ỹ)

)
dỹ

∣∣∣∣
L2,L2

≤
(
C +

C ′√
ε

)
|τ |L2,L2 .

Using this equation and Lemma 4.1.6, Lemma 4.1.7 and equation (4.1.4) we see that

|pε(τ)|W 1,L2 ≤ C |τ |L2,L2 +
C√
ε
|τ |L2,L2 + C |τ |W 1,L2 .

For the last estimate (4.1.3) we see that

|Iε(s)|W 1,L2 = |Iε(s)|L2,L2

+

∣∣∣∣α−1/2
ε

(
∂ρ(y)

∂y
− ρ(y)

y

ε

)
e−y

2/2ε

(
ι⊗
(

0
1

))
(s)

∣∣∣∣
L2,L2

+

∣∣∣∣α−1/2
ε ρ(y)e−y

2/2ε∇π∗V⊗ΣB,0

(
ι⊗
(

0
1

))
(s)

∣∣∣∣
L2,L2

.

Since Iε is an isometry with respect to |.|L2,L2 we know that

|Iε(s)|L2,L2 = ‖s‖L2(B0,kerDX⊗ΣB0) .

As above one checks that∣∣∣∣α−1/2
ε

(
∂ρ(y)

∂y
− ρ(y)

y

ε

)
e−y

2/2ε

(
ι⊗
(

0
1

))
(s)

∣∣∣∣
L2,L2

≤
(
C√
ε

+ C ′
)
‖s‖L2(B0,kerDX⊗ΣB0) .
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4 Large time contribution for η (DM,ε)

For the last summand we use again Lemma 4.1.6 and Lemma 4.1.7 to check that∣∣∣∣α−1/2
ε ρ(y)e−y

2/2ε∇π∗V⊗ΣB,0

(
ι⊗
(

0
1

))
(s)

∣∣∣∣
L2,L2

≤ C
∣∣∣α−1/2
ε ρ(y)e−y

2/2ε∇ker⊗ΣB0s
∣∣∣
L2,L2

+ C
∣∣∣α−1/2
ε ρ(y)e−y

2/2ε |y| s
∣∣∣
L2,L2

≤ C ‖s‖W 1(B0,kerDX⊗ΣB0) + Cε1/2 ‖s‖L2(B0,kerDX⊗ΣB0) .

Therefore there exists an ε0 small enough such that for all ε ∈ (0, ε0)

|Iε(s)|W 1,L2 ≤ C ‖s‖W 1(B0,kerDX⊗ΣB0) +
C√
ε
‖s‖L2(B0,kerDX⊗ΣB0) .

4.2 Limiting behaviour of ε−1DM,ε as ε→ 0

4.2.1 Technical preliminary work

Remember that for a local orthonormal frame f1, ..., fm of THM (see [BC89, Equation
(4.26)] or [Goe14, Equation (2.4)] where in our case the twist part is independent of ε)

DM,ε = D̃X + εDB,ε

= D̃X + ε

m∑
α=1

c(fα)

(
∇V⊗π∗ΣBfα

− 1

2
k(fα)

)
− ε2

4

∑
α<β

c(fα)c(fβ)c (T (fα, fβ))

= D̃X + εD̃B + ε2T̃ ,

where D̃X = DX ⊗ω on π∗V ⊗ΣB. We use the isometry Jε of Section 4.1 to decompose
L2 (M,V ⊗ π∗ΣB) into the image of Jε and its orthogonal complement. So

L2
(
B, πL

2

∗ V ⊗ ΣB
)
∼= L2 (M,V ⊗ π∗ΣB) = im qε ⊕ im q⊥ε

By taking the intersection of these two subspaces with smooth (or at least once weakly
differentiable) sections, we can also decompose the total Dirac operator as

DM,ε =

(
qεDM,εqε qεDM,εq

⊥
ε

q⊥ε DM,εqε q⊥ε DM,εq
⊥
ε

)
=

(
DM,ε,1 DM,ε,2

DM,ε,3 DM,ε,4

)
.

4.2.1 Lemma ([Goe14, Lemma 2.1]). The anticommutator of D̃X and DB,ε is the sum
of a fibrewise differential operator of order one and an endomorphism of V ⊗ π∗ΣB.
Therefore ∥∥∥[D̃X , DB,ε]τ

∥∥∥
L2,L2

≤ (C1 + C2ε) ‖τ‖L2,W 1 ,

for all τ ∈W 1 (M,V ⊗ π∗ΣB).
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4.2 Limiting behaviour of ε−1DM,ε as ε→ 0

4.2.2 Lemma. The operator D̃B is symmetric, that means〈〈
D̃Bσ, τ

〉〉
L2,L2

=
〈〈
σ, D̃Bτ

〉〉
L2,L2

for all σ, τ ∈ Γ (B, π∗V ⊗ ΣB). Furthermore it fulfills an elliptic estimate

‖τ‖2W 1,L2 ≤
∥∥∥D̃Bσ

∥∥∥2

L2,L2
+ C1 ‖τ‖2L2,L2 + C2 ‖τ‖2L2,W 1 .

Proof. The first part follows as the usual symmetry of Dirac operators, using that
∇π∗V⊗ΣB,0 is compatible with gπ∗V⊗ΣB. For the second statement we see by a direct
calculation that

D̃2
B =

1

2

m∑
α,β=1

c(fα)c(fβ)F π∗V⊗ΣB,0
fα,fβ

+ ∆π∗V⊗ΣB,0

=
1

2

∑
α,β

c(fα)c(fβ)

(
F V⊗π

∗ΣB,0
fHα ,f

H
β

+
1

2
dMk

(
fHα , f

H
β

)
−∇V⊗π∗ΣBT (fα,fβ)

)
+ ∆π∗V⊗ΣB,0,

where ∆π∗V⊗ΣB,0 denotes the Laplacian of the connection ∇π∗V⊗ΣB,0. This equality
leads to the elliptic estimate by observing that ∇V⊗π

∗ΣB,0
T (fα,fβ) differentiates into vertical

directions, therefore we need the ‖τ‖L2,W 1-part.

4.2.3 Definition. As before we denote the covariant derivative

g∗
((
∇kerDX ⊕∇imDX

)
⊗ 1 + 1⊗

(
∇ΣB0 ⊕∇ΣB0

))
by ∇, where g : B0 × (−a, a)→ B0 is the projection onto the first component. For a lo-
cal orthonormal frame f1, ..., fm−1 of TB0 → B0, ∂

∂y the oriented section of νB0 →
B0 of length one, we define the differential operator DH : Γ

(
Na, π∗V ⊗ ΣB|Na

)
→

Γ
(
Na, π∗V ⊗ ΣB|Na

)
by

DH =
m−1∑
α=1

c(fα)∇fα = c|B0
◦ g−1

B0
◦ ∇|TB0

,

the operator DN : Γ
(
Na, π∗V ⊗ ΣB|Na

)
→ Γ

(
Na, π∗V ⊗ ΣB|Na

)
by

DN = c

(
∂

∂y

)
∂

∂y

the operator G : Γ
(
Na, π∗V ⊗ ΣB|Na

)
→ Γ

(
Na, π∗V ⊗ ΣB|Na

)
by

G =
m−1∑
α=1

c(fα)
(
g∗∇π∗Vfα

− g∗∇ker⊕ im
fα

)
⊗ 1

and last Rε : Γ
(
Na, π∗V ⊗ ΣB|Na

)
→ Γ

(
Na, π∗V ⊗ ΣB|Na

)
by

Rε = h1/2D̃Bh
−1/2 + εT̃ −DH −DN −G.
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4 Large time contribution for η (DM,ε)

4.2.4 Lemma. The operator DH +DN is symmetric for sections with compact support
with respect to 〈·, ·〉L2,L2, that means for all σ, τ ∈W 1

c

(
Na, π∗V ⊗ ΣB|Na

)
〈(DH +DN )σ, τ〉L2,L2 = 〈σ, (DH +DN ) τ〉L2,L2 .

Furthermore it satisfies an elliptic estimate for compactly supported
τ ∈W 1

c

(
Na, π∗V ⊗ ΣB|Na

)
|σ|2W 1,L2 ≤ |(DH +DN ) τ |2L2,L2 + C1 |τ |2L2,L2 + C2 |τ |L2,W 1 .

Proof. The first statement follows again as in Lemma 4.2.2 by the same arguments as
the symmetry for usual Dirac operators on compact manifolds. Since we have sections
with compact support there are no boundary terms when we apply Stokes’ theorem.
For the elliptic estimate we check that

(DH +DN )2 = ∆∇ +
1

2

∑
α 6=β

c (fα) c (fβ)∇2
fα,fβ

,

where ∆∇ denotes the Laplacian of the connection ∇ = g∗∇(ker⊕ im)⊗(ΣB0⊕ΣB0).
Since we have a formula for the off-diagonals of ∇π∗V on B0 by Proposition 3.2.14, we
know as in the proof of Lemma 4.1.6 that∣∣∣∣(∇2 − g∗

(
∇π∗V⊗ΣB,0

∣∣
B0

)2
)
τ

∣∣∣∣
L2,L2

≤ C |τ |L2,L2 .

We use again that(
∇π∗V⊗ΣB,0

)2
fα,fβ

= F V⊗π
∗ΣB

fHα ,f
H
β

+ dk
(
fHα , f

H
β

)
−∇V⊗π∗ΣBT (fα,fβ)

and T (fα, fβ) is vertical, therefore∣∣∣∣∣∣
〈

1

2

∑
α 6=β

c (fα) c (fβ)∇2
fα,fβ

τ, τ

〉
L2,L2

∣∣∣∣∣∣ ≤ C1 |τ |2L2,L2 + C2 |τ |2L2,W 1 .

Furthermore again by Lemma 4.1.6 and the fact that |y| ≤ a we have〈
∆∇τ, τ

〉
L2,L2 = 〈∇τ,∇τ〉L2,L2 ≤ C

〈
∇π∗V⊗ΣB,0τ,∇π∗V⊗ΣB,0τ

〉
L2,L2 .

Using that DH +DN is symmetric and putting together these estimates it follows that∣∣∣(DH +DN )2 τ
∣∣∣2
L2,L2

≥ |τ |2W 1,L2 − C1 |τ |2L2,L2 − C2 |τ |2L2,W 1 .
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4.2.5 Proposition (cf. [BL91, Proposition 9.7]). The remainder term Rε is C∞(−a, a)-
linear and fulfills the following estimate for all τ ∈W 1

(
Na, π∗V ⊗ ΣB|Na

)
‖Rετ‖L2(B0×{y},π∗V⊗ΣB) ≤C1 |y| ‖τ‖W 1(B0×{y},π∗V⊗ΣB)

+ C2 (|y|+ ε) ‖τ‖L2(B0×{y},π∗V⊗ΣB) ,

where we use the connection ∇π∗V⊗ΣB,0 for the Sobolev-1-norm.

Proof. First recall that

Rε = h1/2D̃Bh
−1/2 + εT̃ −DH −DN −G.

We know that

h1/2D̃Bh
−1/2 = − 1

2h
c (gradh) + D̃B.

(1) First summand
By the definition of the function h we know that h|B0

≡ 1 and therefore for an orthonor-
mal vector fα of TB0 ∣∣fα(h)(x,y)

∣∣ ≤ C |y| .
For the oriented normal vector we know by Lemma 4.1.3 that

∂h

∂y

∣∣∣∣
B0

= − tr(A)

Since we chose a small enough such that |h| ≥ C on B0 × (−a, a) we conclude∥∥∥∥− 1

2h
c (gradh)− 1

2
tr(A)c

(
∂

∂y

)∥∥∥∥
gπ∗V⊗ΣB

≤ C |y| .

(2) Second summand
In our chosen trivialization and by the considerations of Remark 4.1.1 we already know
that

D̃B = DN + c ◦ g̃−1
B0
◦ ∇π∗V⊗ΣB,0

∣∣
TB0

.

From now on we will (by abuse of notation) write ∇∗ instead of ∇∗|TB0
. We want to

compare the operators c ◦ g̃−1
B0
◦ ∇π∗V⊗ΣB,0 and c|B0

◦ g−1
B0
◦ g∗∇π∗V⊗ΣB,0 since

c|B0
◦ g−1

B0
◦ g∗∇π∗V⊗ΣB,0 = DH +G+ c ◦ g−1

B0

(
1⊗ g∗

(
∇ΣB −∇ΣB0⊕ΣB0

))
= DH +G− 1

2
tr(A)c

(
∂

∂y

)
.

So consider the difference∥∥∥(cg̃−1
B0
∇π∗V⊗ΣB,0 − c|B0

g−1
B0
g∗∇π∗V⊗ΣB,0

)
τ
∥∥∥
L2(B0×{y},π∗V⊗ΣB)

≤
∥∥∥(cg̃−1

B0
− c|B0

g−1
B0

)
∇π∗V⊗ΣB,0τ

∥∥∥
L2(B0×{y},π∗V⊗ΣB)

+
∥∥∥c|B0

g−1
B0

(
∇π∗V⊗ΣB,0 − g∗∇π∗V⊗ΣB,0

)
τ
∥∥∥
L2(B0×{y},π∗V⊗ΣB)

≤ C |y| ‖τ‖W 1(B0×{y},π∗V⊗ΣB) + C |y| ‖τ‖L2(B0×{y},π∗V⊗ΣB)
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4 Large time contribution for η (DM,ε)

by the same considerations as in the proof of Lemma 4.1.6.
Combining the above estimates with∥∥∥εT̃ τ∥∥∥

gπ∗V⊗ΣB

≤ Cε ‖τ‖gπ∗V⊗ΣB
,

we see that

‖Rετ‖L2(B0×{y},π∗V⊗ΣB)

≤
∥∥∥∥(− 1

2h
c (gradh)− 1

2
tr(A)c

(
∂

∂y

))
τ

∥∥∥∥
L2(B0×{y},π∗V⊗ΣB)

+
∥∥∥(cg̃−1

B0
∇π∗V⊗ΣB,0 − c|B0

g−1
B0
g∗∇π∗V⊗ΣB,0

)
τ
∥∥∥
L2(B0×{y},π∗V⊗ΣB)

+
∥∥∥εT̃ τ∥∥∥

L2(B0×{y},π∗V⊗ΣB)

≤ C (|y|+ ε) ‖τ‖L2(B0×{y},π∗V⊗ΣB) + C |y| ‖τ‖W 1(B0×{y},π∗V⊗ΣB)

4.2.6 Lemma. The following identities of operators are fulfilled

pεD̃Xpε = 0,

and also
pεDNpε = 0.

Proof. The fibrewise Dirac operators DX on π∗V of Section 3.2 act on π∗V ⊗ ΣB as

D̃X = DX ⊗ ω

where ω ∈ End (ΣB) is the Z2-grading of ΣB. On Na

ω =

(
0 1
1 0

)
with respect to the decomposition ΣB|Na ∼= (ΣB0 ⊕ ΣB0) × (−a, a). Now the claim
follows by our formula for pε in Lemma 4.1.12 since(

0 0
0 1

)
·
(

0 1
1 0

)
·
(

0 0
0 1

)
= 0.

The same argument proves pεDNpε = 0 since

c

(
∂

∂y

)
=

(
0 1
−1 0

)
.
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4.2.7 Proposition (cf. [BL91, Proposition 9.9]). There exist constants C1, C2, C3, C4 >
0 and an ε0 > 0 such that for all ε ∈ (0, ε0) and τ ∈W 1

(
Na, π∗V ⊗ ΣB|Na

)
the following

estimates hold

|DH (pε(τ))− pε (DH(τ))|L2,L2 ≤ C1

√
ε |τ |L2,L2 (4.2.1)∣∣∣∣pε(DN +

1

ε
D̃X

)
τ

∣∣∣∣
L2,L2

≤ C2

√
ε |τ |L2,L2 (4.2.2)

|pεRτ |L2,L2 ≤ C3

√
ε |τ |W 1,L2 (4.2.3)

‖Gτ‖L2,L2 ≤ C4 ‖τ‖L2,L2 . (4.2.4)

Proof. For the first estimate (4.2.1) one checks that for τ = τ1 ⊗
(
τ2

τ3

)
DH (pε(τ))− pε (DH(τ))

= α−1
ε ρ(y)e−y

2/2ε
∑
i,α

ψi(x)

∫
R

ρ (ỹ) e−ỹ
2/2ε

[
gπ∗V

(
g∗∇ker⊕ im

fα
ι(x,ỹ)(σi), τ1(x, ỹ)

)
ι(x,y)(σi)

+gπ∗V
(
ι(x,ỹ)(σi), τ1(x, ỹ)

)
g∗∇ker⊕ im

fα
ι(x,y)(σi)

]
⊗
(

0
−cB0 (fα) τ3(x, ỹ)

)
dỹ.

We verify that the integrand vanishes for ỹ = y = 0 since on B0

gπ∗V

(
σi,∇ker⊕ im

X τ
)
σi = P∇ker⊕ im

X τ = ∇ker⊕ im
X Pτ

= gπ∗V

(
∇ker⊕ im
X σi, τ

)
σi + gπ∗V

(
σi,∇ker⊕ im

X τ
)
σi + gπ∗V (σi, τ)∇ker⊕ im

X σi.

Therefore for any other y, ỹ ∈ (−a, a)∥∥∥gπ∗V (g∗∇ker⊕ im
fα

ι(x,ỹ)(σi), τ1(x, ỹ)
)
ι(x,y)(σi)

+gπ∗V
(
ι(x,ỹ)(σi), τ1(x, ỹ)

)
g∗∇ker⊕ im

fα
ι(x,y)(σi)

∥∥∥2

gπ∗V
≤ C ‖τ1(x, ỹ)‖2gπ∗V

(
y2 + ỹ2

)
and hence

|DH (pε(τ))− pε (DH(τ))|2L2,L2

≤ Cα−2
ε

∫
B0×R

ρ2(y)e−y
2/ε
∑
i,α

ψ2
i (x)

∫
R

ρ2 (ỹ) e−ỹ
2/ε
(
y2 + ỹ2

)
· ‖τ1(x, ỹ)‖2gπ∗V

∥∥∥∥( 0
−cB0 (fα) τ3(x, ỹ)

)∥∥∥∥2

gΣB

dỹ dvolB0 dy

≤ Cε |τ |2L2,L2 .

Here we used

C
√
ε ≤ αε =

∫
R

ρ2(y)e−y
2/εdy ≤ C ′

√
ε
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4 Large time contribution for η (DM,ε)

and ∫
R

ρ2(y)e−y
2/εy2dy ≤ C ′′ε3/2.

The second equation (4.2.2) follows as the corresponding statement in [BL91, Proposition
9.9].
Also equation (4.2.3) follows as in [BL91, Proposition 9.9] by equation (4.1.1) in Lemma
4.1.12 and by the estimate of the remainder term Rε in Proposition 4.2.5.
For the last estimate (4.2.4) remember that

G =
m−1∑
α=1

c (fα)
(
g∗∇π∗Vfα

− g∗∇ker⊕ im
fα

)
⊗ 1.

We already proved in Lemma 4.1.6 that on B0∥∥∥(∇π∗Vfα
−∇ker⊕ im

fα

)
τ1

∥∥∥
gπ∗V

≤ C ‖τ1‖gπ∗V

by which estimate (4.2.4) follows.

4.2.8 Lemma (cf. [BL91, Proposition 9.13]). There exist constants C1, C2, C3, ε0 > 0
such that for all ε ∈ (0, ε0) and all τ ∈W 1 (B, π∗V ⊗ ΣB) with supp τ ⊂ B \Na1

2∥∥∥∥1

ε
DM,ετ

∥∥∥∥2

L2,L2

≥ C1

ε2
‖τ‖2L2,L2 +

C2

ε2
‖τ‖2L2,W 1 + C3 ‖τ‖2W 1,L2 .

Proof. Since DM,ε is self-adjoint∥∥∥∥1

ε
DM,ετ

∥∥∥∥2

L2,L2

=
1

ε2

〈〈
D2
M,ετ, τ

〉〉
L2,L2

=

〈〈(
1

ε2
D̃2
X +

1

ε
[D̃X , DB,ε] +D2

B,ε

)
τ, τ

〉〉
L2,L2

≥ 1

ε2

∥∥∥D̃Xτ
∥∥∥2

L2,L2
− 1

ε

∣∣∣∣〈〈[D̃X , DB,ε]τ, τ
〉〉

L2,L2

∣∣∣∣+
〈〈
D2
B,ετ, τ

〉〉
L2,L2 .

For the fibrewise Dirac operator DX we have two different estimates. First we use that
DX is a fibrewise elliptic operator

‖τ‖2L2,W 1 ≤
∥∥∥D̃Xτ

∥∥∥2

L2,L2
+ C ′ ‖τ‖2L2,L2 ,

then we use that the support of τ is included in B \Na1
2

and therefore∥∥∥D̃Xτ
∥∥∥
L2,L2

≥ C ‖τ‖L2,L2 .

60
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Combining the two estimates we know that for all s ∈ [0, 1]∥∥∥D̃Xτ
∥∥∥2

L2,L2
≥ s ‖τ‖2L2,W 1 +

(
C(1− s)− C ′s)

)
‖τ‖2L2,L2 .

By choosing s ∈
(

0, C
C+C′

)
the constant C2 = C(1− s)− C ′s fulfills C2 > 0 and∥∥∥D̃Xτ
∥∥∥2

L2,L2
≥ C1 ‖τ‖2L2,W 1 + C2 ‖τ‖2L2,L2 . (4.2.5)

By Lemma 4.2.1, the Cauchy inequality and the fact that ‖·‖L2,L2 ≤ ‖·‖L2,W 1 we know
that ∣∣∣∣〈〈[D̃X , DB,ε

]
τ, τ
〉〉

L2,L2

∣∣∣∣ ≤ (C3 + C4ε) ‖τ‖2L2,W 1 . (4.2.6)

So we still need to estimate D2
B,ε = D̃2

B + ε
[
D̃B, T̃

]
+ ε2T̃ 2. Since the operator T̃ is

an endomorphism of V ⊗ π∗ΣB and
[
D̃B, T̃

]
is a differential operator of order one of

π∗V ⊗ ΣB → B we get, by using the elliptic estimate of Lemma 4.2.2,〈〈
D2
B,ετ, τ

〉〉
L2,L2 ≥ (1− εC5) ‖τ‖2W 1,L2 −

(
C6 + ε2C7

)
‖τ‖2L2,L2 −C8 ‖τ‖2L2,W 1 . (4.2.7)

Combining the estimates (4.2.5), (4.2.6) and (4.2.7) we finally get∥∥∥∥1

ε
DM,ετ

∥∥∥∥2

L2,L2

≥
(
C2

ε2
− C6 − ε2C7

)
‖τ‖2L2,L2 +

(
C1

ε2
− C3

ε
− C4 − C8

)
‖τ‖2L2,W 1

+ (1− εC5) ‖τ‖2W 1,L2 ,

which proves the claimed estimate by choosing ε small enough such that all constants
are positive.

4.2.9 Proposition (cf. [BL91, Proposition 9.12]). There exists a constant 0 < a1 ≤ a/2
and constants C1, C2, C3 > 0, such that for all τ ∈ im q⊥ε ∩W 1 (M,V ⊗ π∗ΣB) whose
support is included in Na1∥∥∥∥1

ε
DM,ετ

∥∥∥∥2

L2,L2

≥ C1

ε
‖τ‖2L2,L2 +

C2

ε2
‖τ‖2L2,W 1 + C3 ‖τ‖2W 1,L2 .

Proof. We follow the ideas of the proof of [BL91, Proposition 9.12].
Since the support of τ is included in B0 × (−a1, a1) we can define the section

τ = h1/2τ

and since τ ∈ im q⊥ε we know that τ ∈ im p⊥ε because of Lemma 4.1.11. By definition of
our norms ∥∥∥∥1

ε
DM,ετ

∥∥∥∥2

L2,L2

=

∣∣∣∣h1/2 1

ε
DM,εh

−1/2τ

∣∣∣∣2
L2,L2

.
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Again because we are now working locally around B0, we can write our operator with
the help of the operators of Definition 4.2.3

h1/2 1

ε
DM,εh

−1/2 =
1

ε
D̃X +DN +DH +G+Rε

= Lε +Rε +G

where Lε = 1
ε D̃X +DN +DH . Recall that on Na the bundle π∗V |Na splits orthogonally

into the line bundle L = imP and the infinite part W = imQ. We decompose the
section τ with respect to this decomposition into τ = τL + τW = h1/2

(
τL + τW

)
where

τL or τL is the part which is in the line bundle and therefore corresponds to the small
eigenvalue of DX .

Estimate of (Rε +G) τ
By Proposition 4.2.5 and since |y| ≤ a1

|Rετ |2L2,L2 ≤ Ca2
1 |τ |

2
W 1,L2 + C

(
a2

1 + ε2
)
|τ |2L2,L2

and by equation (4.2.4) in Proposition 4.2.7

|Gτ |2L2,L2 ≤ C |τ |2L2,L2 .

Alltogether we get the following estimate for the remainder Rε +G

|(Rε +G) τ |2L2,L2 ≤ C(a2
1 + ε2) |τ |2L2,L2 + Ca2

1 |τ |
2
W 1,L2 . (4.2.8)

Estimate of 〈LετL, LετW 〉L2,L2

Since DX is obviously diagonal with respect to L ⊕W and DH + DN is symmetric for
sections with compact support, see Lemma 4.2.4, we know that

〈LετL, LετW 〉L2,L2 = 〈(DH +DN )2τL, τW 〉L2,L2 .

Now we want to prove that (DH + DN )2τL is ‘almost’ in L, so the product becomes
comparibly small. This follows since the decomposition L⊕W equals kerDX ⊕ imDX

on B0 and we use Lemma 4.1.7 together with the fact that |y| ≤ a1 to see that∣∣∣∣〈(DH +DN )2 τL, τW
〉
L2,L2

∣∣∣∣ ≤ Ca1 ‖τ‖W 1,L2 ‖τ‖L2,L2 ≤ Ca1 ‖τ‖2W 1,L2 . (4.2.9)

Estimate of Lετ
W

By Lemma 4.2.4 we know that DH + DN has the same properties as D̃B and since for
τW the estimate ∣∣∣D̃Xτ

W
∣∣∣
L2,L2

≥ C
∣∣τW ∣∣

L2,L2

holds true, the same proof as the one given for Lemma 4.2.8 leads to∣∣LετW ∣∣2L2,L2 ≥
C1

ε2

∣∣τW ∣∣2
L2,L2 +

C2

ε2

∣∣τW ∣∣2
L2,W 1 + C3

∣∣τW ∣∣2
W 1,L2

≥ C1

ε2

∥∥τW∥∥2

L2,L2 +
C2

ε2

∥∥τW∥∥2

L2,W 1 + C3

∥∥τW∥∥2

W 1,L2 . (4.2.10)

62



4.2 Limiting behaviour of ε−1DM,ε as ε→ 0

Estimate of Lετ
L

By definition the operators DH and DN anticommute (since Clifford anticommutes and
differentiation with the pulled back connection commutes) and since PD̃X = yP ⊗ω and
DH just differentiates into B0-directions, PD̃X and DH also anticommute. Therefore

∣∣LετL∣∣2L2,L2 =
∣∣DHτ

L
∣∣2
L2,L2 +

∣∣∣∣(1

ε
D̃X +DN

)
τL
∣∣∣∣2
L2,L2

≥
∣∣DHτ

L
∣∣2
L2,L2 +

∣∣∣∣(1

ε
D̃X + PDN

)
τL
∣∣∣∣2
L2,L2

− C
∣∣(1 + y)τL

∣∣2
L2,L2 , (4.2.11)

where the estimate comes from the fact that on B0 we can estimate the off-diagonals
with respect to the decomposition kerDX ⊕ imDX of ∇π∗V∂

∂y

= ∂
∂y because of Proposition

3.2.14, see Lemma 4.1.7 and we know that P is parallel along normal geodesics with
respect to ∇L.

We will first investigate the spectral properties of the operator P
(

1
ε D̃X +DN

)
P . We

see that it acts on W 1 (B0 × (−a, a), L⊗ ΣB) as

P ⊗
(

0 y
ε

y
ε 0

)
+ P ⊗

(
0 1
−1 0

)
∂

∂y

where the matrix decomposition is again with respect to ΣB = ΣB0 ⊕ ΣB0. So if we
choose a local basis of kerDX ⊗ΣB0⊕ΣB0 → B0 and transport it parallel along (−a, a)
we see that we need to calculate the eigenvalues of(

0 y
ε −

∂
∂y

y
ε + ∂

∂y 0

)
: W 1

(
R,R2

)
→ L2

(
R,R2

)
,

which are ±
√

2m
ε , m ∈ Z and each with multiplicity one (we see this using Getzler

scaling and Hermite polynomials).

Therefore, if p∗ε denotes the projection onto the kernel of P
(

1
ε D̃X +DN

)
P we see that

as in [BL91, Eq. (9.75)]∣∣∣∣P (1

ε
D̃X +DN

)
τL
∣∣∣∣2
L2,L2

≥ C

ε

∣∣τL − p∗ετL∣∣2L2,L2 . (4.2.12)

The formula for the projection p∗ε again looks a bit different as in [BL91]. For a section
s = s1 ⊗ (s2, s3) ∈ Γ (B0 × (−a, a), π∗V ⊗ ΣB0 ⊕ ΣB0)

(p∗εs) (x, y) =β−1
ε e−y

2/2ε
∑
i

ψi(x)

·
a∫
−a

e−ỹ
2/2εgπ∗V

(
ι(x,ỹ)(σi(x)), s1(x, ỹ)

)
ι(x,y)(σi(x))⊗

(
0

s3 (x, ỹ)

)
dỹ,
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4 Large time contribution for η (DM,ε)

where as in Lemma 4.1.11 {Ui}i is a covering of B0 with subordinate partition of unity
ψi, such that there exist local orthonormal frames σi : Ui → kerDX and

βε =

a∫
−a

e−y
2/2εdy.

By assumption 0 = pετ = pετ
L and therefore as in [BL91, Eq. (9.80)] and by

Lemma 4.1.11

(
p∗ετ

L
)

(x, y) =β−1
ε e−y

2/2ε
∑
i

ψi(x)

a∫
−a

(1− ρ(ỹ))e−ỹ
2/2ε

· gπ∗V
(
ι(x,ỹ)(σi(x)), τL1 (x, ỹ)

)
ι(x,y)(σi(x))⊗

(
0

τL3 (x, ỹ)

)
dỹ

and since 1− ρ(ỹ) = 0 for |ỹ| ≤ a1/2∣∣p∗ετL∣∣2L2,L2 ≤ C(a1)
√
ε
∣∣τL∣∣2

L2,L2 .

Together with equation (4.2.12) and (4.2.11) this implies that∣∣∣∣(1

ε
D̃X +DN

)
τL
∣∣∣∣2
L2,L2

≥
(
C1

ε
− C(a1)√

ε
− C2

) ∣∣τL∣∣2
L2,L2 − C3

∣∣yτL∣∣2
L2,L2 . (4.2.13)

But we just want to use half of that estimate, we want another estimate for∣∣∣P (1
ε D̃X +DN

)
τL
∣∣∣2
L2,L2

which we want to combine with
∣∣DHτ

L
∣∣2
L2,L2 for an elliptic

estimate. As in [BL91, Eq. (9.77)] we know that∣∣∣∣(1

ε
D̃X +DN

)
τL
∣∣∣∣2
L2,L2

=

∣∣∣∣1εD̃Xτ
L

∣∣∣∣2
L2,L2

+
∣∣DNτ

L
∣∣2
L2,L2 + 2 Re

〈
1

ε
D̃Xτ

L, DNτ
L

〉
L2,L2

=
α

2

(∣∣∣∣1εD̃Xτ
L

∣∣∣∣2
L2,L2

+
∣∣DNτ

L
∣∣2
L2,L2

)

+ 2 Re

〈
1

ε
D̃Xτ

L, DNτ
L

〉
L2,L2

+
(

1− α

2

)(∣∣∣∣1εD̃Xτ
L

∣∣∣∣2
L2,L2

+
∣∣DNτ

L
∣∣2
L2,L2

)

≥ α

2

(∣∣∣∣1εyτL
∣∣∣∣2
L2,L2

+

〈
− ∂2

∂y2
τL, τL

〉
L2,L2

)

− α

2

∣∣∣∣∣
〈

1

ε

(
D̃XDN +DND̃X

)
τL, τL

〉
L2,L2

∣∣∣∣∣
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4.2 Limiting behaviour of ε−1DM,ε as ε→ 0

for all α ∈ (0, 1] (since |A|2 + |B|2 ≥ −2 Re〈A,B〉). Therefore using half of this estimate

and half of estimate (4.2.13) and the fact that P
(
D̃XDN +DND̃X

)
= P ⊗

(
1 0
0 −1

)
,

we see that∣∣∣∣(1

ε
D̃X +DN

)
τL
∣∣∣∣2
L2,L2

≥ α

4

〈
− ∂2

∂y2
τL, τL

〉
L2,L2

+

(
α

4ε2
− C3

2

) ∣∣yτL∣∣2
L2,L2

+

(
C1

2ε
− α

4ε
− C(a1)

2
√
ε
− C2

2

) ∣∣τL∣∣2
L2,L2 .

Now we choose α ∈ (0, 1] such that C1 − α
2 ≥

C1
2 and therefore∣∣∣∣(1

ε
D̃X +DN

)
τL
∣∣∣∣2
L2,L2

≥ α

4

〈
− ∂2

∂y2
τL, τL

〉
L2,L2

+

(
α

4ε2
− C3

2

) ∣∣yτL∣∣2
L2,L2

+

(
C1

4ε
− C(a1)

2
√
ε
− C2

2

) ∣∣τL∣∣2
L2,L2 . (4.2.14)

By using the ellipitic estimate of Lemma 4.2.4 for the operator DN +DH we see that

α

4

〈
− ∂2

∂y2
τL, τL

〉
L2,L2

+
∣∣DHτ

L
∣∣2
L2,L2 ≥ C

∣∣τL∣∣2
W 1,L2 − C

∣∣τL∣∣2
L2,L2 − C

∣∣τL∣∣2
L2,W 1 .

(4.2.15)
Finally if we put together the estimates (4.2.14) and (4.2.15) we get

∣∣LετL∣∣2L2,L2 ≥C
∣∣τL∣∣2

W 1,L2 +

(
C1

ε2
− C2

) ∣∣yτL∣∣2
L2,L2 (4.2.16)

+

(
C3

ε
− C4(a1)√

ε
− C5

) ∣∣τL∣∣2
L2,L2 − C5

∣∣τL∣∣2
L2,W 1 .

Combining the estimates
We put together the estimates of the cases above, namely estimates (4.2.8), (4.2.9),
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4 Large time contribution for η (DM,ε)

(4.2.10) and (4.2.16) to see that∥∥∥∥1

ε
DM,ετ

∥∥∥∥2

L2,L2

=

∣∣∣∣h1/2 1

ε
DM,εh

−1/2τ

∣∣∣∣2
L2,L2

≥ 1

2
|Lετ |2L2,L2 − |(Rε +G) τ |2L2,L2

≥ 1

2

∣∣LετL∣∣2L2,L2 +
1

2

∣∣LετW ∣∣2L2,L2 −
∣∣∣〈LετL, LετW 〉L2,L2

∣∣∣− |(Rε +G) τ |2L2,L2

≥ C1

∣∣τL∣∣2
W 1,L2 + C2

∣∣τW ∣∣2
W 1,L2 −

(
C3a

2
1 + C4a1

)
|τ |2W 1,L2

+

(
C5

ε
− C6(a1)√

ε
− C7 − C8ε

2 − C9a
2
1

) ∣∣τL∣∣2
L2,L2

+

(
C10

ε2
− C11ε

2 − C12a
2
1

) ∣∣τW ∣∣2
L2,L2

− C13

∣∣τL∣∣2
L2,W 1 +

C14

ε2

∣∣τW ∣∣2
L2,W 1

+

(
C15

ε2
− C16

) ∣∣yτL∣∣2
L2,L2 .

We know by definition that |τ |L2,L2 = ‖τ‖L2,L2 and

|τ |2W 1,L2 = ‖τ‖2L2,L2 +
∥∥∥h−1/2∇π∗V⊗ΣB,0h1/2τ

∥∥∥2

L2,L2
≤ C ‖τ‖2W 1,L2

since we chose a small enough such that h and its derivatives are bounded.
Therefore we see that if we choose a1 small enough, there exist constants C1, C2, C3 > 0
and an ε0 > 0 such that for all ε ∈ (0, ε0) and all τ ∈ Γ (B, π∗V ⊗ ΣB) whose support is
in Na1 and qεσ = 0 the follwing holds true∥∥∥∥1

ε
DM,ετ

∥∥∥∥2

L2,L2

≥ C1 ‖τ‖2W 1,L2 +
C2

ε
‖τ‖2L2,L2 +

C3

ε
‖τ‖2L2,W 1 .

For the τL-part we estimated some of the ‖τ‖L2,L2-norm by the ‖τ‖L2,W 1-norm. But L
is a finite-dimensional bundle so these norms are equivalent.

4.2.10 Theorem (cf. [BL91, Theorem 9.11]). Let a1 ≤ a/2 as in Proposition 4.2.9.
Then there exist constants C1, C2, C3 > 0 such that for ε small enough and for all
τ ∈ im q⊥ε ∩W 1 (M,V ⊗ π∗ΣB)∥∥∥∥1

ε
DM,ετ

∥∥∥∥2

L2,L2

≥ C1

ε
‖τ‖2L2,L2 +

C2

ε
‖τ‖2L2,W 1 + C3 ‖τ‖2W 1,L2 .

Proof. We combine the estimates of Lemma 4.2.8 and Proposition 4.2.9 as in the 3rd
step of the proof of Theorem 9.11 [BL91, pp. 115].
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4.2 Limiting behaviour of ε−1DM,ε as ε→ 0

4.2.2 Main estimates

4.2.11 Theorem (cf. [BL91, Theorem 9.8]). There exist constants C, ε0 > 0 such that
for all ε ∈ (0, ε0) and all s ∈W 1 (B0, kerDX ⊗ ΣB0) the following estimate holds true∥∥∥∥(J−1

ε

1

ε
DM,ε,1Jε +DB0

)
s

∥∥∥∥
L2(B0,kerDX⊗ΣB0)

≤ C
√
ε ‖s‖W 1(B0,kerDX⊗ΣB0) ,

where DB0 denotes the twisted Dirac operator on kerDX ⊗ ΣB0.
Note that J−1

ε
1
εDM,ε,1Jε converges to −DB0 which is explained in the considerations for

the Clifford actions in Remark 4.1.8.

Proof. We follow the ideas of the proof of [BL91, Theorem 9.8] and adopt carefully the
estimates to our situation.
By Lemma 4.1.11 and Definition 4.2.3 we know that

J−1
ε

1

ε
DM,ε,1Jε = I−1

ε pε

(
h1/2 1

ε
DM,εh

−1/2

)
Iε

= I−1
ε pε

(
1

ε
D̃X +DN +DH +G+Rε

)
Iε.

So by Lemma 4.2.6

J−1
ε

1

ε
DM,ε,1Jε = I−1

ε pε (DH +G+Rε) Iε.

(1) Let us first consider the term pεDHIε. We will see that this operator converges in
the right sense to the twisted Dirac operator

−DB0 = −
m−1∑
α=1

(
∇ker
fα ⊗ cB0(fα) + 1⊗ cB0(fα)∇ΣB0

fα

)
=

m−1∑
α=1

(
∇ker
fα ⊗ (−cB0(fα)) + 1⊗ (−cB0(fα))∇ΣB0

fα

)
or rather −IεDB0 and then we will make use of the fact that Iε is an isometry with
respect to |·|L2,L2 and the L2-norm on Γ (B0, kerDX ⊗ ΣB0).
By using the definitions and Lemma 4.1.11 one can check that for a section s1 ⊗ s2 ∈
Γ (B0, kerDX ⊗ ΣB0)

pεDHIε(s1 ⊗ s2) = α−1/2
ε ρ(y)e−y

2/2ει(s1)⊗
(

0∑m−1
α=1 −cB0(fα)∇ΣB0

fα
s2

)

+ pε

(
α−1/2
ε ρ(ỹ)e−ỹ

2/2ε
m−1∑
α=1

g∗∇ker⊕ im
fα

ι(s1)⊗
(

0
−cB0(fα)s2

))
.

Now we know by Lemma 4.1.7 that∣∣∣g∗∇ker⊕ im
fα

ι(s1)− ι
(
∇ker
fα s1

)∣∣∣
L2(B0×{ỹ},π∗V )

≤ C |ỹ| ‖s1‖L2(B0,kerDX) . (4.2.17)
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4 Large time contribution for η (DM,ε)

Using Proposition 4.1.12 this proves that∣∣∣∣∣pε
(
α−1/2
ε ρ(ỹ)e−ỹ

2/2ε
m−1∑
α=1

g∗∇ker⊕ im
fα

ι(s1)⊗
(

0
−cB0(fα)s2

))

−pε

(
Iε

(
m−1∑
α=1

∇ker
fα s1 ⊗ (−cB0(fα)s2)

))∣∣∣∣∣
L2,L2

≤ C
√
ε ‖s1 ⊗ s2‖L2(B0,kerDX) .

Combining the above estimates we conclude that∥∥(I−1
ε pεDXIε +DB0

)
(s1 ⊗ s2)

∥∥
L2(B0,kerDX⊗ΣB0)

= |(pεDHIε + IεDB0) (s1 ⊗ s2)|L2,L2

≤ C
√
ε ‖s1 ⊗ s2‖L2(B0,kerDX⊗ΣB0) .

(2) Now we will prove that the G-part is small∥∥I−1
ε pεGIε (s1 ⊗ s2)

∥∥
L2(B0,kerDX⊗ΣB0)

≤ C
√
ε ‖s1 ⊗ s2‖L2(B0,kerDX⊗ΣB0) .

For this we consider the function

γi = gπ∗V

((
g∗∇π∗Vfα

− g∗∇ker⊕ im
fα

)
ι(s1), ι(σi)

)
: Ui × (−a, a)→ R,

where Ui is a covering of B0 and σi : Ui → kerDX a local orthonormal frame as in
Lemma 4.1.11.
At ỹ = 0 we know that ιx,0(s1), ιx,0(σi) ∈ kerDX,x, but ∇π∗V − ∇ker⊕ im interchanges
kerDX and imDX and therefore

γi|Ui ≡ 0.

Therefore we can check that

|γi(x, ỹ)| ≤ C |ỹ| ‖s1‖gkerDX
.

Writing down the explicit formula for pεGIε (s1 ⊗ s2), we see by the above estimate and
by using Proposition 4.1.12 that∥∥I−1

ε pεGIε (s1 ⊗ s2)
∥∥
L2(B0,kerDX⊗ΣB0)

= |pεGIε (s1 ⊗ s2)|L2,L2

≤ C
√
ε ‖s1 ⊗ s2‖L2(B0,kerDX⊗ΣB0) .

(3) In the last part of the proof we show that the remainder term Rε is small. This
follows by Proposition 4.2.5, Proposition 4.1.12 and the same considerations as in part
(2) of this proof

|pεRεIε (s1 ⊗ s2)|L2,L2 ≤ C
√
ε ‖s1 ⊗ s2‖W 1(B0,kerDX⊗ΣB0) .
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4.3 Calculation of the integral for large times

4.2.12 Theorem ([BL91, Theorem 9.10]). There exist constants C, ε0 > 0 such that for
all ε ∈ (0, ε0) and τ ∈ im q⊥ε ∩W 1 (M,V ⊗ π∗ΣB)∥∥∥∥1

ε
DM,ε,2τ

∥∥∥∥
L2,L2

≤ C
(√

ε ‖τ‖W 1,L2 + ‖τ‖L2,L2

)
and for all τ ∈ im qε ∩W 1 (M,V ⊗ ΣB)∥∥∥∥1

ε
DM,ε,3τ

∥∥∥∥
L2,L2

≤ C
(√

ε ‖τ‖W 1,L2 + ‖τ‖L2,L2

)
.

Proof. The proof follows exactly as the proof of [BL91, Theorem 9.10] by using Propo-
sition 4.2.7 instead of [BL91, Proposition 9.9].

4.2.13 Theorem (cf. [BL91, Theorem 9.14]). There exist constants C1, C2, C3, ε0 > 0
such that for all ε ∈ (0, ε0) and all sections τ ∈ im q⊥ε ∩W 1 (M,V ⊗ π∗ΣB)∥∥∥∥1

ε
DM,ε,4τ

∥∥∥∥
L2,L2

≥ C1√
ε
‖τ‖L2,L2 +

C2√
ε
‖τ‖L2,W 1 + C3 ‖τ‖W 1,L2 .

Proof. As in the proof of [BL91, Theorem 9.14] we know that

DM,ετ = DM,ε,2τ +DM,ε,4τ.

By Theorem 4.2.10 we know that∥∥∥∥1

ε
DM,ετ

∥∥∥∥
L2,L2

≥ C1√
ε
‖τ‖L2,L2 +

C2

ε
‖τ‖L2,W 1 + C3 ‖τ‖W 1,L2 .

We know by Theorem 4.2.12 that∥∥∥∥1

ε
DM,ε,2τ

∥∥∥∥
L2,L2

≤ C ‖τ‖L2,L2 + C
√
ε ‖τ‖W 1,L2 .

If we combine these two estimates the claimed estimate holds true for all ε small enough.

4.3 Calculation of the integral for large times

We want to use the results of the previous Section 4.2 to obtain estimates of the resolvent
ofDM,ε. As in [BL91, Section IX. e)] and [Goe14, Section 2] we use the Schur complement
method. Then we use holomorphic functional calculus as in Section 3.2 to compute the
large time contribution

1√
π

∞∫
εα−2

tr
(
DM,εe

−tD2
M,ε

) dt√
t
,

as ε→ 0 for a certain choice of 0 < α < 1.
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4 Large time contribution for η (DM,ε)

4.3.1 Resolvent estimates

4.3.1 Proposition ([BL91, Proposition 9.16]). There exists an ε0 > 0 such that for all
ε ∈ (0, ε0) the operator

DM,ε =

(
DM,ε,1 0

0 DM,ε,4

)
is self-adjoint with domain W 1 (M,V ⊗ π∗ΣB).

Proof. As the proof of [BL91, Proposition 9.16] we want to make use of the Kato-Rellich
theorem [RS75, Theorem X.12]. We just have to adapt our estimates. We already know
that DM,ε is self-adjoint with domain W 1 (M,V ⊗ π∗ΣB) and DM,ε−DM,ε is symmetric.
It remains to show that DM,ε − DM,ε is DM,ε-bounded with relative bound C < 1 for
all ε small enough, i.e., that∥∥(DM,ε −DM,ε

)
τ
∥∥
L2,L2 ≤ C ‖DM,ετ‖L2,L2 + ‖τ‖L2,L2 .

We know that
D2
M,ε = D̃2

X + ε[D̃X , DB,ε] + ε2D2
B,ε,

DB,ε = D̃B + εT̃ , and use the elliptic estimate for DX and D̃B, see Lemma 4.2.2, and
the fact that [D̃X , DB,ε] = [D̃X , D̃B +εT̃ ] is a fibrewise differential operator of order one
plus an endomorphism, see Lemma 4.2.1. Therefore

‖DM,ετ‖2L2,L2 ≥
(
−C1 − C2ε

2 + C3ε
4
)
‖τ‖2L2,L2

+
(
C4 − C5ε− C6ε

2
)
‖τ‖2L2,W 1 +

(
C7ε

2 − C8ε
3
)
‖τ‖2W 1,L2

and we see that there exists an ε0 > 0 and constants K1,K2 > 0 such that for all
ε ∈ (0, ε0)

ε ‖τ‖W 1,L2 ≤ K1 ‖DM,ετ‖L2,L2 +K2 ‖τ‖L2,L2 .

The remaining part of the proof follows as the proof of [BL91, Proposition 9.16]. Com-
bining the estimates of Theorem 4.2.12 and Lemma 4.1.12 leads to∥∥(DM,ε −DM,ε

)
τ
∥∥
L2,L2 ≤ C2ε

3/2 ‖τ‖W 1,L2 + C2ε ‖τ‖L2,L2

≤ C1K1

√
ε ‖DM,ετ‖L2,L2 +

(
K2

√
ε+ C2ε

)
‖τ‖L2,L2 .

Now it is clear that that the difference DM,ε − DM,ε is DM,ε-bounded with relative
bound C < 1 for all ε small enough and therefore the Kato-Rellich theorem proves the
statement.

4.3.2 Remark. The fact that DM,ε is self-adjoint implies that the spectrum of DM,ε,4

is contained in R and therefore its resolvent

Rε(z) =
(
z − ε−1DM,ε,4

)−1
: im q⊥ε → im q⊥ε

exists as a bounded linear operator on L2 (M,V ⊗ π∗ΣB) for all z ∈ C\R. In particular
if |Im z| ≥ C

‖Rε(z)τ‖L2(M,V⊗π∗ΣB) ≤
1

C
‖τ‖L2(M,V⊗π∗ΣB) .
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4.3 Calculation of the integral for large times

4.3.3 Definition. As in Remark 4.3.2 we define for z /∈ spec ε−1DM,ε,4 the resolvent

Rε(z) =
(
z − ε−1DM,ε,4

)−1
: im q⊥ε → im q⊥ε

and the Schur complement

Mε(z) = z − ε−1DM,ε,1 − ε−2DM,ε,2Rε(z)DM,ε,3.

Furthermore we define the subset Uε ⊂ C by

Uε =

{
z ∈ C

∣∣∣∣ |z| ≤ G1√
ε

and inf
µ∈specDB0

|z − µ| ≥ G2

}
,

where 0 < G1 <
C1
2 with C1 from Theorem 4.2.13 will be fixed in the proof of Proposition

4.3.6 and 0 < G2 ≤ 1 is chosen, such that G2 < λB0/2 where λB0 is the smallest absolut
value of an eigenvalue of DB0 .

Re

Im

λB0

Uε

4.3.4 Remark. We want to use the resolvent Rε(z) of ε−1DM,ε,4 and its Schur com-
plement Mε(z) to compute the full resolvent of DM,ε and also to get the desired esti-
mates. We will prove that Rε(z) exists and Mε(z) is invertible for all z ∈ Uε. Therefore
z /∈ spec ε−1DM,ε since(

z − ε−1DM,ε

)−1

=

(
Mε(z)

−1 ε−1Mε(z)
−1DM,ε,2Rε(z)

ε−1Rε(z)DM,ε,3Mε(z)
−1 Rε(z)

(
1 + ε−2DM,ε,3Mε(z)

−1DM,ε,2Rε(z)
)) .

4.3.5 Lemma ([BL91, Proposition 9.18]). There exists an ε0 > 0 and a constant C > 0
such that for all z ∈ C, |z| ≤ C1

2
√
ε
, ε ∈ (0, ε0) and p ≥ 2 dimM + 1

‖Rε(z)‖0,0 ≤ C
√
ε |z| , (4.3.1)

‖Rε(z)‖0,1 ≤ C |z| , (4.3.2)

‖Rε(z)‖p ≤ C |z| , (4.3.3)
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where ‖.‖0,0 and ‖.‖0,1 denote the operator norm for operators

L2 (M,V ⊗ π∗ΣB)→ L2 (M,V ⊗ π∗ΣB) or L2 (M,V ⊗ π∗ΣB)→W 1 (M,V ⊗ π∗ΣB)

respectively and ‖.‖p denotes the p-Schatten norm on L2 (M,V ⊗ π∗ΣB).

Proof. The first inequality (4.3.1) follows directly by Theorem 4.2.13, since it states in
particular that ∥∥ε−1DM,ε,4τ

∥∥
L2(M,V⊗π∗ΣB)

≥ C1√
ε
‖τ‖L2(M,V⊗ΣB)

and we chose |z| ≤ C1

2
√
ε
.

For estimate (4.3.2) we first prove an elliptic estimate for ε−1DM,ε,4. For that we recall
that under the identification Γ (B, π∗V ⊗ ΣB) ∼= Γ (M,V ⊗ π∗ΣB) the norms ‖.‖L2,L2

and ‖.‖L2(M,V⊗π∗ΣB) correspond and ‖.‖W 1,L2 +‖.‖L2,W 1 and ‖.‖W 1(M,V⊗π∗ΣB) are equiv-
alent. Hence the estimate of Theorem 4.2.13 leads to

‖τ‖W 1(M,V⊗π∗ΣB) ≤ C
∥∥ε−1DM,ε,4τ

∥∥
L2(M,V⊗π∗ΣB)

+ C ‖τ‖L2(M,V⊗π∗ΣB) . (4.3.4)

Using this we see that

‖Rε(i)τ‖W 1(M,V⊗π∗ΣB)

≤ C
∥∥ε−1DM,ε,4Rε(i)τ

∥∥
L2(M,V⊗π∗ΣB)

+ C ‖Rε(i)τ‖L2(M,V⊗π∗ΣB)

≤ C ‖τ‖L2(M,V⊗π∗ΣB) ,

where we used (4.3.1) in the last step, since for ε small enough |i| = 1 ≤ C1

2
√
ε
. Using

‖Rε(z)‖0,1 ≤ ‖Rε(i)‖0,1 + ‖Rε(i)‖0,1 |(i− z)| ‖Rε(z)‖0,0

proves (4.3.2).
The last inequality (4.3.3) follows from inequality (4.3.2) and the fact that for p ≥
2 dimM + 1 ∥∥(i−DM )−1

∥∥
p
≤ C,

since
‖Rε(z)‖p ≤

∥∥(i−DM )−1
∥∥
p
‖i−DM‖1,0 ‖Rε(z)‖0,1 ≤ C |z| .

4.3.6 Proposition ([BL91, Theorem 9.21]). There exists an ε0 such that for all ε ∈
(0, ε0) and z ∈ Uε the operator

Mε(z) = z − ε−1DM,ε,1 − ε−2DM,ε,2Rε(z)DM,ε,3
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is invertible. Furthermore there exists a constant C > 0 such that∥∥Mε(z)
−1
∥∥

0,0
≤ C,

‖Mε(z)‖p ≤ C |z| ,∥∥ε−1DM,ε,3Mε(z)
−1
∥∥

0,0
≤ C,

where p ≥ 2 dimB0 + 1.

Proof. The statement follows just as [BL91, Theorem 9.21] by writing

Mε(z) = mε(z)
(
z + JεDB0J

−1
ε

)
,

where

mε(z) = 1−
(
ε−1DM,ε,1Jε + JεDB0

)
(z +DB0)−1 J−1

ε

− ε−2DM,ε,2Rε(z)DM,ε,3

(
z + JεDB0J

−1
ε

)−1
.

Then we use Theorem 4.2.11 and the fact that DB0 is a Dirac operator to see that∥∥∥(ε−1DM,ε,1Jε + JεDB0

)
(z +DB0)−1 J−1

ε

∥∥∥
0,0
≤ C
√
ε |z| ,

Theorem 4.2.12, equation (4.3.1) and (4.3.2) of Lemma 4.3.5 to see that∥∥ε−1DM,ε,2Rε(z)
∥∥

0,0
≤ C
√
ε |z|

and finally we see by using Theorem 4.2.12, Lemma 4.1.12 and the fact that DB0 is a
Dirac operator as in [BL91, Proposition 9.19] that∥∥∥ε−1DM,ε,3 (z +DB0)−1

∥∥∥
0,0
≤ C.

Combining the above estimates proves that for ε small enough∥∥∥(ε−1DM,ε,1Jε + JεDB0

)
(z +DB0)−1 J−1

ε

−ε−2DM,ε,2Rε(z)DM,ε,3

(
z + JεDB0J

−1
ε

)−1
∥∥∥

0,0
≤ C
√
ε |z| . (4.3.5)

Therefore we define the constant G1 = 1
2C in the definition of Uε and hence all z ∈ Uε

satisfy |z| ≤ 1
2C
√
ε

,

‖mε(z)− 1‖0,0 ≤
1

2

for all z ∈ Uε. This proves that mε(z) is invertible for all ε small enough and all z ∈ Uε
with ∥∥mε(z)

−1
∥∥

0,0
≤ C ′. (4.3.6)

73



4 Large time contribution for η (DM,ε)

On the other hand we know that z + JεDB0J
−1
ε is also invertible for all z ∈ Uε since by

the choice of Uε, infν∈specDB0
|z − ν| ≥ G2 and∥∥∥(z + JεDB0J

−1
ε

)−1
∥∥∥

0,0
≤ 1

G2
,

which implies that for ε small enough and all z ∈ Uε the Schur complement Mε(z) is
invertible and ∥∥Mε(z)

−1
∥∥

0,0
≤
∥∥∥(z + JεDB0J

−1
ε

)−1
∥∥∥

0,0

∥∥mε(z)
−1
∥∥

0,0
≤ C.

The inequality for the p-Schatten norm follows by the inequality∥∥∥(z +DB0)−1
∥∥∥
p
≤ C |z| ,

for p ≥ 2 dimB0 + 1, since DB0 is a Dirac operator on B0, and equation (4.3.6)∥∥mε(z)
−1
∥∥

0,0
≤ C

by ∥∥Mε(z)
−1
∥∥
p
≤
∥∥∥(z −DB0)−1

∥∥∥
p

∥∥mε(z)
−1
∥∥

0,0
≤ C2 |z| .

For the last estimate we prove just as in [BL91, Proposition 9.19] that∥∥∥ε−1DM,ε,3

(
z − JεDB0J

−1
ε

)−1
∥∥∥

0,0
≤ C

by using the estimates of Lemma 4.1.12 and Theorem 4.2.12. Then the statement follows
for all z ∈ Uε by equation (4.3.6) since∥∥ε−1DM,ε,3Mε(z)

−1
∥∥

0,0
≤
∥∥∥ε−1DM,ε,3

(
z + JεDB0J

−1
ε

)−1
∥∥∥

0,0

∥∥mε(z)
−1
∥∥

0,0
≤ C.

4.3.7 Proposition. There exist constants C1, C2, ε0 > 0 such that for all ε ∈ (0, ε0),
z ∈ Uε and p ≥ 2 dimM + 1 the following inequalities hold true∥∥∥(z − ε−1DM,ε

)−1 −
(
z + JεDB0J

−1
ε

)−1
∥∥∥

0,0
≤ C1

√
ε |z| , (4.3.7)∥∥∥(z − ε−1DM,ε

)−1
∥∥∥
p
≤ C2 |z| . (4.3.8)

Proof. For the first estimate (4.3.7) we know that(
z − ε−1DM,ε

)−1 −
(
z + JεDB0J

−1
ε

)−1

=

(
Mε(z)

−1 −
(
z + JεDB0J

−1
ε

)−1
ε−1Mε(z)

−1DM,ε,2Rε(z)
ε−1Rε(z)DM,ε,3Mε(z)

−1 Rε(z)
(
1 + ε−2DM,ε,3Mε(z)

−1DM,ε,2Rε(z)
))
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So let us start with the left upper corner. We know by equations (4.3.5) and (4.3.6) in
the proof of Proposition 4.3.6 and by the choice of Uε that for ε small enough and for
all z ∈ Uε∥∥∥Mε(z)

−1 −
(
z + JεDB0J

−1
ε

)−1
∥∥∥

0,0
≤
∥∥∥(z + JεDB0J

−1
ε

)−1
∥∥∥

0,0
‖mε(z)− 1‖0,0

≤ C
√
ε |z| .

For the remaining three entries we use the inequalities of Proposition 4.3.6, Theorem
4.2.12 and the estimates (4.3.1) and (4.3.2) of Lemma 4.3.5 to see that they are all
bounded in the ‖.‖0,0-norm by C

√
ε |z|.

For the inequality (4.3.8) the same estimates as above combined with estimate (4.3.3)
of Lemma 4.3.5 and the fact that the p-Schatten norm of Mε(z) is bounded for z ∈ Uε
lead to the statement that ∥∥∥(z − ε−1DM,ε

)−1
∥∥∥
p
≤ C |z|

for all ε small enough and z ∈ Uε.

4.3.2 Main Theorems

4.3.8 Definition. We define the contour Γ = Γ−
·
∪ Γ0

·
∪ Γ+ as in [Goe14, Section 2.d].

We denote the smallest absolut value of a non-zero eigenvalue of DB0 by λB0 . Let c > 0
be a constant such that c < λB0/2.

Γ0

c λB0−λB0

Re

Im
Γ+Γ−

4.3.9 Remark. Since DM,ε is a self-adjoint operator its spectrum has to be real. There-
fore we know by Proposition 4.3.7 that there exists an ε0 such that for all ε ∈ (0, ε0) the
contour Γ encloses not just the eigenvalues of DB0 but also the eigenvalues of ε−1DM,ε.

4.3.10 Definition. We choose ε0 > 0 small enough such that all statements in the
previous sections are fulfilled. Then we define projections Pε and Qε = 1 − Pε on
L2 (M,V ⊗ π∗ΣB) for all ε ∈ (0, ε0) by

Pε =
1

2πi

∫
Γ0

(
z − ε−1DM,ε

)−1
dz,

Qε = 1− Pε =
1

2πi

∫
Γ+∪Γ−

(
z − ε−1DM,ε

)−1
dz.
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4.3.11 Theorem. There exists an 0 < α < 1 such that

lim
ε→0

1√
π

∞∫
εα−2

tr
(

(1− Pε) ◦DM,εe
−tD2

M,ε ◦ (1− Pε)
) dt√

t
= −η (DB0) ,

where again DB0 denotes the twisted Dirac operator on ΣB0 ⊗ kerDX → B0.

Proof. We write

∞∫
εα−2

tr
(

(1− Pε) ◦DM,εe
−tD2

M,ε ◦ (1− Pε)
) dt√

t

=

∞∫
εα

tr
(

(1− Pε) ◦ ε−1DM,εe
−tε−2D2

M,ε ◦ (1− Pε)
) dt√

t

=

∞∫
εα

tr

 1

2πi

∫
Γ+∪Γ−

ze−tz
2 (
z − ε−1DM,ε

)−1
dz

 dt√
t

as well as

−η (DB0) = η (−DB0) =
1√
π

∞∫
0

tr

 1

2πi

∫
Γ+∪Γ−

ze−tz
2

(z +DB0)−1 dz

 dt√
t
.

Now

lim
ε→0

1√
π

∞∫
εα

tr

 1

2πi

∫
Γ±∩Uε

ze−tz
2
((
z − ε−1DM,ε

)−1 −
(
z + JεDB0J

−1
ε

)−1
) dt√

t
= 0

follows in the very same way as the proof using holomorphic functional calculus of

lim
ε→o

1√
π

∞∫
εα−2

tr
(

(1− Pε) ◦DM,εe
−tD2

M,ε ◦ (1− Pε)
) dt√

t
= η (DB ⊗ kerDX)

for constant kernel dimension of DX in [Goe14, Proposition 2.10]. By defining holomor-
phic functions F±k,t : C→ C for all k ∈ N>0 which satisfy

dk

dzk
F±k,t(z) = ze−tz

2
and lim

z→±∞
F±k,t(z) = 0,
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one proves with the resolvent estimates of Proposition 4.3.7 that∥∥∥(1− Pε) ◦
(
ε−1DM,εe

−tε−2D2
M,ε

)
◦ (1− Pε)− Jε

(
DB0e

−tD2
B0

)
J−1
ε

∥∥∥
1

≤ C
∫

Γ±∩Uε

∣∣F±p,t(z)∣∣ p∑
j=0

∥∥∥(z − ε−1DM,ε

)−1
∥∥∥j
p

·
∥∥∥(z − ε−1DM,ε

)−1 −
(
z + JεDB0J

−1
ε

)−1
∥∥∥

0,0

∥∥∥(z +DB0)−1
∥∥∥p−j
p

dz

≤ C
√
ε

∫
Γ±∩Uε

∣∣F±p,tzp+1
∣∣ dz

≤ C
√
εt−p−3/2e−ct.

Now by choosing 0 < α < 1
2p+4 we see that

lim
ε→0

1√
π

∞∫
εα

tr

 1

2πi

∫
Γ±∩Uε

ze−tz
2
((
z − ε−1DM,ε

)−1 −
(
z + JεDB0J

−1
ε

)−1
) dt√

t
= 0.

Since ∥∥∥(z +DB0)−1
∥∥∥
p
≤ C |z| ,

it is easy to see that the remaining part of η (−DB0) converges to 0

lim
ε→0

1√
π

εα∫
0

tr

 1

2πi

∫
Γ+∪Γ−

ze−tz
2

(z +DB0)−1 dz

 dt√
t

+
1√
π

∞∫
εα

tr

 1

2πi

∫
(Γ+∪Γ−)∩Ucε

ze−tz
2

(z +DB0)−1 dz

 dt√
t

= 0.

It remains to show that

lim
ε→0

1√
π

∞∫
εα

tr

 1

2πi

∫
(Γ+∪Γ−)∩Ucε

ze−tz
2 (
z − ε−1DM,ε

)−1
dz

 dt√
t

= 0.

Therefore we check that for ε small enough and all z ∈ Γ, so in particular for z ∈ Γ∩U cε ,∥∥∥(z − ε−1DM,ε

)−1
∥∥∥
p

≤
∥∥∥(i− ε−1DM,ε

)−1
∥∥∥
p

+ |i− z|
∥∥∥(z − ε−1DM,ε

)−1
∥∥∥

0,0

∥∥∥(i− ε−1DM,ε

)−1
∥∥∥
p

≤ C |z|
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by equation (4.3.8) in Proposition 4.3.7 and the choice of our contour Γ. Therefore there
exist constants c, C > 0 such that for all ε small enough∣∣∣∣∣∣∣tr

 1

2πi

∫
(Γ+∪Γ−)∩Ucε

ze−tz
2 (
z − ε−1DM,ε

)−1
dz


∣∣∣∣∣∣∣ ≤ ce−Ctε

−1

since |z| ≥ G2√
ε

for z ∈ U cε . But this leeds to∣∣∣∣∣∣∣
∞∫
εα

tr

 1

2πi

∫
(Γ+∪Γ−)∩Ucε

ze−tz
2 (
z − ε−1DM,ε

)−1
dz

 dt√
t

∣∣∣∣∣∣∣
≤ c

∞∫
εα

e−Ctε
−1 dt√

t

= c
√
ε

∞∫
εα−1

e−Ct
dt√
t

and since we chose α < 1

lim
ε→0

1√
π

∞∫
εα

tr

 1

2πi

∫
(Γ+∪Γ−)∩Ucε

ze−tz
2 (
z − ε−1DM,ε

)−1
dz

 dt√
t

= 0

and the theorem follows.

4.3.12 Theorem. Let 0 < α < 1 be chosen as in Theorem 4.3.11 and let us assume
that there exists an ε0 > 0 such that dim kerDM,ε is constant for all ε ∈ (0, ε0). Then

lim
ε→0

1√
π

∞∫
εα−2

tr
(
Pε ◦DM,εe

−tD2
M,ε ◦ Pε

) dt√
t

=

dim kerDB0∑
ν=1

sign (λν(ε)) ,

where λν(ε) are the finitely many eigenvalues of DM,ε that decay faster than ε as ε→ 0.

Proof. By the resolvent estimates of Propostition 4.3.7 we can show by the same methods
as in the proof of [Goe14, Proposition 2.10] that

lim
ε→0

∥∥∥∥∥∥ 1

2πi

∫
Γ0

((
z − ε−1DM,ε

)−1 −
(
z + JεDB0J

−1
ε

)−1
)
dz

∥∥∥∥∥∥
1

= 0

and therefore there exists an ε0 > 0 such that for all ε ∈ (0, ε0)

rkPε = dim kerDB0 <∞.
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But this means that there are just finitely many eigenvalues
{
ε−1λν(ε)

}
ν=1,...,dim kerDB0

of ε−1DM,ε converging to 0 as ε → 0. Therefore and by our assumption we find a
constant ε0 > 0 small enough such that the signs of λν(ε) are constant for all ε ∈ (0, ε0).
By using the Mellin formula we see that

lim
ε→0

1√
π

∞∫
εα−2

tr
(
Pε ◦DM,εe

−tD2
M,ε ◦ Pε

) dt√
t

= lim
ε→0

1√
π

∞∫
εα

tr
(
Pε ◦ ε−1DM,εe

−tε−2D2
M,ε ◦ Pε

) dt√
t

= lim
ε→0

1√
π

dim kerDB0∑
ν=1

sign
(
ε−1λν(ε)

) ∞∫
εα

e−u
du√
u

=

dim kerDB0∑
ν=1

sign (λν(ε))

for ε small enough as explained above.
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