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Abstract. In this thesis, we combine and merge the multiple-curve
approach and the two-price theory based on acceptability indices in a Lévy
interest rate model.
A multiple-curve Heath-Jarrow-Morton (HJM) forward rate model driven

by time-inhomogeneous Lévy processes (a multiple-curve Lévy term struc-
ture model) is presented. We �nd deterministic conditions which ensure the
monotonicity of the curves. Explicit valuation formulas for some interest rate
derivatives are established, namely forward rate agreements, swaps, caps,
�oors and digital options. These formulas can numerically be evaluated very
fast by using the Fourier based valuation method. Furthermore, we apply the
two-price theory to this multiple-curve setting. Ask and bid model prices of
caplets, �oorlets and digital options are derived.
A general procedure how to calibrate this two-price multiple-curve interest

rate model to market data is described. As a practical application, the model
is calibrated to market prices of caps for dates before and after the global
�nancial crisis.
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Introduction

In answer to the changes in �xed income markets due to the global �nancial crisis in
the summer of 2007, practitioners and researchers established the so-called multiple-
curve approach. Basically, the post-crisis market situation can be explained by taking
into account credit and liquidity risk. But instead of developing a complicated and
sophisticated model that considers credit and liquidity e�ects, one prefers using this
more practical approach.

The multiple-curve approach is based on the consideration of an individual discount
curve and as many term structures of interest rates as occurring tenors. The term
structure of interest rates, also known as the yield curve, is the function that relates the
yield on a zero-coupon bond to maturity (continuously compounded rate of return from
holding a zero-coupon bond over a period of time; called yield-to-maturity). A tenor
represents the duration of a compounding period. By the one-to-one correspondence
between the bond price and its yield-to-maturity, the term structure of interest rates can
be represented either by the yield curve or by the function that relates the bond price
to maturity (bond price curve). In this thesis, each term structure is interpreted as the
bond price curve. Therefore, we often use the term curve as an analogy for the notion of
term structure.

In the multiple-curve setting, interest rates are divided into di�erent risk classes de-
pending on their related tenor (�xed income market segmentation). This means that
each tenor-related term structure re�ects the respective (credit and liquidity) risk of the
corresponding tenor-dependent interest rates. The discount curve is speci�cally used to
determine the present value of a (future) payo�. It can be interpreted as the risk-free
curve.

In the post-crisis situation, a bootstrapping technique for the construction of the dif-
ferent initial curves was developed. Furthermore, the question concerning the stochastic
modelling of the dynamics of the various tenor-dependent interest rates arises. A logically
similar method to the one used for the initial multiple-curve construction was applied.
Generally speaking, the interest rate curves are modelled jointly but distinctly. Conse-
quently, a large number of short-rate models, Heath-Jarrow-Morton-based models and
market models related to the multiple-curve approach were developed. We refer to this
type of models as multiple-curve interest rate models.

We present a multiple-curve interest rate model based on the framework of Heath-
Jarrow-Morton. A discount curve and a �nite set of risky curves which take into account
credit and liquidity issues are modelled. We use time-inhomogeneous Lévy processes as
driving processes of the model. On the one hand, their generality related to the theory
of semimartingales are of special interest from a mathematical point of view. On the
other hand, these processes are also appropriate for practical purposes because of their
distributional �exibility and relatively simple handling.
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The di�erences between the curves originate from the individual included risks. In
general, curves corresponding to larger tenors represent more credit and liquidity risk
than curves related to smaller tenors. This fact leads to a crucial monotonicity condition
of the curves. More speci�cally, the larger the related tenor (the risk) of a (�ctitious
risky) bond is, the cheaper it is. The discount bond is therefore the most expensive one.
One of our key objectives is the development of a model framework which guarantees this
monotonicity. We derive deterministic conditions on the model quantities, which results
in additional restrictions on the model parameters.
Furthermore, liquidity risk can cause a large spread between ask and bid prices of

a derivative. This situation is also observed in �xed income market data during the
�nancial crisis. On this account, we apply the two-price theory based on acceptability
indices to our multiple-curve interest rate model. Ask and bid prices of some �nancial
products are derived and we present a method to evaluate them numerically.
The question how to calibrate our two-price multiple-curve model to market data arises.

A general calibration procedure that deals with this fact is described. To illustrate this
issue, we calibrate the model to market data for dates before and during the global
�nancial crisis. The calibration results are also demonstrated in detail.

Overview - Synopsis

This thesis consists of four chapters and three appendices. It is organised as follows:
Chapter 1 deals with the mathematical tools and concepts that are needed in order
to develop our model. We review time-inhomogeneous Lévy processes which we use
as driving processes of the model. The theoretical background for this topic is given
by Jacod and Shiryaev [56]. Furthermore, we consider the mathematical modelling of
credit risk. We investigate the enlargements of �ltrations and the martingale invariance
property. Based on these issues, we study the construction of conditionally independent
default times with regard to our multiple-curve approach. The works of Brémaud and
Yor [16], Jeanblanc and Le Cam [59] and Bielecki and Rutkowski [12] are crucial for this
study.
In chapter 2, we introduce the theory of two prices based on the concept of acceptability

indices. Ask and bid prices for �nancial positions related to a static period of time are
derived. We use the paper of Cherny and Madan [22] and Eberlein and Madan [35] as
main reference. We also present the fundamental theory of interest rate term structure
modelling. In particular, the multiple-curve approach is motivated by market data that
are observed since the beginning of the global �nancial crisis in the summer of 2007.
We extensively explain this modern model approach. The application of the two-price
theory to the multiple-curve approach is also described. Finally, we present a general
calibration procedure in this two-price and multiple-curve setting.
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Chapter 3 introduces our multiple-curve Lévy forward rate model. This model ap-
proach bases on the work of Eberlein and Raible [38], Eberlein and Kluge [33] and
Crépey, Grbac, and Nguyen [23]. Moreover, we apply the two-price theory to this model.
Valuations formulas for some interest rate derivatives are established.
In chapter 4, we calibrate our model to market data for dates before and during the

�nancial crisis. The accurate framework and the calibration results are stated.
In the appendices, we present the calibration results in form of the relative errors

between market and model prices.

Practical Implementation

For practical purposes, we apply the programming language and environment R for
the graphics as well as for the statistical and numerical computations. The used packages
are mentioned at the end of the thesis. The presented data sets of this work are based
on data provided by Bloomberg.
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CHAPTER

ONE

MATHEMATICAL PRELIMINARY

In this chapter, some basic mathematical tools and concepts that are needed to de-
velop our model are stated. We �rst introduce the driving process that we will use:
Time-inhomogeneous Lévy processes. The mathematical theory for these processes is es-
sentially developed by Jacod and Shiryaev [56]. Therefore, we mainly adapt the notation
of these authors. The use of time-inhomogeneous Lévy processes in �nancial models is
justi�ed by their great distributional �exibility (cf. Eberlein and Keller [32], Eberlein
and Raible [38], Eberlein [29], Eberlein and Kluge [34], Eberlein, Grbac, and Schmidt
[42] and Eberlein, Grbac, and Schmidt [41]).

We also address the mathematical modelling of credit risk. More speci�cally, we deal
with the enlargement of �ltrations and the martingale invariance property. This topic is
intensively studied by Brémaud and Yor [16], Jeanblanc and Le Cam [59] and Bielecki and
Rutkowski [12]. Then, we present a method for the canonical construction of conditionally
independent default times. This approach is of particular importance for our type of
multiple-curve Heath-Jarrow-Morton model.

1.1. Driving Process of the Model

Let T ∗ ∈ R+ := [0,∞) be a �nite time horizon and B := (Ω,G ,F = (Ft)t∈[0,T ∗], P ) be
a stochastic basis that satis�es the usual conditions (or, equivalently, is complete) in the
sense of Jacod and Shiryaev [56, De�nition I.1.2 and De�nition I.1.3]:

• The stochastic basis B is de�ned as probability space (Ω,G , P ) endowed with an
increasing and right-continuous family F = (Ft)t∈[0,T ∗] of sub-σ-�elds of G . The
family F = (Ft)t∈[0,T ∗] is called �ltration and B is also named as �ltered probability
space. By convention, one usually sets FT ∗ = G .

• The stochastic basis B is said to satisfy the usual conditions (or, equivalently, is
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1. Mathematical Preliminary

called complete) if the σ-�eld G is P -complete and if every Ft contains all P -null
sets of G .

As driving process, we consider a d-dimensional time-inhomogeneous Lévy process
L = (L1, . . . , Ld)T on B with Li = (Lit)t∈[0,T ∗] for every i ∈ {1, . . . , d} with d ∈ N.
This means that L is an F-adapted process with independent increments and absolutely
continuous characteristics (abbreviated by PIIAC) de�ned on B (see Eberlein, Jacod,
and Raible [39] and Jacod and Shiryaev [56]). Such type of stochastic process is also
known as additive process (see Sato [81]). We emphasise that L is a d-dimensional
semimartingale (see also Jacod and Shiryaev [56, �5.]).

We can assume that the paths of each component of L are càdlàg (continue à droite

avec des limites à gauche). This means that these paths are right-continuous and admit
left-hand limits (almost surely). We also postulate that each component Li starts in
zero. The law of Lt is determined by its characteristic function:

E[ei〈u,Lt〉] = exp

(∫ t

0

[
i〈u, bs(h)〉 − 1

2
〈u, csu〉

+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, h(x)〉

)
Fs(dx)

]
ds

)
(u ∈ Rd).

(1.1)

Here, h is a truncation function in C d
t , bs(h) = (b1s(h), . . . , bds(h))T : [0, T ∗] → Rd,

cs = (cijs )i,j≤d : [0, T ∗] → Rd×d whose values are in the set of symmetric nonnegative-
de�nite d× d-matrices and Fs is a Lévy measure for every s ∈ [0, T ∗], i.e. a nonnegative
measure on (Rd,B(Rd)) that integrates (|x|2 ∧ 1) and satis�es Fs({0}) = 0 for every
s ∈ [0, T ∗]. As truncation function, one usually takes h(x) = x ·1{|x|≤1}. We denoted by
〈 · , · 〉 the Euclidean scalar product on Rd and | · | is the corresponding norm. The scalar
product on Rd is extended to complex numbers by setting 〈w, z〉 :=

∑d
j=1wjzj for every

w, z ∈ Cd. Thus, 〈 · , · 〉 is not the Hermitian scalar product here. We further assume
that ∫ T ∗

0

[
|bs(h)|+ ‖cs‖+

∫
Rd

(|x|2 ∧ 1)Fs(dx)
]
ds <∞,

where ‖ · ‖ denotes any norm on the set of d × d-matrices. The triplet (b, c, F ) =

(bs, cs, Fs)s∈[0,T ∗] represents the local characteristics of L. We also make the following
standing assumption on the (exponential) moments throughout this thesis:

Assumption (EM): There are constants M, ε > 0, such that, for every

u ∈ [−(1 + ε)M, (1 + ε)M ]d,

6



1.1. Driving Process of the Model

we have∫ T ∗

0

∫
{|x|>1}

exp〈u, x〉Fs(dx)ds <∞.

Assumption (EM) is equivalent to E[exp〈u, Lt〉] < ∞ for all t ∈ [0, T ∗] and u ∈
[−(1 + ε)M, (1 + ε)M ]d. We will consider interest rate models with underlying processes
that are exponentials of stochastic integrals with respect to L. By the theory of risk-
neutral pricing, these underlying processes have to be (local) martingales under the
risk-neutral measure. Therefore, they have to have �nite expectations which is exactly
guaranteed by assumption (EM). A direct consequence of (EM) is that the random
variable Lt has �nite expectation. Therefore, the representation (1.1) can be written as

E[ei〈u,Lt〉] = exp

(∫ t

0

[
i〈u, bs〉 −

1

2
〈u, csu〉

+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉

)
Fs(dx)

]
ds

)
. (1.2)

We emphasise that the characteristic b is now di�erent from the one in (1.1) (see Sato
[81, chapter 2, section 8]). In this thesis, we will always work with the local characteristics
(b, c, F ) that are derived from form (1.2). Another implication of assumption (EM) is
that the process L is even a special semimartingale. Thus, its canonical representation
is given by the simple form

Lt =

∫ t

0
bsds+

∫ t

0

√
csdWs +

∫ t

0

∫
Rd
x(µL − ν)(ds, dx) (1.3)

(see Jacod and Shiryaev [56, Corollary II.2.38]), where W = (Wt)t∈[0,T ∗] is a standard
d-dimensional Brownian motion (Wiener process),

√
cs is a measurable version of the

square root of cs, and µL is the random measure of jumps of L with compensator
ν(ds, dx) = Fs(dx)ds. Obviously, the integrals in (1.3) should be understood componen-
twise. We stress that assumption (EM) is valid for all processes that we are interested
in. In particular, it holds for processes that are generated by generalised hyperbolic dis-
tributions. The (extended) cumulant process associated with process L is denoted by θs
and given by

θs(z) = 〈z, bs〉+
1

2
〈z, csz〉+

∫
Rd

(
e〈z,x〉 − 1− 〈z, x〉

)
Fs(dx)

for every z ∈ Cd where this function is de�ned. A detailed analysis of the cumulant
process for semimartingales is given by Kallsen and Shiryaev [61]. Note that if L is
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1. Mathematical Preliminary

a (homogeneous) Lévy process, i.e. if the increments of L are stationary, the triplet
(bs, cs, Fs) and thus also θs do not depend on s. In this case, we write θ for short. It then
equals the cumulant (also called log moment generating function) of L1. Observe that
the cumulant process is related to a speci�c measure. Below, which measure is meant
can unambiguously be seen from the notation.

1.2. Credit Risk Modelling

Our multiple-curve model takes credit risk into consideration. To this end, we present
some related topics that we need to develop this framework. More speci�cally, we give a
detailed explanation of the enlargement of �ltrations and the corresponding martingale
invariance property. Then, the canonical construction of a �nite set of conditionally
independent default times is stated.

1.2.1. Enlargements of Filtrations and the Martingale Invariance Property

Let us consider a stochastic basis (Ω,G ,F = (Ft)t∈R+ , P ) that satis�es the usual condi-
tions. By an enlargement of the �ltration F we mean a �ltration G = (Gt)t∈R+ de�ned
on the same probability space (Ω,G , P ) such that

(i) Ft ⊂ Gt for every t ∈ R+ and

(ii) the stochastic basis (Ω,G ,G = (Gt)t∈R+ , P ) satis�es the usual conditions.

The family F is called reference �ltration. Originally, the right-continuity of G is not
explicitly requested in the de�nition of an enlargement of a �ltration. For technical rea-
sons, we require this condition but we stress that in the remaining part of this subsection
all the claims can be stated without this additional property.
According to Brémaud and Yor [16, section 2.4.], the martingale invariance (or immer-

sion) property is classically stated as any of the following equivalent hypotheses:

(H1) Every square integrable F-martingale is a square integrable G-martingale.

(H2) Every bounded F-martingale is a bounded G-martingale.

(H3) Every F-local martingale is a G-local martingale.

The martingale invariance property reveals a nice structure of the enlargement G
relative to the reference �ltration F (see Brémaud and Yor [16, Theorem 3]). In this
context, the notion of conditional independence of two families of sets with respect to
a given σ-�eld plays an important role. Although we generally use this concept in the
case where all the considered families are σ-�elds, it is bene�cial for our further approach
to de�ne it in a slightly broader sense. To this end, let us consider a probability space

8



1.2. Credit Risk Modelling

(F,F , Q). We call two families of sets A and B with A,B ⊂ F conditionally independent
given a sub-σ-�eld S of F if

Q(A ∩B|S) = Q(A|S)Q(B|S) a.s. for all A ∈ A, B ∈ B. (1.4)

We symbolically write A ⊥ B|S if the relation (1.4) is valid.

Lemma 1.2.1 For two families of sets A and B that are closed under formation of

intersections, we have

A ⊥ B|S =⇒ σ(A) ⊥ σ(B)|S.

Proof: For every set E ∈ F , we de�ne

DE := {G ∈ F| Q(E ∩G|S) = Q(E|S)Q(G|S) a.s.}.

One easily shows that DE is a Dynkin system. Clearly, if A ∈ A, we have B ⊂ DA. From
Dynkins π-λ-Theorem (for details see Klenke [63, Satz 1.19]), it follows that σ(B) =

δ(B) ⊂ DA. By the symmetry property of the conditional independence of two sets, this
fact can be reformulated as A ⊂ DB for every B ∈ σ(B). By using Dynkins π-λ-Theorem
again, we obtain σ(A) ⊂ DB for every B ∈ σ(B). �

In the case where A and B are σ-�elds, condition (1.4) can equivalently be written as

EQ[ξη|S] = EQ[ξ|S]EP [η|S] a.s.

for any bounded, A-measurable random variable ξ and any bounded, B-measurable ran-
dom variable η. This fact is based on the monotone convergence Theorem for conditional
expectations. Another crucial argument related to the martingale invariance property is
a result coming from Dellacherie and Meyer [26]: For three sub-σ-�elds A1, A2 and A3

of F , it holds that A1 and A3 are conditionally independent given A2 under Q if and
only if

EQ[X3|A1 ∨ A2] = EQ[X3|A2]

for every bounded and A3-measurable random variable X3 (cf. Grbac [50, Theorem
2.3.]), where we de�ne A1 ∨A2 := σ(A1,A2). Observe that this statement can easily be
extended to the set of integrable A3-measurable random variables by standard truncation
and approximation arguments (for instance, consider X3,n = max{X3, n} for n ∈ N).
The following equivalent forms of the hypotheses above are obtained by the result of
Dellacherie and Meyer [26]:

(H4) For every t ∈ R+, the σ-�elds F∞ and Gt are conditionally independent given Ft

under P .

9



1. Mathematical Preliminary

(H5) For any t ∈ R+ and any bounded, F∞-measurable random variable ξ, we have

EP [ξ|Gt] = EP [ξ|Ft].

(H6) For any t ∈ R+ and any bounded, Gt-measurable random variable η, we have

EP [η|F∞] = EP [η|Ft].

We mention that Bielecki and Rutkowski [12, chapter 6] state the martingale invariance
property as follows:

(H7) Every F-martingale is a G-martingale.

It is shown that (H7) is equivalent to (H4) (see Bielecki and Rutkowski [12, Lemma
6.1.1.]).

There are basically two ways to enlarge a �ltration (cf. Jeanblanc and Le Cam [59]
and Bielecki and Rutkowski [12]):

1. Initial enlargement: Gt = Ft ∨H for a sub-σ-�eld H of G .

2. Progressive enlargement: Gt = Ft ∨Ht for a �ltration H = (Ht)t∈R+ de�ned on
(Ω,G , P ).

Kusuoka [65] proves by means of a counterexample that the martingale invariance
property is generally not invariant with respect to an equivalent change of the underlying
probability measure. However, this fact does not pose a serious problem in our setting.
Concretely, let us consider two probability measures P and Q de�ned on the �ltered
space (Ω,G ,G = (Gt)t∈R+) where Q is locally absolutely continuous with respect to P ,
i.e. Q is absolutely continuous with respect to P on (Ω,Gt) for every t ∈ R+ (shortly

written as Q
loc
� P ). Then, by Jacod and Shiryaev [56, Theorem III.3.4], there exists a

Radon-Nikodym density process Z = (Zt)t∈R+ with

dQ|Gt
dP|Gt

= Zt

for all t ∈ R+. If the density process Z is F-adapted the martingale invariance property
holds after change of measure (see also Jamshidian [57]). To see this, letM be an (F, Q)-
martingale. Since Z is F-adapted we conclude that MZ is an (F, P )-martingale by an
application of Jacod and Shiryaev [56, Proposition III.3.8]. The martingale invariance
property is valid for (F,G) under P . Thus, MZ is a (G, P )-martingale and it follows
that M is a (G, Q)-martingale by applying Jacod and Shiryaev [56, Proposition III.3.8]
once again.
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1.2. Credit Risk Modelling

1.2.2. Canonical Construction of Conditionally Independent Default Times

The aim of this subsection is the construction of a �nite set of default times. They are
used in the multiple-curve term structure model to specify the credit risk components. To
this end, let B̂ = (Ω̂, F̂ , F̂ = (F̂t)t∈R+ , P ) be a complete stochastic basis (recall Jacod
and Shiryaev [56, De�nition I.1.2 and I.1.3]) andm ∈ N∗ := {1, 2, 3, . . . }. The probability
measure P will play the role of a local martingale measure in the model. Let Γ1, . . . ,Γm

be real-valued, F̂-adapted, continuous and increasing stochastic processes de�ned on B̂.
It is assumed that Γk0 = 0 and Γk∞ := limt↑∞ Γkt = ∞ for every k ∈ {1, . . . ,m}. We
consider an auxiliary probability space (Ω̃, F̃ , P̃ ) endowed with a family of independent
random variables ξ1, . . . , ξm that are uniformly distributed on the interval [0, 1]. This
situation can canonically be achieved by considering the product space (Ω̃, F̃ , P̃ ) =(
×m

k=1 Ω̃k,
⊗m

k=1 F̃k,
⊗m

k=1 P̃k

)
and setting ξk = pk for every k ∈ {1, . . . ,m} with

pk :

{
Ω̃→ Ω̃k

ω̃ = (ω̃1, . . . , ω̃m) 7→ ω̃k

and (Ω̃k, F̃k, P̃k) = (R,B(R),U), where we denote by U the uniform distribution on [0, 1]

(cf. Bauer [9, chapter II]).

We state the product space

(Ω,G , P d) := (Ω̂× Ω̃, F̂ ⊗ F̃ , P ⊗ P̃ )

and denote by F = (Ft)t∈[0,T ∗] the trivial extension of F̂ to the enlarged probability space
(Ω,G , P d). This means that each A ∈ Ft is of the form Â× Ω̃ for some Â ∈ F̂t. Observe
that F is right-continuous and denotes the reference �ltration here. All the random
variables (functions) and stochastic processes de�ned on B̂ and (Ω̃, F̃ , P̃ ) are extended
to the enlarged �ltered probability space (Ω,G ,F = (Ft)t∈R+ , P

d) in the usual canonical
way. We retain their names when we consider them on this complete stochastic basis
to avoid unnecessary and confusing notation (cf. Eberlein and Özkan [36] and Kluge
[64, section 4.2]). Observe that every (F̂, P )-(local) martingale is also a (F, P d)-(local)
martingale.

For every k ∈ {1, . . . ,m}, let us de�ne a random time τk : Ω → R+ on (Ω,G , P d) by
setting

τk := inf{t ∈ R+ | e−Γkt ≤ ξk} = inf{t ∈ R+ | Γkt ≥ ηk},

where the random variable ηk := − ln ξk is exponentially distributed with mean one
under P d. Obviously, η1, . . . , ηm is a family of independent random variables. For every
k ∈ {1, . . . ,m}, we denote by Hk = (H k

t )t∈R+ the right-continuous �ltration generated

11



1. Mathematical Preliminary

by the default process Hk = (Hk
t )t∈R+ that is de�ned by Hk

t = 1{τk≤t}, i.e. H k
t =

σ(Hk
u : 0 ≤ u ≤ t) = σ({τk ≤ u} : 0 ≤ u ≤ t).

Now, we want to enlarge the reference �ltration F. Unfortunately, the �ltration G̃ =

(G̃t)t∈R+ induced by G̃t := Ft ∨ H 1
t ∨ · · · ∨ H m

t := σ(Ft,H 1
t , . . . ,H

m
t ) (written as

G̃ = F ∨H1 ∨ · · · ∨Hm) does not have to be right-continuous (cf. Song [86]). Therefore,
we endow the probability space (Ω,G , P d) with the �ltration G = (Gt)t∈R+ given by

Gt :=
⋂
s>t

G̃s, for any t ∈ R+.

This �ltration trivially satis�es the right-continuity. Since the stochastic basis (Ω,G ,F, P d)

is complete (see also Jacod and Shiryaev [56, �1a. 1.4]) it easily follows that the enlarged
stochastic basis (Ω,G ,G = (Gt)t∈R+ , P

d) is also complete. We conclude that G is speci-
�ed as the smallest enlargement of F containing G̃.

We notice that G̃t represents all information available at date t including the observa-
tions of all random times τ1, . . . , τm. Formally, we have the following Lemma:

Lemma 1.2.2 For any t ∈ R+, the σ-�eld G̃t is given by

G̃t = Ft ∨ σ
(
{τ j ≤ tj} : j ∈ {1, . . . ,m}, 0 ≤ tj ≤ t

)
= Ft ∨ σ

(
{τ j > tj} : j ∈ {1, . . . ,m}, 0 ≤ tj ≤ t

)
= Ft ∨ σ

⋂
j∈J
{τ j > tj} : J ⊂ {1, . . . ,m}, 0 ≤ tj ≤ t ∀ j ∈ J

 .

Proof: Obviously, it is su�cient to show that

H 1
t ∨ · · · ∨H m

t = σ
(
{τ j ≤ tj} : j ∈ {1, . . . ,m}, 0 ≤ tj ≤ t

)
= σ

(
{τ j > tj} : j ∈ {1, . . . ,m}, 0 ≤ tj ≤ t

)
= σ

⋂
j∈J
{τ j > tj} : J ⊂ {1, . . . ,m}, 0 ≤ tj ≤ t ∀ j ∈ J

 .

By de�nition, we have H 1
t ∨ · · · ∨H m

t = σ
(⋃m

j=1 σ({τ j ≤ tj} : 0 ≤ tj ≤ t)
)
. For any

k ∈ {1, . . . ,m}, it clearly holds

H k
t = σ({τk ≤ tk} : 0 ≤ tk ≤ t) ⊂ σ

(
{τ j ≤ tj} : j ∈ {1, . . . ,m}, 0 ≤ tj ≤ t

)

12



1.2. Credit Risk Modelling

and, therefore, we obtain

m⋃
j=1

σ({τ j ≤ tj} : 0 ≤ tj ≤ t) ⊂ σ
(
{τ j ≤ tj} : j ∈ {1, . . . ,m}, 0 ≤ tj ≤ t

)
.

Let k ∈ {1, . . . ,m} and tk ∈ R+ with 0 ≤ tk ≤ t be chosen. Since {τk ≤ tk} ∈H k
t , it is

evident that

{τk ≤ tk} ∈
m⋃
j=1

σ({τ j ≤ tj} : 0 ≤ tj ≤ t).

The second and third equality are immediately clear by de�nition. �

Note that the generator of the σ-�eld Ht := H 1
t ∨ · · · ∨H m

t

E :=
{ ⋂
j∈J
{τ j > tj} : J ⊂ {1, . . . ,m}, 0 ≤ tj ≤ t ∀ j ∈ J

}
is closed under formation of intersections. It is evident that the random times τ1, . . . , τm

are G-stopping times but we stress that they may fail to be F-stopping times. We
explicitly assume that τ1, . . . , τm are not F-stopping times. Since Γkt is F∞-measurable
and ξk is independent of F∞ on (Ω,G , P d) for every k ∈ {1, . . . ,m}, we obtain by using
Kallenberg [60, Theorem 6.4] that

P d(τk > t | F∞) = P d(e−Γkt > ξk | F∞) = P̃ (e−x > ξk)|x=Γkt
= e−Γkt .

Consequently, we conclude from the Ft-measurability of the last term that

P d(τk > t | Ft) = P d(P d(τk > t | F∞) | Ft) = e−Γkt

for each t ∈ R+. Therefore, the stochastic process Γk represents the F-hazard process
of τk under P d (see Bielecki and Rutkowski [12, De�nition 8.2.1.]) and the (F, G̃k)-
martingale hazard process of τk under P d, where we set G̃k := F ∨ Hk (see Bielecki
and Rutkowski [12, De�nition 6.1.1. and Lemma 8.2.2.]). More speci�cally, the process
Mk = (Mk

t )t∈R+ given by

Mk
t = Hk

t − Γkt∧τk (1.5)

is a G̃k-martingale under P d. One veri�es that it is also a G̃-martingale under P d (cf.
Bielecki and Rutkowski [12, Lemma 9.1.1.]).

By a straightforward modi�cation of Bielecki and Rutkowski [12, Lemma 9.1.1.] and
a further application of Kallenberg [60, Theorem 6.4], we obtain for each subset J ⊂

13
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{1, . . . ,m} and every T > 0 satisfying 0 ≤ tj ≤ T for any j ∈ J that

P d(
⋂
j∈J
{τ j > tj} | F∞) =P d(

⋂
j∈J
{τ j > tj} | FT ) =

∏
j∈J

e
−Γjtj = e

−
∑
j∈J Γjtj .

In particular, for any k ∈ {1, . . . ,m} and every 0 ≤ tk ≤ T it holds

P d(τk > tk | F∞) = P d(τk > tk | FT ) = e
−Γktk . (1.6)

We conclude that the random times τ1, . . . , τm are (dynamically) conditionally indepen-
dent with respect to �ltration F under P d (see Bielecki and Rutkowski [12, De�nition
9.1.1. and De�nition 9.1.2.]). We stress that these properties are additional features of
the canonical construction of the random times τ1, . . . , τm which means that they are
not necessarily valid in a general framework.

Next, we examine if the martingale invariance property for F and G is satis�ed.

Lemma 1.2.3 For any t ∈ R+, the σ-�elds F∞ and Ht = H 1
t ∨ · · · ∨H m

t are condi-

tionally independent given Ft under P
d.

Proof: Let A ∈ F∞ and B ∈ E . Then, there is a subset J ⊂ {1, . . . ,m} and 0 ≤ tj ≤ t

for any j ∈ J such that B =
⋂
j∈J{τ j > tj} and we get

P d(A ∩
⋂
j∈J
{τ j > tj}|Ft) = EP d

[
1A1

⋂
j∈J{τ j>tj}|Ft

]
= EP d

[
EP d

[
1A1

⋂
j∈J{τ j>tj}|F∞

]
|Ft

]
= EP d

[
1AP

d(
⋂
j∈J
{τ j > tj}|F∞)|Ft

]
= P d(A|Ft)P

d(
⋂
j∈J
{τ j > tj}|Ft).

Then, the statement follows from Lemma 1.2.1. �

Consequently, it follows that the martingale invariance property is ful�lled in a frame-
work where we consider F and G̃. To see this, let M be an F-martingale under P d.
Obviously, M is G̃-adapted and, for t, s ∈ R+ with s ≤ t, we have

EP d

[
Mt|G̃s

]
= EP d

[
Mt|Fs ∨H 1

s ∨ · · · ∨H m
s

]
= EP d

[
Mt|Fs

]
= Ms

and therefore (H7) holds for F and G̃. The martingale invariance property should be
valid for F and the enlargement G. To show this, let us consider a bounded F-martingale
M , s, t ∈ R+ with s ≤ t and A ∈ Gs =

⋂
u>s G̃u. Clearly, M is G-adapted and it holds

14



1.2. Credit Risk Modelling

that A ∈ G̃u for every u satisfying s < u < t. For each ũ ∈ (s, t), we have∫
A
EP d [Mt|Gs]dP d =

∫
A
MtdP

d =

∫
A
EP d [Mt|G̃ũ]dP d =

∫
A
MũdP

d

from which we conclude that∫
A
MtdP

d =

∫
A
MũdP

d

for every A ∈ Gs. Then, by taking the limit ũ ↓ s on both sides and applying the
dominated convergence Theorem, we obtain∫

A
EP d [Mt|Gs]dP d =

∫
A
MtdP

d =

∫
A
MsdP

d,

where we used the right-continuity of the process. Hence, M is also a bounded G-
martingale and from hypothesis (H2) we obtain the validity of the martingale invariance
property with respect to �ltration F and each enlargement Ĝ of F satisfying Ĝ ⊂ G.
Analogously, one shows that the process Mk in (1.5) is also a G-martingale.

In the following Lemma, we study the behaviour of a time-inhomogeneous Lévy process
de�ned on the original stochastic basis after enlarging it.

Lemma 1.2.4 Let L be a d-dimensional time-inhomogeneous Lévy process with semi-

martingale characteristics (B,C, ν) = (
∫ ·

0 bsds,
∫ ·

0 csds, Ft ⊗ dt) de�ned on the stochas-

tic basis (Ω̂, F̂ , F̂, P ) (see Jacod and Shiryaev [56, De�nition II.2.6]). Then, it is also

a d-dimensional time-inhomogeneous Lévy process with characteristics (B,C, ν) on the

enlarged stochastic basis (Ω,G ,G, P d).

Proof: The process L is clearly G-adapted, càdlàg and starts in zero. For any t ∈ R+,
one veri�es that the characteristic function of Lt is preserved with respect to P d. To see
this, we have

EP d [exp(i〈u, Lt〉)] =

∫
Ω̂×Ω̃

exp(i〈u, Lt(ω̂, ω̃)〉)d(P ⊗ P̃ )(ω̂, ω̃)

=

∫
Ω̂

exp(i〈u, Lt(ω̂)〉)dP (ω̂) = EP [exp(i〈u, Lt〉)].

Hence, it follows that the characteristics of L are invariant with respect to the enlarge-
ment. We �nally show that the increment Lt−Ls is independent of Gs for every 0 ≤ s < t.
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Let A ∈ Gs and B ∈ B(Rd) be chosen. Then, we obtain

P d(A ∩ {(Lt − Ls) ∈ B}) =

∫
A
1B(Lt − Ls)dP d =

∫
A
EP d [1B(Lt − Ls)|Gs]dP d

=

∫
A
EP d [1B(Lt − Ls)|Fs]dP

d =

∫
A
EP d [1B(Lt − Ls)]dP d

= P d(A)P d({(Lt − Ls) ∈ B}),

where we used hypothesis (H5). �

It is often convenient to postulate that each random time τk possesses an F-intensity
(or F-hazard rate) γk (see Bielecki and Rutkowski [12, chapter 5 and 8]). This means
that the hazard process Γk of τk admits the integral representation

Γkt =

∫ t

0
γks ds

for any t ∈ R+ and some non-negative, F-progressively measurable stochastic process γk

with integrable sample paths. Note that we obtain

Mk
t = Hk

t −
∫ t∧τk

0
γks ds = Hk

t −
∫ t

0
1{τk≥s}γ

k
s ds = Hk

t −
∫ t

0
1{τk>s}γ

k
s ds

for any k ∈ {1, . . . ,m}.

16



CHAPTER

TWO

TWO-PRICE THEORY IN MULTIPLE-CURVE TERM
STRUCTURE MODELS

In this chapter, we present the two-price theory based on acceptability indices developed
by Cherny and Madan [22]. In the classical theory of mathematical �nance, the time-t
arbitrage-free price Πt(X) of a claim with discounted payo� X is determined by the
linear valuation formula

Πt(X) = EQ[X|Ft]. (2.1)

Here, Q is a risk-neutral probability measure de�ned on a �ltered measurable space
(Ω, (Ft)t≥0,F ) and X ∈ L1(Ω,F , Q) (see Delbaen and Schachermayer [25]). In general,
the term (2.1) is assumed to be the valuation formula of the price for which we sell and
buy the �nancial product in liquid markets. But �nancial products that are traded in
illiquid markets typically have two prices: The one for buying from the market, called
ask price, and the other one for selling to the market, referred to as bid price. Here the
market is considered as a passive counterparty (cf. Cherny and Madan [22]). It follows
that the prices are allowed to vary with the trading direction. Typically, the ask price is
above the bid price. In this setting, we obtain non-linear valuation formulas for the ask
and bid prices. The mid price is the price between the ask and the bid price. In general,
the mid price can be interpreted as the average of the current bid and ask prices being
quoted. But we stress that, in some cases, it is rounded up or down to the nearest valid
tradable price for convenience purposes, and it is therefore not the exact average. Of
course, ask and bid market quotes of derivatives also di�er in liquid markets but their
spreads are often seen as negligible.

We stress that our meaning of the spread should not be confused with the bid-ask
spread relating to transaction costs or other frictions (see also the comments of Eberlein
[30]). The e�ect of liquidity risk can cause a large bid-ask spread. More speci�cally, the
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risk of trading and holding a position, especially in illiquid markets, in�uences the ask and
bid prices in such a way that they diverge substantially. This situation was observed in
�xed income markets with the beginning of the �nancial crisis in the summer of 2007. The
two-price theory provides a mathematical framework to deal with this issue. Therefore,
all these facts motivate the application of the two-price theory to the multiple-curve term
structure model approach. The concept of the multiple-curve approach is introduced in
detail. It is motivated by a variety of market anomalies that arise with the beginning
of the crisis. Finally, a method to calibrate a model to market data in this two-price
multiple-curve setting is described.

2.1. Two-Price Theory Based on Acceptability Indices

We review the theory of two prices that is based on the concept of acceptability indices.
A detailed explanation about its origin and development is given. In particular, we state
the crucial connection between coherent utility functions and distortion functions. The
(Weighted Value at Risk) acceptability index is de�ned and we specify the corresponding
ask and bid prices of a �nancial product.

2.1.1. Coherent Utility Functions

Let us consider a period of time between two �xed dates t and T . These points in time
are seen as today (t = 0) and as a �nite time horizon (T > 0). A �nancial position
transforms initial wealth X0 ∈ R into some random future payo� XT . Consequently, we
comprehend XT as a real-valued random variable de�ned on a given probability space
(Ω,F , P ). The space of random variables on (Ω,F , P ) with values in R is denoted by
L0.

Below, XT is interpreted as the discounted payo� at time 0. To measure the risk of
�nancial positions, one can use the concept of coherent risk measures and acceptance sets
(acceptance cones) developed by Artzner, Delbaen, Eber, and Heath [4] and Delbaen
[24]. A coherent risk measure ρ is de�ned as monotone, cash invariant, convex and
positively homogeneous map on the space of (P -almost surely) bounded, real-valued
random variables L∞ (for details see Artzner, Delbaen, Eber, and Heath [4] or Cherny
[20, De�nition 2.1]). A risk measure ρ associates with each discounted payo� XT a
number ρ(XT ) ∈ R that quanti�es the risk of the �nancial product. More speci�cally,
ρ(XT ) is understood as the amount of money (i.e. the capital requirement) that should be
added to XT in order to make the position acceptable for an investor. A �nancial position
with discounted payo� XT is therefore called acceptable if and only if ρ(XT ) ≤ 0. To
simplify the notation, we prefer considering the coherent utility function u := −ρ instead
of the corresponding coherent risk measure ρ. The acceptance set (acceptance cone) of
u is de�ned as the set Au := {X ∈ L∞|u(X) ≥ 0}. A coherent utility function u has the
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Fatou property, i.e. if |Xn| ≤ 1, Xn
P→ X, then lim supn u(Xn) ≤ u(X) (cf. Cherny [20,

De�nition 2.1 (e)]), if and only if there exists a non-empty set D ⊂M1(P ) such that

u(X) = inf
Q∈D

EQ[X], (2.2)

where M1(P ) denotes the space of probability measures on (Ω,F ) that are absolutely
continuous with respect to P (cf. Delbaen [24] and Föllmer and Schied [46, Chapter
4]). By using this representation, Cherny [20] extends the de�nition of a coherent utility
function from the space L∞ to L0. To be precise, a map u : L0 → R̄ := [−∞,∞] is
called coherent utility function on L0 if it has a representation (2.2), where EQ[X] is
understood as EQ[X+] − EQ[X−] with convention ∞−∞ = −∞. One easily sees that
this extension is consistent with the de�nition of coherent utility functions on L∞. In
an analogous way, we de�ne the acceptance set of a coherent utility function on L0.
Note that a set D for which the representation above holds is not unique. The largest
set is given by Dm(u) := {Q ∈ M1(P )|EQ[X] ≥ u(X) for every X ∈ L0} and is called
determining set of u. Clearly, the determining set of a coherent utility function is convex.
For coherent utility functions on L∞ it is also L1-closed. We stress that each measure
from M1(P ) is identi�ed with its Radon-Nikodym density with respect to P and the
topological structure of L1 is used. For a convex L1-closed subset D ⊂M1(P ), we de�ne
a coherent utility function u by u(X) := infQ∈D EQ[X]. Then, by the Theorem of Hahn-
Banach, it can be shown that D = Dm(u). For a coherent utility function u on L0 we
refer to L1

w(u) := {X ∈ L0 | u(X) > −∞ and u(−X) > −∞} as the weak L1-space of u.
Clearly, we have u(X) ∈ R for every X ∈ L1

w(u).

2.1.2. Fundamental Examples of Coherent Utility Functions

Let us introduce some crucial examples of coherent utility functions that are studied by
Föllmer and Schied [46, Chapter 4] and Cherny [20, Chapter 2]. First, we consider the
Expected Shortfall uESλ (Average Value at Risk or Tail Value at Risk) de�ned by

uESλ :

{
L0 → R̄
X 7→ infQ∈Dλ EQ[X],

where λ ∈ (0, 1] and

Dλ =
{
Q ∈M1(P ) | dQ

dP
≤ λ−1

}
.

We set uES0(X) := essinf(X) for λ = 0. Since Dλ is a convex and L1-closed subset of
M1(P ), we conclude that Dλ is the determining set of uESλ . Let us denote by qλ(X)

the right λ-quantile of X ∈ L0, i.e. qλ(X) := inf{x ∈ R | P (X ≤ x) > λ}. Cherny [20,
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Proposition 2.6] shows that, for λ ∈ (0, 1] and X ∈ L0, uESλ can be represented by

uESλ(X) = λ−1

∫
(−∞,qλ(X))

xPX(dx) + cλqλ(X),

where cλ := 1− λ−1PX (−∞, qλ(X)) and PX denotes the distribution of X with respect
to P . For a random variable X with continuous cumulative distribution function we
obtain

uESλ(X) = λ−1

∫
(−∞,qλ(X))

xPX(dx).

The Weighted Value at Risk is a generalisation of the Expected Shortfall. The basic
idea behind this concept is to weight the values of uESλ(X) by a probability measure.
More precisely, the Weighted Value at Risk utility function uWµ on L∞ is de�ned by

uWµ :

{
L∞ → R
X 7→

∫
[0,1] u

ESλ(X)µ(dλ),

where µ is a probability measure on ([0, 1],B([0, 1])). It can also be extended to L0 in
the standard way (cf. previous subsection). To this end, we de�ne

uWµ :

{
L0 → R̄
X 7→ infQ∈Dµ EQ[X],

where Dµ is the determining set of uWµ on L∞. The justi�cation of this de�nition can
be understood by the following observations: uWµ on L∞ is a coherent utility function
satisfying the Fatou property. Hence, the set Dµ is convex and L1-closed and is therefore
equal to the determining set of uWµ on L0.

Cherny [20] proves that, for any X ∈ L0, uWµ(X) can be represented by

uWµ(X) =

∫
[0,1]

uESλ(X)µ(dλ) =

∫
[0,1]

uESλ(X)+µ(dλ)−
∫

[0,1]
uESλ(X)−µ(dλ)

(2.3)

with the convention ∞−∞ = −∞.

In order to get a representation of uWµ that is more useful for practical applications,
we introduce the concept of distortion functions. A distortion function is an increasing
concave function Ψ : [0, 1]→ [0, 1]. Let us state some important properties of distortion
functions (see Föllmer and Schied [46]):

1. Ψ is continuous on (0, 1] and admits a right-hand derivative.
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2. There is a one-to-one correspondence between a probability measure µ on ([0, 1],B([0, 1]))

and the distortion function Ψ given by

Ψ(y) = µ({0}) +

∫ y

0

∫
(t,1]

s−1µ(ds)dt for every y ∈ (0, 1]. (2.4)

Henceforth, we write Ψµ instead of Ψ for the distortion function when it is given by
relation (2.4). As an example we consider the Dirac measure µ = δλ with λ ∈ [0, 1]

de�ned on ([0, 1],B([0, 1])). Then, we obviously get uWδλ = uESλ . The corresponding
distortion function is calculated from (2.4) as Ψδλ(y) = y

λ ∧ 1 for any λ ∈ (0, 1]. In the
case where µ = λ[0,1] is the Lebesgue measure restricted on ([0, 1],B([0, 1])), we obtain

Ψλ[0,1](y) =

{
−y · ln(y) + y, y ∈ (0, 1]

0, y = 0.

In practical applications, the considered distortion functions are assumed to satisfy
Ψµ(0) = 0 and Ψµ(1) = 1.

For every X ∈ L0 and each probability measure µ on ([0, 1],B([0, 1])) with correspond-
ing distortion function Ψµ, Cherny [20, Theorem 3.3] shows that uWµ can be written as
a Lebesgue-Stieltjes integral of the form

uWµ(X) =

∫
R
yΨµ(FX(dy)) = −

∫ 0

−∞
Ψµ(FX(y))dy +

∫ ∞
0

1−Ψµ(FX(y))dy,

(2.5)

where FX denotes the cumulative distribution function of X and we use the conven-
tion ∞−∞ = −∞. The following diagram summarises the relationships between the
quantities:

µ on ([0, 1],B([0, 1])) Ψµ

uWµ(X) =
∫

[0,1] u
ESλ(X)µ(dλ) uWµ(X) =

∫
R yΨµ(FX(dy))

(2.3)

(2.4)

X ∈ L0

(2.5)

Hereafter, we consider a parameterised family (uWx )x≥0 of Weighted Value at Risk
utility functions. They are constructed through a speci�c family (Ψµx)x≥0 of distortion
functions with corresponding family (µx)x≥0 of probability measures on ([0, 1],B([0, 1]))

by using representation (2.5). To simplify the notation, we set Ψx := Ψµx for every
x ∈ [0,∞). A family (Ψx)x≥0 of distortion functions is called proper if for every y ∈ (0, 1)

the map x 7→ Ψx(y) is increasing on [0,∞) and continuous on (0,∞).

Let (Ψx)x≥0 be a proper family of distortion functions. Then, we obtain the decreasing
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2. Two-Price Theory in Multiple-Curve Term Structure Models

family (uWx )x≥0 of coherent utility functions on L0 by setting

uWx (X) := uWµx (X) =

∫
R
yΨx(FX(dy)) (2.6)

=−
∫ 0

−∞
Ψx(FX(y))dy +

∫ ∞
0

1−Ψx(FX(y))dy. (2.7)

By decreasing, we mean that for every X ∈ L0 it holds ux2(X) ≤ ux1(X) for all x1 ≤ x2.

We end this subsection with some crucial examples of proper families of distortion
functions and their related families of utility functions. They are considered by Cherny
and Madan [21, 22].

1. The family (Ψmv
x )x≥0 of MINVAR distortion functions is de�ned by

Ψmv
x :

{
[0, 1]→ [0, 1]

y 7→ 1− (1− y)1+x .

We plot some graphs of this function for di�erent parameters in �gure 2.1.
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Figure 2.1.: Graphs of distortion function Ψmv
γ with di�erent parameters: (•) γ = 0, (•)

γ = 0.15, (•) γ = 0.5, (•) γ = 1, (•) γ = 1.5, (•) γ = 2 and (•) γ = 3.
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2.1. Two-Price Theory Based on Acceptability Indices

2. The family (Ψmav
x )x≥0 of MAXVAR distortion functions is de�ned by

Ψmav
x :

{
[0, 1]→ [0, 1]

y 7→ y
1

1+x .

It is represented in �gure 2.2.
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Figure 2.2.: Graphs of distortion function Ψmav
γ with di�erent parameters: (•) γ = 0, (•)

γ = 0.15, (•) γ = 0.5, (•) γ = 1, (•) γ = 1.5, (•) γ = 2 and (•) γ = 3.

3. The family (Ψmmv
x )x≥0 of MINMAXVAR distortion functions is determined by

Ψmmv
x :

{
[0, 1]→ [0, 1]

y 7→ 1− (1− y
1

1+x )1+x.

In �gure 2.3 we illustrate some graphs of Ψmmv
γ for di�erent values of γ ≥ 0.

4. The family (Ψmamv
x )x≥0 of MAXMINVAR distortion functions is de�ned by

Ψmamv
x :

{
[0, 1]→ [0, 1]

y 7→ (1− (1− y)1+x)
1

1+x .
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Figure 2.3.: Graphs of distortion function Ψmmv
γ with di�erent parameters: (•) γ = 0,

(•) γ = 0.15, (•) γ = 0.5, (•) γ = 1, (•) γ = 1.5, (•) γ = 2 and (•) γ = 3.

Figure 2.4 presents some graphs of Ψmamv
γ for di�erent values of γ ≥ 0.

The corresponding families of utility functions (umv
x )x≥0, (umav

x )x≥0, (ummv
x )x≥0 and

(umamv
x )x≥0 are de�ned by relation (2.6).

2.1.3. Acceptability Indices

The reason why we consider a parameterised family of coherent utility functions is that
the acceptance set of an investor is not constant over time. For instance, in boom times
it is wide and in times of crisis it contracts.

Formally, let (ux)x≥0 be a decreasing family of coherent utility functions and (Aux)x≥0

be its corresponding family of acceptance cones. The parameter x indicates the current
stress level in the market. Note that for an increasing stress level we therefore get a
contracting acceptable cone. Hereafter, a �nancial position with discounted payo� X is
called acceptable at level x ≥ 0 if and only if X ∈ Aux , i.e. we have ux(X) ≥ 0.

The concept of acceptability indices was introduced by Cherny and Madan [21]. An
acceptability index associates its level of acceptability with each �nancial position. To
be speci�c, an acceptability index α is a map α : L∞ → [0,∞] satisfying the following
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2.1. Two-Price Theory Based on Acceptability Indices
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Figure 2.4.: Graphs of distortion function Ψmamv
γ with di�erent parameters: (•) γ = 0,

(•) γ = 0.15, (•) γ = 0.5, (•) γ = 1, (•) γ = 1.5, (•) γ = 2 and (•) γ = 3.

properties (see Cherny and Madan [21]):

1. Monotonicity: If X ≤ Y a.s., then α(X) ≤ α(Y ).

2. Quasi-concavity: If x ≤ α(X) and x ≤ α(Y ), then x ≤ α(λX + (1−λ)Y ) for every
λ ∈ [0, 1].

3. Scale invariance: α(λX) = α(X) for any λ > 0.

4. Fatou property: For a sequence of random variables (Xn) satisfying |Xn| ≤ 1,

x ≤ α(Xn) and Xn
P→ X, we have x ≤ α(X).

An acceptability index can be represented by a decreasing family (ux)x≥0 of coherent
utility functions on L∞ having the Fatou property or by an increasing family (Dx)x≥0

of subsets of M1(P ) (see Cherny and Madan [21]): a map α : L∞ → [0,∞] is an
acceptability index if and only if it has the form

α(X) = sup
{
x ≥ 0 | ux(X) ≥ 0

}
= sup

{
x ≥ 0 | inf

Q∈Dx
EQ[X] ≥ 0

}
, (2.8)
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2. Two-Price Theory in Multiple-Curve Term Structure Models

where we set inf ∅ = sup ∅ = 0. As in the case of coherent utility functions, this repre-
sentation is used to extend acceptability indices from space L∞ to L0. More speci�cally,
a map α : L0 → [0,∞] is called acceptability index on L0 if it has a form (2.8) with a de-
creasing family (ux)x≥0 of coherent utility functions on L0 (or increasing family (Dx)x≥0,
respectively). We say that α is represented by (ux)x≥0 (or (Dx)x≥0, respectively). By
using the properties of a coherent utility function, one shows that this extension is con-
sistent with the de�nition of α on L∞.

Let α be an acceptability index on L0 that is represented by (ux)x≥0. Then, for every
X ∈ L0 and x ≥ 0, we clearly have

ux(X) ≥ 0 =⇒ α(X) ≥ x.

In general, the converse does not hold true. We call a random variable X regular with
respect to α if for every x ≥ 0 we have

ux(X) ≥ 0⇐⇒ α(X) ≥ x.

Observe that, for every X ∈ L1
w(α) :=

⋂
x≥0 L

1
w(ux) (referred to as the weak L1-space

of α) satisfying u0(X) = infQ∈D0 EQ[X] ≥ 0, the random variable X is regular with
respect to α if, for every x > 0, it holds

lim
y↗x

uy(X) = ux(X). (2.9)

2.1.4. Weighted Value at Risk Acceptability Index

Let (uWx )x≥0 be a decreasing family of coherent utility functions constructed by a proper
family (Ψx)x≥0 of distortion functions with corresponding family (µx)x≥0 of probability
measures on ([0, 1],B([0, 1])) (see subsection 2.1.2). Then, the Weighted Value at Risk
acceptability index αW is de�ned by

αW :

{
L0 → [0,∞]

X 7→ sup{x ≥ 0 | uWx (X) ≥ 0}.

This approach leads to acceptability indices αmv, αmav, αmmv and αmamv based on the
families (umv

x )x≥0, (umav
x )x≥0, (ummv

x )x≥0 and (umamv
x )x≥0 introduced in subsection 2.1.2.

Proposition 2.1.1 Any X ∈ L1
w(αW ) with uW0 (X) ≥ 0 is regular with respect to αW ,

i.e. for every x ≥ 0, it holds∫
R
yΨx(FX(dy)) ≥ 0⇐⇒ uWx (X) ≥ 0⇐⇒ αW (X) ≥ x.
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2.1. Two-Price Theory Based on Acceptability Indices

Proof: We only need to check that condition (2.9) is satis�ed. Then, the statement follows
immediately (see the statements at the end of the last subsection). For any X ∈ L1

w(αW ),
we have |uWx (X)| < ∞ for every x ≥ 0. Let x and s be chosen such that 0 ≤ s < x.
Then, we have

|uWs (X)− uWx (X)| = uWs (X)− uWx (X) =

∫
R

Ψx(FX(y))−Ψs(FX(y))dy.

Since the family of distortion functions is proper together with Elstrodt [43, Satz IV.5.6],
it follows that the right-hand side converges to zero as s↗ x. �

Note that in the situation of this Proposition, for any a, b ∈ R with uW0 (aX + b) ≥ 0, it
holds that

uWx (aX + b) ≥ 0⇐⇒ αW (aX + b) ≥ x

for every x ≥ 0.

We conclude from representation (2.7) and an application of the change-of-variable
formula (cf. Billingsley [13, Theorem 16.13.]) that if∫ 0

−∞
Ψx(FX(y))dy <∞ and

∫ ∞
0

Ψx(1− FX(y))dy <∞ (2.10)

for some x ≥ 0, it holds X ∈ L1
w(uWx ). Hence, a random variable X satisfying uW0 (X) ≥ 0

is regular with respect to αW on [0, b) ⊂ R+ (b ∈ R+ ∪ {∞}) if condition (2.10) is valid
for every x ∈ [0, b).

A random variable X has exponential moments in a neighbourhood of zero if there
exists a constant M > 0 such that we have MX(u) = E[exp(uX)] < ∞ for every u ∈
[−M,M ]. A distribution PX of such an X is also called light-tailed. Accordingly, one
de�nes left-light-tailed (u ∈ [−M, 0]) and right-light-tailed (u ∈ [0,M ]) distributions (for
a detailed discussion see Foss, Korshunov, and Zachary [48]).

Lemma 2.1.1 Let PX be a light-tailed distribution with cumulative distribution function

FX and constant M . Then, there exist constants u1, u2, C1 and C2 with 0 < u1, u2 ≤M
and C1, C2 > 0 such that for every y ∈ R, we have

FX(y) ≤ C1e
u1y

and

1− FX(y) ≤ C2e
−u2y.
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2. Two-Price Theory in Multiple-Curve Term Structure Models

Proof: We easily get

FX(y) =

∫ y

−∞
PX(dx) = eu1y

∫ y

−∞
e−u1yPX(dx) ≤ eu1yMX(−u1)

and

1− FX(y) =

∫ ∞
y

PX(dx) = e−u2y
∫ ∞
y

eu2yPX(dx) ≤ e−u2yMX(u2).

�

Proposition 2.1.2 Suppose the random variable X ∈ L0 has exponential moments in a

neighbourhood of zero. Then, condition (2.10) is ful�lled for each Ψγ ∈ {Ψmv
γ ,Ψmav

γ ,Ψmmv
γ ,Ψmamv

γ }
and γ ≥ 0.

Proof: Let γ ≥ 0 be �xed. For distortion function Ψmav
γ the statement is obvious. To

prove the claim for the other functions, let d1 < 0 and d2 > 0 be given and set

c1 :=
− ln(C1)

u1
∧ d1 < 0 c2 :=

ln(C2)

u2
∨ d2 > 0

where the constants C1, C2, u1 and u2 are as in Lemma 2.1.1. An easy analysis of a
convex function shows that

(1 + x)r ≥ 1 + rx

for every x > −1 and r ≥ 1 (Bernoulli's inequality). We obtain for the distortion function
Ψmmv
γ that∫ 0

−∞
Ψmmv
γ (FX(y))dy ≤

∫ 0

−∞
Ψmmv
γ (C1e

u1y)dy

≤K1 +

∫ c1

−∞
1− (1− C

1
1+γ

1 e
u1
1+γ

y
)1+γdy

≤K1 +

∫ c1

−∞
1− (1 + (1 + γ)(−C

1
1+γ

1 e
u1
1+γ

y
))dy

=K1 + (1 + γ)C
1

1+γ

1

∫ c1

−∞
e
u1
1+γ

y
dy <∞
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and ∫ ∞
0

Ψmmv
γ (1− FX(y))dy ≤

∫ ∞
0

Ψmmv
γ (C2e

−u2y)dy

≤K2 +

∫ ∞
c2

1− (1− C
1

1+γ

2 e
− u2

1+γ
y
)1+γdy

≤K2 +

∫ ∞
c2

1− (1 + (1 + γ)(−C
1

1+γ

2 e
− u2

1+γ
y
)dy

=K2 + (1 + γ)C
1

1+γ

2

∫ ∞
c2

e
− u2

1+γ
y
dy <∞

with K1,K2 > 0. The veri�cation for the remaining functions can be shown analogously.
�

2.1.5. Ask and Bid Prices

The theory of two prices (ask and bid prices) based on the concept of acceptability
indices was developed by Cherny and Madan [22] and is referred to as conic �nance. In
this context, we also mention the work of Eberlein and Madan [35] and Eberlein [30].

Recall that the market appears as a passive counterparty that decides to accept or not
accept a quantity. The price for buying a product from the market is called ask price
and the price for selling it to the market is referred to as bid price.

Let α be an acceptability index represented by a decreasing family (ux)x≥0 of coherent
utility functions and γ ≥ 0 be a �xed level of acceptability. We de�ne by

Aγ(α) := {X ∈ L0 | α(X) ≥ γ}

the set of acceptable discounted payo�s at level γ. The parameter γ can be seen as the
current level of market (il)liquidity. Furthermore, consider a regular discounted payo�
X ∈ L0 with respect to α. Motivated by market competition, the ask price aγ(X) of X
at level γ with respect to α is the smallest number a such that a−X is accepted by the
market. Consequently, we de�ne

aγ(X) := inf{a ∈ R | α(a−X) ≥ γ}.

We easily obtain the non-linear expression

aγ(X) = inf{a ∈ R | uγ(a−X) ≥ 0} = inf{a ∈ R | inf
Q∈Dγ

EQ[a−X] ≥ 0}

= inf{a ∈ R | a+ inf
Q∈Dγ

EQ[−X] ≥ 0} = − inf
Q∈Dγ

EQ[−X]

= sup
Q∈Dγ

EQ[X].
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Analogously, we de�ne the bid price bγ(X) of X at level γ with respect to α as the largest
number b such that X − b is accepted. Therefore, we have

bγ(X) := sup{b ∈ R | α(X − b) ≥ γ}.

One immediately gets the non-linear formula

bγ(X) = inf
Q∈Dγ

EQ[X].

Observe that we naturally have bγ(X) ≤ aγ(X).

As a particularly important case, we consider ask and bid prices based on Weighted
Value at Risk acceptability indices. In this situation, we obtain the useful representations
for the ask price

aγ(X) = inf{a ∈ R | uWγ (a−X) ≥ 0} = −uWγ (−X)

=−
∫
R
yΨγ(F−X(dy)) =

∫ 0

−∞
Ψγ(F−X(y))dy −

∫ ∞
0

1−Ψγ(F−X(y))dy

=

∫ ∞
0

Ψγ(1− FX(y))dy −
∫ 0

−∞
1−Ψγ(1− FX(y))dy

and the bid price

bγ(X) = sup{b ∈ R | uWγ (X − b) ≥ 0} = uWγ (X)

=

∫
R
yΨγ(FX(dy)) = −

∫ 0

−∞
Ψγ(FX(y))dy +

∫ ∞
0

1−Ψγ(FX(y))dy.

Observe that the ask and bid prices depend on an underlying probability measure. In
our situation, this will be a basic pricing measure which is distorted by the family Ψ

to obtain the ask and bid prices (it is assumed to be contained in the set Dγ). These
facts are crucial when we apply the two-price theory to the multiple-curve term structure
model (see section 2.3).

2.2. Multiple-Curve Interest Rate Term Structure Modelling

In this section, we present the multiple-curve interest rate modelling approach. First,
we brie�y recall the fundamental model framework and relevant interest rate derivatives.
Then, we address the modern multiple-curve setting.
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2.2.1. Fundamental Model Approaches

In equity markets, it is a priori clear which quantity is fundamental and has to be mod-
elled, namely the stock price. In contrast, �xed income markets provide some freedom
to choose which quantity is considered to be basic and which quantities are derived from
this basic one. Concretely, the fundamental model quantities can be zero coupon bond
prices, instantaneous forward rates, short rates, forward prices or (forward) reference
rates (Libor/Euribor).
A default-free zero coupon bond is de�ned as a �nancial security that provides an

amount of one currency unit to its owner at maturity without intermediate coupon pay-
ments. We denote by Bt(T ) the price of such a security at time t ∈ [0, T ] when it matures
at time T ∈ [0, T ∗], where T ∗ > 0 is a �nite time horizon. One also refers to Bt(T ) as
discount factor. The interest rate that applies for an instantaneous period of time is
called short rate. The value of this rate at time t is denoted by rt. The instantaneous,
continuously compounded forward rate is de�ned as the forward rate that applies for an
in�nitesimal period of time starting at some (future) speci�c date. More speci�cally, we
call ft(T ) the forward interest rate at time t ≤ T for instantaneous borrowing or lending
at date T . Intuitively, we can interpret ft(T ) as the interest rate over the in�nitesimal
period of time [T, T + dT ] considered from time t. That is why ft(T ) is referred to as
instantaneous, continuously compounded forward rate or shortly, instantaneous forward
rate. The instantaneous forward rate is closely related to a zero coupon bond by the
equation

Bt(T ) = exp

(
−
∫ T

t
ft(u)du

)
. (2.11)

Let us denote by ∂
∂T the di�erential operator with respect to variable T . From the last

equation, ft(T ) can be represented by

ft(T ) = − ∂

∂T
lnBt(T ),

where we assume that the (partial) derivative exists. The instantaneous forward rate
is related to the short rate by rt = ft(t). Another important quantity is called the
forward price. It is de�ned at time t for the maturities S and T by the quotient of the
corresponding zero coupon bond prices, namely

FB(t, S, T ) :=
Bt(S)

Bt(T )
.

Let t, S, T ∈ [0, T ∗] satisfying t ≤ S ≤ T and δ(S, T ) denote the year fraction between
S and T according to a speci�ed day count convention (for details see Brigo and Mercurio
[17, section I.1.2]). The time-t δ(S, T )-forward reference rate Lt(S, T ) is the discretely
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compounded annualised interest rate that can be earned for an interval starting at date
S and ending at T . It is de�ned by

Lt(S, T ) :=
1

δ(S, T )

(
Bt(S)

Bt(T )
− 1

)
.

This rate can be seen as the Libor or Euribor. Note that we de�ne this quantity as
risk-free rate here but we emphasise that credit and liquidity risk can also be taken into
account in term structure models (see for instance Kluge [64] and Jarrow and Roch [58]).

To sum up, the following master equation which clari�es the relations between all
relevant quantities is valid:

1 + δ(S, T )Lt(S, T ) =
Bt(S)

Bt(T )
= FB(t, S, T ). (2.12)

Another fundamental di�erence between the equity and the �xed income market is
the number of underlying securities one has to consider. In the former it is su�cient
to model at most a �nite collection of securities, whereas in the latter one typically
considers a continuum. More precisely, we have one security for every maturity T ∈
[0, T ∗]. In our model, we focus on a �nite number of securities since we only consider a
�nite set of maturities. To this end, let us �x a collection of reset and settlement dates
T := {T0, T1, . . . , Tn}, where we assume that 0 ≤ T0 < T1 < · · · < Tn with n ∈ N and
Tn = T ∗. The time between two consecutive reset dates is known as tenor and T is
called discrete tenor structure. We de�ne by δk := δ(Tk−1, Tk) the year fraction between
the dates Tk−1 and Tk for every k ∈ {1, . . . , n}. Let us assume that the year fractions
δ1, . . . , δn between each pair of consecutive dates are equidistant and we may therefore
set δ := δk for every k ∈ {1, . . . , n}. Thus, the considered discrete tenor structure T is
unambiguously related to tenor δ. We call such a tenor structure equidistant. For each
pair of dates from the discrete tenor structure, the master equation results in

1 + δLt(Tk−1, Tk) =
Bt(Tk−1)

Bt(Tk)
= FB(t, Tk−1, Tk)

for every k ∈ {1, . . . , n}.
We end this subsection by an overview about some important publications that are

related to interest rate modelling: A substantial collection of short rate models driven by
di�usion processes was developed by Merton and Vasicek. Brigo and Mercurio [17, part
II] present a detailed and profound summary about this type of models. Especially, they
devote the way from short rate models to the Heath-Jarrow-Morton (HJM) approach
(see Heath, Jarrow, and Morton [52]) on which the (multiple-curve) Lévy forward rate
model is based (see chapter 3). The Lévy forward rate model was developed in a series
of papers: Eberlein and Raible [38], Eberlein and Özkan [37], Eberlein, Jacod, and
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Raible [39] and Eberlein and Kluge [33]. The basic model quantity is the instantaneous,
continuously compounded forward rate driven by a (time-inhomogeneous) Lévy process.
As opposed to the instantaneous forward rates that are a mathematical idealisation rather
than an observable quantity, the (forward) reference rates are observable in the market
(Libor or Euribor). Therefore, Brace, G¡tarek, and Musiela [15] have chosen this rate as
fundamental model quantity and introduced the Libor market model. As a generalisation
of their approach, the Lévy Libor (market) model was introduced by Eberlein and Özkan
[37]. In this context, the Lévy forward price model was developed by the same authors.

2.2.2. Interest Rate Derivatives

We emphasise that an interest rate model should be able to reproduce the observable term
structure of interest rates and the market prices of interest rate derivatives. Interest rate
derivatives are �nancial products whose payo�s depend in some functional form on the
value of the interest rate. The volume of trading in these derivatives both in the exchange-
traded and the over-the-counter market has been rapidly increased in the last years. One
of the key challenges for market participants is to develop suitable (mathematical) models
that are used to evaluate these instruments. This task has become even more important
since the beginning of the global �nancial crisis in 2007.

Subsequently, we describe some common interest rate derivatives that are considered
in this work. A more detailed explanation of these contracts are given by Hull [55],
Filipovic [44], Musiela and Rutkowski [75] and Brigo and Mercurio [17].

Floating-Rate Note

A �oating-rate note (FRN) is a contract traded in the over-the-counter market that
ensures the payment at a reference interest rate at some future dates. This �nancial
product pays a last cash �ow consisting of the notional principal at its maturity.

Forward Rate Agreements

A forward rate agreement (FRA) is an over-the-counter contract between two market
participants. It is constructed to ensure that for one party a certain �xed interest rate
will be valid to either lending or borrowing the notional principal to or from the other
party during an agreed future period of time. The basic assumption of the contract is
that the (lending or borrowing) payment would normally be done at a �oating reference
interest rate. Therefore, the (possible negative) amount that a party earns (or loses)
depends on the di�erence between the �xed and the �oating rate. The usual market
practice for forward rate agreements is that all rates are measured with a compounding
frequency according to the length of the considered future period of time (tenor). For
instance, if we assume that the year fraction of this period is equal to δ = 0.25, then the
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rates are expressed with quarterly compounding and the reference interest rate refers to
the three-month tenor (for instance the three-month Libor). Another interpretation of
a forward rate agreement is that both market participants agree to exchange payments
at some future date, where one party receives interest on a principal at the arranged
�xed rate and pays interest on the same principal at the realised �oating reference rate.
Accordingly, the other party pays interest on the principal at the �xed rate and receives
interest on the principal at the �oating rate.

Interest Rate Swaps

A swap is an over-the-counter contract between two individuals to exchange cash �ows in
the future. This contract precisely speci�es the payment dates and the way in which the
payments have to be determined. Swaps typically lead to cash �ows that are exchanged
between two market participants on several future dates (for instance, along a discrete
tenor structure). The calculation of the cash �ows is usually based on the future value
of an interest rate, an exchange rate or another market variable. A forward swap is a
swap agreement that starts at some future date.

A plain vanilla (forward) interest rate swap (IRS) is the most common type of a swap.
Here an investor agrees to pay cash �ows equal to interest at a predetermined �xed
rate on a notional principal at some predetermined future dates to the other party. In
return, the investor receives interest rate payments at a �oating interest rate on the same
notional principal from the other party. The payment stream indexed on the �xed rate is
referred to as the �xed leg and the payment stream indexed on the �oating rate is called
the �oating leg. The �oating rate is usually tied to a reference rate such as the Libor or
the Euribor. We consider interest rate swaps which are settled in arrears. This means
that the �oating rate is set at the beginning of a period of time and pays at the end of this
period. One says that an interest rate swap is settled in advance if the payments are made
at the beginning of each period of time. The �xing and payment dates corresponding
to the respective legs are given by discrete tenor structures. The (mid-market) �xed
rate that will be exchanged for the reference rate is known as (forward) swap rate. It is
speci�ed as the rate which sets the value of the contract equal to zero.

Another type of a swap is the basis swap (BS). Here, two payments that are each based
on a separate �oating reference rate are exchanged.

Caps and Floors

Interest rate caps and �oors are actively traded interest rate options o�ered by �nancial
institutions in the over-the-counter market. To explain these contracts we consider a
�oating-rate note in which a reference interest rate is �xed along a discrete tenor struc-
ture. As usual, we call the period of time between two consecutive reset dates tenor. An
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interest rate cap is designed to provide insurance against the possibility that the refer-
ence interest rate based on such a �oating-rate note exceeds a certain level. This level
is denoted as cap rate. At each �xing date up to the maturity of the cap the reference
rate is observed. Either there is no payout if the rate is below the cap rate or there is a
payout if the rate is above. The payout is the di�erence between the interest rate and
the cap rate. A payout occurs at the end of the period and depends on the excess, tenor
and notional principal. Hence, a cap can be characterised as a portfolio of call options
with underlying reference rate. These call options are known as caplets. Interest rate
�oors are de�ned in an analogous way as caps. A �oor provides a payout if the reference
interest rate is below a certain rate (�oor rate) at the reset date. The payment also
occurs a tenor after the �xing date. A �oor can therefore be regarded as a portfolio of
put options on the reference rate. Each option is named �oorlet.

Digital Options

A standard European interest rate digital call (put) with strike rate B > 0 is a �nancial
security which pays an amount of one unit of currency to its owner if and only if the
simply compounded reference interest rate lies above (below) B at its maturity T1 ∈ R+.
An interest digital option is called delayed if the option maturity T1 and the payment
date T di�er in the sense of T1 ≤ T . Note that a standard digital option can be seen
as a special case of a delayed digital option by setting T1 = T . A delayed range digital
option provides a terminal payo� equal to one paid at date T if and only if the underlying
reference rate lies inside a pre-speci�ed corridor at maturity T1.

2.2.3. The Multiple-Curve Approach

Before the global �nancial crisis started in the summer of 2007, interest rate quotes
showed typical consistencies. These conditions were assumed to be valid and stated in
literature as an indisputable fact. The consistencies between rates allowed to construct
a unique well-de�ned term structure of interest rates (bond curve) by using standard
bootstrapping techniques. Of course, di�erences between similar rates were present in
the market but could be regarded as negligible in general. For instance, interest rate
swaps that have the same maturity but are based on di�erent discrete tenor structures
quoted swap rates at a small but negligible spread before the crisis (see �gure 2.13).
Then, the global �nancial crisis caused a number of anomalies in the �xed income

market. As a result, the interest rates that were formerly consistent with each other
started to diverge substantially. This issue led to a degree of incompatibility between
them. Generally speaking, the substantial changes concerned market rates that are
implicitly related to di�erent tenors.
An example is the forward rate that is implied by the EONIA overnight indexed swap

rate quote. This rate became a di�erent object than the quoted FRA rate. This issue
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is illustrated in �gures 2.5 and 2.6. Another example is given by the divergence of
the Euribor and the associated EONIA OIS rates presented in �gures 2.7-2.11. The
corresponding spreads between these rates are demonstrated in �gure 2.12. This graph
illustrates the monotonicity of the di�erent curves which is considered in section 3.2: The
greater the underlying tenor, the greater the spread between Euribor and EONIA OIS
rate. Another anomaly can be observed by the arising di�erences of the swap rates with
respect to swaps with di�erent payment frequencies (di�erent discrete tenor structures).
More speci�cally, a swap rate based on semiannual payments indexed by the six-month
Euribor can be di�erent than the swap rate based on quarterly payments indexed by
the three-month Euribor if both swap contracts have the same maturity. This issue
is illustrated in �gure 2.13. To sum up, the tenor dependence of market rates reveals
an additional signi�cant in�uence factor in �xed income markets with beginning of the
global �nancial crisis.
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Figure 2.5.: Divergence of forward rates (based on EONIA OIS quote) and 3x6 FRA
rates.

All these changes that occurred in the quotes of market rates can be explained by credit
and liquidity risk. A nice treatment of the notion of credit risk is given by Schönbucher
[82]. Generally speaking, credit risk can be de�ned as the risk that a debtor does not
ful�l his payment obligations. Liquidity risk can be characterised by the following three
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Figure 2.6.: Divergence of forward rates (based on EONIA OIS quote) and 3x9 FRA
rates.

issues (see Acerbi and Scandolo [1], Brunnermeier and Pedersen [19] and Bianchetti and
Carlicchi [11]):

1. Funding liquidity risk: The lack of liquidity to meet short term debt obligations.

2. Market liquidity risk: The risk of trading and holding positions in illiquid markets.
This fact is generally accompanied by an excessive spread of the ask and bid prices.

3. Systemic Liquidity Risk: The di�culty to borrow funds on the market due to
funding cost.

Note that the liquidity risk component in reference interest rates is distinct but strongly
correlated to the credit risk component. In this thesis, market liquidity risk is modelled
by the two-price theory introduced in section 2.1. The other types of liquidity risk are
also considered in form of a liquidity component in the drift function.
The in�uence of credit risk in the crisis is emphasised by �gure 2.14, where the con-

nection between the Euribor/EONIA OIS spread and CDS spreads of some panel banks
are illustrated. Credit risk is obviously a reason for the market anomalies. The e�ect
of liquidity risk is illustrated by Eberlein [30]. All these facts together imply that a
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Figure 2.7.: Evolution of the EURIBOR and EONIA OIS rates corresponding to the
one-month tenor.

consistent construction of a term structure of interest rates and the correct valuation of
interest rate derivatives have to take into account credit and liquidity theories.

We stress that, by taking into consideration credit and liquidity risk, this new market
environment does not necessarily generate arbitrage opportunities. Therefore, credit
and liquidity models provide a theoretical justi�cation for the current market situation.
Since the development of a model that considers both types of risk is a challenging
task, practitioners preferred using an empirical approach. They divide market rates
into di�erent risk classes depending on their respective tenor. This method results in the
consideration of a discount curve and as many di�erent term structure curves as occurring
tenors. We call this procedure multiple-curve approach. It should be mentioned that the
distinct curves in the market re�ect the various magnitudes of credit and liquidity risk
that are included in interest rates.

The appearance of negative rates is another remarkable fact since the beginning of the
global �nancial crisis. We emphasise that our multiple-curve interest rate model also
takes this issue into account and allows to consider negative rates.

The multiple-curve approach invalidates the classical pricing theory of interest rate
derivatives. Originally, it is based on the cornerstone of a unique consistent term structure
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Figure 2.8.: Evolution of the EURIBOR and EONIA OIS rates corresponding to the
three-month tenor.

curve that is used both for the producing of future cash �ows and for the calculation
of their present values. More speci�cally, when pricing interest rate derivatives with a
given model the usual �rst step is to bootstrap the initial term structure of discount
factors and forward rates. Before the crisis, this was a straightforward task because of
the existence of a unique curve. When dealing with the multiple-curve approach this
issue needs a more sophisticated and extensive treatment. To construct a term structure
related to a given tenor, one may only use market quotes corresponding to this tenor.
For instance, the six-month curve is constructed by bootstrapping rates from the market
quotes related to the six-month tenor of the deposits for the short term maturities, the
futures and FRAs for the short-mid term maturities and the liquid interest rate swaps
for the mid-long term maturities. While the multiple term structures construction is
based on the tenor homogeneity principle that in the meantime turns out to be market
consensus, there is no general market convention for the building of the discount curve.
Basically, there are two di�erent practices:

1. OIS-discounting.

2. Classical pre-crisis approach based on the most liquid instruments.
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Figure 2.9.: Evolution of the EURIBOR and EONIA OIS rates corresponding to the
six-month tenor.

We brie�y explain the �rst approach. An e�ect of the global �nancial crisis has been
the wide dissemination of collateral agreements to reduce the counterparty risk of OTC-
traded derivatives. The collateral mechanism can be seen as a funding and hedging
mechanism. It is mainly based on daily margination and an overnight collateral rate.
Consequently, prices of derivatives quoted in the interbank market can be considered
as free of credit and liquidity risk OTC-transactions. Another consequence is that the
margination funding rate and the discount rate of future cash �ows need to coincide
by no-arbitrage arguments. Therefore, a collateral agreement implies overnight based
discounting and the construction of the discount curve needs to re�ect the funding level in
an overnight collateralised interbank market. Overnight indexed swaps are thus canonical
instruments for this construction. It can be seen as best available approximation of a risk-
free yield curve. This is exactly the reason why this method is called OIS-discounting.
We use this method in the multiple-curve model.

Furthermore, not only the initial multiple-curve construction but also the modelling
of the evolution of the relevant rates becomes a delicate task. To solve this problem,
one applies a logically similar method to the one used for the initial multiple-curve
construction: when building a discount curve and term structures for di�erent tenors at
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Figure 2.10.: Evolution of the EURIBOR and EONIA OIS rates corresponding to the
nine-month tenor.

inception, a canonical way is to develop an interest rate model where these curves are
modelled jointly but distinctly. It is worth mentioning that the modern multiple-curve
approach generalises the approach based on one curve. This classical method is referred
to as single-curve approach.

To end this subsection, we list some of the publications that are crucial for this part
of the thesis: For the construction of the (multiple) term structures of interest rates,
we refer to Musiela and Rutkowski [75], Hagan and West [51], Hull [55] and Ametrano
and Bianchetti [2, 3]. The delicate issue of discount curve construction is considered
by Henrard [53, 54]. Kijima, Tanaka, and Wong [62] develop an interest rate model in
a multiple-curve framework. A double-curve model with regard to a foreign exchange
analogy is introduced by Bianchetti [10]. Modern market models are stated by Mercurio
[69, 70, 71]. Models based on the Heath-Jarrow-Morton framework are considered by
Moreni and Pallavicini [73] and Crépey, Grbac, and Nguyen [23]. We further refer to
Pallavicini and Tarenghi [77], Morini [74], Bianchetti and Carlicchi [11] and Filipovi¢ and
Trolle [45]. A profound overview about the causes and main events of the global �nancial
crisis is given by Brunnermeier [18] and Sinn [84].
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Figure 2.11.: Evolution of the EURIBOR and EONIA OIS rates corresponding to the
twelve-month tenor.

2.2.4. Valuation Formulas of Interest Rate Derivatives

In this subsection, we illustrate the modern multiple-curve valuation method. To this
end, model independent pricing formulas for the interest rate derivatives of subsection
2.2.2 are stated.

Let m ∈ N be given. We consider m + 1 curve(s) associated to max{m, 1} tenor(s)
in a single currency economy. The curve 0 (also denoted by d) is referred to as the
discount curve. Note that the case m = 0 is therefore the classical single-curve setting.
This implies that the multiple-curve approach can be seen as a generalisation of the
single-curve one.

Let us �x a �nite time horizon T ∗ ∈ R+. The initial term structure of discount bond
prices Bd

0 (initial discount curve) is de�ned by

Bd
0 :

{
[0, T ∗]→ (0,∞)

T 7→ Bd
0(T ).

For anym ≥ 1 and each i ∈ {1, . . . ,m}, we interpret Bi
t(T ) as time-t price of a �ctitious
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Figure 2.12.: Evolution of the spreads between EURIBOR and EONIA OIS rates for
di�erent tenors.

risky zero-coupon bond with maturity T . Notice that such risky bonds are not traded
assets but can be considered as bonds being issued by an average Libor or Euribor panel
member. The initial curve Bi

0 (initial curve i) is de�ned by

Bi
0 :

{
[0, T ∗]→ (0,∞)

T 7→ Bi
0(T ).

This curve is constructed by bootstrapping techniques. Ametrano and Bianchetti [3]
present a sophisticated bootstrapping method which deals with the multiple-curve set-
ting. The initial discount curve Bd

0 and every initial curve Bi
0 serve as ingredients of the

multiple-curve interest rate model of chapter 3.

We determine a stochastic process rd = (rdt )t∈[0,T ∗] on a complete stochastic basis B :=

(Ω,G ,G = (Gt)t∈[0,T ∗], P
d) satisfying suitable measurability properties. This process

plays the role of the risk-free short rate dynamics. Let us de�ne the continuous discount
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Figure 2.13.: Evolution of swap rates for swaps with a maturity of one year based on
three-month and daily payment frequency.

factor process βd = (βdt )t∈[0,T ∗] by

βdt := exp

(
−
∫ t

0
rdsds

)
.

The discount bond price at date t with maturity T is denoted by Bd
t (T ). The probability

measure P d is speci�ed in such a way that the discounted bond price process Zd(T ) =

(Zd
t (T ))t∈[0,T ∗] given by

Zd
t (T ) := βdtB

d
t (T )

is a G-(local) martingale for each maturity T ∈ [0, T ∗].

The forward martingale measure for the date T ∈ [0, T ∗], denoted by P d
T , is a proba-

bility measure de�ned on (Ω,GT ) that is equivalent to P d (see also Geman, El Karoui,
and Rochet [49]). It is characterised by the Radon-Nikodym derivative of the restrictions
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Figure 2.14.: Illustration of the in�uence of credit risk on the market anomalies.

of P d
T and P d to (Ω,GT ) that is given by

dP d
T

∣∣
GT

dP d
∣∣
GT

=
βdT

Bd
0(T )

. (2.13)

For any t ≤ T , the restriction to the σ-�eld Gt is of the form

dP d
T

∣∣
Gt

dP d
∣∣
Gt

= EP d

[
βdT

Bd
0(T )

∣∣∣Gt] =
βdtB

d
t (T )

Bd
0(T )

.

Note that it can be useful to de�ne the forward martingale measure on (Ω,GT ∗). We
use P d and P d

T as pricing measures here. To simplify the notation we set the notional
amount equal to one.

Forward Rate Agreements

Let us �x two dates T1 ∈ R+ and T2 = T1 + δi, where the tenor δi corresponds to curve
i ∈ {0, 1, . . . ,m}. The time T1 means the inception date and T2 is the maturity of the
(modi�ed) forward rate agreement (see Mercurio [69]). The �xed rate of the FRA is
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denoted by K and the payo� of such an agreement at maturity T2 is given by

FRAT2(T1, T2, δ
i,K) := δi(LiT1(T1, T2)−K),

where LiT1(T1, T2) denotes the time-T1 (spot) reference rate relative to curve i. By the
risk-neutral valuation principle, the value of the FRA at time t ≤ T1 can therefore be
calculated as the conditional expectation with respect to the pricing measure P d. It is
given by

FRAt(T1, T2, δ
i,K) := δi(βdt )−1EP d

[
βdT2(LiT1(T1, T2)−K)|Gt

]
. (2.14)

By using the change-of-measure technique, we switch to the forward measure P d
T2

and
obtain

FRAt(T1, T2, δ
i,K) = δiBd

t (T2)EP d
T2

[
(LiT1(T1, T2)−K)|Gt

]
.

The rate for which the value of this contract at time t is equal to zero is denoted by Ki
t .

It can obviously be expressed as

Ki
t = EP d

T2

[
LiT1(T1, T2)|Gt

]
. (2.15)

We stress that in the multiple curve framework (m ≥ 1), the dynamics of the forward
reference rate Li(T1, T2) are in general not a (G, P d

T2
)-(local) martingale. This fact is

in accordance with the market quotes of the crisis (see �gures 2.5 and 2.6). In the
single-curve setting (m = 0), we have the well-known form

Kd
t = EP d

T2

[
Ld
T1(T1, T2)|Gt

]
= Ld

t (T1, T2). (2.16)

Interest Rate Swaps

Let us consider an equidistant discrete tenor structure T i = {T0, . . . , Tn} that corre-
sponds to the curve i ∈ {0, 1, . . . ,m} with Tn = T ∗. The payo� of an interest rate swap
for the receiver of the �oating rate at payment date Tk with k ∈ {1, . . . , n} is given by

δi(LiTk−1
(Tk−1, Tk)− S),
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where we set δi := δi(Tk−1, Tk) for a year fraction δi and S denotes the �xed rate. The
value of this swap at time t can be calculated as

Swapt(T
i, δi) :=

n∑
k=1

δi(βdt )−1EP d

[
βdTk(LiTk−1

(Tk−1, Tk)− S)|Gt
]

=
n∑
k=1

δiBd
t (Tk)EP d

Tk

[
(LiTk−1

(Tk−1, Tk)− S)|Gt
]

=
n∑
k=1

FRAt(Tk−1, Tk, δ
i, S). (2.17)

The swap rate at time t with t ≤ T0, denoted by Sit(T
i), is de�ned as the rate that

makes the time-t value of the swap equal to zero. Thus, we obtain

Sit(T
i) =

∑n
k=1 δ

iBd
t (Tk)EP d

Tk

[
LiTk−1

(Tk−1, Tk)|Gt
]

∑n
k=1 δ

iBd
t (Tk)

.

If we consider m = 0, we get the common formula

St(T
d) =

Bd
t (T0)−Bd

t (Tn)∑n
k=1 δB

d
t (Tk)

.

Overnight Indexed Swaps

The overnight indexed swap is a special case of an interest rate swap. Let T i =

{T0, . . . , Tn} be an equidistant discrete tenor structure as above. The overnight �oating
rate for the time interval [Tk−1, Tk] for every k ∈ {1, . . . , n} is assumed to be given by
simply compounding the consecutive overnight rates between the dates Tk−1 and Tk. We
write Ron(S, T ) for the overnight rate between T and S, where 0 ≤ S ≤ T ≤ Tn. More
speci�cally, let Tk−1 = t0 < t1 < · · · < tN i = Tk be a partition of the interval [Tk−1, Tk]

into N i trading days (i.e. business days). As mentioned above, we set

Ron(Tk−1, Tk) =
1

δi

N i∏
j=1

(1 + δ(tj−1, tj)R
on(tj−1, tj))− 1

 ,

where δ is an appropriate year fraction. Since the overnight rateRon(tj−1, tj) can assumed
to be risk free (cf. subsection 2.2.3), we set Ron(tj−1, tj) = rdtj−1

. We approximate the
rate Ron(Tk−1, Tk) by

Ron(Tk−1, Tk) ≈
1

δi

(
exp

(∫ Tk

Tk−1

rdsds

)
− 1

)
,
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where we used the fact that

1 + δ(tj−1, tj)r
d
tj−1
∼ exp

(
δ(tj−1, tj)r

d
tj−1

)
.

Then, the time-t value of the (forward) overnight indexed swap with t ≤ T0 is given by

OISt(T
i) =

n∑
k=1

(βdt )−1EP d

[
βdTkδ

i (Ron(Tk−1, Tk)− S)
∣∣Gt]

=

n∑
k=1

EP d

[
exp

(
−
∫ Tk−1

t
rdsds

)
− exp

(
−
∫ Tk

t
rdsds

)

− exp

(
−
∫ Tk

t
rdsds

)
δiS
∣∣Gt]

=

n∑
k=1

(
Bd
t (Tk−1)−Bd

t (Tk)
)
−

n∑
k=1

δiSBd
t (Tk)

=Bd
t (T0)−Bd

t (Tn)− δiS
n∑
k=1

Bd
t (Tk),

where we exploit the relation

Bd
t (T ) = EP d

[
exp

(
−
∫ T

t
rdsds

)∣∣Gt] .
The overnight indexed swap rate at time t, denoted by Sont (T i), determines the value

of the overnight indexed swap at time t equal to zero. It is given by

Sont (T i) =
Bd
t (T0)−Bd

t (Tn)∑n
k=1 δ

iBd
t (Tk)

.

The (forward) Libor/Euribor-OIS spread at time t for the interval [Tk−1, Tk] is de�ned
by

si,ont (Tk−1, Tk) :=Lit(Tk−1, Tk)− Sont ({Tk−1, Tk})

=
1

δi

(
Bi
t(Tk−1)

Bi
t(Tk)

− 1

)
− Bd

t (Tk−1)−Bd
t (Tk)

δiBd
t (Tk)

=
1

δi

(
Bi
t(Tk−1)

Bi
t(Tk)

− Bd
t (Tk−1)

Bd
t (Tk)

)
=

1

δi

(
F it (Tk−1, Tk)− F d

t (Tk−1, Tk)
)
.

The Libor/Euribor-OIS swap spread at time t is de�ned as the di�erence between the
time-t swap rate corresponding to curve i and the overnight indexed swap rate. Formally,

48



2.2. Multiple-Curve Interest Rate Term Structure Modelling

it is of the form

Sit(T
i)− Sont (T i) =

∑n
k=1 δ

iBd
t (Tk)EP d

Tk

[
LiTk−1

(Tk−1, Tk)|Gt
]
−Bd

t (T0) +Bd
t (Tn)∑n

k=1 δ
iBd

t (Tk)
.

Basis Swaps

Let i, j ∈ {0, 1, . . . ,m} be given with i ≤ j. We consider two equidistant discrete tenor
structures T i = {T i0, . . . , T ini} and T j = {T j0 , . . . , T

j
nj} with ni, nj ∈ N and tenors δi

and δj . It is assumed that it holds 0 ≤ T i0 = T j0 , T
i
ni = T ∗ and T j ⊂ T i for every

i, j ∈ {0, 1, . . . ,m}. The last assumption corresponds to the fact that T j relates to the
riskier curve compared to T i (δi < δj).

A basis swap agreement is usually understood in two ways:

1. As the di�erence of the two di�erent �oating legs with given maturity.

2. As a portfolio of two interest rate swaps with same �xed legs and maturity but
with di�erent �oating legs.

In the �rst case, the time-t value of a basis swap with t ≤ T i0 = T j0 can be determined
by

BS1
t (T

i,T j) :=

nj∑
k=1

δjBd
t (T jk )EP d

T
j
k

[
Lj
T jk−1

(T jk−1, T
j
k )|Gt

]
(2.18)

−
ni∑
k=1

δiBd
t (T ik)EP d

Ti
k

[
LiT ik−1

(T ik−1, T
i
k)|Gt

]
.

Secondly, we obtain

BS2
t (T

i,T j) :=

[ nj∑
k=1

δjBd
t (T jk )EP d

T
j
k

[
Lj
T jk−1

(T jk−1, T
j
k )|Gt

]
−

n∑
k=1

δBd
t (Tk)S

j
t

]

−

[
ni∑
k=1

δiBd
t (T ik)EP d

Ti
k

[
LiT ik−1

(T ik−1, T
i
k)|Gt

]
−

n∑
k=1

δBd
t (Tk)S

i
t

]
,

where Sit and Sjt denote the time-t swap rates of the respective contracts and T =

{T0, T1, . . . , Tn} is the tenor structure corresponding to the �xed legs. Motivated by
�gure 2.13, we set Sjt = Sit + bst, where bst means the basis spread at time t. Then, we
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2. Two-Price Theory in Multiple-Curve Term Structure Models

get

BS2
t (T

i,T j) :=

nj∑
k=1

δjBd
t (T jk )EP d

T
j
k

[
Lj
T jk−1

(T jk−1, T
j
k )|Gt

]
−

n∑
k=1

δBd
t (Tk) · bst

−
ni∑
k=1

δiBd
t (T ik)EP d

Ti
k

[
LiT ik−1

(T ik−1, T
i
k)|Gt

]
. (2.19)

This formula implies the equilibrium basis spread that sets the value of the basis swap
equal to zero:

bst =

∑nj
k=1 δ

jBd
t (T jk )EP d

T
j
k

[
Lj
T jk−1

(T jk−1, T
j
k )|Gt

]
−
∑ni

k=1 δ
iBd

t (T ik)EP d
Ti
k

[
Li
T ik−1

(T ik−1, T
i
k)|Gt

]
∑n

k=1 δB
d
t (Tk)

.

Caps and Floors

Let T i = {T0, . . . , Tn} be an equidistant discrete tenor structure related to curve i ∈
{0, 1, . . . ,m}. The payo� of a cap with strike K at time Tk for every k ∈ {1, . . . , n} is
then given by

δi(LiTk−1
(Tk−1, Tk)−K)+,

where we de�ne f+ := max{f, 0} for any measurable function f . Accordingly, the payo�
of a �oor with the same contractual features is

δi(K − LiTk−1
(Tk−1, Tk))

+.

The time-t price of a cap for t ≤ T0 and with strike K is determined by

Capt(T
i, δi,K) :=

n∑
k=1

(βdt )−1EP d

[
βdTkδ

i(LiTk−1
(Tk−1, Tk)−K)+|Gt

]
(2.20)

=
n∑
k=1

δiBd
t (Tk)EP d

Tk

[
(LiTk−1

(Tk−1, Tk)−K)+|Gt
]

(2.21)

and the related caplet price is given by

Cplt(Tk−1, Tk,K) := δiBd
t (Tk)EP d

Tk

[
(LiTk−1

(Tk−1, Tk)−K)+|Gt
]
.
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2.2. Multiple-Curve Interest Rate Term Structure Modelling

Analogously, we obtain the price of the �oor as

Floort(T
i, δi,K) :=

n∑
k=1

(βdt )−1EP d

[
βdTkδ

i(K − LiTk−1
(Tk−1, Tk))

+|Gt
]

=

n∑
k=1

δiBd
t (Tk)EP d

Tk

[
(K − LiTk−1

(Tk−1, Tk))
+|Gt

]
and the �oorlet price as

Fltt(Tk−1, Tk,K) := δiBd
t (Tk)EP d

Tk

[
(K − LiTk−1

(Tk−1, Tk))
+|Gt

]
.

Notice that for m ≥ 1 the caplet (�oorlet) can not be written as a put (call) option on
a bond in the multiple-curve setting as it is classically done in the single-curve framework
(see Musiela and Rutkowski [75, Section 12.2]).

Digital Options

Let us �x the dates T1 ∈ R+ and T2 = T1 + δi with tenor δi related to curve i ∈
{0, 1, . . . ,m}. The time-T1 value of a standard digital option is given by

SDiT1(T1, T2, B,w) := 1{wLiT1 (T1,T2)>wB},

where we set

w =

{
1, for a digital call

−1, for a digital put.

Then, the time-t price of this derivative for every t ≤ T1 can be represented as

SDit(T1, T2, B,w) := (βdt )−1EP d

[
βdT11{wLiT1 (T1,T2)>wB}|Gt

]
= Bd

t (T1)EP d
T1

[
1{wLiT1 (T1,T2)>wB}|Gt

]
.

Let T ∈ R+ be such that T1 ≤ T . The time-T value of a delayed digital option is given
by

DDiT (T1, T2, T, B,w) := 1{wLiT1 (T1,T2)>wB}, (2.22)

where we have

w =

{
1, for a delayed digital call

−1, for a delayed digital put.
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We get its risk-neutral price at time t ≤ T1 as

DDit(T1, T2, T, B,w) := (βdt )−1EP d

[
βdT1{wLiT1 (T1,T2)>wB}|Gt

]
= Bd

t (T )EP d
T

[
1{wLiT1 (T1,T2)>wB}|Gt

]
.

The value of a delayed range digital option at time T with barriers B,B satisfying
0 < B < B is

DRDiT (T1, T2, T, B,B) := 1{B<LiT1 (T1,T2)<B}

= 1{B<LiT1 (T1,T2)} + 1{LiT1 (T1,T2)<B} − 1.

Therefore, we obtain that the time-t price for any t ≤ T can be represented by

DRDit(T, T1, T2, B,B) := DDit(T1, T2, T, B, 1) + DDit(T1, T2, T,B,−1)−Bd
t (T ).

(2.23)

2.3. Application of the Two-Price Theory

We brie�y describe the method to apply the two-price theory introduced in section 2.1
to the multiple-curve approach. To this end, let us postulate a mathematical model for
the evolution of a fundamental quantity of the �xed income market, say Li(T ik−1, T

i
k)

for every i ∈ {0, 1, . . . ,m} and T ik−1, T
i
k ∈ T i = {T i0, . . . , T ini}. More speci�cally, all

stochastic processes and random variables are de�ned on a complete stochastic basis
(Ω,G ,G = (Gt)t∈[0,T ∗], P

d) (cf. section 2.2).

In general, the discounted payo� of an interest rate derivative is of complicated nature.
The reason for this circumstance is the occurring stochastic discount factor for the present
price (t = 0) with respect to the underlying pricing measure P d (see for instance equation
(2.20)). To overcome this problem, we switch to the forward measure P d

T . Then, the
discount factor of the present price becomes deterministic, namely Bd

0(T ), and the form
of the discounted payo� simpli�es considerably (see for instance equation (2.21)). With
this approach, we can easily apply the two-price theory with respect to the forward
measure P d

T . In this work, we use a Weighted Value at Risk acceptability index αW that
is constructed by a proper family (Ψx)x≥0 of distortion functions.

2.4. Calibration Procedure

We will calibrate our term structure model to market data. Therefore, a calibration
procedure that deals with the two-price multiple-curve setting is presented.

Let Πmkt
ask (η), Πmkt

mid (η) and Πmkt
bid (η) be given ask, mid and bid market prices of the
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considered derivative. The factor η ∈ H denotes a certain contractual feature for a �nite
set H. For instance, H could be the set of all maturities and strike rates:

H = {(T,K) : T ∈ {1, 2, . . . , 10},K ∈ {0.0175, 0.02, 0.025, 0.03, 0.04, . . . , 0.1}}.

We postulate a multiple-curve interest rate model in a two-price economy. Their ask,
mid and bid model prices are referred to as Πmdl

ask (θ, η, γ), Πmdl
mid(θ, η) and Πmdl

bid (θ, η, γ).
We denote by Θ the set of admissible model parameters and θ ∈ Θ. It is assumed that
at least the mid prices can be numerically evaluated fast and thus allow to calibrate the
model to (mid) market data. In this thesis, we apply the Fourier based valuation method.
To this end, the R-package 'Pracma' created by Borchers [87] is very useful to compute
the relevant integrals.

The parameter γ ≥ 0 is a �xed level of acceptability. Recall that γ can be interpreted
as the current level of market (il)liquidity. It is related to a certain discounted payo� of
a derivative with a given maturity. Observe that it should hold

Πmdl
ask (θ, η, 0) = Πmdl

mid(θ, η) = Πmdl
bid (θ, η, 0).

Our calibration procedure is made in two steps. The reason to proceed in this manner
is that the numerical evaluations of the ask and bid price formulas are extremely time-
consuming in general. In our approach, we only need to calibrate the parameter γ to the
ask and bid prices. The other parameters are �tted in the �rst step.

1. First, we minimise the term

O1(θ,H) :=
∑
η∈H

(
Πmdl

mid(θ, η)−Πmkt
mid (η)

)2

over all admissible model parameters Θ. Let us denote by θ̂ the parameter such
that

O1(θ̂, H) =
∑
η∈H

(
Πmdl(θ̂, η)−Πmkt

mid (η)
)2

= min
θ∈Θ

∑
η∈H

(
Πmdl

mid(θ, η)−Πmkt
mid (η)

)2
. (2.24)

2. In the second step, we determine the parameter γ̂ ≥ 0 satisfying

O2(γ̂, θ̂, H̄T ) = min
γ≥0

O2(γ, θ̂, H̄T ), (2.25)
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where T is the corresponding maturity of the contract, H̄T ⊂ H and

O2(γ, θ,H) :=
∑
η∈H

[(
Πmdl

ask (θ, η, γ)−Πmkt
ask (η)

)2
+
(

Πmdl
bid (θ, η, γ)−Πmkt

bid (η)
)2
]
.

The resulting factors θ̂ and γ̂ are the calibrated parameters where γ̂ is related to a certain
(distorted) pricing measure and the maturity T (see the explanations in section 2.1). We
use a modi�ed Powell method for the minimising problems (2.24) and (2.25) (cf. Powell
[78]). We stress that we just obtain local solutions for the minimising problems by our
method.
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CHAPTER

THREE

THE MULTIPLE-CURVE LÉVY FORWARD RATE MODEL
WITH APPLICATION OF THE TWO-PRICE THEORY

In this chapter, we present the multiple-curve Lévy forward rate model. The Lévy forward
rate model was originally introduced by Eberlein and Raible [38] and extended to time-
inhomogeneous Lévy processes by Eberlein, Jacod, and Raible [39] and Eberlein and
Kluge [33]. Our multiple-curve extension is based on the work of Crépey, Grbac, and
Nguyen [23]. We also take into account the monotonicity of the curves. A tractable
model framework that includes this fact is speci�ed. We emphasise that the interest
rates are permitted to become negative in accordance with the current market situation.
Moreover, valuation formulas of interest rate derivatives with an application of the two-
price theory are stated.

3.1. The Multiple-Curve Lévy Forward Rate Model

Let us consider a �nite time horizon T ∗ ∈ R+, d ∈ N∗ = {1, 2, 3, . . . } and a complete
stochastic basis B̂ := (Ω̂, F̂ , F̂ = (F̂t)t∈[0,T ∗], P̂

d). As driving process of the model
we assume a d-dimensional time-inhomogeneous Lévy process L = (L1, . . . , Ld)T. In the
multiple-curve setting, we consider a discount curve 0 (or d, respectively) and m di�erent
term structures of interest rates, where we have m ∈ N = {0, 1, 2, 3, . . . } (see section 2.2).
Recall that this framework contains the single-curve approach that was used before the
global �nancial crisis by setting m = 0 and the term structures are represented by the
bond curves.

3.1.1. Discount Curve

Let us begin with the speci�cation of the discount curve. To this end, we consider an
arbitrary equidistant discrete tenor structure T d := {T0, . . . , Tn}. Recall that this means
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3. The Multiple-Curve Lévy Forward Rate Model with Application of the Two-Price Theory

that we have n ∈ N∗, T0 < · · · < Tn and Tn = T ∗. We denote by δ := δ(Tk−1, Tk) the
year fraction between the dates Tk−1 and Tk. As usual, it is called the tenor of T d. The
time-t risk-free zero-coupon bond price maturing at date T ∈ [0, T ∗] is denoted by Bd

t (T )

(discount bond). We denote by P the predictable σ-�eld on Ω̂× [0, T ∗] which is de�ned
as the σ-�eld on Ω̂ × [0, T ∗] generated by all adapted processes that are left-continuous
and considered as mappings on Ω̂× [0, T ∗] (cf. Jacod and Shiryaev [56, De�nition I.2.1]).
The optional σ-�eld O on Ω̂ × [0, T ∗] is de�ned as the σ-�eld on Ω̂ × [0, T ∗] which is
generated by all càdlàg adapted processes considered as mappings on Ω̂ × [0, T ∗] (cf.
Jacod and Shiryaev [56, De�nition I.1.20]).
The following additional ingredients are needed to develop the model for the discount

curve:

(D.1) The initial discount curve Bd
0 de�ned by

Bd
0 :

{
[0, T ∗]→ (0,∞)

T 7→ Bd
0(T )

is given.

We assume that the initial discount curve is built by using an appropriate bootstrap-
ping technique. A general explanation of a bootstrapping method is given by Hull [55]
and Ametrano and Bianchetti [3]. One typically takes the OIS-zero-coupon bond as an
approximation of Bd

0 .

(D.2) We consider a drift function αd and a volatility structure σd de�ned by

αd :

{
Ω̂× [0, T ∗]× [0, T ∗]→ R
(ω̂, s, T ) 7→ αd(ω̂, s, T )

and

σd :

{
Ω̂× [0, T ∗]× [0, T ∗]→ Rd

(ω̂, s, T ) 7→ σd(ω̂, s, T ) = (σd1(ω̂, s, T ), . . . , σdd(ω̂, s, T ))

which satisfy the usual measurability and boundedness conditions (cf. Eberlein,
Jacod, and Raible [39]):

(i) αd and σd = (σd1 , . . . , σ
d
d) are measurable with respect to P ⊗ B([0, T ∗]).

(ii) The random functions are bounded for each ω̂ ∈ Ω̂ in the sense of

sup
0≤s,T≤T ∗

(
|αd(ω̂, s, T )|+ ‖σd(ω̂, s, T )‖

)
<∞,

where ‖ · ‖ denotes the Euclidean norm here.
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(iii) For every (ω̂, s, T ) ∈ Ω̂× [0, T ∗]× [0, T ∗] with T < s, we have αd(ω̂, s, T ) = 0

and σd(ω̂, s, T ) = (0, . . . , 0).

Let us postulate that, for every �xed maturity T ∈ [0, T ∗], the dynamics of the discount
instantaneous forward rates fd(T ) = (fdt (T ))t∈[0,T ] are modelled as

fdt (T ) = fd0 (T ) +

∫ t

0
αd(s, T )ds−

∫ t

0
σd(s, T )dLs. (3.1)

The initial values fd0 (T ) are assumed to form a deterministic, bounded and (B([0, T ∗]),B(R))-
measurable mapping

[0, T ∗] 3 T 7→ fd0 (T ) ∈ R.

It is shown by Eberlein, Jacod, and Raible [39] that under these assumptions we
can �nd a joint-version of all fdt (T ) such that the map (ω̂, t, T ) 7→ fdt (ω̂, T )1{t≤T} is
O ⊗ B([0, T ∗])-measurable. Consequently, we can build an integral with the forward
rate as integrand. It follows from the forward rate dynamics (3.1) and an application of
Fubini's Theorem (cf. Protter [79, Theorem 64]) that the bond price Bd

t (T ) at time t
given by

Bd
t (T ) = exp

(
−
∫ T

t
fdt (u)du

)
(3.2)

can be expressed as

Bd
t (T ) = Bd

0(T ) exp

(∫ t

0
(rds −Ad(s, T ))ds+

∫ t

0
Σd(s, T )dLs

)
, (3.3)

where the short rate rdt at time t is speci�ed by rdt = fdt (t) and we set

Ad(s, T ) :=

∫ T

s∧T
αd(s, u)du and Σd(s, T ) :=

∫ T

s∧T
σd(s, u)du (3.4)

(cf. Eberlein and Kluge [33]). Note that the integral
∫ T
s∧T σ

d(s, u)du is clearly understood
componentwise and the initial values fd0 (T ) can be obtained by the relation

fd0 (T ) = −∂ lnBd
0(T )

∂T

if the derivative exists.
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The discount factor process βd = (βdt )t∈[0,T ∗] given by

βdt = exp

(
−
∫ t

0
rdsds

)
is an adapted process with continuous paths. It can obviously be written as

βdt = Bd
0(t) exp

(
−
∫ t

0
Ad(s, t)ds+

∫ t

0
Σd(s, t)dLs

)
. (3.5)

From (3.3) together with (3.5), one easily veri�es the useful representation

Bd
t (T ) =

Bd
0(T )

Bd
0(t)

exp

(∫ t

0

(
Ad(s, t)−Ad(s, T )

)
ds+

∫ t

0
Σd(s, t, T )dLs

)
, (3.6)

where we set Σd(s, t, T ) := Σd(s, T ) − Σd(s, t). To get a tractable model and guarantee
the existence of all related functions, we additionally require the model to be based on
the standing assumption of a deterministic, bounded and continuous volatility structure:

Assumption (DET): The volatility structure σd is a deterministic and bounded

function such that, for every s and T with 0 ≤ s, T ≤ T ∗, it holds

0 ≤ Σd
j (s, T ) ≤ M̂ < M, for every j ∈ {1, . . . , d},

where Σd
j arises from de�nition (3.4) (jth component of Σd) and the constant M is from

assumption (EM). Moreover, the mapping

[0, T ∗] 3 s 7→ σd(s, T ) ∈ Rd

is continuous for each given T ∈ [0, T ∗].

Observe that we have σd(s, s) = 0 for every s ∈ [0, T ∗] under this assumption. Let
M d :=

(
{Bd(T0), . . . , Bd(Tn)},S

)
be a �nancial market and S denote the space of ad-

missible trading strategies. By the fundamental Theorem of asset pricing (see Delbaen
and Schachermayer [25]), the existence of a local martingale measure is a su�cient cri-
terion that ensures the absence of arbitrage in M d. More speci�cally, this means that
there exists a probability measure under which the discounted zero coupon bond price
processes are local martingales. Eberlein and Kluge [33, Proposition 9 and the prelim-
inary remarks] derive a condition on the drift function Ad such that for all T ∈ [0, T ∗],
and therefore for all T ∈ T d, the discounted bond price process Zd(T ) = (Zd

t (T ))0≤t≤T
given by

Zd
t (T ) := βdtB

d
t (T )
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is an (F̂, P̂ d)-martingale. Here, the result of Eberlein and Raible [38, Lemma 3.1] and
its generalised version given by Kluge [64, Proposition 1.9] play a crucial role: We can
determine the term

EP̂ d

[
exp

(∫ t

0
Σd(s, T )dLs

)]
in the form of the cumulant function θt of L with respect to measure P̂ d, namely

EP̂ d

[
exp

(∫ t

0
Σd(s, T )dLs

)]
= exp

(∫ t

0
θs(Σ

d(s, T ))ds

)
.

They obtain the following generalisation of the famous Heath-Jarrow-Morton no-arbitrage
condition that will be a standing assumption in this model:

Assumption (NA): The function Ad is given by the form

Ad(s, T ) = θs(Σ
d(s, T )). (3.7)

Notice that this approach makes the Lévy forward rate model of Eberlein and Kluge
[33] related to the discount curve work directly under the risk-neutral measure. This
choice of the drift term is closely related to the notion of the exponential compensator
(see Kallsen and Shiryaev [61] and Jacod and Shiryaev [56, Section II.8]). We emphasise
that the drift function Ad and therefore also αd as well as the volatility structure Σd

(and σd) are deterministic in this setting.

Lemma 3.1.1 For t, T ∈ [0, T ∗] with t ≤ T , the discount forward rate fdt (T ) is given in

terms of

fdt (T ) = fd0 (T ) +

∫ t

0

∂

∂T
θs(Σ

d(s, T ))ds−
∫ t

0
σd(s, T )dLs (3.8)

and the short rate rdt has the representation

rdt = fd0 (t) +

∫ t

0

∂

∂t
θs(Σ

d(s, t))ds−
∫ t

0
σd(s, t)dLs. (3.9)

Proof: The statements (3.8) and (3.9) are immediately clear on the basis of the relation

αd(s, T ) =
∂

∂T
θs(Σ

d(s, T ))

together with (3.1), relation (3.4), assumption (NA) and the de�nition of the short rate.
�

For some important comments on the (partial) derivative of the cumulant process we
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3. The Multiple-Curve Lévy Forward Rate Model with Application of the Two-Price Theory

refer to Kallsen and Shiryaev [61, section 2.5].

Under assumption (NA), the bond price (3.3) is given in the more speci�c form

Bd
t (T ) =

Bd
0(T )

βdt
exp

(
−
∫ t

0
θs(Σ

d(s, T ))ds+

∫ t

0
Σd(s, T )dLs

)
from which we conclude that

Zd
t (T )

Zd
0 (T )

= exp

(
−
∫ t

0
θs(Σ

d(s, T ))ds+

∫ t

0
Σd(s, T )dLs

)
. (3.10)

Lemma 3.1.2 In this model framework, the discounted bond price process Zd(T ) is the

solution of

dZd(T ) = Zd
−(T )dȲ d,

where the process Ȳ d is given by

Ȳ d
t =

∫ t

0
Σd(s, T )

√
csdWs +

∫ t

0

∫
Rd

(e〈Σ
d(s,T ),x〉 − 1)(µL − ν)(ds, dx).

Proof: We apply Jacod and Shiryaev [56, Theorem II.8.10] with equation (3.10) to get

Zd
t (T )

Zd
0 (T )

= Et(Ȳ
d),

where the process Ȳ d is speci�ed by the stochastic logarithm Ȳ d = L (exp(Y d)) with

Y d
t = −

∫ t

0
θs(Σ

d(s, T ))ds+

∫ t

0
Σd(s, T )dLs.

Then, we immediately obtain the statement. �

This Lemma con�rms once again that Zd(T ) is a P̂ d-(local) martingale (cf. Kallsen
and Shiryaev [61]). To end this subsection, we introduce some useful de�nitions. We
observe that representation (3.6) results in

Bd
t (T ) =

Bd
0(T )

Bd
0(t)

exp
(∫ t

0

[
θs(Σ

d(s, t))− θs(Σd(s, T ))
]
ds

+

∫ t

0
Σd(s, t, T )dLs

)
. (3.11)

For �xed t, T ∈ [0, T ∗] with t ≤ T , the last expression is decomposed into its deterministic
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3.1. The Multiple-Curve Lévy Forward Rate Model

part de�ned by

Dd(t, T ) :=
Bd

0(T )

Bd
0(t)

exp

(∫ t

0

[
θs(Σ

d(s, t))− θs(Σd(s, T ))
]
ds

)
(3.12)

and its stochastic part given as the exponential of the F̂t-measurable random variable

Xd(t, T ) :=

∫ t

0
Σd(s, t, T )dLs. (3.13)

Hence, we obtain the compact form

Bd
t (T ) = Dd(t, T ) exp(Xd(t, T )).

3.1.2. Multiple Curves

Now we address the modelling of the risky curves. Let us consider m ∈ N∗ di�erent
curves. Since each term structure corresponds to a discrete tenor structure, we introduce
the equidistant tenor structure T k := {T k0 , . . . , T knk} for every k ∈ {1, . . . ,m} and nk ∈ N.
We assume that it holds T k0 = T0 and T knk = Tn = T ∗ for all k ∈ {1, . . . ,m}. The
year fraction between the dates T kj−1 and T kj is denoted by δk := δk(T kj−1, T

k
j ), where

j ∈ {1, . . . , nk}. Note that δk unambiguously corresponds to the tenor structure T k and
we can therefore call δk the tenor of T k. Moreover, for all k, l ∈ {1, . . . ,m} with k ≤ l,
we postulate

T l ⊂ T k ⊂ T d ⊂ [0, T ∗]. (3.14)

In accordance with the multiple curve approach, this assumption means that the curves
re�ect liquidity and credit risk in decreasing order of magnitude (δk < δl).

For every k ∈ {1, . . . ,m}, we interpret Bk
t (T ) as time-t price of a �ctitious risky zero-

coupon bond with maturity T that corresponds to curve k. Notice that such risky bonds
are not traded assets but can be considered as bonds being issued by an average Libor
or Euribor panel member.

We need some additional ingredients to model the multiple curves:

(MC.1) The initial multiple term structure curvesB1
0 , . . . , B

m
0 de�ned for every k ∈ {1, . . . ,m}

by

Bk
0 :

{
[0, T ∗]→ (0,∞)

T 7→ Bk
0 (T )

are given.
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3. The Multiple-Curve Lévy Forward Rate Model with Application of the Two-Price Theory

Ametrano and Bianchetti [2, 3] developed a sophisticated bootstrapping method dealing
with this multiple-curve setting. Note that, by using this bootstrapping procedure, the
initial values satisfy

Bl
0(T ) ≤ Bk

0 (T ) ≤ Bd
0(T )

for every k, l ∈ {1, . . . ,m} with k ≤ l and T ∈ [0, T ∗].

(MC.2) For every k ∈ {1, . . . ,m}, we consider the drift function αk and the volatility
structure σk de�ned by

αk :

{
Ω̂× [0, T ∗]× [0, T ∗]→ R
(ω̂, s, T ) 7→ αk(ω̂, s, T )

and

σk :

{
Ω̂× [0, T ∗]× [0, T ∗]→ Rd

(ω̂, s, T ) 7→ σk(ω̂, s, T ) = (σk1 (ω̂, s, T ), . . . , σkd(ω̂, s, T ))

which satisfy the same (measurability and boundedness) conditions as αd and σd

in (D.2).

For every k ∈ {1, . . . ,m} and T ∈ [0, T ∗], the dynamics of the instantaneous forward
rates fk(T ) = (fkt (T ))t∈[0,T ] are postulated to be

fkt (T ) = fk0 (T ) +

∫ t

0
αk(s, T )ds−

∫ t

0
σk(s, T )dLs,

where the initial values fk0 (T ) are assumed to be deterministic, bounded and (B([0, T ∗]),B(R))-
measurable in T . It can be determined by the formula

fk0 (T ) = −∂ lnBk
0 (T )

∂T

if the derivative exists. In the same way as one gets representation (3.3), we obtain the
form

Bk
t (T ) = Bk

0 (T ) exp

(∫ t

0
(rks −Ak(s, T ))ds+

∫ t

0
Σk(s, T )dLs

)
(3.15)

for each k ∈ {1, . . . ,m} from the relation

Bk
t (T ) = exp

(
−
∫ T

t
fkt (u)du

)
. (3.16)
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The rate rkt at t is given by rkt = fkt (t) and we similarly de�ne

Ak(s, T ) :=

∫ T

s∧T
αk(s, u)du and Σk(s, T ) :=

∫ T

s∧T
σk(s, u)du.

To ensure the existence of the cumulant process and for practical purposes, we need
the following standing assumption:

Assumption (MC.DET): For any k ∈ {1, . . . ,m} and all s, T ∈ [0, T ∗], it holds that

the volatility structure σk is deterministic and bounded in the sense of

0 ≤ Σk
j (s, T ) ≤ M̂ < M, for every j ∈ {1, . . . , d}.

The mapping [0, T ∗] 3 s 7→ σk(s, T ) ∈ Rd is continuous. As usual, M is the constant

from assumption (EM).

Note that the constant M̂ in this assumption does not have to coincide with the
constant M̂ from assumption (DET). The discounted bond price process Zk(T ) =

(Zkt (T ))0≤t≤T corresponding to curve k is de�ned by

Zkt (T ) := βdtB
k
t (T )

for each date T ∈ [0, T ∗]. One easily veri�es that

Zkt (T )

Zk0 (T )
= exp

(∫ t

0
[rks − rds −Ak(s, T )]ds+

∫ t

0
Σk(s, T )dLs

)
. (3.17)

Lemma 3.1.3 The discounted bond price process Zk(T ) is the solution of

dZk(T ) = Zk−(T )dȲ k, (3.18)

where the process Ȳ k = (Ȳ k
t )0≤t≤T is given by

Ȳ k
t =

∫ t

0

[
rks − rds −Ak(s, T ) + θs(Σ

k(s, T ))
]
ds+

∫ t

0
Σk(s, T )

√
csdWs

+

∫ t

0

∫
Rd

(
e〈Σ

k(s,T ),x〉 − 1
)

(µL − ν)(ds, dx).

Proof: We apply Jacod and Shiryaev [56, Theorem II.8.10] with relation (3.17) and obtain

Zkt (T )

Zk0 (T )
= Et(Ȳ

k),
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where the process Ȳ k is set as the stochastic logarithm Ȳ k = L (exp(Y k)) with

Y k
t =

∫ t

0
(rks − rds −Ak(s, T ))ds+

∫ t

0
Σk(s, T )dLs.

We get the form

Ȳ k
t =

∫ t

0

[
rks − rds −Ak(s, T ) + 〈Σk(s, T ), bs〉+

1

2
〈Σk(s, T ), csΣ

k(s, T )〉

+

∫
Rd

(
e〈Σ

k(s,T ),x〉 − 1− 〈Σk(s, T ), x〉
)
Fs(dx)

]
ds

+

∫ t

0
Σk(s, T )

√
csdWs +

∫ t

0

∫
Rd

(
e〈Σ

k(s,T ),x〉 − 1
)

(µL − ν)(ds, dx)

=

∫ t

0

[
rks − rds −Ak(s, T ) + θs(Σ

k(s, T ))
]
ds+

∫ t

0
Σk(s, T )

√
csdWs

+

∫ t

0

∫
Rd

(
e〈Σ

k(s,T ),x〉 − 1
)

(µL − ν)(ds, dx).

�

This Lemma shows that Zk(T ) is not a P̂ d-(local) martingale in general.
Similar to relation (3.11), we rewrite the expression (3.15) as

Bk
t (T ) =

Bk
0 (T )

Bk
0 (t)

exp

(∫ t

0

[
Ak(s, t)−Ak(s, T )

]
ds+

∫ t

0
Σk(s, t, T )dLs

)
, (3.19)

where we analogously set

Σk(s, t, T ) := Σk(s, T )− Σk(s, t).

To simplify the notation, for �xed t, T ∈ [0, T ∗] with t ≤ T , we de�ne the factor

Dk(t, T ) :=
Bk

0 (T )

Bk
0 (t)

exp

(∫ t

0

[
Ak(s, t)−Ak(s, T )

]
ds

)
(3.20)

and the F̂t-measurable random variable

Xk(t, T ) :=

∫ t

0
Σk(s, t, T )dLs. (3.21)

Then, we obtain

Bk
t (T ) = Dk(t, T ) exp(Xk(t, T )).

Note that at this stage it is not clear if Dk can be chosen deterministically.
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3.1. The Multiple-Curve Lévy Forward Rate Model

Now, we specify the drift function Ak in such a manner that credit and liquidity
risk issues are taken into account. We closely follow the approach of Crépey, Grbac,
and Nguyen [23, Section 2.3.2]. Their idea is based on no-arbitrage requirements in
defaultable HJM-models which lead to the required drift conditions. Let us temporarily
assume that defaultable bonds with respect to each curve can be traded in the market.
The time-t price of such a bond maturing at T is denoted by B̄k

t (T ). We then study
the conditions that preclude arbitrage opportunities by dealing with these bonds (cf.
Delbaen and Schachermayer [25]). Keep in mind that such bonds are actually not traded
in the market (see also the comments in Crépey, Grbac, and Nguyen [23, section 2.3.2]).
In fact, they are rather mathematical concepts which represent the credit risk of the
panel bank members and are not defaultable in the classical sense.

To develop an appropriate credit risk model, let us construct default times τ1, . . . , τm

as it is described in detail in section 1.2.2. To this end, we need to enlarge the initial
stochastic basis (Ω̂, F̂ , F̂ = (F̂t)t∈[0,T ∗], P̂

d) towards (Ω,G ,F = (Ft)t∈[0,T ∗], P
d) and

(Ω,G ,G = (Gt)t∈[0,T ∗], P
d), respectively, where we used the notation for the relevant

quantities as in section 1.2.2 (except for P d := P̂ d ⊗ P̃ ). Further, we assume that the
defaultable bonds pay a certain recovery upon default. This recovery payment is speci�ed
by the terminal recovery process Rk = (Rkt )t∈[0,T ∗] for every curve k ∈ {1, . . . ,m}.
The process Rk is F̂-adapted and (locally) bounded on (Ω̂, F̂ , F̂, P̂ d) (cf. Bielecki and
Rutkowski [12, Section 13.1.9.]). In �nancial interpretation, the amount Rk

τk
is the

recovery payment made at maturity T if the default of the bond issuer occurs at time
τk ≤ T . More speci�cally, the value of the defaultable bond price B̄k

T (T ) at time T is
given by

B̄k
T (T ) = 1{τk>T}B

k
T (T ) +Bd

T (T )Rkτk1{τk≤T}

= 1{τk>T} +Rkτk1{τk≤T}.

Then, the time-t price results in

B̄k
t (T ) = 1{τk>t}B

k
t (T ) +Bd

t (T )Rkτk1{τk≤t}

and we obtain its discounted value Z̄kt (T ) := βdt B̄
k
t (T ) as

Z̄kt (T ) = 1{τk>t}Z
k
t (T ) +Rkτk1{τk≤t}Z

d
t (T ).

Consequently, the time-t bond price Bk
t (T ) is interpreted as the pre-default price of

the associated defaultable zero-coupon bond. We postulate that each random time τk

possesses an F-intensity γk.

The following Theorem states the conditions which ensure the absence of arbitrage in
our model. To be precise, we derive conditions such that for every k ∈ {1, . . . ,m}, the
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3. The Multiple-Curve Lévy Forward Rate Model with Application of the Two-Price Theory

discounted defaultable bond price process Z̄k(T ) is a (G, P d)-local martingale for each
T ∈ [0, T ∗].

Theorem 3.1.1 Assume that, for each k ∈ {1, . . . ,m} and T ∈ [0, T ∗], the condition

Zkt−(T )
[
λk,dt −Ak(t, T ) + θt(Σ

k(t, T ))
]

= (Zkt−(T )−RktZd
t (T ))γkt (3.22)

is satis�ed for all t ∈ [0, T ], where we set λk,dt := rkt − rdt . Then, for each k ∈ {1, . . . ,m}
and T ∈ [0, T ∗], the process Z̄k(T ) is a (G, P d)-local martingale.

Proof: For every k ∈ {1, . . . ,m} and T ∈ [0, T ∗], we obviously have that Hk = 1{τk≤ · } ∈
V , 1−Hk = 1{τk> · } ∈ V and Zk(T ) ∈ S . Let us de�ne by Ĥk

t := Rk
τk
Hk
t a G-adapted

process Ĥk = (Ĥk
t )t∈[0,T ∗] in V . Then, by Jacod and Shiryaev [56, Proposition I.4.49],

we obtain that

Z̄kt (T ) =

∫ t

0
(1−Hk

s−)dZks (T ) +

∫ t

0
Zks (T )d(1−Hk

s ) + Z̄k0 (T )

+

∫ t

0
Ĥk
s−dZ

d
s (T ) +

∫ t

0
Zd
s (T )dĤk

s

=

∫ t

0
(1−Hk

s−)dZks (T )−
∫ t

0
Zks (T )dHk

s + Z̄k0 (T )

+

∫ t

0
Ĥk
s−dZ

d
s (T ) +

∫ t

0
RksZ

d
s (T )dHk

s .

Using the form (3.18), one gets

Z̄kt (T ) =

∫ t

0
(1−Hk

s−)Zks−(T )
[
λkds −Ak(s, T ) + θs(Σ

k(s, T ))
]
ds+ Z̄k0 (T )

+

∫ t

0
(1−Hk

s−)Zks−(T )Σk(s, T )
√
csdWs

+

∫ t

0

∫
Rd

(1−Hk
s−)Zks−(T )

(
e〈Σ

k(s,T ),x〉 − 1
)

(µL − ν)(ds, dx)

+

∫ t

0
Ĥk
s−dZ

d
s (T ) +

∫ t

0
(RksZ

d
s (T )− Zks (T ))dHk

s .

Since condition (3.22) is assumed to be satis�ed, we have∫ t

0
(1−Hk

s )Zks−(T )
[
λkds −Ak(s, T ) + θs(Σ

k(s, T ))
]
ds

=

∫ t

0
(1−Hk

s )(Zks−(T )−RksZd
s (T ))γks ds

=

∫ t

0
(1−Hk

s )(Zks (T )−RksZd
s (T ))γks ds
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and it follows that

Z̄kt (T ) =Z̄k0 (T ) +

∫ t

0
(1−Hk

s−)Zks−(T )Σk(s, T )
√
csdWs

+

∫ t

0

∫
Rd

(1−Hk
s−)Zks−(T )

(
e〈Σ

k(s,T ),x〉 − 1
)

(µL − ν)(ds, dx)

+

∫ t

0
Ĥk
s−dZ

d
s (T ) +

∫ t

0
(RksZ

d
s (T )− Zks (T ))dMk

s , (3.23)

where the (G, P d)-martingale Mk = (Mk
t )t∈[0,T ∗] is de�ned by

Mk
t = Hk

t −
∫ t

0
(1−Hk

s )γks ds.

By taking into account the valid martingale invariance property, we observe that all
the considered stochastic integrals in equation (3.23) have (G, P d)-local martingales as
integrators. Hence, we conclude that Z̄k(T ) is a (G, P d)-local martingale. �

Let us assume that the terminal recovery process is of the form

Rkt = RkBk
t−(T )Bd

t (T )−1, where Rk ∈ [0, 1).

Note that this choice corresponds to the fractional recovery of market value (see Bi-
elecki and Rutkowski [12, section 1.1.1]). By easy computations, we obtain the following
practical form of condition (3.22): For each k ∈ {1, . . . ,m} and T ∈ [0, T ∗], it holds

λk,dt −Ak(t, T ) + θt(Σ
k(t, T )) = (1−Rk)γkt (3.24)

for every t ∈ [0, T ] (cf. Crépey, Grbac, and Nguyen [23, equation (26)]). One veri�es
that condition (3.24) can equivalently be formulated as

λk,dt =(1−Rk)γkt
Ak(t, T ) =θt(Σ

k(t, T )). (3.25)

Hence, the credit risk component of the model is given by equation (3.25).
Since the crisis was caused by a mixture of credit and liquidity risk (cf. Filipovi¢ and

Trolle [45] and Eberlein [30]), we add a further liquidity component to the pure credit
risk factor θt(Σk(t, T )) in (3.25). Thus, we need another ingredient in the model:

(MC.3) We consider the liquidity component lk de�ned by

lk :

{
[0, T ∗]× [0, T ∗]→ R
(t, T ) 7→ lk(t, T )
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which is assumed to be a deterministic, di�erentiable and bounded function.

Finally, we consider the drift function

Ak(t, T ) = θt(Σ
k(t, T )) + lk(t, T ) (3.26)

for every k ∈ {1, . . . ,m}. We stress that the drift function Ak (and αk) and the volatility
function Σk (and σk) are deterministic functions. Therefore, the factor Dk is also deter-
ministic. Observe also that this choice of the drift function corresponds to the fact that
the forward reference rate Lk(S, T ) is not a P d

T -martingale in general.

3.2. Monotonicity of the Curves

Assumption (3.14) implies some kind of monotonicity of the curves. More speci�cally,
bonds that are related to a riskier curve should have a lower price than bonds that
correspond to a curve associated with less credit and liquidity risk. Figure 2.12 implicitly
con�rms this fact by means of market data.

3.2.1. The Monotonicity Condition

Letm ∈ N∗. Recall that, by using the bootstrapping method of Ametrano and Bianchetti
[2, 3], we generally have for every k, l ∈ {1, . . . ,m} with k ≤ l and all T ∈ [0, T ∗] the
monotonicity of the initial curves:

Bl
0(T ) ≤ Bk

0 (T ) ≤ Bd
0(T ).

We have to design the model such that the monotonicity is valid for all dates. This means
that we achieve the model quantities in such a way that we obtain

Bl
t(T ) ≤ Bk

t (T ) ≤ Bd
t (T ) (3.27)

for every t, T ∈ [0, T ∗] satisfying t ≤ T . This re�ects the fact that the higher the risk is,
the lower the price of the bond is. The monotonicity will be guaranteed by additional
restrictions on the model parameters. The inequalities (3.27) obviously imply

fdt (T ) ≤ fkt (T ) ≤ f lt(T ) (3.28)

by the relations (3.2) and (3.16).
For every k, j ∈ {d, 1 . . . ,m} and T ∈ [0, T ∗], we de�ne the additive (forward) spread

between the curves k and j by

sk,jt (T ) := fkt (T )− f jt (T ). (3.29)
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One sees that the dynamics sk,j(T ) = (sk,jt (T ))t∈[0,T ] are given by

sk,jt (T ) = sk,j0 (T ) +

∫ t

0
αk,j(s, T )ds−

∫ t

0
σk,j(s, T )dLs, (3.30)

where we set αk,j(s, T ) := αk(s, T )−αj(s, T ) and σk,j(s, T ) := σk(s, T )−σj(s, T ). Note
that sk,kt (T ) = 0 for every k ∈ {d, 1, . . . ,m} and we deduce from (3.28) that

0 ≤ sk,d0 (T ) ≤ sl,d0 (T ) and 0 ≤ sl,k0 (T )

for all k, l ∈ {1, . . . ,m} with k ≤ l and T ∈ [0, T ∗]. For every k, j ∈ {d, 1 . . . ,m}, the
short term spread between k and j is de�ned by λk,jt := rkt − r

j
t and we set

Ak,j(s, T ) :=

∫ T

s∧T
αk,j(s, u)du and Σk,j(s, T ) :=

∫ T

s∧T
σk,j(s, u)du.

Then, we clearly have the relations

Ak,j(s, T ) = Ak(s, T )−Aj(s, T ) and Σk,j(s, T ) = Σk(s, T )− Σj(s, T ).

For any k ∈ {1, . . . ,m}, we obviously have

sk,dt (T ) =

k∑
j=1

sj,j−1
t (T ), (3.31)

where we de�ne s1,0
t (T ) := s1,d

t (T ). Therefore, we obtain

fkt (T ) = fdt (T ) +
k∑
j=1

sj,j−1
t (T ).

Note that, for every k ∈ {1, . . . ,m}, the short term spread λk,d is given by

λk,dt =
k∑
j=1

λj,j−1
t =

k∑
j=1

sj,j−1
t (t),

where we set λ1,0
t := λ1,d

t . Moreover, one easily sees that the drift function and the
volatility structure related to curve k can be represented by

αk(s, T ) = αd(s, T ) +
k∑
j=1

αj,j−1(s, T )
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and

σk(s, T ) = σd(s, T ) +
k∑
j=1

σj,j−1(s, T ),

where we denote α1,0(s, T ) := α1,d(s, T ) and σ1,0(s, T ) := σ1,d(s, T ). It follows that we
have

Ak(s, T ) = Ad(s, T ) +
k∑
j=1

Aj,j−1(s, T )

and

Σk(s, T ) = Σd(s, T ) +

k∑
j=1

Σj,j−1(s, T ),

where we de�ne A1,0(s, T ) := A1,d(s, T ) and Σ1,0(s, T ) := Σ1,d(s, T ). Consequently, due
to relation (3.29), we can specify the dynamics of the quantity fk(T ) by modelling the
forward spreads sk,j(T ) and the forward rates f j(T ).
It is evident that the relation (3.28) is equivalent to the condition

0 ≤ sk,dt (T ) ≤ sl,dt (T ) (3.32)

for every k, l ∈ {1, . . . ,m} with k ≤ l and t, T ∈ [0, T ∗] satisfying t ≤ T . Then, we
conclude from representation (3.31) that condition (3.32) is valid if, for all j ∈ {1, . . . ,m}
and t, T ∈ [0, T ∗] with t ≤ T , we have

0 ≤ sj,j−1
t (T ). (3.33)

To sum up, this approach results in the non-negative speci�cation of the forward spreads
between two subsequent curves (3.33). Then, condition (3.32) is automatically satis�ed.
This fact implicitly guarantees the relations (3.28) and we therefore ensure the required
monotonicity (3.27).
We end this subsection with the derivation of a representation of the (forward) spreads.

Lemma 3.2.1 The forward spread s1,d
t (T ) is given by

s1,d
t (T ) =s1,d0 (T ) +

∫ t

0

[ ∂
∂T

θs(Σ
d(s, T ) + Σ1,d(s, T )) +

∂

∂T
l1(s, T )

− ∂

∂T
θs(Σ

d(s, T ))
]
ds−

∫ t

0
σ1,d(s, T )dLs
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and, in the case of m ≥ 2 with j ∈ {2, . . . ,m}, the forward spread sj,j−1
t (T ) can be

represented by

sj,j−1
t (T ) =sj,j−1

0 (T ) +

∫ t

0

[ ∂
∂T

θs(Σ
d(s, T ) +

j∑
i=1

Σi,i−1(s, T )) +
∂

∂T
lj,j−1(s, T )

− ∂

∂T
θs(Σ

d(s, T ) +

j−1∑
i=1

Σi,i−1(s, T ))
]
ds−

∫ t

0
σj,j−1(s, T )dLs,

where we set lj,j−1(s, T ) := lj(s, T )− lj−1(s, T ).

Proof: On the basis of the speci�cations of the drift functions (3.7) and (3.26), we get

α1,0(s, T ) = α1,d(s, T ) =
∂

∂T
θs(Σ

1(s, T )) +
∂

∂T
l1(s, T )− ∂

∂T
θs(Σ

d(s, T ))

and, for m ≥ 2 where j ∈ {2, . . . ,m}, it holds

αj,j−1(s, T ) =
∂

∂T
θs(Σ

j(s, T )) +
∂

∂T
lj(s, T )− ∂

∂T
θs(Σ

j−1(s, T ))− ∂

∂T
lj−1(s, T ).

Then, the assertion follows from the forward spreads dynamics given by (3.30). �

3.2.2. A Suitable Model Framework

We present an example of a tractable model which ensures the non-negativity of the
consecutive forward spreads. Through the analysis made in the previous subsection,
it follows that the monotonicity of the curves (3.27) is then valid. This framework is
motivated by Crépey, Grbac, and Nguyen [23]. We emphasise that we specify the model
quantities corresponding to each curve k ∈ {1, . . . ,m} by modelling the quantities of the
relevant spreads and the discount curve (cf. the previous subsection and relation (3.29)).
Let d,m, l ∈ N∗ = {1, 2, 3, . . . } with l + m ≤ d. The d-dimensional driving process

L = (L1, . . . , Ld)T is given on the enlarged stochastic basis (Ω,G ,G, P d). Its components
are divided into l real-valued Lévy processes and d − l negative Lévy processes. More
precisely, we specify the d-dimensional Lévy process L as follows:

(i) Y 1 := (L1, . . . , Ll)T is an Rl-valued Lévy process.

(ii) Y 2 := (Ll+1, . . . , Ld)T = (−Z l+1, . . . ,−Zd)T, where Z := (Z l+1, . . . , Zd)T = −Y 2

is an Rd−l+ -valued Lévy process whose components are subordinators (see Sato [81,
De�nition 21.4.] and Barndor�-Nielsen and Shephard [8]). The cumulant process
of Z is of the form

θZ(z) = 〈z, b〉+

∫
Rd−l+

(e〈z,x〉 − 1)F (dx),
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where z ∈ Cd−l such that Re(z) ∈ [−(1 + ε)M, (1 + ε)M ]d−l. The drift term b

satis�es bj ≥ 0 for any j ∈ {1, . . . , d − l} and the Lévy measure F has its support
on Rd−l+ .

We make the following standing assumption:

Assumption (VL): For every k ∈ {1, . . . ,m}, the non-negative volatility functions

Σd and Σk,k−1 as well as the liquidity function lk are deterministic, di�erentiable and

stationary functions. This means that for every k ∈ {1, . . . ,m}, j ∈ {1, . . . , d} and s, T
with 0 ≤ s ≤ T ≤ T ∗, the functions are of the form

Σd
j (s, T ) = Gj(T − s)

Σk,k−1
j (s, T ) = Gkj (T − s)

lk(s, T ) = Gkl (T − s),

where Gj : [0, T ∗] → R+ and Gkj : [0, T ∗] → R+ are di�erentiable and deterministic

functions satisfying Gj(0) = Gkj (0) = 0 that are bounded in the sense of

Gj(s) +

m∑
k=1

Gkj (s) ≤ M̂ < M

for all s ∈ [0, T ∗] with the constant M from assumption (EM), and Gkl : [0, T ∗]→ R is a

di�erentiable, deterministic and bounded function satisfying Gkl (0) = 0.

It follows that the conditions (DET) and (MC.DET) are ful�lled under assumption
(VL).

Proposition 3.2.1 The forward spread s1,d
t (T ) can be written as

s1,d
t (T ) =s1,d0 (T )− θ(Σd(t, T ) + Σ1,d(t, T )) + θ(Σd(0, T ) + Σ1,d(0, T ))

− l1(t, T ) + l1(0, T ) + θ(Σd(t, T ))− θ(Σd(0, T )) (3.34)

−
∫ t

0
σ1,d(s, T )dLs
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and, in the case where m ≥ 2, the forward spread sj,j−1
t (T ) is given by

sj,j−1
t (T ) =sj,j−1

0 (T )− θ(Σd(t, T ) +

j∑
i=1

Σi,i−1(t, T )) + θ(Σd(0, T ) +

j∑
i=1

Σi,i−1(0, T ))

− lj,j−1(t, T ) + lj,j−1(0, T ) + θ(Σd(t, T ) +

j−1∑
i=1

Σi,i−1(t, T )) (3.35)

− θ(Σd(0, T ) +

j−1∑
i=1

Σi,i−1(0, T ))−
∫ t

0
σj,j−1(s, T )dLs

for any j ∈ {2, . . . ,m}. The corresponding short spreads result in

λ1,d
t =s1,d0 (t) + θ(Σd(0, t) + Σ1,d(0, t)) + l1(0, t)− θ(Σd(0, t))−

∫ t

0
σ1,d(s, t)dLs

and

λj,j−1
t =sj,j−1

0 (t) + θ(Σd(0, t) +

j∑
i=1

Σi,i−1(0, t)) + lj,j−1(0, t)

− θ(Σd(0, t) +

j−1∑
i=1

Σi,i−1(0, t))−
∫ t

0
σj,j−1(s, t)dLs.

Proof: We �rst observe that it holds

∂

∂T
Gj(T − s) = − ∂

∂s
Gj(T − s)

∂

∂T
Gkj (T − s) = − ∂

∂s
Gkj (T − s)

∂

∂T
Gkl (T − s) = − ∂

∂s
Gkl (T − s).

Then, let us consider the representation of s1,d
t (T ) and sj,j−1

t (T ) that are stated in Lemma
3.2.1. It immediately follows that

∂

∂T
θ(Σd(s, T ) + Σ1,d(s, T )) +

∂

∂T
l1(s, T )− ∂

∂T
θ(Σd(s, T ))

=− ∂

∂s
θ(Σd(s, T ) + Σ1,d(s, T ))− ∂

∂s
l1(s, T ) +

∂

∂s
θ(Σd(s, T ))
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from which we observe that∫ t

0

[ ∂
∂T

θ(Σd(s, T ) + Σ1,d(s, T )) +
∂

∂T
l1(s, T )− ∂

∂T
θ(Σd(s, T ))

]
ds

=−
∫ t

0

[ ∂
∂s
θ(Σd(s, T ) + Σ1d(s, T )) +

∂

∂s
l1(s, T )− ∂

∂s
θ(Σd(s, T ))

]
ds

=− θ(Σd(t, T ) + Σ1,d(t, T )) + θ(Σd(0, T ) + Σ1,d(0, T ))− l1(t, T ) + l1(0, T )

+ θ(Σd(t, T ))− θ(Σd(0, T )).

Hence, s1,d
t (T ) can be expressed in the form (3.34). Analogously, one shows that

∂

∂T
θ(Σd(s, T ) +

j∑
i=1

Σi,i−1(s, T )) +
∂

∂T
lj,j−1(s, T )

− ∂

∂T
θ(Σd(s, T ) +

j−1∑
i=1

Σi,i−1(s, T ))

=− ∂

∂s
θ(Σd(s, T ) +

j∑
i=1

Σi,i−1(s, T ))− ∂

∂s
lj,j−1(s, T )

+
∂

∂s
θ(Σd(s, T ) +

j−1∑
i=1

Σi,i−1(s, T )).

Then, we get

∫ t

0

[ ∂
∂T

θ(Σd(s, T ) +

j∑
i=1

Σi,i−1(s, T )) +
∂

∂T
lj,j−1(s, T )

− ∂

∂T
θ(Σd(s, T ) +

j−1∑
i=1

Σi,i−1(s, T ))
]
ds

=−
∫ t

0

[ ∂
∂s
θ(Σd(s, T ) +

j∑
i=1

Σi,i−1(s, T )) +
∂

∂s
lj,j−1(s, T )

− ∂

∂s
θ(Σd(s, T ) +

j−1∑
i=1

Σi,i−1(s, T ))
]
ds

=− θ(Σd(t, T ) +

j∑
i=1

Σi,i−1(t, T )) + θ(Σd(0, T ) +

j∑
i=1

Σi,i−1(0, T ))− lj,j−1(t, T )

+ lj,j−1(0, T ) + θ(Σd(t, T ) +

j−1∑
i=1

Σi,i−1(t, T ))− θ(Σd(0, T ) +

j−1∑
i=1

Σi,i−1(0, T )).
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The last expressions immediately lead to the form (3.35). By de�nition, we easily obtain
the representations of the short spreads. �

Next, we derive necessary and su�cient deterministic conditions for the non-negativity
of the (consecutive) forward spreads. We explicitly mention that this approach is closely
related to the proceeding of Crépey, Grbac, and Nguyen [23, section 3.2].

Let m ≥ 2 and de�ne the deterministic terms

µ1,d(t, T ) := s1,d
t (T ) +

∫ t

0
σ1,d(s, T )dLs

= s1,d0 (T )− θ(Σd(t, T ) + Σ1,d(t, T )) + θ(Σd(0, T ) + Σ1,d(0, T ))

− l1(t, T ) + l1(0, T ) + θ(Σd(t, T ))− θ(Σd(0, T ))

µ1,d(t) := λ1,d
t +

∫ t

0
σ1,d(s, t)dLs

= s1,d0 (t) + θ(Σd(0, t) + Σ1,d(0, t)) + l1(0, t)− θ(Σd(0, t))

and

µj,j−1(t, T ) := sj,j−1
t (T ) +

∫ t

0
σj,j−1(s, T )dLs

= sj,j−1
0 (T )− θ(Σd(t, T ) +

j∑
i=1

Σi,i−1(t, T ))

+ θ(Σd(0, T ) +

j∑
i=1

Σi,i−1(0, T ))− lj,j−1(t, T ) + lj,j−1(0, T )

+ θ(Σd(t, T ) +

j−1∑
i=1

Σi,i−1(t, T ))− θ(Σd(0, T ) +

j−1∑
i=1

Σi,i−1(0, T ))

µj,j−1(t) := λj,j−1
t +

∫ t

0
σj,j−1(s, t)dLs

= sj,j−1
0 (t) + θ(Σd(0, t) +

j∑
i=1

Σi,i−1(0, t)) + lj,j−1(0, t)

− θ(Σd(0, t) +

j−1∑
i=1

Σi,i−1(0, t)),

respectively.

Proposition 3.2.2 Let T ∈ [0, T ∗]. We assume that the following two conditions are

satis�ed:
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1. For any t ∈ [0, T ] and each k ∈ {1, . . . , l}, we have

σ1,d
k (t, T ) = 0

and, if m ≥ 2, it holds

σj,j−1
k (t, T ) = 0

for every j ∈ {2, . . . ,m}.

2. For all t ∈ [0, T ], it holds

0 ≤ µ1,d(t, T ) = µ1,d(T )− θ(Σd(t, T ) + Σ1,d(t, T ))− l1(t, T ) + θ(Σd(t, T ))

(3.36)

and, if m ≥ 2, we have

0 ≤ µj,j−1(t, T ) = µj,j−1(T )− θ(Σd(t, T ) +

j∑
i=1

Σi,i−1(t, T ))− lj,j−1(t, T )

(3.37)

+ θ(Σd(t, T ) +

j−1∑
i=1

Σi,i−1(t, T ))

for every j ∈ {2, . . . ,m}.

Then, it results that the forward spreads meet

0 ≤ s1,d
t (T ) and 0 ≤ sj,j−1

t (T )

for every t, T ∈ [0, T ∗] with t ≤ T and each j ∈ {2, . . . ,m}.

Proof: It follows from the de�nition of µ1,d(t, T ) that the non-negativity of the term
−
∫ t

0 σ
1,d(s, T )dLs, for any t ∈ [0, T ], together with (3.36) imply s1,d

t (T ) ≥ 0 for all
t ∈ [0, T ]. Similar arguments lead to the non-negativity of the spread sj,j−1

t (T ) for any
t ∈ [0, T ] with t ≤ T and every j ∈ {2, . . . ,m} if m ≥ 2. �

Note that the conditions (3.36) and (3.37) result in additional restrictions on the con-
sidered distribution parameters of the driving process as well as the parameters of the
volatility and liquidity functions.
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3.3. Valuation Formulas with Application of the Two-Price

Theory

In this section, we specify mid price valuation formulas of interest rate derivatives in the
multiple-curve Lévy forward rate model. Furthermore, the two-price theory is applied to
some special �nancial products and the corresponding ask and bid prices are derived.

3.3.1. Valuation Formulas of Interest Rate Derivatives

We begin with some preliminary remarks related to the valuation approach. Let T ∗ > 0

be a �nite time horizon and m ∈ N. Recall that in the case where m = 0, we obtain
the classical single-curve setting and the discount curve is referred to as 0 or d. For
any k ∈ {0, 1, . . . ,m}, let T k = {T k0 , . . . , T knk} be an equidistant discrete tenor structure
with tenor δk. We assume that 0 ≤ T k0 = T l0, T

k
nk

= T ∗ and T l ⊂ T k for every
k, l ∈ {0, 1, . . . ,m} satisfying k ≤ l (δk < δl). To simplify the notation, we omit the
superscripts for the dates and tenors related to curve 0 (or d, respectively).

We conclude from the equations (3.11) and (3.19) that the time-T kj−1 bond price ma-
turing at date T kj can be represented by

Bd
Tj−1

(Tj) =
Bd

0(Tj)

Bd
0(Tj−1)

exp

(∫ Tj−1

0
Σd(s, Tj−1, Tj)dLs

+

∫ Tj−1

0

[
θs(Σ

d(s, Tj−1))− θs(Σd(s, Tj))
]
ds

)

for every j ∈ {1, . . . , n} and

Bk
Tkj−1

(T kj ) =
B0(T kj )

B0(T kj−1)
exp

(∫ Tkj−1

0
Σk(s, T kj−1, T

k
j )dLs

+

∫ Tkj−1

0

[
θs(Σ

k(s, T kj−1)) + lk(s, T kj−1)

− θs(Σk(s, T kj ))− lk(s, T kj )
]
ds

)

for every j ∈ {1, . . . , nk} with k ∈ {1, . . . ,m}. Recall that these expressions can com-
pactly be written as

Bk
Tkj−1

(T kj ) = Dk
j exp(Xk

j ),

77



3. The Multiple-Curve Lévy Forward Rate Model with Application of the Two-Price Theory

where we set the deterministic part as

Dk
j := Dk(T kj−1, T

k
j )

and the stochastic term as

Xk
j := Xk(T kj−1, T

k
j )

for every k ∈ {d, 1, . . . ,m} (cf. equations (3.12), (3.13), (3.20) and (3.21)). Furthermore,
the discount factor process βd at date T ∈ [0, T ∗] is calculated as

βdT = Bd
0(T ) exp

(
−
∫ T

0
θs(Σ

d(s, T ))ds+

∫ T

0
Σd(s, T )dLs

)
. (3.38)

By using Eberlein and Raible [38, Lemma 3.1] or its generalised version developed by
Eberlein and Kluge [33], we observe that the characteristic function of Xk

j under P d
T can

be determined as

ϕT
Xk
j
(u) = EP d

T

[
exp

(∫ Tkj−1

0
iuΣk(s, T kj−1, T

k
j )dLs

)]
= exp

(∫ Tkj−1

0
θTs

(
iuΣk(s, T kj−1, T

k
j )
)
ds

)
,

where θTs denotes the cumulant with respect to P d
T and T ∈ T d. By changing to the spot

martingale measure P d with the use of (2.13) together with equation (3.5) (concretely,
(3.38)), we get the useful representations

ϕ
Tkj
Xk
j

(u) =EP d

[
βd
Tkj
Bd

0(T kj )−1 exp
(∫ Tkj−1

0
iuΣk(s, T kj−1, T

k
j )dLs

)]

= exp

(∫ Tkj−1

0

[
θs

(
Σd(s, T kj ) + iuΣk(s, T kj−1, T

k
j )
)
− θs(Σd(s, T kj ))

]
ds

)
(3.39)

and

ϕ
Tj−1

Xd
j

(u) =EP d

[
βdTj−1

Bd
0(Tj−1)−1 exp

(∫ Tj−1

0
iuΣd(s, Tj−1, Tj)dLs

)]

= exp

(∫ Tj−1

0

[
θs

(
Σd(s, Tj−1) + iuΣd(s, Tj−1, Tj)

)
− θs(Σd(s, Tj−1))

]
ds

)
.

(3.40)
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Note that these expressions can be extended to complex numbers by using assumption
(EM) (cf. Sato [81, Theorem 25.17]).

The payo�s of the derivatives that we will consider are combinations of determinis-
tic functions of the reference rates Lk

Tkj−1
(T kj−1, T

k
j ). These rates are FTkj−1

-measurable

random variables. Moreover, the discount factor process βd is F-adapted. Since the
martingale invariance property between F and G under P d is valid, we conclude from
hypothesis (H5) of subsection 1.2.1 that it holds

(βdt )−1EP d [βdTkj
f(Lk

Tkj−1
(T kj−1, T

k
j ))|Gt] = (βdt )−1EP d [βdTkj

f(Lk
Tkj−1

(T kj−1, T
k
j ))|Ft]

for every t ∈ [0, T kj−1] and each Borel-measurable deterministic function f : R → R.
Note that f(Lk

Tkj−1
(T kj−1, T

k
j )) is considered as an integrable FTkj−1

-measurable random

variable. By using the abstract Bayes rule, we obtain

(βdt )−1EP d

[
βd
Tkj
f(Lk

Tkj−1
(T kj−1, T

k
j ))|Gt

]
= EP d

Tk
j

[
Bd
t (T kj )f(Lk

Tkj−1
(T kj−1, T

k
j ))|Gt

]
.

From the notes made in subsection 1.2.1, we conclude that the martingale invariance
property between F and G is also satis�ed for any forward measure P d

T with T ∈ [0, T ∗].
Hence, we have

EP d

Tk
j

[
Bd
t (T kj )f(Lk

Tkj−1
(T kj−1, T

k
j ))|Gt

]
= EP d

Tk
j

[
Bd
t (T kj )f(Lk

Tkj−1
(T kj−1, T

k
j ))|Ft

]
for every t ∈ [0, T kj−1]. To summarise, we can replace Gt by Ft in all risk-neutral pricing
formulas in our model.

Now, we consider k ∈ {d, 1, . . . ,m}. The related valuation formulas for the single-curve
setting are well-known and can be found in the literature. To simplify the notation, the
notional amount is set to one.

Forward Rate Agreements

Recall that the payo� of a forward rate agreement at maturity T kj is given by

FRATkj
(T kj−1, T

k
j , δ

k,K) = δk(Lk
Tkj−1

(T kj−1, T
k
j )−K).
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Then, the value of this product at time t ≤ T kj−1 is

FRAt(T
k
j−1, T

k
j , δ

k,K) = δk(βdt )−1EP d

[
βd
Tkj

(Lk
Tkj−1

(T kj−1, T
k
j )−K)|Ft

]
= (βdt )−1EP d

[
βd
Tkj

(
Bk
Tkj−1

(T kj )−1 − K̃k
)
|Ft

]
= Bd

t (T kj )EP d

Tk
j

[ (
Bk
Tkj−1

(T kj )−1 − K̃k
)
|Ft

]
(3.41)

= Bd
t (T kj )EP d

Tk
j

[ (
ηkj exp(−Xk

j )− K̃k
)
|Ft

]
,

where we set

ηkj :=
1

Dk
j

=
Bd

0(T kj−1)

Bd
0(T kj )

exp

(∫ Tkj−1

0
[Ak(s, T kj )−Ak(s, T kj−1)]ds

)

and K̃k := 1 + δkK (cf. equation (2.14)). The time-t FRA rate Kk
t is given by

Kk
t = EP d

Tk
j

[ 1

δk
(Bk

Tkj−1
(T kj )−1 − 1)|Ft

]
= EP d

Tk
j

[ 1

δk
(
ηkj exp(−Xk

j )− 1
)
|Ft

]
.

To obtain a tractable representation of the price, we consider the following term:

EP d

Tk
j

[
Bk
Tkj−1

(T kj )−1|Ft

]
= ηkjEP d

Tk
j

[
exp

(
−
∫ Tkj−1

0
Σk(s, T kj−1, T

k
j )dLs

)
|Ft

]

= ηkj exp

(
−
∫ t

0
Σk(s, T kj−1, T

k
j )dLs

)
EP d

Tk
j

[
exp

(
−
∫ Tkj−1

t
Σk(s, T kj−1, T

k
j )dLs

)]

= ηkj exp

(
−
∫ t

0
Σk(s, T kj−1, T

k
j )dLs +

∫ Tkj−1

t
θ
Tkj
s (−Σk(s, T kj−1, T

k
j ))ds

)
,

where θ
Tkj
t denotes the cumulant of L under P d

Tkj
.

Proposition 3.3.1 The risk-neutral price of a forward rate agreement at time t can be

written as

FRAt(T
k
j−1, T

k
j , δ

k,K) = Bd
t (T kj )

(
V k
t (T kj−1, T

k
j )− K̃k

)
,
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where we de�ne

V k
t (T kj−1, T

k
j ) :=ηkj exp

(
−
∫ t

0
Σk(s, T kj−1, T

k
j )dLs

)
× exp

(∫ Tkj−1

t
[θs(Σ

d(s, T kj )− Σk(s, T kj−1, T
k
j ))− θs(Σd(s, T kj ))]ds

)
.

The rate Kk
t such that

FRAt(T
k
j−1, T

k
j , δ

k,Kk
t ) = 0

is given by

Kk
t =

1

δk

(
V k
t (T kj−1, T

k
j )− 1

)
.

Proof: Given the formula (3.41) and the analysis made before this Proposition, it remains
to show that

EP d

Tk
j

[
exp

(
−
∫ Tkj−1

t
Σk(s, T kj−1, T

k
j )dLs

)]

= exp

(
−
∫ Tkj−1

0
Ad(s, T kj )ds

)
EP d

[
exp

(∫ Tkj−1

0
Σd(s, T kj )dLs

−
∫ Tkj−1

t
Σk(s, T kj−1, T

k
j )dLs

)]
= exp

(
−
∫ Tkj−1

0
θs(Σ

d(s, T kj ))ds

)
EP d

[
exp

(∫ t

0
Σd(s, T kj )dLs

)]

× EP d

[
exp

(∫ Tkj−1

t
Σd(s, T kj )− Σk(s, T kj−1, T

k
j )dLs

)]

= exp

(
−
∫ Tkj−1

0
θs(Σ

d(s, T kj ))ds

)
exp

(∫ t

0
θs(Σ

d(s, T kj ))ds

)

× exp

(∫ Tkj−1

t
θs(Σ

d(s, T kj )− Σk(s, T kj−1, T
k
j ))ds

)

= exp

(∫ Tkj−1

t

[
θs(Σ

d(s, T kj )− Σk(s, T kj−1, T
k
j ))− θs(Σd(s, T kj ))

]
ds

)
.

�
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Interest Rate Swaps

The time-t value of an interest rate swap with �xing and payment dates T k can be
computed as

Swapt(T
k, δk,S) =

nk∑
j=1

δkBd
t (T kj )EP d

Tk
j

[
(Lk

Tkj−1
(T kj−1, T

k
j )− S)|Ft

]
=

nk∑
j=1

FRAt(T
k
j−1, T

k
j , δ

k,S)

=

nk∑
j=1

Bd
t (T kj )

(
V k
t (T kj−1, T

k
j )− S̃k

)
,

where we de�ne S̃k = 1 + δkS (cf. relation (2.17)). The swap rate at time t with t ≤ T k0 ,
denoted by Skt (T

k), is de�ned as the rate that makes the time-t value of the swap equal
to zero. We therefore obtain

Skt (T
k) =

∑nk
j=1B

d
t (T kj )

(
V k
t (T kj−1, T

k
j )− 1

)
∑nk

j=1 δ
kBd

t (T kj )
.

The Libor/Euribor-OIS swap spread is given by

Skt (T
k)− Sont (T k) =

∑nk
j=1B

d
t (T kj )

(
V k
t (T kj−1, T

k
j )− 1

)
−Bd

t (T k0 ) +Bd
t (T knk)∑nk

j=1 δ
kBd

t (T kj )
.

Basis Swaps

Let us consider k ≤ l. From valuation formula (2.18), we immediately obtain that

BS1
t (T

k,T l) =

nl∑
j=1

Bd
t (T lj)

(
V l
t (T lj−1, T

l
j)− 1

)
−

nk∑
j=1

Bd
t (T kj )

(
V k
t (T kj−1, T

k
j )− 1

)
.

Moreover, it results from equation (2.19) that

BS2
t (T

k,T l) =

nl∑
j=1

Bd
t (T lj)

(
V l
t (T lj−1, T

l
j)− 1

)
−

nk∑
j=1

Bd
t (T kj )

(
V k
t (T kj−1, T

k
j )− 1

)
−

n∑
k=1

δBd
t (Tk) · bst
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and

bst =

∑nl
j=1B

d
t (T lj)

(
V l
t (T lj−1, T

l
j)− 1

)
−
∑nk

j=1B
d
t (T kj )

(
V k
t (T kj−1, T

k
j )− 1

)
∑n

k=1 δB
d
t (Tk)

.

Caps and Floors

Given the pricing formula (2.20), the time-t value of a cap with strike rateK and maturity
T ∗ results in

Capt(T
k, δk,K) =

nk∑
j=1

(βdt )−1EP d

[
βd
Tkj

(
Bk
Tkj−1

(T kj )−1 − K̃k
)+|Ft

]
=

nk∑
j=1

(βdt )−1EP d

[
βd
Tkj

(
ηkj exp(−Xk

j )− K̃k
)+|Ft

]
=

nk∑
j=1

EP d

Tk
j

[
Bd
t (T kj )

(
ηkj exp(−Xk

j )− K̃k
)+|Ft

]
.

Hence, the time-0 price of a caplet with strike rate K is given by

Cpl0(T kj−1, T
k
j ,K) = EP d

[
βd
Tkj

(
ηkj exp(−Xk

j )− K̃k
)+]

(3.42)

= EP d

Tk
j

[
Bd

0(T kj )
(
ηkj exp(−Xk

j )− K̃k
)+]

. (3.43)

To simplify the notation, we set Y k
j := −Xk

j . The extended characteristic function of Y k
j

relative to pricing measure P d
Tkj

can be calculated as

ϕ
Tkj
Y kj

(z) = EP d

Tk
j

[
exp

(∫ Tkj−1

0
−izΣk(s, T kj−1, T

k
j )dLs

)]

= exp
(∫ Tkj−1

0

[
θs(Σ

d(s, T kj )− izΣk(s, T kj−1, T
k
j ))− θs(Σd(s, T kj ))

]
ds
)
(3.44)

for every z ∈ C where this function exists.

To evaluate the price of the caplet, we use the Fourier based valuation method (see
Eberlein, Glau, and Papapantoleon [40]).
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Proposition 3.3.2 The risk-neutral price of the caplet at time 0 can be written as

Cpl0(T kj−1, T
k
j ,K) = Bd

0(T kj )
e−Rξ

k
j

π

∫ ∞
0

Re

(
e−iuξ

k
j ϕ

Tkj
Y kj

(u− iR)(K̃k)1−R−iu

(−R− iu)(1−R− iu)

)
du

(3.45)

for any R ∈
(

1, M−M̂
M̂

]
, where we set ξkj := − ln ηkj and M̂ is assumed to be chosen such

that M̂ < M
2 . M is the constant in assumption (EM) with respect to the driving process

L.

Proof: Clearly, we have

ϕ
Tkj
Y kj

(u− iR) = exp
(∫ Tkj−1

0

[
θs(Σ

d(s, T kj )− (iu+R)Σk(s, T kj−1, T
k
j ))

− θs(Σd(s, T kj ))
]
ds
)

and

|Re
(
Σd
l (s, T

k
j )− (iu+R)Σk

l (s, T
k
j−1, T

k
j )
)
| = |Σd

l (s, T
k
j )−RΣk

l (s, T
k
j−1, T

k
j )|

≤ M̂ + |R|M̂ ≤ M̂ +
M − M̂
M̂

M̂

= M

for every l ∈ {1, . . . , d}. Then, by Eberlein, Glau, and Papapantoleon [40, Theorem 2.2.]
and an obvious symmetry property of the integrand, we prove the statement right. �

The price of a �oorlet can be obtained in an analogous way.
We temporarily consider the case m = 0. Through a direct application of the Fourier

pricing method, we obtain

Cpl0(Tj−1, Tj ,K) =

= Bd
0(Tj−1)K̃

e−R1ξj

π

∫ ∞
0

Re

(
e−iuξjϕ

Tj−1

Xd
j

(u− iR1)
K̃−(1−R1−iu)

(−R1 − iu)(1−R1 − iu)

)
du

(3.46)

and

Flt0(Tj−1, Tj ,K) =

= Bd
0(Tj−1)K̃

e−R2ξj

π

∫ ∞
0

Re

(
e−iuξjϕ

Tj−1

Xd
j

(u− iR2)
K̃−(1−R2−iu)

(−R2 − iu)(1−R2 − iu)

)
du
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with R1 ∈
[
−M−M̂

M̂
, 0
)
and R2 ∈

(
1, 1 + M−M̂

M̂

]
for a suitable M̂ satisfying M̂ < M and

ξj := − lnDd
j . Here we use the fact that a caplet (�oorlet) can be represented as a put

(call) option on a bond.

The implementation of numerically e�cient algorithms to compute the pricing formulas
(3.45) and (3.46) allows to calibrate the model to market data (�rst step of the calibration
procedure 2.4). This is achieved by our model (see chapter 4). Note that from the form
of the caplets (�oorlets) we immediately deduce the valuation formula of the cap (�oor)
price.

Digital Options

From formula (2.22), we get the time-T price of a delayed digital option as

DDkT (T kj−1, T
k
j , T, B,w) = 1{wLk

Tk
j−1

(Tkj−1,T
k
j )>wB},

where we have 0 < B, T kj−1 ≤ T and

w =

{
1, for a delayed digital call

−1, for a delayed digital put.

Then, the time-t price (t ≤ T kj−1) can be represented by

DDkt (T
k
j−1, T

k
j , T, B,w) = (βdt )−1EP d

[
βdT1{wLk

Tk
j−1

(Tkj−1,T
k
j )>wB}|Ft

]
= Bd

t (T )EP d
T

[
1{wLk

Tk
j−1

(Tkj−1,T
k
j )>wB}|Ft

]
= Bd

t (T )EP d
T

[
1{w(1+δkB)−1>wBk

Tk
j−1

(Tkj )}|Ft

]
.

This formula can further be written as

DDkt (T
k
j−1, T

k
j , T, B,w) = Bd

t (T )EP d
T

[
1{w(1+δkB)−1>wBkt (Tkj )Bkt (Tkj−1)−1Hk(t,Tkj−1)}|Ft

]
with

Hk(t, T kj−1) := exp

(
−
∫ Tkj−1

t
Ak(s, T kj−1, T

k
j )ds+Xk

t,j

)
,

where we set

Ak(s, T kj−1, T
k
j ) := Ak(s, T kj )−Ak(s, T kj−1)
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and

Xk
t,j :=

∫ Tkj−1

t
Σk(s, T kj−1, T

k
j )dLs.

By the independence of Xk
t,j and Ft (independent increments of the process L) and the

Ft-measurability of
Bkt (Tkj )

Bkt (Tkj−1)
, we obtain from Kallenberg [60, Theorem 6.4] that

DDkt (T
k
j−1, T

k
j , T, B,w) =Bd

t (T ) · gkw

(
Bk
t (T kj )

Bk
t (T kj−1)

)
=Bd

t (T ) · gkw
(
F k(t, T kj−1, T

k
j )−1

)
where F k(t, T kj−1, T

k
j ) =

Bkt (Tkj−1)

Bkt (Tkj )
and the function gkw : R→ [0, 1] is de�ned by

gkw(y) := EP d
T

[
1{w(1+δkB)−1>wyHk(t,Tkj−1)}

]
.

For every y > 0, we have

gkw(y) = P d
T

w exp
(
Xk
t,j

)
< w

exp

(∫ Tkj−1

t Ak(s, T kj−1, T
k
j )ds

)
(1 + δkB)y



= P
d,Xk

t,j

T

w exp (x) < w

exp

(∫ Tkj−1

t Ak(s, T kj−1, T
k
j )ds

)
(1 + δkB)y



=



P
d,Xk

t,j

T

x < log

 exp

(∫ Tkj−1
t Ak(s,Tkj−1,T

k
j )ds

)
(1+δkB)y


 , for w = 1

1− P
d,Xk

t,j

T

x ≤ log

 exp

(∫ Tkj−1
t Ak(s,Tkj−1,T

k
j )ds

)
(1+δkB)y


 , for w = −1,

(3.47)
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where we denote by P
d,Xk

t,j

T the distribution of Xk
t,j . The extended characteristic function

of Xk
t,j under P

d
T can be determined by

ϕT
Xk
t,j

(z) = exp

(∫ Tkj−1

t
θs(Σ

d(s, T ) + izΣk(s, T kj−1, T
k
j ))− θs(Σd(s, T ))ds

)

for every z ∈ C where this function is de�ned.

Now, we calculate the present value (t = 0) of a delayed digital option by applying the
Fourier based valuation method developed by Eberlein, Glau, and Papapantoleon [40,
Theorem 2.7.]. To this end, let us write the value of the delayed digital option at time
t = 0 as

DDk0(T kj−1, T
k
j , T, B,w)

= Bd
0(T )EP d

T

[
1{w exp(Xk

j −ξkj )<w(1+δkB)−1}
]

= Bd
0(T )P d

T

(
w exp

(
Xk
j − ξkj

)
< w(1 + δkB)−1

)
=

B
d
0(T )P d

T

(
Xk
j < log((1 + δkB)−1) + ξkj

)
, for w = 1

Bd
0(T )P d

T

(
Xk
j > log((1 + δkB)−1) + ξkj

)
, for w = −1

=

B
d
0(T )P d

T

(
Xk
j < log((1 + δkB)−1) + ξkj

)
, for w = 1

Bd
0(T )[1− F T

Xk
j
(log((1 + δkB)−1) + ξkj )], for w = −1

=: V j,k
w (ξkj ),

where we obtain ξkj = − log(Dk
j ) ∈ R and F TX denotes the cumulative distribution func-

tion of a random variable X under P d
T . Let us consider V j,k

w as the value of the de-
layed digital option comprehended as function of ξkj , i.e. we de�ne the map R 3 ξkj 7→
V j,k
w (ξkj ) ∈ R+. Clearly, V

j,k
w has locally bounded variation. We assume that the distri-

bution of Xk
j under P d

T is atomless (see Elstrodt [43]). Then, it holds

V j,k
w (ξkj ) =

B
d
0(T )F T

Xk
j
((1 + δkB)−1 + ξkj ), for w = 1

Bd
0(T )(1− F T

Xk
j
((1 + δkB)−1 + ξkj )), for w = −1.

It follows that V j,k
w is a continuous function. The payo� function of a digital call option

with barrier B ∈ R+ is given by

fw(x) = 1{wex<wB̃−1
k }

,

where we set B̃k = 1 + δkB. Easy calculations lead to the following form of the Fourier
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transform of fw for every z ∈ C where it is de�ned:

f̂w(z) =


B̃−izk
iz , for w = 1 and Im(z) ∈ (−∞, 0)

− B̃−izk
iz , for w = −1 and Im(z) ∈ (0,∞).

Let us denote the dampened payo� function of the digital option by dw. Recall that it
is given by dw(x) = e−Rxfw(x). We easily verify that dw ∈ L1(R) for every{

R ∈ (−∞, 0), for w = 1,

R ∈ (0,∞), for w = −1.

Observe that we can �nd an R that satis�es the prerequisites of Eberlein, Glau, and
Papapantoleon [40, Theorem 2.7.]. Then, we conclude from this Theorem that the value
of a delayed digital option at point ξkj can be expressed as

DDk0(T kj−1, T
k
j , T, B,w)

=


Bd

0(T ) · lim
A→∞

e
−Rξkj
π

∫ A
0 Re

( e−iuξkj ϕT
Xk
j

(u−iR)B̃R+iu
k

−R−iu

)
du, for w = 1 and R < 0

Bd
0(T ) · lim

A→∞
e
−Rξkj
π

∫ A
0 Re

( e−iuξkj ϕT
Xk
j

(u−iR)B̃R+iu
k

R+iu

)
du, for w = −1 and R > 0.

Note that the price of a delayed range digital option with barriers B,B satisfying 0 <

B < B can determined by formula (2.23).

3.3.2. Application of the Two-Price Theory

Now, the theory of two prices is applied to our multiple-curve model. We provide ask
and bid valuation formulas for some special interest rate derivatives. Let us consider
m ∈ N and an equidistant discrete tenor structure T k = {T k0 , . . . , T knk} with tenor δk

and k ∈ {0, 1, . . . ,m}. As before, instead of writing 0 for the discount curve we also
write d.

Ask and Bid Price of Caplets and Floorlets

Our �rst aim is to derive explicit valuation formulas of ask and bid prices of caplets and
�oorlets. According to the two-price theory in section 2.1, in order to determine these
formulas we have to distort the cumulative distribution function of the discounted payo�

βd
Tkj

(ηkj exp(−Xk
j )− K̃k)+ (3.48)
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with respect to measure P d (cf. relation (3.42)). Although this can be done analytically,
this calculation is, in general, a challenging task. In most cases, it has to be determined
numerically and its numerical evaluation is extremely time-consuming. The main reason
for this lies in the joint appearance of the random variables βd

Tkj
and Xk

j in (3.48). To

handle this issue, we switch to the forward martingale measure and consider the more
tractable discounted payo�

Cplkj,K := Bd
0(T kj )(ηkj exp(−Xk

j )− K̃k)+

(cf. pricing formula (3.43) and the procedure described in section 2.3). Analogously, we
deal with the corresponding �oorlets quantity

Fltkj,K := Bd
0(T kj )(K̃k − ηkj exp(−Xk

j ))+.

Let us denote by F TY the cumulative distribution function of a random variable Y under
P d
T with T ∈ [0, T ∗].

Lemma 3.3.1 1. Let us assume that Xk
j has exponential moments of order 1 < Mk

j

under P d
Tkj
. Then, it results that

(i) for any γ ≥ 0, we have

a
Tkj
γ (Cplkj,K) =

∫ 0

−∞
Ψmv
γ (F

Tkj

−Cplkj,K
(x))dx

and

b
Tkj
γ (Cplkj,K) =

∫ ∞
0

(
1−Ψmv

γ (F
Tkj

Cplkj,K
(x))

)
dx.

(ii) for the the family Ψ = (Ψγ)γ≥0 ∈ {Ψmav,Ψmmv,Ψmamv} of distortion functions

and every γ ∈ [0, u1 − 1), we have

a
Tkj
γ (Cplkj,K) =

∫ 0

−∞
Ψγ(F

Tkj

−Cplkj,K
(x))dx

and

b
Tkj
γ (Cplkj,K) =

∫ ∞
0

(
1−Ψγ(F

Tkj

Cplkj,K
(x))

)
dx,

where we have 1 < u1 ≤Mk
j .
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2. For every Ψ = (Ψγ)γ≥0 ∈ {Ψmv,Ψmav,Ψmmv,Ψmamv} and γ ≥ 0, we obtain

a
P
Tk
j−1

γ (Fltkj,K) =

∫ 0

−∞
Ψγ(F−Fltkj,K

(x))dx

and

b
P
Tk
j−1

γ (Fltkj,K) =

∫ ∞
0

(
1−Ψγ(FFltkj,K

(x))
)
dx.

Proof: We need to verify for which γ ≥ 0 condition (2.10) is satis�ed. We frequently
use the change-of-variable formula here (see Billingsley [13, Theorem 16.13.]). Since
Cplkj,K ≥ 0, we only have to consider the second integral in (2.10).

1. An application of Bernoulli's inequality leads to Ψmv
γ (y) ≤ (1+γ)y. For any γ ≥ 0,

we obtain∫ ∞
0

Ψmv
γ (1− FCplkj,K

(y))dy ≤ (1 + γ)

∫ ∞
0

1− FCplkj,K
(y)dy

= (1 + γ)Bd
0(T kj )

∫ ∞
0

1− F
Tkj

(ηkj exp(−Xk
j )−K̃k)+

(y)dy

= (1 + γ)Bd
0(T kj )

∫ ∞
0

1− F
Tkj

ηkj exp(−Xk
j )−K̃k

(y)dy

= (1 + γ)Bd
0(T kj )

∫ ∞
K̃k

F
Tkj
Xk
j

(− log(yDk
j ))dy

≤ (1 + γ)Bd
0(T kj )C1

∫ ∞
K̃k

e−u1 log(yDkj )dy

= (1 + γ)Bd
0(T kj )C1

∫ ∞
K̃k

(yDk
j )−u1dy <∞,

where we used Lemma 2.1.1 with C1 > 0 and 1 < u1 ≤Mk
j .

2. Since it holds

Ψmamv
γ (y) = Ψmav

γ (Ψmv
γ (y)) ≤ Ψmav

γ ((1 + γ)y) = (1 + γ)
1

1+γ Ψmav
γ (y)

Ψmmv
γ (y) = Ψmv

γ (Ψmav
γ (y)) ≤ (1 + γ)Ψmav

γ (y),

we only need to check the condition for the distortion function Ψmav. In a similar
way as above, we get∫ ∞

0
Ψmav
γ (1− FCplkj,K

(y))dy ≤ Bd
0(T kj )C

1
1+γ

1 (ηkj )
u1
1+γ

∫ ∞
K̃k

y
− u1

1+γ dy <∞

for every γ satisfying 0 ≤ γ < u1 − 1.
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3. Clearly, we have

M
Tkj

Fltkj,K
(u) = EP d

Tk
j

[
exp

(
uFltkj,K

) ]
< exp

(
uBd

0(T kj )K̃k
)
<∞

for every u ∈ R. The claim follows through Proposition 2.1.2.

The pricing formulas immediately result from subsection (2.1.5). �

It follows that

1. Cplkj,K is regular with respect to αmv,

2. Cplkj,K is regular on the interval [0, u1 − 1) with respect to αmav, αmmv and αmamv

and

3. Fltkj,K is regular with respect to αmv, αmav, αmmv and αmamv.

The following Proposition states useful integral representations for ask and bid prices
of caplets and �oorlets with reset date T kj−1, settlement date T kj = T kj−1 + δk and strike
rate K at a permitted level γ.

Proposition 3.3.3 Let Ψ = (Ψx)x≥0 be a proper family of distortion functions and

γ ≥ 0 be chosen such that condition (2.10) is satis�ed for the caplet and �oorlet. Then,

the ask price of the caplet is given by

a
Tkj
γ (Cplkj,K) = Bd

0(T kj )

∫ ∞
K̃k

Ψγ(F
Tkj
Xk
j

(− log(xDk
j )))dx (3.49)

and the bid price of the caplet has the form

b
Tkj
γ (Cplkj,K) = Bd

0(T kj )

∫ ∞
K̃k

[
1−Ψγ(1− F

Tkj
Xk
j

(− log(xDk
j )))

]
dx. (3.50)

The ask price of the �oorlet is determined by

a
Tkj
γ (Fltkj,K) = Bd

0(T kj )

∫ K̃k

0
Ψγ(1− F

Tkj
Xk
j

(− log(xDk
j )))dx

and the bid price of the �oorlet is represented by

b
Tkj
γ (Fltkj,K) = Bd

0(T kj )

∫ K̃k

0

[
1−Ψγ(F

Tkj
Xk
j

(− log(xDk
j )))

]
dx.

Proof: We mainly apply the change-of-variable formula here (see Billingsley [13, Theorem
16.13.]). Then, we get the prices as:
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1. Ask price:

a
Tkj
γ (Cplkj,K) =

∫ 0

−∞
Ψγ(F

Tkj

−Cplkj,K
(x))dx

=

∫ 0

−∞
Ψγ(1− F

Tkj

(ηkj exp(−Xk
j )−K̃k)

+(−xBd
0(T kj )−1))dx

= Bd
0(T kj )

∫ ∞
0

Ψγ(1− F
Tkj

(ηkj exp(−Xk
j )−K̃k)

+(x))dx

= Bd
0(T kj )

∫ ∞
0

Ψγ(1− F
Tkj

(ηkj exp(−Xk
j )−K̃k)

(x))dx

= Bd
0(T kj )

∫ ∞
0

Ψγ(1− F
Tkj
ηkj exp(−Xk

j )
(x+ K̃k))dx

= Bd
0(T kj )

∫ ∞
K̃k

Ψγ(1− F
Tkj
ηkj exp(−Xk

j )
(x))dx

= Bd
0(T kj )

∫ ∞
K̃k

Ψγ(1− F
Tkj
−Xk

j

(log(xDk
j )))dx

= Bd
0(T kj )

∫ ∞
K̃k

Ψγ(F
Tkj
Xk
j

(− log(xDk
j )))dx

2. Bid price:

b
Tkj
γ (Cplkj,K) =

∫ ∞
0

(
1−Ψγ(F

Tkj

Cplkj,K
(x))

)
dx

=

∫ ∞
0

(
1−Ψγ(F

Tkj

(ηkj exp(−Xk
j )−K̃k)+

(xBd
0(T kj )−1))

)
dx

= Bd
0(T kj )

∫ ∞
0

(
1−Ψγ(F

Tkj

(ηkj exp(−Xk
j )−K̃k)+

(x))

)
dx

= Bd
0(T kj )

∫ ∞
0

(
1−Ψγ(F

Tkj

(ηkj exp(−Xk
j )−K̃k)

(x))

)
dx

= Bd
0(T kj )

∫ ∞
0

(
1−Ψγ(F

Tkj
ηkj exp(−Xk

j )
(x+ K̃k))

)
dx

= Bd
0(T kj )

∫ ∞
K̃k

(
1−Ψγ(F

Tkj
−Xk

j

(log(xDk
j )))

)
dx

= Bd
0(T kj )

∫ ∞
K̃k

(
1−Ψγ(1− F

Tkj
Xk
j

(− log(xDk
j )))

)
dx
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1. Ask price:

a
Tkj
γ (Fltkj,K) =

∫ 0

−∞
Ψγ(F

Tkj

−Fltkj,K
(x))dx

=

∫ 0

−∞
Ψγ(1− F

Tkj

(K̃k−ηkj exp(−Xk
j ))

+(−xBd
0(T kj )−1))dx

= Bd
0(T kj )

∫ ∞
0

Ψγ(1− F
Tkj

(K̃k−ηkj exp(−Xk
j ))

+(x))dx

= Bd
0(T kj )

∫ ∞
0

Ψγ(1− F
Tkj

(K̃k−ηkj exp(−Xk
j ))

(x))dx

= Bd
0(T kj )

∫ ∞
0

Ψγ(F
Tkj
ηkj exp(−Xk

j )
(K̃k − x))dx

= Bd
0(T kj )

∫ K̃k

0
Ψγ(F

Tkj
ηkj exp(−Xk

j )
(K̃k − x))dx

= Bd
0(T kj )

∫ K̃k

0
Ψγ(F

Tkj
ηkj exp(−Xk

j )
(x))dx

= Bd
0(T kj )

∫ K̃k

0
Ψγ(F

Tkj
−Xk

j

(log(xDk
j )))dx

= Bd
0(T kj )

∫ K̃k

0
Ψγ(1− F

Tkj
Xk
j

(− log(xDk
j )))dx
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2. Bid price:

b
Tkj
γ (Fltkj,K) =

∫ ∞
0

(
1−Ψγ(F

Tkj

Fltkj,K
(x))

)
dx

=

∫ ∞
0

(
1−Ψγ(F

Tkj

(K̃k−ηkj exp(−Xk
j ))

+(xBd
0(T kj )−1))

)
dx

= Bd
0(T kj )

∫ ∞
0

(
1−Ψγ(F

Tkj

(K̃k−ηkj exp(−Xk
j ))

+(x))

)
dx

= Bd
0(T kj )

∫ ∞
0

(
1−Ψγ(F

Tkj

(K̃k−ηkj exp(−Xk
j ))

(x))

)
dx

= Bd
0(T kj )

∫ ∞
0

(
1−Ψγ(1− F

Tkj
ηkj exp(−Xk

j )
(K̃k − x))

)
dx

= Bd
0(T kj )

∫ K̃k

0

(
1−Ψγ(1− F

Tkj
ηkj exp(−Xk

j )
(K̃k − x))

)
dx

= Bd
0(T kj )

∫ K̃k

0

(
1−Ψγ(1− F

Tkj
ηkj exp(−Xk

j )
(x))

)
dx

= Bd
0(T kj )

∫ K̃k

0

(
1−Ψγ(1− F

Tkj
−Xk

j

(log(xDk
j )))

)
dx

= Bd
0(T kj )

∫ K̃k

0

(
1−Ψγ(F

Tkj
Xk
j

(− log(xDk
j )))

)
dx.

�

In the one case where we consider the single-curve setting (i.e. m = 0), we obtain:

1. For every Ψ = (Ψγ)γ≥0 ∈ {Ψmv,Ψmav,Ψmmv,Ψmamv} and γ ≥ 0, it holds

a
Tj−1
γ (Cpldj,K) = Bd

0(Tj−1)K̃

∫ K̃−1

0
Ψγ(F

Tj−1

Xd
j

(log(xηdj )))dx (3.51)

and

b
Tj−1
γ (Cpldj,K) = Bd

0(Tj−1)K̃

∫ K̃−1

0

[
1−Ψγ(1− F Tj−1

Xd
j

(log(xηdj )))

]
dx. (3.52)

2. For every Ψ = (Ψγ)γ≥0 ∈ {Ψmv,Ψmav,Ψmmv,Ψmamv} and a permitted γ ≥ 0 for
which condition (2.10) is valid, it holds

a
Tj−1
γ (Fltdj,K) = Bd

0(Tj−1)K̃

∫ ∞
K̃−1

Ψγ(1− F Tj−1

Xd
j

(log(xηdj )))dx
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and

b
Tj−1
γ (Fltdj,K) = Bd

0(Tj−1)K̃

∫ ∞
K̃−1

[
1−Ψγ(F

Tj−1

Xd
j

(log(xηdj )))

]
dx.

Once again we use the fact that a caplet (�oorlet) can be written as a put (call) option
on a bond.

On the basis of the analysis we just made above, it follows that we have to identify the
cumulative distribution function F T

Xk
j
to determine the ask and bid prices. Unfortunately,

for a sophisticated driving process L and an advanced volatility function Σk it is, in
general, not known. To handle this issue, we proceed as follows:

1. We �rst determine the characteristic function of Xk
j under P d

T .

2. Then, we apply the common inversion formula stated by Billingsley [13, Theorem
26.2] or Durrett [27] to approximate F T

Xk
j
. More speci�cally, as an approximation

of the cumulative distribution function, we consider

F T
Xk
j
(y) ≈ lim

M→∞

1

π
·
∫ M

0
Re

(
e−iux − e−iuy

iu
ϕT
Xk
j
(u)

)
du (3.53)

for a suitable x ∈ R satisfying x < y and P
d,Xk

j

T ({x}) = P
d,Xk

j

T ({y}) = 0, where

P
d,Xk

j

T denotes the distribution of Xk
j with respect to P d

T . The expression (3.53)
can be evaluated numerically with some e�ort.

Ask and Bid Price of Digital Options

The discounted payo� of a delayed digital option is

DDkT (w) := Bd
0(T )1{w exp(Xk

j )<wB̃−1
k exp(ξkj )}.

One easily sees that DDkT (w) is regular with respect to αmv, αmav, αmmv and αmamv.
Then, we state its ask and bid price.

Proposition 3.3.4 The ask price of the delayed digital option at level γ ≥ 0 is given by

aTγ (DDkT (w)) = Bd
0(T )Ψγ

(
P d
T (weX

k
j < wB̃−1

k exp(ξkj ))
)

and the bid price at level γ ≥ 0 can be expressed as

bTγ (DDkT (w)) = Bd
0(T )

[
1−Ψγ

(
P d
T (weX

k
j ≥ wB̃−1

k exp(ξkj ))
)]
.
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3. The Multiple-Curve Lévy Forward Rate Model with Application of the Two-Price Theory

Proof: One veri�es that the cumulative distribution functions of the random variables
−DDkT (w) and DDkT (w) under P d

T result in

F T−DDkT (w)
(y) =


1, y ≥ 0

P d
T (w exp(Xk

j ) < wB̃−1
k exp(ξkj )), y ∈ [−Bd

0(T ), 0)

0, y < −Bd
0(T )

and

F T
DDkT (w)

(y) =


1, y ≥ Bd

0(T )

P d
T (w exp(Xk

j ) ≥ wB̃−1
k exp(ξkj )), y ∈ [0, Bd

0(T ))

0, y < 0.

Then, by considering the ask and bid price formulas stated in subsection 2.1.5, we im-
mediately get the statement. �

The discounted payo� of a delayed range digital option with barriers B and B is given
by

DRDkT := Bd
0(T ) ·1{

exp(ξk
j
)

B̃k

<exp(Xk
j )<

exp(ξk
j
)

B̃k

}.

We can easily verify that DRDkT is regular with respect to αmv, αmav, αmmv and αmamv.

Proposition 3.3.5 The ask price of the delayed range digital option at level γ ≥ 0 is

given by

aTγ (DRDkT ) = Bd
0(T )Ψγ

(
P d
T

(
exp(ξkj )

B̃k

< exp(Xk
j )

)
+ P d

T

(
exp(Xk

j ) <
exp(ξkj )

B̃k

))

and the bid price at level γ ≥ 0 can be expressed as

bTγ (DRDkT ) =Bd
0(T )

×

[
1−Ψγ

(
P d
T

(
exp(Xk

j ) ≤
exp(ξkj )

B̃k

)
+ P d

T

(
exp(ξkj )

B̃k

≤ exp(Xk
j )

))]
.

Proof: Here, the cumulative distribution functions result in

F T−DRDkT
(y) =


1, y ≥ 0

P d
T

(
exp(ξkj )

B̃k
< exp(Xk

j )
)

+ P d
T

(
exp(Xk

j ) <
exp(ξkj )

B̃k

)
, y ∈ [−Bd

0(T ), 0)

0, y < −Bd
0(T )
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and

F T
DRDkT

(y) =


1, y ≥ Bd

0(T )

P d
T

(
exp(Xk

j ) ≤ exp(ξkj )

B̃k

)
+ P d

T

(
exp(ξkj )

B̃k
≤ exp(Xk

j )
)
, y ∈ [0, Bd

0(T ))

0, y < 0.

Then, the claim follows by the formulas of subsection 2.1.5. �
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CHAPTER

FOUR

MODEL CALIBRATION

In this chapter, the two-price multiple-curve model of the previous chapter is calibrated
to market data for dates before and during the crisis. More speci�cally, we consider
quoted cap volatilities on 15th August 2006 and on 15th September 2009. The calibration
procedure of section 2.4 is applied. Before doing this, we have to convert the cap volatil-
ities in cap prices by using a multiple-curve extension of the standard market model. We
also illustrate the calibration results by means of the relative errors of the market and
model prices in the appendices.

4.1. Description and Processing of Cap and Floor Market

Data

The market quotes ask, mid and bid prices of (forward) caps and �oors mainly in the form
of their implied volatilities (stated annualised and in percentages). This fact involves the
consideration of a standard market model. Otherwise it would clearly make no sense to
quote prices as a model parameter. The standard market model before the crisis is based
on the Black-Scholes-Merton framework (see the seminal papers of Bachelier [5], Osborne
[76], Samuelson [80], Black and Scholes [14] and Merton [72]). Generally speaking, this
approach considers a world that is forward risk neutral with respect to zero coupon bonds
(see Hull [55, chapter 28]).

We closely follow the approach of Mercurio [69] and adjust the classical standard
market model to the modern multiple-curve setting. The market model prices of caps
(caplets) and �oors (�oorlets) are then stated. To this end, let T i = {T i0, . . . , T ini} be an
arbitrary equidistant discrete tenor structure, where we have i ∈ {0, . . . ,m} and m ∈ N.
As usual, we denote by δi := δi(T ik−1, T

i
k) the year fraction (tenor) between date T ik−1

and T ik for every k ∈ {1, . . . , ni}. The risk-neutral price of a caplet with strike rate K,
reset date T ik−1 and settlement date T ik for any k ∈ {1, . . . , ni} that provides a payo� at
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time T ik, is given by

Cplismm(T ik−1, T
i
k,K, σ̃

i
k) := δiBd

0(T ik)EP d
Ti
k

[
(LiT ik−1

(T ik−1, T
i
k)−K)+

]
.

We emphasise that we obtain the classical single-curve market formula by setting i = 0

and using the fact that Ld
Tk−1

(Tk−1, Tk) is assumed to be log-normally distributed and

Ld(Tk−1, Tk) is a martingale under P d
Tk
. Unfortunately, for every i ∈ {1, . . . ,m}, the

forward reference rate Li(T ik−1, T
i
k) is not a P

d
T ik
-martingale in general.

To solve this problem, we replace the forward rate with its conditional expected value
(the time-t (modi�ed) FRA-rate; cf. subsection 2.2.4 and the relations (2.15) and (2.16)),
that is a martingale under the underlying pricing measure. More speci�cally, we consider

Ki
t,k = EP d

Ti
k

[
LiT ik−1

(T ik−1, T
i
k)|Gt

]
as the key quantity to model (by de�nition, it is a P d

T ik
-martingale). Note that we have

Ki
T ik−1,k

= LiT ik−1
(T ik−1, T

i
k).

Therefore, the caplet pricing formula can be written as

Cplismm(T ik−1, T
i
k,K, σ

i
k) = δiBd

0(T ik)EP d
Ti
k

[
(Ki

T ik−1,k
−K)+

]
. (4.1)

The dynamics Ki are assumed to be given by

Ki
t,k = Ki

0,k exp

(
σikWt −

1

2
(σik)

2t

)
, for any t ∈ [0, T ik−1],

where W = (Wt)t∈[0,T ik−1] is a standard Wiener process under P d
T ik
, σik > 0 is a constant

volatility and Ki
0,k is approximately given by

Ki
0,k ≈ Li0(T ik−1, T

i
k) =

1

δ

(
Bi

0(T ik−1)

Bi
0(T ik)

− 1

)
.

Note that the initial curves Bd
0 and B

i
0 are constructed by using the bootstrapping method

developed by Ametrano and Bianchetti [3]. Since Ki
T ik−1,k

is log-normally distributed

under P d
T ik
, we conclude that the multiple-curve market model price (4.1) becomes

Cplismm(T ik−1, T
i
k,K, σ

i
k) = δiBd

0(T ik) ·
(
Ki

0,k ·Φ(di1,k)−K ·Φ(di2,k)
)
,
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where Φ denotes the standard Gaussian cumulative distribution function,

di1,k :=

ln

(
Ki

0,k

K

)
+ 1

2(σik)
2T ik−1

σik

√
T ik−1

and

di2,k := di1,k − σik
√
T ik−1 =

ln

(
Ki

0,k

K

)
− 1

2(σik)
2T ik−1

σik

√
T ik−1

.

Analogously, the model price of the corresponding �oorlet can be expressed as

Fltismm(T ik−1, T
i
k,K, σ

i
k) := δiBd

0(T ik) ·
(
K ·Φ(−di2,k)−Ki

0,k ·Φ(−di1,k)
)
.

To sum up, the modern multiple-curve market model prices of caplets and �oorlets are
again stated in a Black-Scholes-Merton framework. The di�erences with respect to the
classical formulas are given by the underlying rate, which is now the FRA-rate, and by
the discount factors that are extracted from the discount curve d.

The market formula for the price of the interest rate cap that is settled in arrears and
matures at T ini with �xing and payment dates along T i is given by

Capsmm
0 (T i,K, σiT ini

) :=

ni∑
k=1

Cplismm(T ik−1, T
i
k,K, σ

i
T ini

). (4.2)

The corresponding formula of the �oor is

Floorsmm
0 (T i,K, σiT ini

) :=

ni∑
k=1

Fltismm(T ik−1, T
i
k,K, σ

i
T ini

).

Observe that the same volatility σi
T ini

is used for all caplets (�oorlets) of the cap (�oor).

This volatility is called �at or forward volatility. It is exactly the quoted implied volatility
of caps (�oors) in the market. An alternative way is to use a di�erent volatility for each
caplet (�oorlet). These types of volatilities are referred to as spot or forward forward
volatilities.

The spot volatilities can be calculated from �at volatilities and vice versa under the
consistency conditions

ni∑
k=1

Cplismm(T ik−1, T
i
k,K, σ

i
T ini

) =

ni∑
k=1

Cplismm(T ik−1, T
i
k,K, σ

i
k)
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and

ni∑
k=1

Fltismm(T ik−1, T
i
k,K, σ

i
T ini

) =

ni∑
k=1

Fltismm(T ik−1, T
i
k,K, σ

i
k).

We emphasise that we use spot volatilities on the right-hand side of these equations.
Without these conditions there is a kind of inconsistency in cap volatilities: The same
caplet could be linked to di�erent (spot) volatilities when it is related to di�erent caps
with separate �at volatility.

We brie�y describe the bootstrapping technique to extract spot volatilities from the
�at volatilities and vice versa:

1. The computations of the �at volatilities from the spot volatilities are evident.

2. The spot volatilities σi1, . . . , σ
i
ni are inductively determined by the relations

Capsmm
0 ({T i0, . . . , T im},K, σiT im) =

m∑
k=1

Cplismm(T ik−1, T
i
k,K, σ

i
k)

or

Floorsmm
0 ({T i0, . . . , T im},K, σiT im) =

m∑
k=1

Fltismm(T ik−1, T
i
k,K, σ

i
k),

where we start with m = 1 and proceed up to m = ni. In each step, we compute
the spot volatility as (unique) root of a function. They are calculated by applying
the method developed by Soetaert and Herman [85, examples from chapter 7] and
by using the R-package `rootSolve` (see Soetaert [91]).

Note that we can compute a caplet (�oorlet) price by subtracting two consecutive cap
(�oor) prices. For instance, the price of a caplet related to the six-month curve and a
maturity of three years is given by the di�erence between the three-year and the 2.5-year
cap price.

The quoted implied volatilities for caps and �oors typically have maturities of 1, 2, . . . , 20

years and strike rates of 1.75, 2.00, 2.25, 2.50, 3.00, 3.50, 4.00, 5.00, . . . , 9.00, 10.00 percent.
We focus on most liquid caps and �oors with maturities 1, 2, . . . , 10 in the European mar-
ket. Therefore, the reference rate is the Euribor. It is market convention that quotes
for caps with maturities up to two years are indexed on the three-month Euribor and
quotes with maturities greater than two years are indexed on the six-month Euribor.
The missing implied volatilities are obtained by cubic spline interpolation between the
quoted maturities and extrapolation. We use the method developed by Forsythe, Moler,
and Malcolm [47] for the interpolation. This method is implemented in the R-package
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4.2. Calibration of Caps in the Two-Price and Single-Curve Setting

`Stats` created by the R Core Team [92]. The extrapolation is made with the help of the
R-package `Hmisc' created by Harrell Jr [88].
We stress that we can use the single-curve approach for data sets before the crisis. But

when we consider data sets during the crisis, we have to apply our multiple-curve model.

4.2. Calibration of Caps in the Two-Price and Single-Curve

Setting

To illustrate the calibration procedure, we �rst consider the data set before the crisis.
The two-price theory and the single-curve approach are applied.

4.2.1. Data Sets

Figure 4.1 presents a surface of the quoted implied mid volatilities for caps on 15th

August 2006. We extend the values to the missing maturities as described in the previous
section. The initial zero coupon bond prices are listed in table 4.1 and 4.2. The market
model prices of caps can be derived from valuation formula (4.2). Then, we apply the
bootstrapping method of section 4.1 to extract the spot volatilities of the caplets. The
resulting spot volatilities are illustrated in �gure 4.2. The ask and bid spreads between
the implied (spot) volatilities of caplets for some special maturities and strike rates are
given in �gure 4.3 and 4.4.

Maturity Initial Bond Price

0.25 Year 0.992560
0.50 Year 0.984083
0.75 Year 0.975181
1.00 Year 0.966156
1.25 Year 0.957169
1.50 Year 0.948271
1.75 Year 0.939486
2.00 Year 0.930791

Table 4.1.: Discount bond prices Bd
0(T ) on 15th August 2006.

4.2.2. Calibration Procedure

We proceed as described in section 2.4. Speci�cally, we consider

H = {(T,K) : T ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, . . . , 9.5, 10},
K ∈ {0.0175, 0.02, 0.0225, 0.025, 0.03, 0.04, . . . , 0.1}}
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Figure 4.1.: EUR cap market implied volatility surface on 15th August 2006.

and

H̄T = {(T,K) : K ∈ {0.0175, 0.02, 0.0225, 0.025, 0.03}} ⊂ H

for any T ∈ {1.25, 1.5, 1.75, 2}. Therefore, we have T ∗ = 10. The corresponding ask, mid
and bid market prices of caplets are denoted by Πask(T,K),Πmid(T,K) and Πbid(T,K).
Their model prices are stated in (3.51), (3.46) and (3.52). Obviously, it holds

Cpl0(Tj−1, Tj ,K) = a
Tj−1

0 (Cpldj,K) = b
Tj−1

0 (Cpldj,K).

Since the model prices depend on parameters, we set

a(Tj−1,K, θ, γ) := a
Tj−1
γ (Cpldj,K)

Cpl0(Tj−1,K, θ) := Cpl0(Tj−1, Tj ,K)

b(Tj−1,K, θ, γ) := b
Tj−1
γ (Cpldj,K),

where we denote by Θ the set of admissible model parameters and θ ∈ Θ.
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4.2. Calibration of Caps in the Two-Price and Single-Curve Setting

Maturity Initial Bond Price

0.50 Year 0.984083
1.00 Year 0.966156
1.50 Year 0.948271
2.00 Year 0.930791
2.50 Year 0.913680
3.00 Year 0.896793
3.50 Year 0.880104
4.00 Year 0.863501
4.50 Year 0.846966
5.00 Year 0.830523
5.50 Year 0.814167
6.00 Year 0.797894
6.50 Year 0.781750
7.00 Year 0.765742
7.50 Year 0.749930
8.00 Year 0.734269
8.50 Year 0.718884
9.00 Year 0.703667
9.50 Year 0.688686
10.0 Year 0.673950

Table 4.2.: Discount bond prices Bd
0(T ) on 15th August 2006.

In the �rst step of the calibration procedure, we solve the minimisation problem:

O1(θ̂, H) = min
θ∈Θ

∑
T,K∈H

(
Cpl0(T,K, θ)−Πmid(T,K)

)2
.

We obtain an admissible θ̂ by using the methods stated in section 2.4. At this stage, this
situation corresponds to the classical no-arbitrage valuation theory with one price (cf.
Delbaen and Schachermayer [25]). Then, we proceed with the second step. Recall that the
(il)liquidity parameter depends on the maturity of the caplet and we therefore consider
the parameter γj , where we have j ∈ {1, 2, 3, 4}. Consequently, for every j ∈ {1, 2, 3, 4},
we continue to determine the parameter γ̂j by solving

O2(γ̂j , θ̂, H̄Tj ) = min
γj≥0

O2(γj , θ̂, H̄Tj ),
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Figure 4.2.: Extended EUR caplet implied spot volatility surface on 15th August 2006.

where the objective function is given by

O2(γj , θ̂, H̄Tj ) =
∑

(Tj ,K)∈H̄Tj

[ (
a(Tj−1,K, θ̂, γj)−Πask(Tj−1,K)

)2

+
(
b(Tj−1,K, θ̂, γj)−Πbid(Tj−1,K)

)2 ]
and Tj ∈ {1.25, 1.5, 1.75, 2}.

4.2.3. Model Framework (I)

The variance gamma process is studied by Madan and Seneta [67] and Madan and Milne
[66]. Another interesting application of this process is given by Madan, Carr, and Chang
[68]. For practical purposes, we refer to Seneta [83] and the R-package 'VarianceGamma'
created by Scott [90]. Note that the variance gamma distribution can be obtained as
limiting case of the generalised hyperbolic distribution (see Eberlein and Hammerstein
[31]). Thus, we are able to characterise the set of distribution parameters in two ways:

106
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Figure 4.3.: Spread between ask and bid (spot) volatilities of caplets on 15th August
2006. We consider maturities of 1.25, 1.5, 1.75 and 2 years and strike rates
of 1.75, 2, 2.25, 2.5, 3 percent.

(i) (σ, ν, θ, c) ∈ Λ1 := (0,∞)× (0,∞)× R× R.

(ii) (λ, α, β, µ) ∈ Λ2 := {(λ0, α0, β0, µ0) ∈ Λ1 | |β0| < α0}.

The relations between both parameter representations are given by

λ =
1

ν
α =

√
2

νσ2
+

(
θ

σ2

)2

β =
θ

σ2
µ = c

and

ν =
1

λ
σ2 =

2λ

α2 − β2
θ =

2λβ

α2 − β2
c = µ.

We consider the following volatility structure and driving process (d = 1):
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Figure 4.4.: Spread between ask and bid (spot) volatilities of caplets on 15th August
2006. We consider maturities of 2.5, 3, 3.5 and 4 years and strike rates of
1.75, 2, 2.25, 2.5, 3 percent.

(Vol.I) Vasicek volatility structure

σd(t, T ) = σ̂ exp (−a(T − t))

with

Σd(t, T ) =

{
σ̂
a (1− exp (−a(T − t))) , when t ≤ T
0, when t > T.

(DP.I) Variance-Gamma process L = (Lt)t∈[0,T ∗] de�ned on B̂.

The generating distribution of the Variance-Gamma process possesses a moment gen-
erating function of the form

MVG(λ,α,β,µ)(u) = eµu
(

α2 − β2

α2 − (β + u)2

)λ
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4.2. Calibration of Caps in the Two-Price and Single-Curve Setting

for every u ∈ (−α− β, α− β). Equivalently, we obtain

MVG(σ,ν,θ,c)(u) = ecu

(
1

1− νθu− σ2ν
2 u2

)1/ν

.

The characteristic function results in

ϕVG(λ,α,β,µ)(u) = eiµu
(

α2 − β2

α2 − (β + iu)2

)λ
,

where we exploit the relation ϕVG(λ,α,β,µ)(u) = MVG(λ,α,β,µ)(iu). Analogously, we get

ϕVG(σ,ν,θ,c)(u) = eicu

(
1

1− iνθu+ σ2ν
2 u2

)1/ν

.

Then, there is an analytic extension of the characteristic function to the strip R− i(−α−
β, α− β) ⊂ C (cf. Sato [81, Theorem 25.17]). From the simple form of the characteristic
function, we deduce that

Lt ∼ VG(
√
tσ, ν/t, tθ, tc)

for every t ∈ (0, T ∗].

It is more comfortable to work with parameter set (ii) due to the form of the charac-
teristic function. Let us de�ne m(α, β) := min{|−α−β|, α−β} and �x a ρ with 0 < ρ <

m(α, β). We choose ε and M from condition (EM) such that (1 + ε)M = m(α, β) − ρ.
Then, we specify M̂ in such a way that it satis�es 0 < M̂ < min{1,M}. Since the
parameter σ̂ of the volatility structure can be eliminated without loss of generality (cf.
Eberlein and Kluge [33]), we choose σ̂ = |a|. The justi�cation for this approach is that
a multiplicative constant of the volatility structure can be included in the distribution
parameters of L and it is therefore redundant. Then, it follows that

Σd(t, T ) =

{
sign(a) (1− exp (−a(T − t))) , when t ≤ T
0, when t > T.

Notice that, for every a 6= 0, it holds that Σd(t, T ) ≥ 0 for all (t, T ) ∈ [0, T ∗]× [0, T ∗].
Further, we only consider parameters a 6= 0 which satisfy

sup
0≤t≤T≤T ∗

{
sign(a) (1− exp(−a(T − t)))

}
≤ M̂ < M.

It follows that any parameter a has to be restricted to the set
[
− ln(1+M̂)

10 ,− ln(1−M̂)
10

]
\{0}.

Moreover, the mapping [0, T ∗] 3 t 7→ σ̂ exp(−a(T − t)) ∈ R is obviously continuous for
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4. Model Calibration

every T ∈ [0, T ∗]. Consequently, condition (DET) is satis�ed. As seen in section 3.3.1,

we have to choose R1 ∈
[
−M−M̂

M̂
, 0
)
in the caplet valuation formula. The extended

cumulant function θs of L results in

θs(z) = µz + λ ln

(
α2 − β2

α2 − (β + z)2

)
for every z ∈ C with |Re(z)| ≤ M (cf. Sato [81, Theorem 25.17]). Then, by using
expression (3.40), the characteristic function of Xd

j under P d
Tj−1

at point u− iR1 is

ϕ
Tj−1

Xd
j

(u− iR1)

= exp
(∫ Tj−1

0
−µsign(a)(R1 + iu)[exp(−a(Tj − s))− exp(−a(Tj−1 − s))]

+ λ ln

(
α2 − (β + sign(a) (1− exp (−a(Tj−1 − s))))2

α2 − (β + ηj(s, u, a,R1))2

)
ds
)
,

where we set

ηj(s, u, a,R1) :=sign(a)
(
1− exp(−a(Tj−1 − s))

+ (R1 + iu)[exp(−a(Tj−1 − s))− exp(−a(Tj − s))]
)
.

The deterministic part Dd
j can easily be calculated as

Dd
j =

Bd
0(Tj)

Bd
0(Tj−1)

exp

(∫ Tj−1

0
µsign(a)[exp(−a(Tj − s))− exp(−a(Tj−1 − s))]

+ λ ln

(
α2 − (β + sign(a)(1− exp(−a(Tj − s))))2

α2 − (β + sign(a)(1− exp(−a(Tj−1 − s))))2

)
ds

)

and we obtain ξj = − lnDd
j and ηdj = 1

Dd
j

. The caplet (mid) model price can be deter-

mined by

Cpl0(Tj−1, Tj ,K) =
Bd

0(Tj−1)K̃

π
· Ij(λ, α, β, a,R1,K), (4.3)
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4.2. Calibration of Caps in the Two-Price and Single-Curve Setting

where we de�ne

Ij(λ, α, β, a,R1,K) :=

∫ ∞
0

Re

([
Bd

0(Tj)

Bd
0(Tj−1)

]R1+iu

× K̃−(1−R1−iu)

(−R1 − iu)(1−R1 − iu)

× exp
(∫ Tj−1

0
λ ln

(
α2 − (β + sign(a) (1− exp (−a(Tj−1 − s))))2

α2 − (β + ηj(s, u, a,R1))2

)
+ (R1 + iu)λ ln

(
α2 − (β + sign(a)(1− exp(−a(Tj − s))))2

α2 − (β + sign(a)(1− exp(−a(Tj−1 − s))))2

)
ds
))

du.

We observe that the parameter µ (respectively c) does not appear in valuation formula
(4.3). Therefore, this parameter does not have an impact on the price and µ (respectively
c) can be set equal to zero (cf. Eberlein and Kluge [33]).

Finally, the ask and bid model prices of the caplet are obtained by valuation formulas
(3.51) and (3.52).

4.2.4. Calibration Results of Model Framework (I)

We present the calibration results of model framework (I). The calibrated distribution
parameters are illustrated in table 4.3 and the calibrated volatility structure parameter
is given in table 4.4.

Parameter Type (i) Value Parameter Type (ii) Value

σ 0.281652 λ 0.580
ν 1.724138 α 3.870
θ -0.047200 β -0.595

Table 4.3.: Calibrated parameters of variance gamma distribution.

Parameter Value

a 0.024

Table 4.4.: Calibrated parameter of Vasicek volatility structure.

The value of the objective function results in

O1(θ̂, H) = 2.956576 · 10−06.

The market prices of caplets and caps are excellently �tted for strike rates up to six
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4. Model Calibration

percent as we can see in �gures 4.5 and 4.6. We also illustrate the calibration results in
form of the relative errors between market and model prices, i.e. we consider

relative error =

∣∣∣∣model price−market price

market price

∣∣∣∣ .
They are presented in �gures A.1 and A.2 in the appendix. We stress that the discrep-
ancies for short maturities and strike rates greater than six percent result from the very
small values of the related prices.
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Figure 4.5.: Market and model (mid) prices of caplets with maturity of two years (top
left), �ve years (top right), eight years (bottom left) and ten years (bottom
right) for strike rates of 1.75, 2.00, 2.25, 2.50, 3.00, 3.50, 4.00, 5.00 and 6.00
percent on 15th August 2006.

Figure 4.7 shows the �t of the implied volatilities of the cap for a special maturity. It is a
well-known fact that an homogeneous Lévy process is not able to �t precisely the implied
volatilities along all maturities. To achieve this, we have to use time-inhomogeneous Lévy
processes (see Eberlein and Kluge [34]).

The calibrated parameters γ with the corresponding values of the objective function
O2 are listed in table 4.5. We use the family (Ψmmv

γ )γ≥0 of MINMAXVAR distortion
functions for the calibration.

We visualise the nature of the underlying driving process by means of the density
function of the calibrated variance gamma distribution in �gure 4.8 and four sample
paths in �gure 4.9. The R-package `VarianceGamma' is applied.
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Figure 4.6.: Market and model (mid) prices of caps with maturity of two years (top left),
�ve years (top right), eight years (bottom left) and ten years (bottom right)
for strike rates of 1.75, 2.00, 2.25, 2.50, 3.00, 3.50, 4.00, 5.00 and 6.00 percent
on 15th August 2006.

4.2.5. Model Framework (II)

Barndor�-Nielsen and Halgreen [6] studied the class of generalised hyperbolic (GH) dis-
tributions. In particular, they showed their in�nite divisibility. Hence, each type of this
distribution family with parameters (λ, α, β, δ, µ) satisfying λ ∈ R, 0 ≤ |β| < α, 0 < δ

and µ ∈ R generates a Lévy process (cf. Sato [81]). This process is called generalised
hyperbolic Lévy motion with parameters (λ, α, β, δ, µ). A detailed discussion of this type
of processes and its application in �nance is given by Eberlein [28]. We also refer to the
overview about jump-type Lévy processes given by Eberlein [29].

The normal inverse Gaussian (NIG) distribution is an important subclass of the GH
distribution. It is obtained by setting the parameter λ = −1

2 . The Lévy process that is
generated by this distribution is called normal inverse Gaussian Lévy motion (see Eberlein
[28, Section 5]). This type of process was �rst considered in �nance by Barndor�-Nielsen
[7].

This model approach is speci�ed by the following volatility structure and driving pro-
cess (d = 1):
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Figure 4.7.: Calibrated implied model volatilities and implied market volatilities for the
maturity of 3.5 years on 15th August 2006.

Maturity Parameter Objective function

1.25 Year 4.5 · 10−05 5.57 · 10−09

1.50 Year 0.00018 3.96 · 10−09

1.75 Year 0.00024 1.38 · 10−09

2.00 Year 0.00036 1.76 · 10−11

Table 4.5.: Calibrated parameter γ for di�erent maturities.

(Vol.II) Vasicek volatility structure

σd(t, T ) = σ̂ exp (−a(T − t))

with

Σd(t, T ) =

{
σ̂
a (1− exp (−a(T − t))) , when t ≤ T
0, when t > T.

(DP.II) Normal inverse Gaussian Lévy motion L = (Lt)t∈[0,T ∗] de�ned on B̂.

The moment generating function of the normal inverse Gaussian distribution is given
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Figure 4.8.: Calibrated density of variance gamma distribution with parameter σ =
0.2816519, ν = 1.724138 and θ = −0.047200.

by

MNIG(α,β,δ,µ)(u) =
exp(µu+ δ

√
α2 − β2)

exp(δ
√
α2 − (β + u)2)

for every u ∈ (−α− β, α− β). Consequently, we obtain the characteristic function as

ϕNIG(α,β,δ,µ)(u) =
exp(iµu+ δ

√
α2 − β2)

exp(δ
√
α2 − (β + iu)2)

.

Note that we are able to extend the characteristic function on the set R−i(−α−β, α−β) ⊂
C. It immediately follows from the explicit form of this function that

Lt ∼ NIG(α, β, tδ, tµ)

for all t ∈ (0, T ∗].

We choose R1, ε, M and M̂ and deal with Σd in an analogous way as in the previous
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Figure 4.9.: Four sample paths of a variance gamma process with calibrated parameter.

framework. The extended cumulant θs of L is determined by

θs(z) = µz + δ
√
α2 − β2 − δ

√
α2 − (β + z)2

for every z ∈ C with |Re(z)| ≤M . From this term, we get the characteristic function of
Xd
j under P d

Tj−1
at point u− iR1 as

ϕ
Tj−1

Xd
j

(u− iR1)

= exp

(∫ Tj−1

0

[
− µsign(a)(R1 + iu)[exp(−a(Tj − s))− exp(−a(Tj−1 − s))]

+ δ
(√

α2 − (β + sign(a)(1− exp(−a(Tj−1 − s))))2

−
√
α2 − (β + χj(s, u, a,R1))2

)]
ds

)
,
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4.2. Calibration of Caps in the Two-Price and Single-Curve Setting

where we set

χj(s, u, a,R1) :=sign(a)(1− exp(−a(Tj−1 − s))
+ (R1 + iu)[exp(−a(Tj−1 − s))− exp(−a(Tj − s))]).

Observe that the deterministic part Dd
j results in

Dd
j =

Bd
0(Tj)

Bd
0(Tj−1)

exp

(∫ Tj−1

0
µsign(a)[exp(−a(Tj − s))− exp(−a(Tj−1 − s))]

+ δ
(√

α2 − (β + sign(a)(1− exp(−a(Tj − s))))2

−
√
α2 − (β + sign(a)(1− exp(−a(Tj−1 − s))))2

)
ds

)

and we obtain ξj = − lnDd
j . Then, the caplet (mid) model price is given by

Cpl0(Tj−1, Tj ,K) =
Bd

0(Tj−1)K̃

π
· Ij(α, β, δ, a,R1,K),

where we de�ne

Ij(α, β, δ, a,R1,K) :=

∫ ∞
0

Re

([
Bd

0(Tj)

Bd
0(Tj−1)

]R1+iu
K̃−(1−R1−iu)

(−R1 − iu)(1−R1 − iu)

× exp
(∫ Tj−1

0
δ
(√

α2 − (β + sign(a)(1− exp(−a(Tj−1 − s))))2

−
√
α2 − (β + χj(s, u, a,R1))2

)
+ (R1 + iu)δ

(√
α2 − (β + sign(a)(1− exp(−a(Tj − s))))2

−
√
α2 − (β + sign(a)(1− exp(−a(Tj−1 − s))))2

)
ds
))

du.

4.2.6. Calibration Results of Model Framework (II)

The calibrated distribution parameters are presented in table 4.6 and the calibrated
volatility structure parameter is given in table 4.7.

The value of the objective function is

O1(θ̂, H) = 2.39577 · 10−06.

The market prices of caplets and caps for strike rates up to six percent are greatly
calibrated as the �gures 4.10 and 4.11 show. The relative errors of the market and model
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4. Model Calibration

Parameter Value

α 7.862
β -6.508
δ 0.439909

Table 4.6.: Calibrated parameter of normal inverse Gaussian distribution.

Parameter Value

a 0.0119

Table 4.7.: Calibrated parameter of Vasicek volatility structure.

prices are presented in �gures B.1 and B.2 in the appendix. As in the previous framework,
the divergences for short maturities and strike rates over six percent result from the very
small values of the prices. Figure 4.12 illustrates the �t of the volatility smile for the
maturity of 3.5 years.

The density function is plotted in �gure 4.13 and four paths of the driving process are
illustrated in �gure 4.14.

4.3. Calibration of Caps in the Two-Price and

Multiple-Curve Setting

Now we consider market cap volatilities quoted during the �nancial crisis on 15th Septem-
ber 2009. Therefore, we need to apply the multiple-curve approach. We proceed with
the given data sets as described in section 4.1. Recall that quotes up to a maturity of
two years are indexed on the three-month Euribor and quotes larger than 2 years are
related to the six-month Euribor.

4.3.1. Data Sets

The initial discount bond prices are given in table 4.8 and 4.9. The edited surfaces of
the quoted cap (mid) implied volatilities based on the three-month and six-month tenor
are plotted in �gures 4.15 and 4.16. In �gures 4.17 and 4.18, we present the ask and bid
spreads between the implied (spot) volatilities of caplets for the relevant maturities and
strike rates. As we can see the spreads are signi�cantly larger than in the pre-crisis data
sets (cf. �gures 4.3 and 4.4).
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Figure 4.10.: Market and model (mid) prices of caplets with maturity of two years (top
left), �ve years (top right), eight years (bottom left) and ten years (bottom
right) for strike rates of 1.75, 2.00, 2.25, 2.50, 3.00, 3.50, 4.00, 5.00 and 6.00
percent on 15th August 2006.

4.3.2. Calibration Procedure

We proceed as it is described in section 2.4, where we consider

H = {(T,H) : T ∈ {1, 1.25, 1.5, 2, 2.5, . . . , 5.5, 6},
K ∈ {0.0175, 0.02, 0.0225, 0.025, 0.03, 0.035, 0.04, 0.05}}

and

HT = {(T,K) : K ∈ {0.0175, 0.02, 0.0225, 0.025, 0.03}}

for T = 3. Here, we have T ∗ = 6.

4.3.3. Model Framework

We design the model in such a manner as it is stated in section 3.2. This approach
guarantees the monotonicity of the curves. Note that we consider three term structures:
the discount curve, the three-month curve and the six-month curve.

The volatility function, the liquidity function and the driving process are speci�ed as
follows (d = 3, m = 2 and l = 1):
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4. Model Calibration
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Figure 4.11.: Market and model (mid) prices of caps with maturity of two years (top
left), �ve years (top right), eight years (bottom left) and ten years (bottom
right) for strike rates of 1.75, 2.00, 2.25, 2.50, 3.00, 3.50, 4.00, 5.00 and 6.00
percent on 15th August 2006.

(Vol) Vasicek volatility structure:

• Discount curve

σd(t, T ) =

σ̂d exp (−ad(T − t))
0

0


T

with

Σd
1(t, T ) =

{
σ̂d
ad

(1− exp (−ad(T − t))) , when t ≤ T
0, when t > T

and Σd
2(t, T ) = Σd

3(t, T ) = 0 for any t, T ∈ [0, T ∗], where σ̂d > 0 and ad 6= 0.

• Spreads related to multiple term structures:
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4.3. Calibration of Caps in the Two-Price and Multiple-Curve Setting
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Figure 4.12.: Calibrated implied model volatilities and implied market volatilities for the
maturity of 3.5 years on 15th August 2006.

(1) Spread between curve d and 1:

σ1,d(t, T ) =

 0

σ̂1d exp (−a1d(T − t))
0


T

with

Σ1,d
2 (t, T ) =

{
σ̂1d
a1d

(1− exp (−a1d(T − t))) , when t ≤ T
0, when t > T,

and Σ1,d
1 (t, T ) = Σ1,d

3 (t, T ) = 0 for every t, T ∈ [0, T ∗], with σ̂1d > 0 and
a1d 6= 0.

(2) Spread between curve 1 and 2:

σ2,1(t, T ) =

 0

0

σ̂21 exp (−a21(T − t))


T
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4. Model Calibration
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Figure 4.13.: Density function of normal inverse Gaussian distribution for the calibrated
parameter.

with

Σ2,1
3 (t, T ) =

{
σ̂21
a21

(1− exp (−a21(T − t))) , when t ≤ T
0, when t > T,

and Σ2,1
1 (t, T ) = Σ2,1

2 (t, T ) = 0 for all t, T ∈ [0, T ∗], where σ̂21 > 0 and
a21 6= 0.

(L) Liquidity function (see Brigo and Mercurio [17]):

lj(t, T ) = σj · (T − t) exp(−bj(T − t)),

where σj , bj > 0 for any j ∈ {1, 2}.

As in section 4.2, we can choose σ̂d = |ad|, σ̂1d = |a1d|, and σ̂21 = |a21|. For t, T ∈
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4.3. Calibration of Caps in the Two-Price and Multiple-Curve Setting
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Figure 4.14.: Four sample paths of a normal inverse Gaussian process with calibrated
parameter.

[0, T ∗] with t ≤ T , we therefore obtain

Σ1(t, T ) = Σd(t, T ) + Σ1,d(t, T ) =

 sign(ad) (1− exp (−ad(T − t)))
sign(a1d) (1− exp (−a1d(T − t)))

0


T

and

Σ2(t, T ) =Σd(t, T ) + Σ1,d(t, T ) + Σ2,1(t, T )

=

 sign(ad) (1− exp (−ad(T − t)))
sign(a1d) (1− exp (−a1d(T − t)))
sign(a21) (1− exp (−a21(T − t)))


T

.

In accordance with assumption (MC.DET), we require the parameter ad, a1d and a21 to
be restricted to values such that the volatility function Σ2 is bounded in each component
by a constant M̂ satisfying 0 < M̂ < M . More speci�cally, we claim the existence of the
cumulant function θ at Σ2(t, T ) for all t, T ∈ [0, T ∗] with t ≤ T . Then, it also exists at
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4. Model Calibration

Maturity Initial Bond Price

0.25 Year 0.9990052
0.50 Year 0.9979506
0.75 Year 0.9960934
1.00 Year 0.9932698
1.25 Year 0.9895302
1.50 Year 0.9849790
1.75 Year 0.9797332
2.00 Year 0.9739065

Table 4.8.: Discount bond prices Bd
0(T ) on 15th September 2009.

Σd(t, T ) and Σ1(t, T ). Clearly, the parameters of the liquidity function can be restricted
to a set such that the liquidity function is bounded. Observe that the considered volatility
and liquidity functions satisfy assumption (VL). To ensure the drift condition (3.26), we
have to choose the drift terms A1,d and A2,1 as

A1,d(t, T ) = θ(Σ1(t, T ))− θ(Σd(t, T )) + l1(t, T )

and

A2,1(t, T ) = θ(Σ2(t, T ))− θ(Σ1(t, T )) + l21(t, T ).

(DP) The driving process L = (L1, L2, L3)T de�ned on (Ω,G ,G, P d) is constructed as
follows:

(i) N is a normal inverse Gaussian Lévy motion with parameters α, β, δ, µ sat-
isfying 0 ≤ |β| < α, δ > 0 and µ ∈ R and Zj is a Gamma process with
parameters αj , βj > 0 for any j ∈ {1, 2, 3}.

(ii) N , Z1, Z2 and Z3 are assumed to be stochastically independent.

(iii) Y 1 := L1 = N + Z3.

(iv) Y 2 := (L2, L3)T = −(Z1 + Z3, Z2 + Z3)T.

Clearly, the components L1, L2 and L3 are stochastically dependent. Further, the pro-
cesses N,Z1, Z2, Z3 do not possess a continuous local martingale part.
Let us de�ne the vector process V := (N,Z1, Z2, Z3)T. The following Lemma states

similar results as noted by Crépey, Grbac, and Nguyen [23, Example 3.6] and is analo-
gously proved.

Lemma 4.3.1 1. The Lévy measure F V of V is given by

F V (A) = FN (A1) + FZ
1
(A2) + FZ

2
(A3) + FZ

3
(A4),
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4.3. Calibration of Caps in the Two-Price and Multiple-Curve Setting

Maturity Initial Bond Price

0.50 Year 0.9979506
1.00 Year 0.9932698
1.50 Year 0.9849790
2.00 Year 0.9739065
2.50 Year 0.9607654
3.00 Year 0.9460177
3.50 Year 0.9300146
4.00 Year 0.9130396
4.50 Year 0.8952878
5.00 Year 0.8769590
5.50 Year 0.8582155
6.00 Year 0.8392186
6.50 Year 0.8200582
7.00 Year 0.8009114
7.50 Year 0.7818049
8.00 Year 0.7628484
8.50 Year 0.7441259
9.00 Year 0.7256300
9.50 Year 0.7074524
10.0 Year 0.6896507

Table 4.9.: Discount bond prices Bd
0(T ) on 15th September 2009.

where A ∈ B(R4) and we set Ak := {x ∈ R | xek ∈ A} for any k ∈ {1, 2, 3, 4} with
unit vector ek in R4 that has the entry one in the kth-component and zero otherwise.

2. The Lévy measure F of L is given by

F (B) =FN ({x ∈ R | (x, 0, 0)T ∈ B})

+ FZ
1
({x ∈ R | (0,−x, 0)T ∈ B}) + FZ

2
({x ∈ R | (0, 0,−x)T ∈ B})

+ FZ
3
({x ∈ R | (x,−x,−x)T ∈ B}),

where B ∈ B(R3\{0}). Moreover, the process −Y 2 is a subordinator.

Proof: Since N , Z1, Z2 and Z3 are independent, the �rst assertion is a consequence of
Sato [81, Exercise 12.10]: The components X1, . . . , Xp of an Rp-valued random variable
X = (X1, . . . , Xp)T with in�nitely divisible distribution and generating triplet (A, ν, γ)

(see Sato [81, chapter 2, section 8]) are independent if and only if A is in diagonal form
and ν is supported on the union of the coordinate axes. For the sake of completeness,
we prove the statement of the exercise for our situation (A = 0 and p = 4):

125



4. Model Calibration

M
at

ur
ity

 (y
ea

rs
)

0.5

1.0

1.5

2.0

Strike rate (percent)

2
4

6
8

10

Im
plied volatility (percent)

45

50

55

60

65

Volatility surface

Figure 4.15.: (Mid) implied volatility surface based on the three-month tenor.

Let us suppose that F V is supported by the union of the coordinate axes. This means
that we have

F V (A) =

4∑
k=1

F̂k(Ak),

where A ∈ B(R4) and F̂k is a measure for each k ∈ {1, . . . , 4}. One easily concludes from
Sato [81, Proposition 11.10] that F̂k = F V

k
for every k ∈ {1, . . . , 4}. Then, we have

EP d

[
exp (i〈u, Vt〉)

]
= exp

(
t
(
i〈b, u〉+

∫
R4

(ei〈u,x〉 − 1− i〈u, h(x)〉)F V (dx)
))

= exp

(
t

4∑
k=1

(
ibkuk +

∫
R

(eiukxk − 1− iukhk(xk))F V
k
(dxk)

))

=
4∏

k=1

EP d

[
exp

(
iukV

k
t

) ]
for some truncation function h ∈ C 4

t . This shows the independence of the components of
the Lévy process V . For the converse statement let us de�ne a measure F̂ on (R4,B(R4))
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Figure 4.16.: (Mid) implied volatility surface based on the six-month tenor.

by

F̂ (A) :=

4∑
k=1

F V
k
(Ak).

Clearly, it holds F̂ ({0}) = 0 and

∫
R4

(|x|2 ∧ 1)F̂ (dx) =

4∑
k=1

∫
R

(|xk|2 ∧ 1)F V
k
(dxk) <∞.

Therefore, it follows that F̂ is a Lévy measure. By using the independence of the com-
ponents, we obtain

EP d

[
exp (i〈u, Vt〉)

]
= exp

(
t

4∑
k=1

(
ibkuk +

∫
R

(eiukxk − 1− iukhk(xk))F V
k
(dxk)

))

= exp

(
t
(
i〈b, u〉+

∫
R4

(ei〈u,x〉 − 1− i〈u, h(x)〉)F̂ (dx)
))

for some h ∈ C 4
t . On the basis of the uniqueness of this representation, we conclude that
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Figure 4.17.: Spread between ask and bid (spot) volatilities of caplets on 15th September
2009. We consider maturities of 1.25, 1.5, 1.75 and 2 years and strike rates
of 1.75, 2, 2.25, 2.5, 3 percent.

F̂ = F V . For the second claim, we de�ne the matrix

U :=

1 0 0 1

0 −1 0 −1

0 0 −1 −1


such that L = UV . Then, by Sato [81, Proposition 11.10], we conclude that

F (B) =F V ({x ∈ R4 | Ux ∈ B})
=F V ({x ∈ R4 | (x1 + x4,−x2 − x4,−x3 − x4)T ∈ B})
=FN ({x ∈ R | (x, 0, 0)T ∈ B})

+ FZ
1
({x ∈ R | (0,−x, 0)T ∈ B}) + FZ

2
({x ∈ R | (0, 0,−x)T ∈ B})

+ FZ
3
({x ∈ R | (x,−x,−x)T ∈ B}),
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Figure 4.18.: Spread between ask and bid (spot) volatilities of caplets on 15th September
2009. We consider maturities of 2.5, 3, 3.5 and 4 years and strike rates of
1.75, 2, 2.25, 2.5, 3 percent.

where B ∈ B(R3\{0}). �

To ensure the positivity of the forward spreads, we get the following deterministic
restrictions on the model parameters (see Proposition 3.2.2 and conditions (3.36) and
(3.37)): For every T ∈ [0, T ∗], we assume that

θ(Σ1(t, T ))− θ(Σd(t, T )) + l1(t, T ) ≤ s1,d
0 (T ) + θ(Σ1(0, T ))− θ(Σd(0, T )) + l1(0, T )

and

θ(Σ2(t, T ))− θ(Σ1(t, T )) + l2,1(t, T ) ≤s2,1
0 (T ) + θ(Σ2(0, T ))− θ(Σ1(0, T )) + l2,1(0, T )

for all t ∈ [0, T ]. Then, we conclude that the desired monotonicity (3.27) is satis�ed.

By using the stochastic independence of the processes N , Z1, Z2 and Z3, we can
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4. Model Calibration

express the cumulant function θ of L under measure P d as

θ(z) =θN (z1) + θZ
1
(−z2) + θZ

2
(−z3) + θZ

3
(z1 − z2 − z3)

=µz1 + δ
√
α2 − β2 − δ

√
α2 − (β + z1)2 − β1 log

(
1 +

z2

α1

)
− β2 log

(
1 +

z3

α2

)
− β3 log

(
1− z1 − z2 − z3

α3

)
for every z = (z1, z2, z3) ∈ C3 such that all the terms are well-de�ned. More speci�-
cally, the existence of the cumulant process is guaranteed for any z = (z1, z2, z3) ∈ R3

satisfying:

(i) |z1| < min{|−α− β|, α− β}.

(ii) zk ∈ (−αk,∞) for each k ∈ {2, 3}.

(iii) z1 − z2 − z3 < α3.

Then, the characteristic functions of Xk
j and Y k

j under P d
Tkj

can be computed by using

formulas (3.39) and (3.44). The deterministic term Dk
j is given by the relation (3.20)

from which we get ξkj = − ln ηkj . Finally, the ask, mid and bid model prices of the caplet
are obtained by the valuation formulas (3.49), (3.45) and (3.50).

4.3.4. Calibration Results

The calibrated distribution parameters are presented in table 4.10 and 4.11. We state
the calibrated parameters of the volatility and liquidity function in table 4.12 and 4.13.
The value of the objective function is

O1(θ̂, H) = 6.597836 · 10−05.

Normal inverse Gaussian process Value

α 7.426472
β -1.773825
δ 6.334942

Table 4.10.: Calibrated parameters of normal inverse Gaussian distribution.

The market (mid) prices of caps for strike rates up to three percent are satisfactorily
�tted. Especially, the prices related to the six-month curve are well-adapted for these
strike rates. For instance, we present the results for some maturities in �gures 4.19 and
4.20. The relative errors are illustrated in �gures C.1 and C.2 in the appendix. As in the
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4.3. Calibration of Caps in the Two-Price and Multiple-Curve Setting

Gamma process Value

α1 0.002901911
β1 0.004451095
α2 0.003706087
β2 0.001636382
α3 0.000387000
β3 0.006897160

Table 4.11.: Calibrated parameters of the Gamma processes.

Volatility structure parameter Value

ad 1.000 · 10−09

a1d −1.929 · 10−05

a21 1.197 · 10−05

Table 4.12.: Calibrated parameters of volatility structure.

single-curve setting, we emphasise that the discrepancies in the calibrations' outcomes
result from the very small values of the related prices together with the high complexity
of the framework.
The calibrated parameter γ with the corresponding value of the objective function O2

is listed in table 4.14. The family (Ψmmv
γ )γ≥0 of MINMAXVAR distortion functions is

used for the calibration.
The density functions are plotted in �gures 4.21 and 4.22. Three paths of the process

L1 are illustrated in �gure 4.23. The corresponding sample paths of the second and
third component of L are presented in �gures 4.24 and 4.25. We use the R-package
`GeneralizedHyperbolic' created by Scott [89].
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4. Model Calibration

Liquidity function parameter Value

b1 0.0062280800
σ1 0.0003903129
b2 0.0083791380
σ2 0.0005892760

Table 4.13.: Calibrated parameters of liquidity function.
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Figure 4.19.: Calibration of (mid) cap prices for maturity of 3 years.

Maturity Parameter Objective function

3.00 Year 0.001 1.37 · 10−07

Table 4.14.: Calibrated parameter γ for maturity T = 3.
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Figure 4.20.: Calibration of (mid) cap prices for maturity of 6 years.
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Figure 4.21.: Density function of normal inverse Gaussian distribution for the calibrated
parameters.
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Figure 4.22.: Density function of Gamma distribution with calibrated parameters: (•)
α1 = 0.002901911, β1 = 0.004451095 (•) α2 = 0.003706087, β2 =
0.001636382 and (•) α3 = 0.000387000, β3 = 0.006897160.
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Figure 4.23.: Sample paths of L1 with calibrated parameters.
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Figure 4.24.: Sample paths of L2 with calibrated parameters.
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Figure 4.25.: Sample paths of L3 with calibrated parameters.

135





APPENDIX

A

CALIBRATION RESULTS OF MODEL FRAMEWORK (I)

Maturity (years)

1.2
1.4

1.6
1.8

2.0
Strik

e rate (percent)

2.0
2.5

3.0
3.5

4.0

relative errors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Relative errors of cap (3M) market and model prices

Figure A.1.: Relative errors of cap.

137



A. Calibration Results of Model Framework (I)
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Figure A.2.: Relative errors of cap.
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APPENDIX

B

CALIBRATION RESULTS OF MODEL FRAMEWORK (II)
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Figure B.1.: Relative errors of cap.
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B. Calibration Results of Model Framework (II)
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Figure B.2.: Relative errors of cap.
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CALIBRATION RESULTS IN THE MULTIPLE-CURVE SETTING
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Figure C.1.: Relative errors of cap.

141



C. Calibration Results in the Multiple-Curve Setting
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