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1 

OVERVIEW 

Multiple representations (e.g., an equation and a diagram) are commonly used because 

they can provide unique benefits when learners are trying to gain a deep understanding 

(Ainsworth, in press). Regrettably, many studies have shown that this promise is not always 

achieved. Often, learners are overwhelmed with the complex demands of integrating and 

understanding multiple representations. This suggests that learners might profit from learning 

with multiple representations to a larger extent when instructional support measures on 

integrating and understanding are employed. 

Therefore, the main goal of this dissertation is to experimentally investigate the effects of 

multiple representations and two corresponding instructional support measures on learning 

processes (i.e., self-explanations) and learning outcomes (i.e., conceptual and procedural 

knowledge). Do students learn more deeply from multiple representations than from one 

representation alone? Do instructional support measures such as an integration help in form of 

flashing and color-coding as well as self-explanation prompts further enhance the benefits of 

multiple representations? What are the crucial processes with this respect? These questions 

are the focus of this dissertation. 

To address these questions, two experiments were conducted in which we employed 

worked-out examples from the domain of probability theory and tested the effects of multiple 

representations, an integration help in form of a flashing-color-coding procedure, and self-

explanation prompts. In Experiment 1, the effects of two types of self-explanation prompts 

(scaffolding vs. open) as help procedures for integrating and understanding multiple 

representations were analyzed. Experiment 2 additionally tested the effects of multi- vs. 

mono-representational solutions and an integration help. The findings of Experiment 1 were 
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taken up insofar in Experiment 2 as we implemented scaffolding self-explanation prompts 

which proved to be effective in Experiment 1. 

Overall, results showed that multiple representations embedded in worked-out examples 

and an integration help fostered conceptual knowledge. With respect to procedural 

knowledge, it was equally effective to provide multi- or mono-representational solutions or 

presenting the multi-representational solutions with or without an integration help. Self-

explanation prompts fostered high-quality self-explanations and conceptual knowledge. With 

respect to conceptual knowledge, scaffolding self-explanation prompts were especially 

effective when compared to open prompts (scaffolding self-explanation effect). Though, 

scaffolding self-explanation prompts also evoked incorrect self-explanations that impaired the 

acquisition of procedural knowledge (paradox self-explanation prompt effect). 

Chapter 1 provides the general theoretical background for this dissertation involving a 

disambiguation as well as information about the learning approach and the domain of this 

research. In chapter 2, the computer-based learning environment which was developed for this 

research is described. Chapter 3 provides an overview of the two experiments of this 

dissertation and the main research questions are elaborated. In chapter 4 and 5, the two 

experiments are presented that examined the effects of multiple representations, an integration 

help, and self-explanation prompts. These chapters include a theoretical introduction 

addressing the specific research problem, a presentation of the corresponding research 

questions, the method and results as well as a discussion of the findings. Chapter 4 on 

Experiment 1 describes the effects of two types of self-explanation prompts as help 

procedures for integrating and understanding multiple representations. Chapter 5 on 

Experiment 2 presents the effects of multi- vs. mono-representational solutions, an integration 

help in form of a flashing-color-coding procedure, and scaffolding self-explanation prompts. 

Chapter 6 concludes with an overall discussion of the findings, theoretical and practical 

implications, limitations as well as an outline of future research directions.
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1. General Theoretical Background 

The following chapter provides the general theoretical background for this dissertation. 

First, the topic of multimedia learning is addressed because learning from multiple 

representations is often discussed under this heading. The second section introduces the 

learning approach multi-representational worked-out examples and corresponding theories. 

The third section deals with learning mathematics by multiple representations. 

1.1 Multimedia Learning 

In this section, first, a disambiguation of the term multimedia learning is aimed. 

Afterwards the question “How can multimedia (not) foster meaningful learning?” is 

discussed. 

1.1.1 A Disambiguation  

New technologies in general and multimedia in particular play an increasingly important 

role in learning and teaching (Schnotz & Lowe, 2003). When reading the term multimedia, 

you might think of a computer with an integrated video, oral explanations, as well as texts, 

pictures, and maybe other forms of information such as arithmetical equations. Although the 

term multimedia is widespread, it is not suitable in its everyday sense for the scientific 

discourse (cf. Weidenmann, 1997). Against this background, some experts in the field 

(Mayer, 2005b; Schnotz, 2005; Weidenmann) propose to differentiate different meanings of 

the term multimedia. According to Weidenmann, the term multimedia confounds the 

categories medium, modality, external, and internal representation. Hence, instead of using 
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the undifferentiated, sweeping catchword of multimedia, he suggests to distinguish between 

the following categories: 

(a) Medium. Mediums are objects or technical devices which can communicate or 

construct messages, for example, a personal computer or a book (Weidenmann, 1997). 

Similarly, Mayer (2005b) and Schnotz (2005) refer to this category as technical level. Thus, 

the term multimedium-based includes at least two mediums which are presented in an 

integrated manner, for example, a personal computer including a video (Weidenmann). The 

medium is of course very important in practice. Yet, from an educational point of view 

comprehension is not fundamentally different when a text passage is delivered either by a 

computer screen or a printed book (cf. Schnotz). Similarly, Clark (1994) made the explicit and 

clear claim that there were no pure learning benefits possible due to mediums. Already in his 

early articles, Clark (cf. 1983, 1985) claimed, in part, that media are “mere vehicles that 

deliver instruction but do not influence student achievement any more than the truck that 

delivers our groceries cause changes in our nutrition” (1983, p. 445). Meta-analytic reviews of 

media research which have produced evidence for the positive learning benefits of research 

with various media were confounded because of not controlling the instructional method. 

Consequently, Clark (e.g., 1983) argues that it is the method which influences learning, not 

the medium. Further, any necessary teaching method could be designed into a variety of 

media presentations. Clark (1994) defines methods as the provision of cognitive processes or 

strategies that are necessary for learning but which students cannot or will not provide for 

themselves. 

(b) Modality (Schnotz, 2005; Weidenmann, 1997). The term modality refers to the sense 

which is addressed (visual, auditive). If only one sense is addressed, Weidenmann uses the 

term “mono-modal” (e.g., only visual or only auditive). The term “multi-modal” is 

appropriate, if different senses receipt signs, for example, the eyes and ears are addressed 
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which can be realized by an audio-visually presentation (e.g., written text and oral text) (cf. 

sensory level; Mayer, 2005b). 

(c) External representation (cf. Ainsworth, in press) or codality (codes or symbol 

systems; cf. Weidenmann, 1997). The learning content can be presented in different formats 

and symbol systems, that is, different external representations (e.g., verbal, pictorial, 

arithmetical). Multiple external representations include the use of different forms of 

representations (cf. Schnotz, 2005), for example, a pictorial tree diagram and an arithmetical 

equation. Some authors (e.g., Ainsworth, in press) refer to external representations as 

modality. Instead, in this dissertation, it is proposed to use the term codality when referring to 

representational systems (e.g., arithmetical equations). Modality, in contrast, should be used 

when referring to senses (e.g., visual or auditive) (see last paragraph). 

(d) Internal representation (mental representation or mental format, cf. Weidenmann, 

1997). If the learners actively process the external representations, the learning content is 

mentally encoded. Thus, the learners build internal representations. It has to be stressed that 

there is no one-to-one correspondence between the external and the internal representation (cf. 

Weidenmann). When learners understand texts and pictures, they construct multiple mental 

representations (cf. Schnotz, 2005). A textual input (external representation) might also be 

visually encoded (internal representation), and a picture (external representation) can lead to 

mental propositional (textual) representations (cf. Zimmer, 1993). In a nutshell, the external 

representation is not inevitably identical with the internal representation. 

1.1.2 How Can Multimedia Presentation (Not) Foster Meaningful Learning? 

A number of misconceptions arise amongst educators because of a failure to distinguish 

these different levels (cf. Weidenmann, 1997). In fact, previous research on so-called “media-

effects” has clearly established that it is misguided and overly simplistic to compare different 

technical media with regard to their effects on learning without taking into account the aspects 
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of modality, external, and internal representations. As mentioned above, Clark (1983, 1985) 

presented evidence in support of the hypothesis that instructional methods had been 

confounded with media and that it is methods which influence learning. Clark (1994) suggests 

that our failure to separate medium from method has caused enormous confounding and waste 

in a very important and expensive research area. 

Rather, the other levels (modality, external, and internal representations) are generally 

the crucial factors and a proper understanding of them requires expertise in cognitive science, 

psychology, and educational science (Mayer, 2005b). Thus, rather than searching for technical 

media-effects, research on learning and instruction should focus on the levels of modality and 

external representations as well as on their effect on internal representations that constitute 

comprehension and learning (Mayer, 2005b; Schnotz, 2005). 

Unfortunately, there are also misconceptions with respect to the level of modality and 

external representations (Mayer, 2005b), for example, that rich learning environments with 

powerful visualization and sound techniques result in extensive cognitive processing and thus 

create elaborated knowledge structures (cf. Schnotz, 2005). Consequently, the learners are 

often completely overwhelmed. Therefore, recently a stronger focus is put on more specific 

questions, for example, how learning environments including multiple representations foster 

meaningful learning. Against this background, this dissertation focuses exclusively on 

learning with multiple representations (external representations) – thereby only addressing the 

visual sense (modality). 

Multiple representations in learning materials (e.g., text and pictures) are commonly used 

because they provide unique potentials in fostering understanding. Unfortunately, many 

studies have shown that the promise of multiple representations is not always achieved (cf. 

Ainsworth, in press). Evidently, multiple representations – and especially their integration – 

impose high demands on the cognitive processing of the learners including the danger of 

overwhelming the learners. What could be a sensible solution? 
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1.2 The Learning Approach: Multi-Representational Worked-Out 

Examples 

An important step towards the solution of the problem that multiple representations can 

overwhelm the learners may be to use a learning approach and learning materials which 

reduce demands on the learner. One such effective and “load-saving” method is learning from 

worked-out examples. Worked-out examples consist of a problem formulation, solution steps, 

and the final solution itself. When it is referred to the term learning from worked-out 

examples or example-based learning (both terms are used as synonyms) in this research, it is 

always meant that more than just a single example is used because it is more effective to use a 

series of worked-out examples (cf. Sweller & Cooper, 1985). 

Research has shown that learning from such examples is of major importance for the 

initial skill acquisition of cognitive skills and learning in well-structured domains such as 

mathematics, physics, and programming (for an overview see VanLehn, 1996). Often learners 

have a limited understanding of the domain when they try to solve the first problems and 

would be completely overwhelmed with complex, demanding learning arrangements. 

Typically, learners rely on general, domain unspecific problem-solving heuristics such as 

means-ends analysis (Renkl, 2005). Thereby, they might even find the right solution. 

However, such striving for the correct answer does not lead to a profound understanding of 

the domain. The basic idea of example-based learning is to reduce problem solving demands 

by providing worked-out solutions in initial stages of skill acquisition, when gaining 

understanding is the instructional main goal (cf. Sweller, van Merriënboer, & Paas, 1998). 

Thereby, more of the learners’ limited processing capacities (i.e., working memory capacities) 

can be devoted to understanding the domain principles and their application in problem 

solving (Renkl, 2005). These assumptions are summarized in the worked-out principle in 

learning that states that learners gain a deep understanding of a skill domain when they 
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receive worked-out examples in the beginning of cognitive skill acquisition. In this case, 

learners can also engage in domain-specific reasoning, which in turn can deepen their 

understanding. However, many learners do not use their available processing capacities for 

trying to self-explain the example solutions to themselves (Chi, Bassok, Lewis, Reimann, & 

Glaser, 1989; Renkl, 1997). Accordingly, they gain little understanding. Prompts (requests 

directed to learners; cf. Renkl, 2005) for self-explaining example solutions have been shown 

to successfully prevent this problem and foster learning outcomes (e.g., Atkinson, Renkl, & 

Merrill, 2003; Berthold, Nückles, & Renkl, 2006). 

Against the background that (a) worked-out examples leave relatively many cognitive 

resources for gaining understanding and (b) multiple representations and especially their 

integration require many cognitive resources, it is sensible to combine multiple 

representations and worked-out examples by embedding multi-representational solutions in 

worked-out examples. In this dissertation such examples are called multi-representational 

examples. 

The use of examples – in contrast to problems to-be-solved – leaves more processing 

capacities so that there is a better chance that learners can successfully cope with the high 

demands of learning from multiple representations. There are mainly two types of theoretical 

approaches that are relevant when analyzing learning with multi-representational examples. 

Theories on learning from multiple representations. The most intriguing aspect of 

learning with multiple representations is that understanding occurs when learners are able to 

build meaningful connections between multiple representations – such as being able to see 

how an arithmetical equation is related to a diagram. In the process of trying to build 

connections between two or more representations, learners are able to create a deeper 

understanding than from one representation alone. This idea is at the heart of the theories of 

learning with multiple representations (cf. Mayer, 2005b). 
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Ainsworth (1999, in press; Ainsworth, Bibby, & Wood, 1998) intends to formulate 

guidelines for when (and when not) to employ multiple representations. As many studies have 

shown, multiple representations are not always useful (e.g., de Jong et al., 1998; Hegarty, 

Narayanan, & Freitas, 2002; Schnotz, Böckheler, Grzondziel, Gärtner, & Wächter, 1998). 

Learners often do not map different representations onto each other so that the positive effects 

that were intended by the use of multiple representations do not occur to the expected extent 

(e.g., Ainsworth et al., 1998; Tabachnek-Schijf & Simon, 1998). Hence, multi-

representational learning environments have to be carefully designed. Crucial aspects in this 

context are the specific functions of multiple representations and the task that learners have 

when processing these multiple representations (cf. Ainsworth, in press). With this respect, 

guidance has to be provided for how to process the presented information – that is, for 

determining what to pay attention to, how to mentally organize it, and how to relate it to prior 

knowledge (Mayer, 2005b). 

Theories with a capacity focus. Both the cognitive load theory (Sweller, 1999, 2005; 

Sweller et al., 1998) and the theory of multimedia learning (Mayer, 2005a; Mayer & Moreno, 

2003) emphasize processing structures and limitations. A potential problem of learning from 

multiple representations is that the learners are overwhelmed by the complexity of the 

presented learning materials and the corresponding processing demands. Instructional 

prescriptions are formulated that try (a) to minimize unproductive processes in working 

memory that are not related to the relevant aspects of the learning contents (e.g., 

“unnecessary” visual search processes) and (b) to maximize cognitive processes that are 

related to understanding and learning outcomes. These instructional prescriptions also apply 

on worked-out examples with multi-representational solutions. In order to profit from the 

potential of multiple representations, it is in most cases necessary to understand the relation 

between different representations. Based on cognitive load theory, two ways of fostering the 

integration of different representations and understanding can be distinguished: 
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(a) Reducing cognitive load that is not related to processes of learning (reduction of 

extrinsic load). It is aimed to avoid, for example, visual search processes that do not 

contribute to understanding and take away attention from processing the relevant learning 

contents. A typical recommendation derived from cognitive load theory is to integrate two 

information sources (e.g., pictorial tree diagram and arithmetical equation) into one 

information source by bringing corresponding elements spatially close to each other (principle 

of integrated format; cf. Ayres & Sweller, 2005). Across several experiments, Sweller and his 

colleagues documented that non-integrated material hindered learning, presumably because 

the learners had to retain the equations in their working memory as they attempted to locate 

the relevant elements in the diagram (Sweller, Chandler, Tierney, & Cooper, 1990; Tarmizi & 

Sweller, 1988). On the other hand, they found that an integrated format facilitated learning. 

The option of spatial integration, is, however, not always possible, for example, when 

elements in one representation do not correspond to certain, well-circumscribed parts in the 

other representation (e.g., one number of the arithmetical equation corresponds to several 

branches of a tree diagram). In this case, other support measures can be used such as color-

coding (i.e., assigning the same color to corresponding elements) or flashing (i.e., 

corresponding elements flash simultaneously) (cf. Jeung, Chandler, & Sweller, 1997; 

Kalyuga, Chandler, & Sweller, 1999). For instance, incorporating flashing in computer-based 

learning environments can successfully guide learners as they attempt to make sense of the 

presented material (Jeung et al.). This is particularly true for situations with high visual-search 

complexity. Essentially, using signals to help learners discriminate relevant from irrelevant 

information can help them effectively integrate multiple representations. 

(b) Increasing learning related processing (increasing germane load). To benefit from 

the advantages of multiple representations, one challenge is to engage learners in the active 

knowledge construction necessary for learning (Roy & Chi, 2005) which requires 

considerable cognitive capacity. Yet, making salient which elements correspond does not 
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ensure that the conceptual relations between the representations are in fact detected. A 

potential problem is that learners’ mapping may remain at the surface level (cf. Seufert & 

Brünken, 2004). In order to foster conceptual mapping, the learners should actively integrate 

multiple representations (cf. Bodemer, Plötzner, Feuerlein, & Spada, 2004). A promising 

approach are self-explanation prompts that direct the learners’ self-explanations on integrating 

and understanding multiple representations. Self-explanations are explanations that are 

provided by learners and mainly directed to themselves (Renkl, 2005). People learn more 

deeply when they spontaneously engage in or are prompted to provide explanations during 

learning (Roy & Chi). Self-explanations contain information that is not directly given in the 

learning materials and that refer to solution steps and the reasons for them. Several key 

cognitive mechanisms are involved including generating inferences to fill in missing 

information, integrating information within the study materials, referring to structural and 

surface features of problems or problem types, integrating new information with prior 

knowledge, and monitoring and repairing faulty knowledge. Thus, self-explaining on multi-

representational examples is a cognitively demanding but deeply constructive activity (Roy & 

Chi) and is contextualized in a specific domain (i.e., mathematics). 

1.3 Learning Mathematics by Multiple Representations 

Clearly, multi-representational learning is applicable across a wide range of domains 

(Atkinson, 2005). In multi-representational learning on science, a considerable amount of 

research has been conducted (for a review, see Mayer & Moreno, 2002). Though, the 

experimental research focusing on issues related to multi-representational learning of 

mathematics is relatively small in comparison. While the educational literature is filled with 

many examples of articles describing “best practices” or explorative studies, there is an 

extremely modest amount of sound, empirically based research (Atkinson, 2005). 
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Consequently, more experimental research is needed to explore how to advance learners’ 

understanding and learning in mathematics using multi-representational learning 

environments. However, in a recent review article focusing on learning with animations 

(Mayer & Moreno, 2002), out of the 31 experiments cited as the sources, only one experiment 

involved mathematics. 

Beyond the deficit of research on learning mathematics by multiple representations, there 

is a lack of addressing different mathematical topics. In the available research geometry 

instruction is focussed (for an exception see Große & Renkl, in press). 

Indeed, geometry is an ideal mathematical subdomain to explore the effectiveness of 

learning with multiple representations given that words and graphics are so prevalent during 

instruction. However, it is critical that the empirically derived instructional principles devoted 

from these geometrical learning materials be generalized to additional mathematical 

subdomains. Therefore, it is important to examine whether these findings can be generalized 

beyond geometry instruction to other subdomains of mathematics. 

Beyond the underrepresentation of mathematics in sound research on multiple 

representations, interpretation of the nature of mathematical understanding has changed 

recently. The focus has shifted from the learning of formal procedures and accepted facts to 

an emphasis on mathematics as flexible, insightful understanding (Ainsworth, 1997). 

Similarly, the National Council of Teachers of Mathematics’ 1989 launched the present 

debate for the de-emphasis of rote practice and rote memorization of rules and algorithms 

(Schoenfeld, 2004). Consistent with this approach, educational researchers such as Robert 

Davis (1986) state: 

If “mathematics” is seen as conformity to memorized rituals, if it is taught without meaning...if 

meaningfulness compels a slow pace and a vast investment in repetition, and if routine calculation is 

the main goal, very little mathematics will be included in the curriculum (pp. 272–273). 
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Both aspects – (a) the deficit of experimental research in mathematical topics others than 

geometry and (b) the emphasis on mathematics as insightful understanding – are addressed in 

this research. With respect to (a), the mathematical subdomain that is chosen in this research 

is probability theory. This topic is an important part of mathematical competence (cf. the 

mathematical area uncertainty in PISA; Blum et al., 2004). More specifically, the topic of 

complex events in probability theory was chosen. Beyond the argumentation of Atkinson 

(2005), this is a subdomain that is suited for the use of different representation codes (i.e., 

pictorial and arithmetical), that generally has a relatively high difficulty level for learners, and 

that is an important part of school curricula. With respect to (b), the learning environment and 

tests address an insightful understanding of mathematical rationales. 
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2. Learning Environment 

In this section, the learning environment which was conceptually constructed and 

programmed (in Authorware 7.0) by the author is described. Probability theory (specifically: 

complex events) was chosen as the learning domain (cf. previous section). The computer-

based learning environment included eight worked-out examples in which mono-

representational or multi-representational solution procedures (pictorial, tree-like solution and 

an arithmetical solution; cf. Figure 1) were embedded. 

 

 

Figure 1 

Screenshot of the Learning Environment 
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The cover stories of the tasks included realistic considerations (e.g., Cooper & Harries, 

2003). The participants regulated the processing speed of the worked-out examples on their 

own. 

Specifically, in the worked-out examples four principles were addressed that are to be 

applied when determining probabilities in the cases of (a) order relevant, (b) order irrelevant, 

(c) with replacement, and (d) without replacement. The principles were instantiated by four 

pairs of isomorphic worked-out examples. In each example pair, the application of the 

following principle combinations was demonstrated: (a) order relevant – without replacement, 

(b) order relevant – with replacement, (c) order irrelevant – without replacement, and (d) 

order irrelevant – with replacement. 

One special focus of our learning environment was the understanding of the 

multiplication rule. This rule is central when calculating the probabilities of complex events. 

Usually, the learners understand that the multiplication rule has to be applied, but they rarely 

understand why the fractions have to be multiplied. For many learners, the latter is not 

apparent. However, it is “encapsulated” in the multi-representational solution (cf. Figure 1). 

The learner can “unpack” it by integrating the information of the multiplication sign of the 

arithmetical code with the ramifications in the tree-diagram (for the numerator in Figure 1, 

there is twice one branch; for the denominator, there are five times four branches). 

The worked-out solution procedures were modular (i.e., composed of a number of 

separate units) – in contrast to molar procedures including a "holistic" formula (Gerjets, 

Scheiter, & Catrambone, 2004). In other words, the probabilities of the single selections were 

determined and multiplied (cf. Renkl, 2005). In Figure 1, the multi-representational worked-

out solution procedure includes a modular solution. Particularly when integrating the 

information of the modular equation with the tree-like diagram, the learners can figure out 

with relative ease why this solution works (e.g., a 4 in the denominator of the second single 

event can be mapped on the four branches of the second ramification of the tree diagram). 
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Contrary, in statistics and mathematics text books as well as in school lessons, molar solution 

procedures are frequently used that are computationally efficient but hard to understand. For 

example, the problem displayed in Figure 1 could have been solved in a molar way by the 

general formula 1/(n!/[n-k]! k!), where n is the number of possible events and k is the number 

of selections. Gerjets et al. (2004) compared molar and modular worked-out solution 

procedures from probability in several experiments. The computationally not so efficient 

modular solution procedures led to better performance on isomorphic as well as novel 

problems. The modular solutions are called conceptually oriented equations by Atkinson, 

Catrambone, and Merrill (2003), and these authors also obtained positive effects on transfer 

tasks. 

In the learning environment of this dissertation, the learners should especially learn how 

the multiplication rule is applied in problem solving (procedural knowledge) and about the 

rationale of the multiplication rule (conceptual knowledge about the "why" of solutions). 

Thus, beyond employing conceptually oriented (modular) equations, it was decided to direct 

the attention of the learners on the numerator and the denominator separately by a combined 

color and flashing procedure (see below). Thereby, the learners tried to understand the 

multiplication rule on a combinatorics level. In this vein the understanding of the 

multiplication rule was facilitated. This was due to the fact that when integrating the 

information of the multiplication sign of the equation with the ramifications of the tree 

diagram, the learner can immediately see that for the numerator, there is twice one branch and 

for the denominator, there are five times four branches. Thus, for example, for the 

denominator each of the five first branches of the tree diagram forks out in four further 

branches because each of the first five events can occur in combination of one of the four 

remaining events. The prerequisite for this understanding is to separately process the 

numerator and denominator as well as the modular presentation of the equation. If the 

equation was presented in a molar way (i.e., 1/(n!/[n-k]! k!), the learners would have had little 
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chance to detect the combinations of the single events, that is, understanding the rationale of 

the multiplication rule. 

In addition, in Experiment 1 and in two of the multi-representational conditions in 

Experiment 2, the learners were supported in integrating the arithmetical information (e.g., the 

multiplication signs) and the information from the tree diagram (e.g., the ramifications) by an 

integration help: Corresponding information from the different representations were 

simultaneously flashing in the same color – “information pair” after “information pair”. At the 

end, a colored freeze image was presented. Thus, corresponding colors cued relations between 

different representations. This combined flashing and color-coding procedure (Jeung et al., 

1997; Kalyuga et al., 1999) should prevent a high level of extraneous load (load not directly 

relevant to learning) due to a type of split-attention effect (Ayres & Sweller, 2005). By 

supporting the learners in finding the corresponding parts in the different representations, 

cognitive capacity for self-explanation processes and learning was released. An integrated 

format – as usually recommended in the case of two representations – could not be realized 

because there is no simple one-to-one correspondence between the single elements in the 

different representations (e.g., in the example depicted in Figure 1, the “20” in the 

denominator of the resulting probability corresponds to the twenty branches in the tree 

diagram; cf. also Renkl, 2005). 

Furthermore, some experimental conditions included scaffolding self-explanation 

prompts (“fill-in-the-blank” explanations) or open self-explanation prompts (open questions). 

This experimental manipulation is described in more detail in section 4.5.1 and in section 

5.5.1). 

In the following, the learning environment is classified according to Ainsworth’s DeFT-

framework (Ainsworth, in press). Specifically, it is characterized in more detail with respect 

to the criteria of design, functions, and learners' cognitive tasks. This description refers to the 

version of the learning environment that is theoretically the best for the specified learning 
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goals (Figure 1). In the experiments described later, some features (e.g., self-explanation 

prompts) are omitted in order to test the theoretical rationale and the effects of these features. 

Design. In our learning environment, the solution part contains three co-present 

representational codes (pictorial, arithmetical, and textual scaffolds included in self-

explanation prompts). Some important information is distributed over the arithmetical, 

pictorial, and textual representation (e.g., the rationale of the multiplication rule). The 

arithmetical representation (see Figure 1) includes the information that the fractions have to 

be multiplied – a fact that most learners grasp rather easily. However, most learners do not 

understand why the fractions have to be multiplied. This information is encapsulated in the 

tree diagram (e.g., for the denominator, there are five times four branches). Nevertheless, this 

information is often not apparent to the learners. Detecting this information is scaffolded by 

the self-explanation prompts including textual information (see Figure 1, the text with blanks 

beside the tree diagram). These scaffolding self-explanation prompts include some to-be-

supplemented instructional text in the first example of a problem type. In the second example 

of a problem type, an open self-explanation prompt is provided that just includes a question 

(e.g., "Why is the total number of possible events determined by multiplication?"). 

The translation (Ainsworth, in press) between the multiple representations was facilitated 

at the representation and the domain level (cf. Seufert & Brünken, 2004). At a representation 

level, the learners are supported in integrating the arithmetical information (e.g., the 

multiplication signs) and the information from the tree (e.g., the ramifications) by an 

integration help (see above). At a domain level, the learners were supported to relate the 

multiple representations to each other and to the domain by scaffolding self-explanation 

prompts (e.g., “There are ... times ... branches. Thus, all possible outcomes are included.”). As 

the interpretation of representations is an inherently contextualised activity, it is crucial to 

identify the relations between the representation and the domain it represents. This task is 
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particularly difficult for learners because this understanding must be forged upon incomplete 

domain knowledge. Thus, corresponding scaffolding is sensible (cf. section 4.3). 

The learning environment included mostly static multi-representational systems. Only the 

integration help was dynamic. The multi-representational solutions (tree-like solutions and 

arithmetical equations) were flashing at the same time. After the flashing procedure, 

scaffolding self-explanation prompts appeared. 

Functions. Multiple representations serve at least three different instructional functions in 

supporting learning: to complement, to constrain, and to construct (Ainsworth, in press). The 

multiple representations of this learning environment had some complementary functions – 

multiple representations complement each other by supporting different complementary 

processes or containing complementary information. For example, the information of the 

multiplication sign in the arithmetical code showed that one has to multiply, whereas the 

ramifications of the tree-diagram showed why one has to multiply. Furthermore, 

representations differ in their advantages for learning specific knowledge. Thus, the task that 

is to be accomplished by the learners after learning is the crucial factor to decide which 

representation(s) are the best. Performance following learning is most likely to be facilitated 

when the structure of information required by the task matches the form provided by the 

representational notation (Ainsworth, in press; Brünken, Steinbacher, Schnotz, & Leutner, 

2001; Schnotz, 2005). Thus, the function of a representation is directly related to the learning 

goals to be achieved. 

With respect to constraining functions – two representations constrain and thereby 

support each other's interpretation – one can state that the ramifications in the pictorial tree-

diagram constrained the meaning of the multiplication sign in the arithmetical equations – 

indicating that the multiplication represents the combination of different events. 

Finally, the multiple representations in our learning environment supported the 

construction of deeper understanding when learners integrate information from the different 
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representations to achieve insight that would be difficult to gain by studying only a single 

representation (constructing functions). Thus, the three representations (arithmetical, pictorial, 

and textual) were designed to foster deep-level conceptual knowledge with a focus on 

understanding the rationale of solutions. The learners were supposed to abstract over 

representations to identify the shared invariant features of the domain. 

The differences between these functions of multiple representations are subtle (cf. 

Ainsworth, in press). The multiple representations included in the learning environment of 

this research incorporated to some extent all three functions. 

Learners' cognitive tasks. The cognitive tasks that a learner must perform to learn from 

multiple representations include understanding the properties of the representations and the 

relation between the representations and the domain. The cognitive demand unique to 

multiple representations is to understand how to translate between two representations. There 

is much evidence that this translation / integration is difficult for learners. 

The learning environment of this dissertation contained representations of different 

codalities. These representations are known to have very different computational properties 

(e.g., Larkin & Simon, 1987). Consequently, learners may find it difficult to see the 

relationship between such different forms of representation. In the learning environment, the 

learners had to understand how to translate the problem formulation into a pictorial tree-

diagram and an arithmetical equation as well as relate the multi-representational solution to 

the domain. As already mentioned, the learners were supported by self-explanation prompts in 

the corresponding conditions. In addition, the integration of representations was supported by 

an integration help including flashing and color-coding (Jeung et al., 1997; Kalyuga et al., 

1999). 

It is important to have a detailed characterization of the learning environments because it 

is not sensible to assume that multi-representational learning environments and included 

support procedures have per se certain effects on learning (Ainsworth, in press). Factors such 
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as the ones discussed above have to be considered when predicting effects and when 

comparing effects in different studies on learning with multiple representations. 
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3. Overview of the Experiments and Research Questions 

The main goal of this dissertation is to experimentally study the effects of multiple 

representations and two instructional support measures on learning processes and learning 

outcomes. Do students learn more deeply from multiple representations than from one 

representation alone? Do instructional support measures such as an integration help in form of 

flashing and color-coding as well as self-explanation prompts further enhance the benefits of 

multiple representations? What are the crucial processes with this respect? These questions 

are the focus of this dissertation. 

As explicated before (cf. section 1.2), it can be argued that the employment of well-

designed worked-out examples reduces extraneous cognitive load which enables the learners 

to use “free” cognitive capacity with respect to the integration and understanding of multiple 

representations. This in turn may bring to bear the advantages of learning with multiple 

representations, at least when the self-explanation activity is supported by instructional 

procedures such as prompting and scaffolding. 

To test these assumptions, a computer-based learning environment (cf. section 2) 

including eight worked-out examples was developed. In the experiments described later, some 

features (e.g., self-explanation prompts) were omitted in order to test the theoretical rationale 

and the effects of these features. 

In this dissertation, two experiments will be presented that examined the effects of 

multiple representations, an integration help, and self-explanation prompts. In Experiment 1 

(cf. chapter 4) the effects of two types of self-explanation prompts (scaffolding vs. open) as 

help procedures for integrating and understanding multiple representations were analyzed. 

Experiment 2 (cf. chapter 5) tested the effects of multi- vs. mono-representational solutions 

and an integration help. Furthermore, the findings of Experiment 1 with respect to effective 
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self-explanation prompts were taken up insofar as we aimed at replicating the effect of 

scaffolding self-explanation prompts. 

In both experiments, probability theory was chosen as the learning domain (cf. section 

1.3). Furthermore, we used very similar learning and testing materials – making across-

experiment comparisons possible. As learning outcomes, procedural knowledge (problem-

solving performance) and conceptual knowledge (knowledge about the rationale of a solution 

procedure) were assessed (for more information on the learning outcome measures please see 

section 4.5.3 and 5.5.3). 

Overall, this dissertation seeks to establish what works (i.e., to determine which features 

foster learning), to explain how it works (i.e., analyzing the learning processes), and to 

consider where and for whom it works (i.e., analyzing the effects on different learning 

outcomes and of different participants). 

In the following, the main research questions of this dissertation are elaborated: 

 

1. To what extent do open and scaffolding self-explanation prompts as help 

procedures for integrating and understanding multiple representations foster 

high-quality self-explanations as well as conceptual and procedural knowledge? 

The quality of self-explanations is a major determinant of learned contents from studying 

worked-out examples (Roy & Chi, 2005). However, most learners’ self-explanations on 

worked-out examples are far from being optimal (Renkl, 1997). This suggests that self-

explaining has to be instructionally supported by prompting (Renkl, 2005). However, even 

when prompted, the quality of self-explanations remains variable indicating that it is difficult 

for some learners to engage in this activity (Roy & Chi). The latter was also confirmed by an 

own pilot study in which the experimental materials of Experiment 1 were used. In this pilot 

study, we analyzed the effects of open self-explanation prompts that consisted of questions on 

the interrelations between the tree-diagram and the arithmetical equation as well as their 
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relations to the domain. It turned out that the learners (N = 6) had severe difficulties in 

answering them. Oftentimes they just did not know the answer. Particularly, they were not 

able to match important relations between the two representations when they received open 

self-explanation prompts. Specifically, they had severe difficulties in making use of the tree 

diagram for understanding the multiplication rule. These deficits in the self-explanations can 

lead to incomplete or incorrect knowledge, which, in the worst case, can severely impede 

further learning. Thus, there is evidence that some learners may profit from stronger 

instructional support than open self-explanation prompts are able to provide. Prompts that 

include some form of scaffolding are a promising starting point. Consequently, as a first step 

it was necessary to develop and experimentally test in Experiment 1 a scaffolding-prompting 

procedure to optimize self-explanations on relations included in the multiple representations. 

Thereby, deep-level conceptual knowledge with a focus on understanding should be fostered. 

In sum, Experiment 1 was conducted to test the effects of using open self-explanation 

prompts and scaffolding self-explanation prompts in order to foster learning from multi-

representational worked-out examples. 

 

2. Do multiple representations foster high-quality self-explanations as well as 

conceptual and procedural knowledge, and do instructional support measures on 

integrating and understanding multiple representations (i.e., integration help and 

scaffolding self-explanation prompts) have additive effects? 

Multiple representations can provide unique benefits when learners are trying to gain a 

deep understanding (Ainsworth, in press). Regrettably, many studies have shown that this 

promise is not always achieved. Often, learners are overwhelmed with the complex demands 

of integrating and understanding multiple representations. This suggests that learners might 

profit from learning with multiple representations to a larger extent when instructional support 

measures that reduce load which is not related to processes of learning (cf. Ayres & Sweller, 
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2005) and increase learning-related processing are employed. For reducing load that is not 

related to processes of learning, an integration help with a combined color-flashing procedure 

(cf. Jeung et al., 1997; Kalyuga et al., 1999) was included in the worked-out solutions to 

facilitate the mapping between representations (cf. section 2 and section 5.5.1). To increase 

learning-related processing, scaffolding self-explanations prompts on integrating and 

understanding the multiple representations were implemented (cf. section 2 and section 5.5.1). 

In sum, in Experiment 2, the effects of multi-representational vs. mono-representational 

solutions, of an integration help, and of scaffolding self-explanation prompts on the 

understanding of probability theory (specific topic: complex events) were investigated. 

The findings of Experiment 1 were taken up insofar as scaffolding self-explanation 

prompts which proved to be effective with respect to conceptual and procedural knowledge 

were implemented in Experiment 2. 
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4. Experiment 1: Scaffolds for Self-Explanation Lead to 

Meaningful Learning 

Recently, Roy and Chi (2005) suggested on the basis of a re-analysis of previous studies 

that self-explanations are especially suited to foster learning from multi-representational 

resources when different information formats have to be integrated. Experiment 1 of this 

dissertation takes up the assumption of Roy and Chi and analyzes the effects of different types 

of self-explanation prompts when learning from multi-representational worked-out examples. 

4.1 Learning with Multi-Representational Examples 

As already mentioned, multiple representations are often employed in order to foster 

understanding. By combining different representations with different properties, learners are 

not limited by the strengths and weaknesses of one particular representation (cf. Ainsworth, in 

press; Ainsworth, Bibby, & Wood, 2002). Furthermore, it is expected that if learners are 

provided with a rich source of different representations of a domain, they build references 

across these representations (Ainsworth, in press). 

According to a functional taxonomy of Ainsworth (in press), multiple representations are 

provided for three main purposes: (1) to support different ideas and processes, (2) to constrain 

representations, and (3) to promote a deeper understanding (for more detailed explanations 

see section 2). The last aspect was the focus of the present study. 

A major problem in employing multiple representations for learning is that often the 

expected learning outcomes do not occur (e.g., de Jong et al., 1998). This is due to the fact 

that learners are faced with complex learning demands when they are presented with a novel 

multi-representational system (Ainsworth, in press). Particularly, learners experience 
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difficulties to learn how the representations relate to each other. Often they only concentrate 

on one type of representation or fail to link different representations to each other. As a result, 

the positive effects that were intended by the use of multiple representations do not occur to 

the extent expected (e.g., Ainsworth et al., 1998). 

On the one hand, multiple representations offer unique possibilities of fostering 

understanding. On the other hand, they impose high demands on the learners. What could be a 

sensible solution? 

One step towards a solution to the problem that multiple representations can impose 

cognitive overload may be to use a learning approach which reduces demands on the learners 

(cf. section 1.2). One such effective learning method is learning from worked-out examples 

(for a detailed description of this learning method see section 1.2). This learning method’s 

reduction in cognitive load (e.g., Renkl, 2005; Sweller, 2005; Sweller et al., 1998) allows for 

an opportunity to use this free cognitive capacity for integrating and deeply understanding 

multiple representations (cf. also Schuh, Gerjets, & Scheiter, 2005). 

As already explained in section 1.2, worked-out examples consist of a problem 

formulation, solution steps, and the final solution itself (cf. Figure 1 in section 2). Learning 

from worked-out examples is a very effective method for initial cognitive skill acquisition in 

well-structured domains such as mathematics (for an overview, see Atkinson, Derry, Renkl, & 

Wortham, 2000; Renkl, 2005) because the learners are unburdened from independent 

problem-solving. Thereby – in terms of the cognitive load theory (cf. section 1.2) – 

extraneous load (load not directly relevant to learning) is reduced (cf. Paas, Renkl, & Sweller, 

2003; Renkl, 2005; Sweller, 2005). In fact, various researchers suggest that only when 

learning materials do not impose too high cognitive load, learners can engage in resource-

demanding activities such as self-explanation or interrelating multiple representations (e.g., 

Mayer, Heiser, & Lonn, 2001; Moreno & Mayer, 1999). Thereby, the learners can concentrate 

on understanding the solution (which can be presented in a multi-representational format) and 
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the underlying principles. Thus, germane load (load imposed by processes aimed at acquiring 

understanding) is enhanced. 

4.2 Self-Explaining Worked-Out Examples 

It is nevertheless important to note that the employment of worked-out examples does 

not necessarily lead to an enhancement of germane load. In fact, the quality of learning 

processes and learning outcomes strongly depends on the learners’ self-explanation. As 

mentioned in 1.2, self-explanations are explanations provided by learners and mainly directed 

to themselves (Renkl, 2005). They contain information that is not directly given in the 

learning materials and that refer to solution steps and the reasons for them. The classical study 

on self-explanations of Chi and colleagues (Chi et al., 1989) analyzed individual differences 

with respect to how intensively learners self-explained the solution steps of worked-out 

examples (from the domain of physics). They found that learners who explained the worked-

out examples more actively to themselves learned more. Renkl (1997) showed that even when 

the study time was held constant, self-explanation activity was related to learning outcomes. 

Thus, the depth to which learners engage in self-explanation is a significant predictor of the 

learners’ ability to develop deep meaningful understanding of the material studied (Roy & 

Chi, 2005). 

The role that self-explanation can play in multi-representational understanding has also 

been considered (cf. Roy & Chi, 2005). Aleven and Koedinger (2000) argue that self-

explanations prove particularly beneficial if they help to integrate visual and verbal 

knowledge. Self-explaining helps these learners to strengthen their verbal declarative 

knowledge and integrate it with visual knowledge (Ainsworth & Loizou, 2003). However, 

learners show clear individual differences in processing worked-out examples. Most learners 

do not actively self-explain worked-out examples, that is, they do not productively use their 
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free cognitive capacity for germane load (Renkl, 1997). This suggests that self-explaining has 

to be instructionally supported (Renkl, 2005) by making the link between representations 

salient (e.g., by an integrated format or by selecting the same color for corresponding parts in 

different representations) and by prompting self-explanations. 

In sum, the quality of self-explanations is a major determinant of learned contents from 

studying worked-out examples. As many learners do not spontaneously engage in productive 

self-explanation activities, they have to be supported in this respect. 

4.3 Instructional Support for Self-Explaining 

Chi, de Leeuw, Chiu, and Lavancher (1994) found that spontaneous self-explanations 

during worked-out example study were not as effective as self-explanations that were 

enhanced by prompting (see also Renkl, Stark, Gruber, & Mandl, 1998). Prompts are requests 

that require the learners to process the to-be-learned contents in a specific way (Renkl, 2005; 

cf. also Berthold et al., 2006). They elicit self-explanation activities that the learners are 

capable of but do not show unpremeditated (Pressley et al., 1992). In order to account for the 

prompted self-explanation effect, it is necessary to make the assumption that learners are 

often not aware of gaps in their knowledge, unless they are explicitly prompted to reflect on 

their understanding (Chi, 2000). Thereby, they self-diagnose their knowledge gaps, and these 

gaps can be filled in by the learner, if there is enough support in the learning environment. 

Thus, through prompting, the learners are encouraged to induce the omitted information. 

Learners benefit by self-explanation prompts provided by humans (Chi et al., 1994) and 

by computers (Aleven & Koedinger, 2002). Atkinson, Renkl, et al. (2003) showed that 

prompting principle-based self-explanations in a computer-based learning environment 

providing worked-out examples led to favorable learning outcomes in terms of performance 

on similar problems and novel problems in the domain of probability. They requested the 
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learners to select the probability principle underlying a solution step from a list at each 

worked-out step. After selecting a principle, the correct one was displayed so that the learners 

received feedback. Further evidence for the positive effects of self-explanation prompting 

when learning from computer-based worked-out examples were provided, for example, by 

Conati and VanLehn (2000) as well as by Schworm and Renkl (2006a, b). Thus, it is sensible 

to design prompts that foster self-explanations in order to ensure that the free capacity that is 

available for studying multi-representational examples is effectively used for integrating and 

understanding representations. 

However, even if prompted, the use of high-quality self-explanations remains variable, 

indicating that it is difficult for some learners to engage in this activity (Chi et al., 1989; 

Renkl, 2002; Roy & Chi, 2005). An own pilot study (cf. section 3) confirmed these 

difficulties of the learners. In this pilot study, we analyzed the effects of open self-explanation 

prompts (open questions inducing self-explanations, e.g., “Why do you calculate the total 

acceptable outcomes by multiplying?”) with the experimental materials that we used in the 

present study. It turned out that the learners had severe difficulties in answering the open self-

explanation prompts. Oftentimes the learners just did not know the answer. 

Thus, relying only on self-explanations has several disadvantages – even when self-

explaining is elicited by prompts. The quality of the self-explanations elicited by self-

explanation prompts is in many cases far from optimal. Sometimes the learner is not able to 

self-explain a specific solution step (cf. pilot study). Furthermore self-explanations can be 

fragmented (Roy & Chi, 2005). Finally, sometimes the learners provide only partially correct 

or even incorrect self-explanations (Renkl, 2002). These deficits in the self-explanations can 

lead to incomplete or incorrect knowledge that, at worst, can severely impede further learning. 

Thus, there is evidence that some learners may profit from stronger instructional support than 

open self-explanation prompts are able to provide (cf. Roy & Chi). 
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Prompts that include some form of scaffolding are a promising starting point. Collins, 

Brown, and Newman (1989) refer to scaffolding as a support for the learners that relieve them 

of parts of an overall task that the learners cannot yet manage (e.g., explaining difficult parts 

of a worked-out example). According to Vygotskian approaches, scaffolding is related to the 

zone of proximal development (Vygotsky, 1978). This is the region of activity in which 

learners can perform successfully given the aid of a supporting context. Thus, it is sensible to 

support learners by scaffolding on knowledge construction that would be out of reach for the 

learners without assistance. The intention is, however, to hand over responsibility to the 

learners as soon as possible. The latter implies a fading process which consists of the gradual 

removal of support until students are working on their own. 

Yet, previous studies on various scaffolding procedures in the context of self-

explanations provided mixed results. In a qualitative study, Chi (1996) demonstrated that a 

tutor’s actions of knowledge co-construction – including also self-explanations of the tutee –

resulted in tutees' deep understanding. Hilbert, Schworm, and Renkl (2004) tried to foster 

learning either by self-explanation prompts or by a procedure that changed during the course 

of learning from instructional explanations to self-explanation prompts. However, the 

transition from instructional explanations to self-explanation prompts was equally effective as 

giving only self-explanation prompts. Thus, constructing an effective scaffolding method is 

not a trivial task. Nevertheless, there are experiments that successfully employed self-

explanation prompts that included scaffolding support in form of menus providing "building 

blocks" of self-explanations (Aleven & Koedinger, 2002; Conati & VanLehn, 2000). 

However, theses studies did not experimentally compare different types of self-explanations 

prompts (e.g., with and without scaffolds). 
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4.4 Overview of Experiment 1 and Hypotheses 

Against the background of the preceding discussion, it can be argued that supporting self-

explanation activity by instructional procedures such as prompting and scaffolding may bring 

to bear the advantages of learning with multiple representations. Based on the assumption that 

scaffolding supports knowledge construction that would be out of reach for the learners 

without assistance, scaffolding self-explanation prompts may be especially effective with 

respect to high-quality self-explanations and learning outcomes. 

In the present experiment, we investigated the effects of using open self-explanation 

prompts (open questions that induce self-explanations) and scaffolding self-explanation 

prompts (first fill-in-the-blank self-explanations, then open questions). Probability theory was 

chosen as the learning domain. Procedural knowledge and conceptual knowledge were 

assessed as learning outcomes. Procedural knowledge referred to problem-solving 

performance. Conceptual knowledge referred to knowledge about the rationale of a solution 

procedure (i.e., why is a solution procedure applied in this way). Specifically, the following 

hypotheses were tested: 

1. Self-explanation prompts (scaffolding and open) foster high-quality self-explanations 

on multi-representational examples. 

2. Scaffolding self-explanation prompts have additional effects on high-quality self-

explanations when compared to open self-explanation prompts. 

3. Self-explanation prompts (scaffolding and open) foster procedural knowledge acquired 

from multi-representational examples. 

4. Scaffolding self-explanation prompts have additional effects on procedural knowledge 

when compared to open self-explanation prompts. 

5. Self-explanation prompts (scaffolding and open) foster conceptual knowledge acquired 

from multi-representational examples. 
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6. Scaffolding self-explanation prompts have additional effects on conceptual knowledge 

when compared to open self-explanation prompts. 

7. The (potential) effects on procedural knowledge and conceptual knowledge are 

mediated by the type of self-explanations. 

Furthermore, a focus of our learning environment was on understanding the 

multiplication rule in probability theory. Thus, we were especially interested in factors which 

enhance the conceptual understanding of the multiplication rule. 

4.5 Methods 

In the following the sample and design of Experiment 1 are presented. Furthermore, the 

procedure and the instruments are introduced. 

4.5.1 Sample and Design 

The participants of this study were 42 female and 20 male psychology students at the 

University of Freiburg, Germany. The mean age was about 25 years (M = 25.02, SD = 6.12). 

The participants were randomly assigned to one of the three conditions of a one-factorial 

experimental design: “No self-explanation prompts” (n = 20), “open self-explanation 

prompts” (n = 22), and “scaffolding self-explanation prompts” (n = 20). 

In a computer-based learning environment (for a detailed description see section 2), all 

learners studied four pairs of isomorphic worked-out examples (i.e., eight examples in total). 

The worked-out examples were presented with multi-representational solution procedures: a 

pictorial, tree-like solution and an arithmetical solution (see Figure 1 in section 2). All 

learners were supported in integrating the information from the tree (e.g., the ramifications) 

with the respective arithmetical information (e.g., the multiplication signs). This was 

accomplished by an integration help with a combined flashing-color-coding procedure (cf. 
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section 2). Additionally, participants of the condition scaffolding self-explanation prompts 

received self-explanations that consisted of questions (e.g., “Why do you calculate the total 

acceptable outcomes by multiplying?”). In the first worked-out example of each pair of 

isomorphic examples, the answers were provided in the form of fill-in-the-blank self-

explanations (e.g., “There are ... times ... branches. Thus, all possible outcomes are 

included.”). In following isomorphic examples this support was faded out, and the 

participants received open self-explanation prompts. The answers had to be typed into 

corresponding boxes. In the condition open self-explanation prompts, the learners were 

provided with open self-explanation prompts only (e.g., open answer to “Why do you 

calculate the total acceptable outcomes by multiplying?”). The condition no self-explanation 

prompts (control condition) included no additional support; the learners were only provided 

with a text box for note-taking. 

4.5.2 Procedure 

The experiment was conducted in individual sessions. First, the participants were asked 

to fill out a demographic questionnaire. Afterwards, the learners worked on a pretest. Next, 

they entered the computer-based learning environment and worked individually in front of a 

computer. In order to provide or reactivate basic knowledge that allowed the participants to 

understand the following worked-out examples, an instructional text on the basic principles of 

probability was provided. Afterwards, the participants studied eight worked-out examples. 

During this phase, the experimental manipulation was realized, that is, the participants were 

provided with the scaffolding self-explanation prompts, open self-explanation prompts, or no 

self-explanation prompts. Finally, the participants completed a post-test on procedural and 

conceptual knowledge. 

The experiment lasted approximately two hours (M = 128.63 minutes, SD = 31.30). The 

learning time (i.e., time spent on the worked-out examples) was significantly higher in the 
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conditions with self-explanation prompts, t(60) = 5.65, p < .001 (Scaffolding self-explanation 

prompts: M = 73.80 minutes, SD = 20.00; Open self-explanation prompts: M = 79.41 minutes, 

SD = 21.62; No self-explanation prompts: M = 46.25 minutes, SD = 17.68). The two 

conditions with self-explanation prompts did not significantly differ with respect to learning 

time (F < 1). The learning time was not, however, significantly related to the two learning 

outcome measures: r = .12 between learning time and procedural knowledge; r = .17 between 

learning time and conceptual knowledge. Thus, the variable learning time was not included in 

further statistical analyses. 

4.5.3 Instruments 

Pretest: Assessment of prior knowledge. A short pretest on complex events containing six 

problems examined the topic-specific prior knowledge of the participants. An example for a 

pretest item is: “Two coins are tossed. Afterwards, each coin lands heads or tails. What is the 

probability that one coin lands heads and the other one tails?” The maximum score for the 

pretest was six points. 

Self-explanations: Assessment of learning processes. In all conditions, the written 

responses to the prompts were analyzed in detail. As Schworm and Renkl (2006a) have 

shown, the quality of written self-explanations is a good indicator of the quality of the 

learning processes. The protocols were thoroughly examined for content segments that 

corresponded to the following high-quality self-explanation categories (Roy & Chi, 2005). 

(a) Principle-based self-explanations. A learner assigns meaning to a solution step by 

identifying the underlying domain principles (e.g., order relevant, with replacement). This 

activity fosters a principle-based understanding of solution procedures (cf. Renkl, 2005). The 

number of times that participants referred to the principles of the topic complex events was 

counted. However, if a principle was merely mentioned without any elaboration (e.g., “order 

relevant”), this category was not scored. There had to be some elaboration of a principle (e.g., 
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“the order is relevant because it does matter in which order you type in the numbers of a 

PIN”). This category corresponds to the Chi et al.’s (1989) codings of the learners’ references 

to Newton’s Laws (the underlying domain principles in that study). 

(b) Rationale-based self-explanations. This category did not directly correspond to 

anything in previous studies. It referred to highest-quality self-explanations about the 

rationale of a principle. Thus, rationale-based self-explanations exceed principle-based self-

explanations by giving reasons why the principle is as it is. Hence, for rationale-based self-

explanations it was not enough for example, to state why one has to multiply in the sense of 

correct application conditions of a principle (e.g., “because it is AND”); the learners also had 

to state why one has to multiply to provide a rationale of the principle itself – typically 

contextualized in reference to a specific example. A rationale-based self-explanation on the 

open prompt “Why do you calculate the total acceptable outcomes by multiplying?” could be: 

“Because for the denominator there are five times four branches. Thus, each of the first five 

branches of the tree diagram forks out in four further branches because each of the first five 

events can occur in combination with one of the four remaining events.” To provide such a 

self-explanation it was helpful to integrate the multiplication sign of the equation with the 

ramifications of the tree diagram. In sum, rationale-based self-explanations in our research 

typically demanded reasoning about why a certain applicable principle has to be applied. 

The coding categories were distinct. In the scaffolding self-explanation prompts 

condition the learners filled in the scaffolds in the first worked-out example of each pair 

whereas the learners of the other two conditions answered open self-explanation prompts or 

just took notes. The statistical analyses in the Results section refer only to the written 

responses to the prompts or the annotations in the text boxes of every second isomorphic 

example in order to assure comparability between conditions (in any case empty boxes had to 

be filled in). 
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The written self-explanations of six participants were coded by a student research 

assistant and the author of this dissertation. Inter-rater reliability with respect to assigning the 

protocol segments to the coding categories was very good (Cohen’s Kappa .88). In case of 

divergence, the author of this dissertation re-examined the protocols and made the final 

decision. As the inter-rater reliability was very good, the rest of the protocols were only coded 

by the author of this dissertation. 

Post-test: Assessment of learning outcomes. The learning outcomes were measured by a 

post-test that contained 14 problems. These problems were not identical to the pretest 

problems. Most of these post-test problems were more difficult than the pretest items. Seven 

post-test problems assessed procedural knowledge, seven problems required conceptual 

knowledge. 

(1) Procedural knowledge (Problem-solving performance). The procedural knowledge 

problems referred to actions or manipulations that are valid within a domain (de Jong & 

Ferguson-Hessler, 1996). An example would be the multiplication of two fractions to 

calculate the probability of a complex event. This category included four near transfer items 

(same structure as the worked-out examples presented for learning but different surface 

features, such as the cover story) and three far transfer items (different surface features and 

also different structures, which means that a modified solution procedure had to be found). An 

example of a near transfer item is “Bicycle number-locks usually have four digits. What is the 

probability that one guesses the right digit sequence on the first guess?” In each task, 0.5 

points could be achieved if the numerator of the solution was correct and 0.5 points if the 

denominator was correct. These scores were summed up to a total score of procedural 

knowledge. Thus, a maximum score of seven points could be achieved in this category. 

(2) Conceptual knowledge. Conceptual knowledge problems referred to knowledge about 

facts, concepts, and principles that apply within a domain (de Jong & Ferguson-Hessler, 

1996). We focused especially on understanding-why knowledge about the rationale of a 
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solution procedure, that is, why the solution procedures are as they are. Thus, in particular, it 

includes understanding “what is behind the solution procedure.” This category contained 

seven open questions which required written explanations on conceptual knowledge of 

principles presented in the learning phase. For example, the learners were to explain why the 

multiplication rule has to be applied (e.g., “Why are the two fractions multiplied?”). As the 

rationale for the multiplication rule can be figured out relatively easily when the pictorial and 

the arithmetical representations are integrated, this post-test measure also assessed the quality 

of representation integration. Two independent raters, who were blind to the experimental 

conditions, scored the open answers by using a 6-point rating scale ranging from 1 (no 

conceptual understanding) to 6 (very clear conceptual understanding). A very clear 

conceptual understanding was indicated by a correct answer with a high degree of reasoning 

and elaboration. Inter-rater reliability was very good (intra-class coefficient .90). 

4.6 Results 

Table 1 presents the means and standard deviations for the three experimental groups on 

the pretest, on principle-based self-explanations and rationale-based self-explanations, as well 

as on procedural and conceptual knowledge. Additionally, understanding of the multiplication 

rule (which was part of the conceptual knowledge) is reported. The measures on learning 

outcomes were subjected to a priori contrasts that corresponded to the hypotheses (i.e., one-

tailed t tests). According to the recommendations of Rosenthal and Rosnow (1985; see also 

Rosenthal, Rosnow, & Rubin, 2000), we refrained from reporting overall ANOVA results 

(except for the students’ topic-specific prior knowledge). Of particular interest were contrasts 

comparing the (aggregated) self-explanation groups with the no-prompts group (control 

group) and contrasts comparing the scaffolding self-explanation group with the open self-

explanation group. The latter accounted for additional effects of the scaffolding self-
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explanation group when compared with the open self-explanation group. An alpha-level of 

.05 was used for all statistical analyses. As an effect size measure, we used d – qualifying 

values of about .20 as weak effect, values of about .50 as medium effect, and values of about 

.80 or bigger as large effect (cf. Cohen, 1988; pp. 285–287). 

With respect to the students’ topic-specific prior knowledge, an ANOVA revealed no 

significant differences, F < 1. Hence, there was no a priori difference between groups with 

respect to this important learning prerequisite. 
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Table 1 

Means and Standard Deviations (in Parentheses) on the Pretest, on the Self-Explanation Measures, and on the Learning Outcome Measures 

 Pretest Principle-based 

explanations 

Rationale-based 

explanations 

Procedural 

knowledge 

Conceptual 

knowledge 

Multiplication 

rule 

No self-explanation prompts 2.35 (1.86) 1.47 (2.80) .05 (.23) 3.63 (1.36) 2.58 (.77) 1.85 (.89) 

Open self-explanation prompts 2.52 (1.69) 6.55 (2.76) 2.50 (3.39) 4.41 (1.05) 2.98 (.87) 2.00 (1.08) 

Scaffolding self-explanation prompts 2.30 (1.41) 7.75 (2.38) 11.20 (7.57) 4.55 (1.20) 3.63 (1.02) 3.57 (1.65) 
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4.6.1 Effects of Self-Explanation Prompts on Self-Explanations 

Descriptively (cf. Table 1), higher means for principle-based self-explanations emerged 

in the groups with self-explanations prompts (scaffolding self-explanation prompts and open 

self-explanation prompts). As mentioned above, to test this difference, we aggregated the two 

groups with self-explanation prompts and compared them with the no-prompts group (control 

group). A t test yielded a significant and very strong difference for principle-based self-

explanations in favor of the self-explanation prompts conditions, t(59) = 7.63, p < .001, d = 

2.08 (due to technical problems, a process dataset of one participant in the condition with no 

prompts was lost. Thus, the degrees of freedom are reduced by one in the corresponding 

analyses). Hence, the self-explanation prompts elicited significantly more principle-based 

self-explanations when compared with the no-prompts condition. A t test on potential 

additional effects of scaffolding self-explanation prompts on principle-based self-explanations 

when compared to open self-explanation prompts failed to reach statistical significance,  t(40) 

= 1.51, p = .070. Thus, the two conditions with self-explanation prompts did not significantly 

differ in their principle-based self-explanations. In summary, scaffolding and open self-

explanation prompts fostered such principle-based self-explanations. Yet, the two self-

explanation prompts groups did not differ in this respect. 

With respect to rationale-based self-explanations, we obtained descriptively higher 

means in the groups with self-explanations prompts (scaffolding self-explanation prompts and 

open self-explanation prompts) (cf. Table 1). A t test revealed a significant and strong 

difference for rationale-based self-explanations in favor of the (aggregated) self-explanation 

prompts conditions, t(41) = 5.93, p < .001, d = 1.29 (t test for unequal variances). A t test on 

additional effects of scaffolding self-explanation prompts on rationale-based self-explanations 

yielded a significant and strong effect in favor of the scaffolding self-explanation prompts, 

t(26) = 4.73, p < .001, d =.1.48 (t test for unequal variances) when compared to open self-
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explanation prompts. Thus, scaffolding self-explanation prompts had additional effects on 

rationale-based self-explanations in comparison to open self-explanation prompts. In 

summary, with respect to rationale-based self-explanations, scaffolding and open self-

explanation prompts were effective. Evidently, particularly scaffolding self-explanation 

prompts elicited this type of self-explanations. 

4.6.2 Effects of Self-Explanation Prompts on Learning Outcomes 

As Table 1 shows, we obtained higher means for procedural knowledge in the groups 

with self-explanations prompts (scaffolding self-explanation prompts and open self-

explanation prompts). To test this difference, the (aggregated) groups with self-explanation 

prompts were compared to the no-prompts group (control group). A t test yielded a significant 

and medium to strong difference for procedural knowledge in favor of the self-explanation 

prompts conditions, t(60) = 2.62, p = .005, d = .68. Hence, participants who had received self-

explanation prompts performed significantly better on procedural knowledge than those 

learners who had received no such prompts. 

A t test on additional effects of scaffolding self-explanation prompts on procedural 

knowledge, when compared to open self-explanation prompts, failed to reach statistical 

significance, t(40) = .41, p = .688. Thus, the two conditions with self-explanation prompts did 

not differ with respect to procedural knowledge. In summary, with respect to procedural 

knowledge, scaffolding and open self-explanation prompts fostered procedural knowledge. 

Yet, the two self-explanation prompts groups did not differ in this respect. 

With respect to conceptual knowledge, the descriptively highest mean was obtained in 

the scaffolding self-explanation prompts condition, followed by the mean of the open self-

explanation prompts group. The lowest mean was revealed for the no-prompts group (cf. 

Table 1). A t test comparing the groups with self-explanation prompts against the no-prompts 

group (control group) yielded a significant and strong effect, t(60) = 2.84, p = .003, d = .80. 
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The participants of the self-explanation prompts conditions outperformed their counterparts of 

the no-prompts condition with respect to conceptual knowledge. A t test contrasting the 

scaffolding self-explanation prompts group with the open self-explanation prompts group 

revealed a significant and medium to strong effect, t(40) = 2.23, p = .016, d = .68, in favor of 

the first group. Thus, scaffolding self-explanation prompts had additional effects on 

conceptual knowledge in comparison to open self-explanation prompts. 

A special focus of our learning environment was to understand why the multiplication 

rule has to be applied. This type of knowledge also indicates to what extent the different 

representations were integrated because it can hardly be understood by studying just one 

representation. Therefore, we tested whether scaffolding and open self-explanation prompts 

fostered understanding of the multiplication rule. Descriptively, we obtained the highest mean 

in the scaffolding self-explanation prompts condition, whereas the means of the open self-

explanation prompts and no-prompts conditions were relatively low (cf. Table 1). A t test, 

which tested whether the groups with self-explanation prompts outperformed the no-prompts 

group, revealed a significant and medium to strong effect, t(58) = 2.85, p = .003, d = .70 (t test 

for unequal variances). Thus, the participants of the conditions with self-explanation prompts 

outperformed their counterparts of the no-prompts condition with respect to understanding the 

multiplication rule. A t test on the question of whether scaffolding self-explanation prompts 

fostered understanding of the multiplication rule more effectively than open self-explanation 

prompts yielded a significant and strong effect, t(32) = 3.60, p = .001, d = 1.13 (t test for 

unequal variances). Hence, the overall pattern of performance indicated that above all 

scaffolding self-explanation prompts fostered the integration of multiple representations. 

In summary, self-explanation prompts on multi-representational examples fostered 

principle-based self-explanations and rationale-based self-explanations as well as procedural 

and conceptual knowledge. With respect to principle-based self-explanations and to 

procedural knowledge, it did not make a difference whether the learners were provided with 
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scaffolding or with open self-explanation prompts. However, with respect to rationale-based 

self-explanations and conceptual knowledge (especially: understanding of the multiplication 

rule), the overall effect of the self-explanation prompts can be mainly ascribed to the 

scaffolding self-explanation condition. 

4.6.3 Mediation of the Learning Outcomes by Self-Explanations 

Having established that the prompts conditions fostered principle-based self-explanations 

and procedural knowledge compared to the no-prompts condition (cf. section 4.6.1 and 

section 4.6.2), the question arises whether the principle-based self-explanations mediated the 

effects on procedural knowledge. Furthermore, the scaffolding prompts version in particular 

elicited rationale-based self-explanations and fostered conceptual knowledge (cf. section 4.6.1 

and section 4.6.2). This finding suggests that conceptual knowledge was fostered via 

rationale-based self-explanations. Posed as questions: Can the effects on procedural 

knowledge be explained by an increase of principle-based self-explanations? Can the effects 

on conceptual knowledge be explained by an increase of rationale-based self-explanations? 

To answer these questions, we conducted two mediation analyses. 

To test whether principle-based self-explanations indeed mediated the influence of the 

independent variable prompts (self-explanation prompts vs. no prompts) on procedural 

knowledge, three regression equations were estimated and tested for significance following 

the procedures suggested by Baron and Kenny (1986). In order to establish mediation, (1) the 

independent variable (i.e., prompts) must influence the dependent variable (i.e., procedural 

knowledge), (2) the independent variable (i.e., prompts) must influence the potential mediator 

(i.e., principle-based self-explanations), and (3) the influence of the independent variable on 

the dependent variable should be significantly reduced when the mediator is included as an 

additional predictor of the dependent variable. 
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First, prompts accounted for 10% of the variance in the scores of procedural knowledge 

(9% adjusted), F(1, 61) = 6.86, p = .011. The second analysis demonstrated the influence of 

the independent variable prompts on principle-based self-explanations, F(1, 60) = 58.13, p < 

.001; it accounted for 50% of the variance in the principle-based self-explanations. In the third 

regression analysis, procedural knowledge was regressed on the factor prompts and principle-

based self-explanations in a simultaneous multiple regression model. This regression equation 

accounted for 17% of the variance (14% adjusted), F(2, 60) = 5.74, p = .005. As expected, 

principle-based self-explanations significantly predicted procedural knowledge, ß = .38, t(60) 

= 2.24, p = .029, whereas the influence of the factor prompts was no longer significant, ß = -

.04, t(60) = -.23, p = .823. Following Baron and Kenny (1986), this pattern of results indicates 

mediation. In order to directly test whether the mediation effect differed significantly from 

zero, we used the procedure suggested by MacKinnon (2002; see also MacKinnon & Dwyer, 

1993). This test procedure includes the computation of two regression equations: Mediator = 

a*Independent + error1 and Dependent = c*Independent + b*Mediator + error2. The 

mediation effect is defined as the product of the regression weights a and b, that is, the effect 

of the independent variable on the mediator multiplied by the effect of the mediator on the 

dependent variable when the independent variable is controlled. The statistical significance of 

the mediation effect is determined as follows: z = a*b / seab, with seab being the standard error 

of the mediation effect a*b, seab = √(a²*[seb]²+ b²*[sea]²). In such an analysis, we obtained a z 

score of -2.14 that was significant on the 5% level. This finding indicated that the effect of the 

prompts on procedural knowledge was significantly mediated by the number of principle-

based self-explanations. Thus, the prompts fostered procedural knowledge because the self-

explanation prompts effectively supported the learners in generating principle-based self-

explanations. 

Furthermore, we tested if rationale-based self-explanations mediated the influence of the 

independent variable scaffolding prompts vs. open prompts on conceptual knowledge. 
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Therefore, three further regression equations were estimated and tested for significance. The 

first analysis demonstrated that the type of prompts (scaffolding prompts vs. open prompts) 

accounted for 11% of the variance in conceptual knowledge (9% adjusted), F(1, 41) = 4.96, p 

= .032. A second analysis showed that the independent variable (scaffolding prompts vs. open 

prompts) significantly influenced the potential mediator (i.e., rationale-based self-

explanations). This regression equation accounted for 37% of the variance (36% adjusted), 

F(1, 41) = 23.84, p < .001. Thirdly, the influence of the independent variable (scaffolding 

prompts vs. open prompts) on the dependent variable (conceptual knowledge) was clearly 

reduced when the mediator (rationale-based self-explanations) was included as an additional 

predictor of the dependent variable. This regression equation accounted for 28% of the 

variance (24% adjusted), F(2, 41) = 7.44, p = .002. As expected, rationale-based self-

explanations significantly predicted conceptual knowledge, ß = .52, t(60) = 2.99, p = .005, 

whereas the influence of the factor scaffolding prompts vs. open prompts was no longer 

significant, ß = -.02, t(60) = -.103, p = .919. In a mediation analysis according to MacKinnon 

(2002), we obtained a z score of -2.53 that was significant on the 1% level. Thus, the 

rationale-based self-explanations did in fact mediate the impact of the scaffolding prompts on 

conceptual knowledge. Conclusively, the scaffolding prompts fostered conceptual knowledge 

because the scaffolding prompts effectively supported the learners in generating rationale-

based self-explanations. 

4.7 Discussion 

In summary, our study made five essential contributions to the problem of supporting 

effective self-explanations during learning with multi-representational examples: (a) Self-

explanation prompts (scaffolding and open) foster principle-based self-explanations and 

rationale-based self-explanations. With respect to rationale-based self-explanations, 
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scaffolding self-explanation prompts are especially effective. (b) Self-explanation prompts 

foster procedural and conceptual knowledge in multi-representational learning. This result 

adds to the growing body of evidence that shows that prompting self-explanations is crucial 

with respect to learning outcomes in example-based learning. (c) With respect to fostering 

principle-based self-explanations and procedural knowledge, it is equally effective to use 

open or scaffolding self-explanation prompts. Principle-based self-explanations are the crucial 

mediator in fostering procedural knowledge. (d) With respect to fostering rationale-based self-

explanations and conceptual knowledge, scaffolding self-explanation prompts are especially 

effective. Rationale-based self-explanations mediated the effects on conceptual knowledge. 

(e) Scaffolding self-explanations are particularly effective for integrating multiple 

representations, as indicated by the understanding of the multiplication rule. This rule can be 

understood by integrating the multiplication sign of the arithmetical equations and the 

ramifications of the tree diagram. Thus, our findings also suggest that scaffolding prompts 

particularly support the integration of multiple representations. 

The present findings confirm the assumption of Roy and Chi (2005) that self-

explanations are suited for integrating multiple representations and, thereby, foster learning 

outcomes. In comparison to other procedures of integration help such as the use of an 

integrated format, the employment of self-explanations prompts have the advantage that they 

go beyond the surface level with respect to the integration of different representations. They 

require the learner to focus on the conceptual correspondences (cf. Seufert & Brünken, 2004), 

such as the type of correspondence between the multiplication sign in the arithmetical 

equation and the ramification in the tree diagram in the present learning environment. 

However, the question arises as to why scaffolding self-explanation prompts in particular 

were effective with respect to fostering rationale-based self-explanations and thereby 

enhancing conceptual knowledge, whereas with respect to principle-based self-explanations 

and procedural knowledge, providing open self-explanation prompts were sufficient. 
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Conceptual understanding (e.g., understanding the multiplication rule) is more demanding 

than gaining procedural knowledge – in particular because such a type of conceptual 

understanding is seldom addressed in mathematics lessons in school or at university. 

Nevertheless, it is crucial for further learning. The finding that scaffolding self-explanation 

prompts (as opposed to open self-explanation prompts) were shown to be effective with 

respect to the elicitation of rationale-based self-explanations and conceptual knowledge may 

be related to the zone of proximal development (Vygotsky, 1978). The scaffolding self-

explanation prompts fostered the integration of the multiple representations, highly 

demanding self-explanations, and the conceptual understanding that was all slightly out of 

reach for learners without this assistance. For instance, most of the learners were not able to 

self-explain the rationale of the multiplication rule – even if they were prompted by open self-

explanation prompts. These prompts were only capable of eliciting self-explanations that the 

learners were capable of but spontaneously did not show – such as the principle-based self-

explanations. In contrast, the highly demanding rationale-based self-explanations could only 

be elicited if in the initial worked-out examples the fill-in-the-blank self-explanations 

provided the learners with the pieces of information they needed to integrate and to 

conceptually understand the multi-representational examples (e.g., “There are ... times ... 

branches. Thus, all possible outcomes are included.”). Conceptual understanding refers in 

particular to a deep understanding of the rationale of (multi-representational) solution 

procedures. Evidently, the scaffolds supported the learners in the troublesome process of 

looking behind the multi-representational solutions. As a consequence, our findings suggest 

that scaffolding self-explanation prompts should be provided if understanding the learning 

contents is slightly out of reach for learners without assistance. We call this the scaffolding 

self-explanation effect which refers to the elicitation of high-quality self-explanations and the 

acquisition of deep understanding. 
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Our findings suggest that scaffolding self-explanation prompts have to be provided if 

understanding the learning contents is slightly out of reach for learners without this assistance. 

Yet, to diagnose the dimensions of the zone of proximal development is a difficult task 

(Ainsworth et al., 1998). Nevertheless, we should be able to identify its lower boundary by 

analyzing the learner’s unscaffolded performance. With this information, it should be possible 

to construct scaffolding prompts on knowledge that is out of reach for the unsupported learner 

and which therefore falls within the learner’s zone of proximal development. In future studies, 

learning environments with multiple representations could be designed that include different 

types of scaffolding self-explanation prompts for learners at different levels of skill 

acquisition (cf. Conati & VanLehn, 2000). Furthermore, self-explanations could be diagnosed 

online in order to provide an immediate and dynamic adaptation of scaffolding procedures 

(e.g., Aleven, Popescu, & Koedinger, 2001). 

A last question that is raised refers to the generalizability of the present results. We have 

shown the use of (scaffolding) self-explanations for the integration of multiple representations 

in the context of mathematics, a well-structured learning domain. As self-explanation in 

general (i.e., not specifically related to the integration of different representations) has proven 

to be fruitful in many domains (e.g., Roy & Chi, 2005), we conjecture that it is appropriate to 

generalize the present findings across different learning contents. Regardless, an empirical test 

of this conjecture is necessary in future studies. 
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5. Experiment 2: Multiple Representations, an Integration Help, 

and Scaffolding Self-Explanation Prompts All Foster 

Understanding 

Multiple representations (e.g., an arithmetical equation and a pictorial tree diagram) in 

learning materials provide unique benefits when learners are to gain a deep understanding. 

Often, however, multiple representations do not lead to the expected results because the 

(weaker) learners are cognitively overloaded, and they do not integrate the information from 

the different representations (e.g., Moreno & Mayer, 1999). Due to such problems, it seems 

wise to instructionally support the integration and understanding of multiple representations. 

One support procedure is to design the learning materials in a way that helps the learners to 

figure out which elements in different representations correspond to each other (e.g., Renkl, 

2005). Additionally, Roy and Chi (2005) argued that self-explanations are especially suited to 

foster learning when different information formats have to be integrated (cf. chapter 4). The 

present study took up these assumptions. We analyzed the effects of mono- and multi-

representational solutions when learning from worked-out examples and an integration help in 

form of a flashing-color-coding procedure. Furthermore, the findings of Experiment 1 with 

respect to effective self-explanation prompts were taken up insofar as we aimed at replicating 

the effect of scaffolding self-explanation prompts. 
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5.1 Learning with Multiple Representations 

The following section contrasts an optimistic view and a pessimistic view on learning 

with multiple representations. 

5.1.1 The Optimistic View 

Multiple representations are often employed in order to foster understanding. Especially, 

proponents of cognitive constructivism emphasize the importance of using multiple 

representations of concepts and information (Spiro, Feltovich, Jacobson, & Coulson, 1995). 

When new information is presented through more than one codality (i.e., representational 

systems) and processed in a variety of ways, cognitive structures become more complex and 

contain rich associations. In their cognitive flexibility theory, Spiro and his colleagues (e.g., 

Spiro & Jehng, 1990) argue that the ability to construct and switch between multiple 

representations is fundamental to successful learning. Mayer (2005a) describes a theory of 

multi-media learning, which states that learners acquire more knowledge when they receive 

multiple representations. 

What are the specific benefits of multiple representations? By combining different 

representations with different properties, learners are not limited by the strengths and 

weaknesses of one particular representation (cf. Ainsworth, in press; Ainsworth et al., 2002). 

Representing concepts or procedures in a multi-representational format allows learners to 

construct an understanding that prepares them better for transfer, with each example and 

representation adding connections and perspectives that others miss (Sternberg & Frensch, 

1993). Furthermore, teaching with more representations can facilitate and strengthen the 

learning process by providing several mutually referring sources of information (Kozma, 

Russell, Jones, & Marx, 1996). Thus, one affordance of multiple representations is to support 

learners in active knowledge construction (Roy & Chi, 2005). 
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It is expected that learners build references across different representations of a domain 

(Ainsworth, in press). Thus, the learners gain an understanding not only how individual 

representations operate and how they are embedded in the domain but also how the 

representations relate to each other. However, in order to benefit from multi-representational 

learning materials, the learners must actively construct a conceptual knowledge representation 

that relates and integrates different kinds of information from diverse sources and codalities 

into a coherent structure (Schnotz & Bannert, 2003). The opportunity to construct such rich 

integrated structures constitutes a unique contribution of multiple representations to learning. 

The learners can achieve insights that are difficult to achieve with a single representation. 

Many of the expected benefits of multiple representations result from their integration 

and co-ordination. The ability to integrate different representational formats is a characteristic 

of expertise (e.g., Kozma, Chin, Russell, & Marx, 2000). According to Ainsworth (in press), 

multiple representations can have three main functions: (1) to support different ideas and 

processes, (2) to constrain representations, and (3) to promote a deeper understanding (for 

detailed information see section 2). The latter aspect is focused in the present study. 

5.1.2 The Pessimistic View 

As already mentioned in section 4.1, a major problem of employing multiple 

representations is that often the expected learning outcomes do not occur (e.g., de Jong et al., 

1998). This is due to the fact that learners are faced with complex learning demands when 

confronted with multi-representational system (Ainsworth, in press): (a) They must learn the 

format and operators of each representation, (b) understand the relation between each 

representation and the domain it represents, and (c) learn how the representations relate to 

each other. Particularly the latter demand is difficult for learners. Frequently they just 

concentrate on one type of representation or fail to link different representations to each other 

so that the intended positive effects do not occur (e.g., Ainsworth et al., 1998). In addition, 
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guiding learners to coordinate multiple representations has been found to be far from trivial 

(de Jong et al., 1998). 

For instance, Tarmizi and Sweller (1988) presented learners multi-representational 

solutions (a graphical representation, e.g., a depicted triangle, and an arithmetical 

representation, e.g., computation of an angle). When the two external representations were – 

as usual – presented separately from each other, the learners had to devote many cognitive 

resources in order to mentally integrate them. This demand imposed a heavy cognitive load 

and hindered learning. 

In sum, the optimistic stance suggests that learning with multiple representations offers 

unique possibilities of fostering understanding. The pessimistic stance suggests that multiple 

representations impose (too) high demands on the learners. An important step toward the 

solution of the problem that multiple representations can impose cognitive overload may be to 

use a learning approach that reduces load (cf. section 1.2). 

5.2 Multiple Representations in Worked-Out Examples: Supporting the 

Integration 

One such method that is load-saving and nevertheless effective is learning from worked-

out examples (Renkl, Gruber, Weber, Lerche, & Schweizer, 2003; see also Paas & van Gog, 

in press; Renkl, 2005; Sweller et al., 1998). It provides opportunity to use free cognitive 

capacity for integrating and understanding multiple representations (cf. also Schuh et al., 

2005). 

As already explained in section 1.2 and section 4.1, learning from worked-out examples 

is a very effective method for initial cognitive skill acquisition in well-structured domains 

such as mathematics (cf. Atkinson et al., 2000; Renkl, 2005) because the learners are relieved 

from finding a solution on their own (cf. section 1.2). Thereby – in terms of the cognitive load 
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theory – extraneous load (load not directly relevant to learning) is reduced (cf. Paas, Renkl, et 

al., 2003; Renkl, 2005). 

Mayer and colleagues (e.g., Mayer et al., 2001; Moreno & Mayer, 1999) argue that only 

if the learning materials do not impose too high extraneous cognitive load, learners are able to 

engage in resource-demanding activity such as self-explanations or interrelating multiple 

representations. For instance, as previously outlined, Tarmizi and Sweller (1988) presented 

multi-representational problems from the domain of geometry that were to be solved in one 

condition and worked-out examples in the other condition. In this case, they did not find the 

usual advantage of worked-examples. Does this mean that there is no example effect in 

learning with multiple representations? Definitely not. The authors explained this finding by 

the fact that the two information sources (graphical, e.g., a depicted triangle, and arithmetical, 

e.g., computation of an angle) were not integrated, and the learners had to devote many 

cognitive resources in order to mentally relate these sources to each other which imposed a 

heavy extraneous load. This phenomenon was labeled the split-attention effect (Ayres & 

Sweller, 2005). Thereby, the resource-saving effect of learning from worked-out example was 

countermanded. However, worked-out examples in which the multiple representations were 

spatially integrated (integrated format) enhanced learning in comparison to conventional 

problem solving and split-source examples. These findings were replicated by Ward and 

Sweller (1990) for physics examples and by Mwangi and Sweller (1998) for examples of 

mathematical word problems. By placing corresponding aspects of the representations next to 

each other, cues for integration are available and learners do not have to waste cognitive 

processing by scanning around the page (Ayres & Sweller; Mayer, 2005c). Besides physical 

integration, color codes can reduce search efforts and thus produce similar effects as spatial 

contiguity (Folker, Ritter, & Sichelschmidt, 2005; Jeung et al., 1997; Kalyuga et al., 1999). 

Color provides orientation and reduces search processes, thus leading to an enhanced 

integration process (cf. Kalyuga et al.). Moreover, computer-based learning environments 
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offer the possibility of flashing in order to help students build connections among multiple 

representations (e.g., Mayer, 2005c). Thereby the learner’s attention can be directed towards 

the corresponding parts in the different representations. Techniques such as flashing and 

color-coding are especially appropriate when elements in one representation do not 

correspond to certain, well-circumscribed parts in the other representation; in this case no 

spatial one-to-one allocation is possible (Renkl, 2005). 

In a nutshell, it is important to avoid formats that require learners to split their attention 

between multiple representations that are difficult to integrate (Ayres & Sweller, 2005). 

Instead, multi-representational solutions should be combined with instructional techniques 

such as integrated format, color-coding, or flashing so that the mapping between 

representations becomes easier. Thereby, the need for learners to extensively engage in search 

processes in the multiple representations is obviated (Ayres & Sweller; cf. Renkl, 2005: easy-

mapping principle). By reducing visual search processes, resources for productive learning 

processes such as self-explanations are freed. Thereby, the learners can concentrate on 

understanding the solution (which can be presented in a multi-representational format) and the 

underlying principles. Thus, germane load (Sweller et al., 1998) (load imposed by processes 

aimed to gain understanding) is enhanced. 

5.3 Scaffolding Self-Explaining 

As already explained in section 4.2, it is, however, important to note that the employment 

of – even well-designed – worked-out examples does not necessarily lead to effective self-

explanations and learning: Learners show clear individual differences in processing worked-

out examples (for more detailed information on self-explanations see section 4.2). This 

suggests that self-explaining has to be instructionally supported (Renkl, 2005) by making the 

link between representations salient (e.g., integrated format) and by prompting self-
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explanations (cf. section 4.3). 

However, even when self-explanations are prompted, their quality is in many cases far 

from being optimal (Chi et al., 1989; Renkl, 2002; Roy & Chi, 2005). Sometimes the self-

explanations are only partially correct or even incorrect (Renkl, 2002). This can lead to 

incomplete or incorrect knowledge that can severely impede further learning. 

In contrast, Chi (2000) assumes on the basis of respective empirical analyses that 

incorrect self-explanations are harmless. According to Chi et al. (1989), generating incorrect 

self-explanations can even create an opportunity for cognitive conflicts which lead to self-

explanation episodes resolving these conflicts (cf. VanLehn, 1999: impasse-driven learning). 

Although Conati and VanLehn (2000) believe, as Chi (2000), that even incorrect and 

incomplete self-explanations can improve learning, they argue that helping students generate 

more correct self-explanations can extend these benefits. 

The instructional method of scaffolding offers a promising starting point to optimize self-

explanations (cf. section 4.3). In Experiment 1 (cf. chapter 4), we compared the effects of 

three conditions when self-explaining multi-representational worked-out examples from the 

domain of probability: scaffolding self-explanation prompts (fill-in-the-blank self-

explanations and then open self-explanations), open prompts (right from the beginning), and 

no self-explanation prompts (Berthold & Renkl, 2005). Both types of self-explanation 

prompts fostered procedural knowledge (problem-solving performance). However, conceptual 

knowledge (knowledge about the rationale of a solution procedure) was particularly fostered 

by scaffolding self-explanation prompts (fill-in-the-blank explanations). The latter effect was 

mediated by self-explanations that do not only relate a solution step to an underlying principle 

but also explicate the rationale of the principle. Thus, for enhancing both procedural 

knowledge and conceptual understanding, scaffolding self-explanation prompts are best 

provided. We took up this finding in this Experiment 2 and employed scaffolding self-

explanation prompts. 
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5.4 Overview of Experiment 2, Hypotheses, and Research Questions 

Against the background of the preceding discussion, it can be argued that the 

employment of worked-out examples reduces extraneous cognitive load which enables the 

learners to use "free" cognitive capacity for the integration and understanding of multiple 

representations (cf. section 1.2). The free capacity may, in turn, bring to bear the advantages 

of learning with multiple representations. This should be especially true when support 

procedures such as an integration help or self-explanation prompts are employed. In this 

Experiment 2, the effects of multi-representational vs. mono-representational solutions, of an 

integration help in form of a flashing-color-coding procedure, and of scaffolding self-

explanation prompts (replication of Experiment 1) on learning probability were investigated 

(specific topic: complex events). Conceptual knowledge (knowledge about the rationale of a 

solution procedure) and procedural knowledge (problem-solving performance) were assessed 

as learning outcomes. Specifically, we tested the following hypotheses: 

1. Multi-representational examples foster conceptual knowledge and procedural 

knowledge. 

2. An integration help in form of a flashing-color-coding procedure that is included in the 

multi-representational examples foster conceptual knowledge and procedural knowledge. 

3. Scaffolding self-explanation prompts foster conceptual knowledge and procedural 

knowledge. 

In addition, we addressed the following "two-sided" research questions. 

4. To what extent do scaffolding self-explanation prompts actually foster different types 

of self-explanations? Do the type of representational examples (multi- vs. mono) and the 

integration help also influence self-explanation activity? 

5. Are the (potential) effects on conceptual knowledge and procedural knowledge 

mediated by the type of self-explanations? 
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6. Does the type of representational examples (multi- vs. mono), an integration help, and 

scaffolding self-explanation prompts influence cognitive load during learning? 

5.5 Methods 

In the following the sample and design of Experiment 2 are presented. Afterwards, the 

procedure and the instruments are introduced. 

5.5.1 Sample and Design 

The participants of this study were 87 female and 83 male students from grades 10 and 

11 of German gymnasiums (i.e., highest track in the German three-track system). The mean 

age was 16.21 years (SD = .91). 

In an experiment with eight conditions, four mono-representational (pictorial or 

arithmetical representation) conditions and four multi-representational (pictorial and 

arithmetical representation) conditions were implemented (see Table 2): (1) “Pictorial 

solutions / no self-explanation prompts”, (2) “pictorial solutions / self-explanation prompts”, 

(3) “arithmetical solutions / no self-explanation prompts”, (4) “arithmetical solutions / self-

explanation prompts”, (5) “pictorial and arithmetical solutions / no integration help / no self-

explanation prompts”, (6) “pictorial and arithmetical solutions / no integration help / self-

explanation prompts”, (7) “pictorial and arithmetical solutions / integration help / no self-

explanation prompts”, (8) “pictorial and arithmetical solutions / integration help / self-

explanation prompts". The four multi-representational conditions constituted a 2x2 design - 

Factor 1: integration help (with versus without); Factor 2: self-explanation prompts (with 

versus without). The participants were randomly assigned to each of the eight conditions. 
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Table 2 

Design of the Experiment 

 Scaffolding self-explanation 

prompts 

No self-explanation 

prompts 

Pictorial solutions n = 21 n = 21 

Arithmetical solutions n = 21 n = 22 

Pictorial and arithmetical 

solutions / no integration help 

n = 21 n = 22 

Pictorial and arithmetical 

solutions / integration help 

n = 21 n = 21 

 

In a computer-based learning environment (for a detailed description see section 2), all 

learners studied four pairs of isomorphic worked-out examples (i.e., eight examples in total). 

In the mono-representational conditions, a pictorial tree-diagram or an arithmetical equation 

was presented. In the multi-representational conditions, both a pictorial tree diagram and an 

arithmetical equation were provided in each example (see Figure 1). In two of the multi-

representational conditions, the learners were supported in integrating the arithmetical 

information (e.g., the multiplication signs) and the information from the tree diagram (e.g., the 

ramifications) by an integration help. 

Participants of the conditions with scaffolding self-explanation prompts received 

questions that should elicit self-explanations (e.g., “Why do you calculate the total acceptable 

outcomes by multiplying?”). In the first worked-out example of each pair of isomorphic 

examples, the answers were provided in form of fill-in-the-blank explanations (e.g., “There 

are ... times ... branches. Thus, all possible outcomes are included.”). In following isomorphic 
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examples this support was faded out, and the participants received open self-explanation 

prompts. The answers had to be typed into corresponding boxes. The groups without prompts 

were just provided a text box in order to take notes. 

5.5.2 Procedure 

The experiment was conducted in group sessions. The learners worked individually in 

front of a computer screen. First, the participants were asked to fill out a demographic 

questionnaire. Afterwards, the learners worked on a pretest. Then, they entered the learning 

environment. In order to provide or reactivate basic knowledge that allowed the participants 

to understand the following worked-out examples, an instructional text on basic principles of 

probability was provided. Afterwards, the participants studied eight worked-out examples. 

During this phase, the experimental manipulation was realized. After every second worked-

out example, the participants were asked to answer six questions on cognitive load. Finally, 

the participants completed a post-test on procedural and conceptual knowledge. 

The experiment lasted on average 151.97 min (SD = 28.31). The learning time (i.e., time 

spent on the worked-out examples) was approximately one hour (M = 55.99 min, SD = 

18.87). With respect to this learning time, we found significant differences between the eight 

experimental conditions, F(7, 169) = 10.55, p < .001, ŋ2 = .31. Although learning time was 

related to learning outcomes in a statistically significant way, it accounted for very small 

portions of variance of the learning outcomes (1.3 % for conceptual knowledge, ß = 14, t(169) 

= 1.82, p = .071 and 3.3 % for procedural knowledge, ß = .20, t(169) = - 2.60 , p = .010). 

Nevertheless, we used learning time as a covariate in cases where it significantly (5 % level) 

contributed to the learning outcomes in the respective ANCOVA models. 
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5.5.3 Instruments 

Pretest: Assessment of prior knowledge. The pretest on complex events with twelve 

items examined the topic-specific prior knowledge of the participants. It included four simple 

items which assessed basic knowledge of probability theory (e.g., “You play a game with a 

dice, and it is your turn to throw. If you throw a 3, you win. What is the probability that you 

will throw a 3?”). In addition, eight multiple-choice items and calculation items were included 

(e.g., “Your Latin teacher draws lots for two students of the Latin course (altogether 7 

students) who are supposed to read aloud their translation. Stupidly, you have copied it from 

your friend. What is the probability that the two of you are allotted?”). The items were scored 

by zero points (incorrect answer) or by one point (correct answer). On the whole, 12 points 

could be achieved. This sum was divided by the number of items (12) so that the test score 

represented the percentage of items solved correctly. 

Self-explanations: Assessment of learning processes. In all experimental groups, the 

written responses to the prompts or the annotations in the text boxes, respectively, were 

analyzed. The quality of written self-explanations is a good indicator of the quality of the 

learning processes (Schworm & Renkl, 2006a). Similar as in Experiment 1, the protocols 

were thoroughly examined for content segments that corresponded to the following high-

quality self-explanation categories (Roy & Chi, 2005). 

(a) Principle-based self-explanations. A learner assigns meaning to a solution step by 

identifying the underlying domain principles (e.g., order relevant, with replacement). This 

activity fosters a principle-based understanding of solution procedures (cf. Renkl, 2005). The 

number of times that participants referred to principles was counted. However, if a principle 

was merely mentioned without any elaboration (e.g., “order relevant”), this category was not 

scored. There had to be some elaboration of a principle (e.g., “the order is relevant because it 

does matter in which order you type in the numbers of a PIN”). This category corresponds to 
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the Chi et al.’s (1989) category of references to Newton’s Laws (the underlying domain 

principles in that study). 

(b) Rationale-based self-explanations. This category was introduced in Experiment 1. It 

referred to self-explanations about the rationale of a principle. Rationale-based self-

explanations exceed principle-based self-explanations by giving reasons why the principle is 

as it is. For that reason, for rationale-based self-explanations it was, for example, not enough 

to explain why one has to multiply in the sense of the correct application conditions of a 

principle (e.g., “Because it is AND.”) but also why one has to multiply in the sense of 

providing a rationale of the principle itself (cf. also section 4.5.3). 

(c) Incorrect self-explanations. This category was scored if the learner generated an 

incorrect self-explanation (e.g., misconcepts, confusion of two principles, or wrong 

elaboration of a principle). 

The coding categories were distinct. In the conditions with scaffolding self-explanation 

prompts the learners filled in the scaffolds in the first worked-out example of each pair 

whereas the learners of the conditions without prompts just took notes. The statistical analyses 

in the Results section refer only to the written responses to the prompts or the annotations in 

the text boxes of every second isomorphic example in order to assure comparability between 

conditions (i.e., in all conditions empty boxes had to be filled out in the second isomorphic 

examples). 

The written self-explanations of six participants were coded by two student research 

assistants and the author of this dissertation. Inter-rater reliability with respect to assigning the 

protocol segments to the coding categories was very good (Cohen’s Kappa .88). In case of 

divergence, the author of this dissertation re-examined the protocols and made the final 

decision. As the inter-rater reliability was very good, the rest of the protocols were just coded 

by one rater. 

Due to technical problems, the process datasets of ten participants were lost (two from 
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the groups arithmetical solutions / no self-explanation prompts and pictorial and arithmetical 

solutions / no integration help / no self-explanation prompts respectively as well as one 

dataset of each of the other groups). Thus, the degrees of freedom are reduced by ten in the 

analyses including self-explanations. 

Cognitive load questions: Assessment of cognitive demands. After every second 

isomorphic example, the learners were asked to answer six questions on various aspect of 

cognitive load on a 9-point rating scale (1 = lowest score, 9 = highest score). An example for 

a cognitive load item is: “How difficult is it for you to find the information you need in the 

learning environment?” (cf. Paas, Tuovinen, Tabbers, & van Gerven, 2003). For the analyses 

reported in the Results section, the scores of the six questions were aggregated. 

Post-test: Assessment of learning outcomes. The post-test contained 23 problems. Most 

of these problems were more difficult than the pretest items. All items were scored by zero 

points (incorrect answer) or one point (correct answer). The post-test assessed the following 

knowledge types. 

(1) Procedural knowledge (Problem-solving performance). The procedural knowledge 

problems referred to actions or manipulations that are valid within a domain, for example, 

multiplying two fractions to calculate the probability of a complex event (cf. de Jong & 

Ferguson-Hessler, 1996). This category included two open questions, 11 near transfer items 

(same structure as the worked-out examples presented for learning but different surface 

features, such as the cover story), and four far transfer items (different surface features and 

also different structure, which means that a modified solution procedure had to be found). An 

example of an open question is: “The ball baths of IKEA contains balls in different colors 

among which red, yellow, green, and orange. Please describe in your own words how you 

would determine the probability that a blindfolded child will pick a red ball, then a green one, 

followed by a yellow, and an orange ball.” An example for a near-transfer item is “You spin a 

wheel of fortune twice. The wheel has got nine commensurate segments with different 
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pictures (among which a cloverleaf and a pig). You win if you once hit the segment 

“cloverleaf” and the other time the segment “pig”. What is the probability that you win?” An 

example for a far-transfer item is: “Eight drivers of different sports clubs (A, B, C, D, E, F, G, 

and H) take part in a soap box competition. The winner receives 100 Euro, the second place 

finisher gets 50 Euro, and the third gets 25 Euro. The drivers of the soap boxes which finish 

fourth and fifth get consolation prices in the form of tickets for a hot springs. You bet with 

your brother, that the driver of the sports club D will win 100 Euro, the driver of the sports 

club H 50 Euro, the one of the sports club E 25 Euro, and the drivers of the sports clubs A and 

B the consolation prizes. What is the probability that you win your bet?” On the whole, 17 

points could be achieved. This sum was divided by the number of items (17) so that the test 

score represented the percentage of items solved correctly. 

(2) Conceptual knowledge. Conceptual knowledge referred to knowledge about facts, 

concepts, and principles that apply within a domain (de Jong & Ferguson-Hessler, 1996). We 

focused especially on understanding-why knowledge about the rationale of a solution 

procedure, that is, why the solution procedures are as they are. Thus, it included 

understanding about “what is behind the solution procedure.” This category contained six 

open questions which required written explanations on the principles presented in the learning 

phase. For example, the learners were to explain why the fractions have to be multiplied (e.g., 

“Why are the two fractions multiplied?”). As the rationale for the multiplication rule can be 

figured out relatively easily when the pictorial and the arithmetical representations are 

integrated, this post-test measure also tapped on the quality of representation integration. One 

point was assigned for a correct answer with a substantial degree of reasoning and 

elaboration. Other answers were scored with zero points. On the whole, 6 points could be 

achieved. This sum was divided by the number of items (6) so that the test score represented 

the percentage of items solved correctly. 



66  EXPERIMENT 2  

 

5.6 Results 

Table 3 presents the means and standard deviations of the pretest, principle-based self-

explanations, rationale-based self-explanations, incorrect self-explanations, cognitive load, 

conceptual knowledge, and procedural knowledge in the eight experimental groups. For 

testing the hypotheses or addressing the research questions, we employed F tests. According 

to the recommendations of Rosenthal and Rosnow (1985; see also Rosenthal et al., 2000), we 

refrained from reporting overall ANOVA results when not motivated by respective research 

questions. Of particular interest were F tests comparing the (aggregated) multi-

representational groups with the mono-representational groups, the groups with an integration 

help with the groups without an integration help, and the self-explanation groups with the no 

self-explanation groups. Furthermore, the multi-representational conditions were considered 

as a 2x2 design (with and without integration help; with and without prompts). An alpha-level 

of .05 was used for all statistical analyses. As an effect size measure, we used η2 – qualifying 

values of about .01 as weak effect, values of about .06 as medium effect, and values of about 

.14 or bigger as large effect (cf. Cohen, 1988; pp. 285–287). With respect to the students’ 

topic-specific prior knowledge, an ANOVA revealed no significant differences, F(7, 168) = 

1.29, p = .261. Hence, there was no a priori difference between groups with respect to this 

important learning prerequisite. 
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Table 3 

Means and Standard Deviations (in Parentheses) on the Pretest, on Self-Explanation Measures, on Cognitive Load, and on the Learning Outcomes 

 Pretest Principle-based 

explanations 

Rationale-based 

explanations 

Incorrect 

explanations 

Cognitive 

load 

Conceptual 

knowledge 

Procedural 

knowledge 

Pictorial / no self-explanation prompts .46 (.16) .50 (1.57) .00 (.00) .45 (.83) 3.56 (1.52) .29 (.17) .44 (.22) 

Pictorial / self-explanation prompts .41 (.21) 5.50 (2.19) 2.60 (2.91) 3.25 (2.20) 5.07 (1.52) .40 (.19) .35 (.15) 

Arithmetical / no self-explanation prompts .43 (.15) .15 (.37) .00 (.00) .25 (.44) 3.55 (1.27) .36 (.17) .49 (.18) 

Arithmetical / self-explanation prompts .33 (.16) 5.60 (2.52) 1.85 (2.16) 2.95 (2.68) 4.25 (1.11) .45 (.21) .41 (.20) 

Pictorial and arithmetical / no integration 

help / no self-explanation prompts 

.45 (.20) .15 (.37) .00 (.00) .85 (1.63) 2.87 (1.05) .33 (.18) .48 (.22) 

Pictorial and arithmetical / no integration 

help / self-explanation prompts 

.44 (.19) 4.70 (3.03) 2.55 (3.27) 2.20 (1.85) 5.06 (1.13) .48 (.17) .36 (.19) 

Pictorial and arithmetical / integration help / 

no self-explanation prompts 

.40 (.18) .25 (.64) .10 (.31) .10 (.31) 2.62 (1.19) .41 (.23) .46 (.21) 

Pictorial and arithmetical / integration help / 

self-explanation prompts 

.46 (.19) 4.90 (2.53) 3.70 (3.20) 2.50 (1.91) 3.93 (1.33) .59 (.19) .49 (.21) 
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5.6.1 Effects on Learning Outcomes 

Learners who received multi-representational solutions acquired significantly more 

conceptual knowledge than learners with just one representation, F(1, 169) = 5.71, p = .018, 

ŋ2 = .033 (small to medium effect). With respect to procedural knowledge, the groups with 

multi-representational solutions and with mono-representational solutions did not differ, F < 1 

(learning time was included as a covariate; it significantly predicted procedural knowledge, 

F(1, 169) = 6.60, p = .011). 

The participants in the multi-representational group who received an integration help 

outperformed the learners without such a help with respect to conceptual knowledge, F(1, 

169) = 4.57, p = .035, ŋ2 = .05 (small to medium effect). With respect to procedural 

knowledge, we did not find a statistically significant difference, F(1, 84) = 1.48, p = .227 

(learning time was included as a covariate; it significantly predicted procedural knowledge, 

F(1, 169) = 5.21, p = .025). 

The scaffolding self-explanation prompts fostered conceptual knowledge, F(1, 169) = 

20.40, p < .001, ŋ2 = .11 (medium to strong effect). We also found a significant effect on 

procedural knowledge, F(1, 169) = 4.60, p = .033, ŋ2 = .03 (small to medium effect) (in this 

case, the influence of learning time as a covariate did not reach the level of significance, F(1, 

169) = 2.97, p = .087). However, it was a negative effect, that is, the prompts impeded the 

acquisition of procedural knowledge. 

When considering the multi-representational conditions as a 2x2 design (with and 

without integration help; with and without prompts), the interaction between integration help 

and self-explanation prompts with respect to conceptual knowledge did not reach the level of 

significance, F < 1. The same was true with respect to procedural knowledge, F(1, 81) = 2.37, 

p = .128. Hence, the effects of the two instructional procedures did not depend on each other. 

In sum, conceptual knowledge was fostered by multi-representational solutions, the 



EXPERIMENT 2  69 

 

integration help, and scaffolding self-explanation prompts. These results correspond fully to 

our corresponding hypotheses. Contrary to our expectations, scaffolding self-explanation 

prompts had a negative effect on procedural knowledge. 

5.6.2 Effects on Self-Explanations 

With respect to rationale-based self-explanations, we found a significant difference in 

favor of the scaffolding self-explanation prompts group, F(1, 159) = 64.93, p < .001, ŋ2 = .29 

(strong effect). We also obtained a significant difference in favor of the scaffolding self-

explanation prompts groups with respect to principle-based self-explanations, F(1, 159) = 

262.49, p < .001, ŋ2 = .62 (strong effect). Hence, the scaffolding self-explanation prompts 

elicited more principle-based self-explanations and more rationale-based self-explanations 

when compared with the groups without self-explanation prompts. However, scaffolding self-

explanation prompts also evoked significantly more incorrect self-explanations, F(1, 159) = 

74.88, p < .001, ŋ2 = .32 (strong effect). 

The groups with multi-representational and mono-representational solutions did not 

differ in their self-explanations, F(1, 159) = 1.49, p = .224 for rationale-based self-

explanations; Fs < 1 for principle-based self-explanations and incorrect self-explanations. 

Similarly, no significant differences were found with respect to the integration help, F(1, 79) 

= 1.03, p = .314 for rationale-based self-explanations, Fs < 1 for principle-based self-

explanations and incorrect self-explanations. When considering the multiple representations 

conditions as a 2x2 design (with and without an integration help; with and without prompts), 

the interaction effects between integration help and self-explanation prompts with respect to 

rationale-based self-explanations, F(1, 80) = 1.05, p = .309, principle-based self-explanations, 

F < 1, and incorrect self-explanations, F(1, 80) = 2.25, p = .138, did not reach the level of 

significance. 

In sum, scaffolding self-explanation prompts fostered rationale-based self-explanations 
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and principle-based self-explanations. However, they also evoked more incorrect self-

explanations. 

5.6.3 Mediation of the Learning Outcomes by Self-Explanations 

We have established that self-explanation prompts evoked rational-based explanations, 

principle-based self-explanations but also incorrect self-explanations (cf. section 5.6.2) and 

that they fostered conceptual knowledge but hindered the acquisition of procedural knowledge 

(cf. section 5.6.1). Did the different types of self-explanations mediate the effects on 

conceptual and procedural knowledge? The pattern of results obtained so far suggested that 

conceptual knowledge was fostered via rationale-based self-explanations and principle-based 

self-explanations and that procedural knowledge was hindered via incorrect self-explanations. 

In other words, we address the following questions: (a) Can the effects on conceptual 

knowledge be explained by rationale-based self-explanations and principle-based self-

explanations? (b) Can the effects on procedural knowledge be explained by incorrect self-

explanations? 

(a) Rationale-based self-explanations and principle-based self-explanations were 

substantially intercorrelated (r = .55, p < .001). In addition, we found significant correlations 

between rationale-based self-explanations and conceptual knowledge (r = .43, p < .001) as 

well as between principle-based self-explanations and conceptual knowledge (r = .43, p < 

.001). These latter correlations further supported the assumption of mediation. Thus, first we 

directly tested whether rationale-based self-explanations mediated the influence of the 

independent variable prompts (scaffolding self-explanation prompts vs. no prompts) on 

conceptual knowledge. Therefore, conceptual knowledge was regressed on the factor prompts 

and rationale-based self-explanations in a simultaneous multiple regression model. The 

mediation hypotheses would have been supported if the effect of the independent variable 

prompts was substantially reduced when the mediator was included as an additional predictor 
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of the dependent variable (Baron & Kenny, 1986). This proved to be true. As expected, 

rationale-based self-explanations still predicted conceptual knowledge, ß = .37, t(159) = 4.39, 

p < .001, whereas the influence of the factor prompts was no longer significant, ß = .11, t(169) 

= 1.33, p = .187. In order to directly test whether the mediation effect differed significantly 

from zero, we used the test procedure of MacKinnon (2002; see also MacKinnon & Dwyer, 

1993). This procedure included the computation of two regression equations: Mediator = 

a*Independent + error1 and Dependent = c*Independent + b*Mediator + error2. The 

mediation effect is defined as the product of the regression weights a and b, that is, the effect 

of the independent variable on the mediator multiplied by the effect of the mediator on the 

dependent variable when the independent variable is controlled. Then the statistical 

significance of the mediation effect is determined: z = a*b / seab, with seab being the standard 

error of the mediation effect a*b, seab = √(a²*[seb]²+ b²*[sea]²). In such an analysis, we 

obtained a z score of 3.88 that was significant on the 1% alpha. This finding supported the 

assumption that scaffolding self-explanation prompts fostered conceptual knowledge because 

they effectively supported the learners in generating rationale-based self-explanations. 

Furthermore, we tested whether also principle-based self-explanations mediated the 

influence of the independent variable prompts (scaffolding self-explanation prompts vs. no 

prompts) on conceptual knowledge. As to expect in the case of mediation, in the simultaneous 

regression model principle-based self-explanations still predicted conceptual knowledge, ß = 

.48, t(159) = 4.08 , p < .001, whereas the influence of the factor prompts was no longer 

significant, ß = -.07, t(169) = .56, p = .579. In the procedure of MacKinnon (2002), a z score 

of 3.00 that was significant on the 1% alpha level resulted. Thus, not only rationale-based 

self-explanations but also principle-based self-explanations were a crucial mediator with 

respect of acquiring conceptual knowledge. 

When including both rationale-based self-explanations and principle-based self-

explanations as mediators in a simultaneous regression model, rationale-based self-
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explanations, ß = .31, t(159) = 3.64, p < .001, and principle-based self-explanations, ß = .38, 

t(159) = 3.28, p = .001, still significantly predicted conceptual knowledge, whereas the 

influence of the factor prompts was no longer significant, ß = -.15, t(159) = -1.33, p = .185. 

Thus, the effect on conceptual knowledge was mediated by both rationale-based self-

explanations and principle-based self-explanations. 

(b) With respect to incorrect self-explanations and procedural knowledge, we obtained a 

significant correlation of r = -.25, p = .001. This finding – in addition to the significant effect 

of scaffolding self-explanation prompts on incorrect self-explanations and on hindering the 

acquisition of procedural knowledge – supported the assumption of mediation. In order to 

directly test whether incorrect self-explanations indeed mediated the influence of the 

independent variable prompts (scaffolding self-explanation prompts vs. no prompts) on 

procedural knowledge, procedural knowledge was regressed on the factor prompts and 

incorrect self-explanations in a simultaneous multiple regression model. As expected, 

incorrect self-explanations still predicted procedural knowledge, ß = -.25, t(159) = - 2.61, p = 

.010, whereas the influence of the factor prompts was no longer significant, ß = -.01, t(169) = 

-.14, p = .888. In the procedure of MacKinnon (2002), a z score of -2.55 that was significant 

on the 1% alpha level resulted. This finding indicated that the effect of the scaffolding self-

explanation prompts on procedural knowledge was significantly mediated by the number of 

incorrect self-explanations. Thus, the scaffolding self-explanation prompts hindered the 

acquisition of procedural knowledge because they led to more incorrect self-explanations. 

5.6.4 Effects on Cognitive Load 

Surprisingly, participants who had received mono-representational solutions reported a 

significant higher cognitive load than the learners in the multi-representational groups, F(1, 

159) = 4.26, p = .041, ŋ2 = .03 (small to medium effect). The participants who were provided 

an integration help experienced significantly less cognitive load than their counterparts in the 



EXPERIMENT 2  73 

 

groups without such an integration help, F(1, 79) = 4.33, p = .041, ŋ2 = .05 (small to medium 

effect). In the groups with scaffolding self-explanation prompts, the participants experienced 

significantly more cognitive load than their counterparts in the groups without such prompts, 

F(1, 159) = 45.75, p < .001, ŋ2 = .23 (strong effect). When considering the multi-

representational conditions as a 2x2 design (with and without an integration help; with and 

without scaffolding self-explanation prompts), the interaction between integration help and 

scaffolding self-explanation prompts with respect to cognitive load did not reach the level of 

significance, F(1, 85) = 2.01, p = .160. In sum, mono-representational solutions, learning 

without an integration help, and scaffolding self-explanation prompts increased cognitive 

load. 

5.7 Discussion 

We found the following main results. Conceptual knowledge was fostered by multi-

representational solutions, the integration help, and scaffolding self-explanation prompts. 

Scaffolding self-explanation prompts had, however, a negative effect on procedural 

knowledge. With respect to self-explanations, scaffolding self-explanation prompts elicited 

rationale-based self-explanations as well as principle-based self-explanations but also 

incorrect self-explanations. Both rationale-based self-explanations and principle-based self-

explanations mediated the effects of scaffolding self-explanation prompts on conceptual 

knowledge whereas the negative effect on procedural knowledge was mediated by incorrect 

self-explanations. Cognitive load was increased by mono-representational examples, by 

providing the multi-representational examples without an integration help, and by scaffolding 

self-explanation prompts. 
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5.7.1 Learning with Multi-Representational Examples: The Realistic View 

Our findings neither support a totally optimistic stance on learning with multiple 

representations nor a totally pessimistic stance. Rather, we suggest adopting a realistic view: 

Multiple representations can be a powerful aid to teaching and learning – under specific 

conditions. Specifically, our realistic view on learning with multiple representations includes 

two main assumptions: (a) Not all knowledge types can be equally effectively enhanced by 

multiple representations. Evidently, this research showed that learning outcomes which 

especially benefit from the integration of multiple representations can be particularly 

enhanced by learning with multiple representations (i.e., conceptual knowledge). (b) Learning 

with multiple representations should be supported by instructional procedures: Our findings 

show that learners evidently profit from an integration help in form of flashing and color- 

coding and from scaffolding self-explanation prompts when learning with multiple 

representations. Obviously, the potential of learning with multiple representations can only be 

fully exploited when instructional support measures are implemented. Importantly, our 

findings extend the growing body of research showing that multi-representational learning 

environments which include instructional support measures are more effective than pure 

multi-representational learning arrangements without such support (cf. Moreno & Durán, 

2004). Both assumptions of our realistic view are again taken up in the followings. 

Multiple representations and an integration help foster conceptual knowledge but not 

procedural knowledge. Schnotz (2005) argues that the effects of certain multimedia (i.e., 

multi-representational) elements such as pictures in texts differ depending on the task that 

should be accomplished later on. Schnotz as well as Ainsworth (in press) assume that 

performance is best fostered when the structure of information required for a test problem 

corresponds with the information structure in the learning materials. Schnotz calls this rule the 

structure-mapping effect. Furthermore, Ainsworth (in press) stresses that it is only for certain 
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functions and associated learning goals that learners should master the demanding cognitive 

task of translating between two representations. Against the background of these 

considerations, we conjecture that it was not necessary (though helpful; cf. Experiment 1) for 

the learners to integrate the different representations in order to reach the goal of learning how 

to solve problems (procedural knowledge). Reaching the goal of understanding the “why” of 

solution procedures, was, however, much more difficult without integrating the different 

representations. This conjecture is supported by the finding that both instructional procedures 

focusing on integration – integration help and self-explanation prompts – fostered 

performance on conceptual problems. In contrast, it might have been sufficient – even more 

parsimonious and in that sense appropriate – to just concentrate on the arithmetical equations 

for later problem solving. Only if the intended learning goals (e.g., conceptual understanding) 

require multiple representations, they should be provided, and learners should be supported in 

integrating them (e.g., Moreno & Durán, 2004). 

Moreover, the learning goal and the required representations to achieve it should be 

explicitly stated. Otherwise, the learners might even spontaneously translate the single 

representation into other representations, whether necessary for the learning goal or not. In 

our study, this assumption was confirmed. We informally observed that learners who were 

provided mono-representational examples – especially in the conditions with tree diagrams – 

often spontaneously translated the representation into another representation (e.g., 

arithmetical equations). This translation might have caused the higher amount of cognitive 

load in the mono-representational conditions. 

Similarly, the learners who received multi-representational examples without an 

integration help had to invest much effort in order to map the two representations onto each 

other, with the consequence of an increased cognitive load. Our finding that multi-

representational examples without an integration help enhanced the level of cognitive load 

confirms the corresponding assumption of cognitive load theory (e.g., Ayres & Sweller, 
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2005). 

Scaffolding self-explanation prompts elicit rationale-based self-explanations and 

principle-based self-explanations and thereby foster conceptual knowledge. These findings 

confirm the assumption of Roy and Chi (2005) as well as the findings of Experiment 1 (cf. 

Berthold & Renkl, 2005) that self-explanations are suited for enhancing understanding of 

multiple representations and, thereby, learning outcomes. The scaffolding self-explanation 

prompts fostered high-quality self-explanations and a conceptual understanding that both 

seemed to be slightly out of reach for learners without this assistance (cf. zone of proximal 

development; Vygotsky, 1978). In particular, the scaffolding self-explanation prompts 

stimulated learners to generate types of self-explanations (i.e., rationale-based self-

explanations and principle-based self-explanations) that they rarely show spontaneously 

although they are very useful for learning. Conceptual knowledge refers in particular to an 

understanding about what the logic of solution procedures is. Evidently, the scaffolds 

supported the learners in the demanding process to look behind the multi-representational 

solutions. We call this the scaffolding self-explanation effect which refers to the elicitation of 

high-quality self-explanations and the acquisition of deep understanding (cf. section 4.7). 

Scaffolding self-explanation prompts increase incorrect self-explanations and thereby 

hinder the acquisition of procedural knowledge. Scaffolding self-explanation prompts 

increased the number of rationale-based self-explanations and principle-based self-

explanations but also of incorrect self-explanations. Incorrect self-explanations had, in turn, a 

detrimental effect on the acquisition of procedural knowledge. We call this the paradox self-

explanation prompt effect because the instructional support measure of scaffolding self-

explanation prompts unexpectedly leads to incorrect self-explanations and hinders the 

acquisition of procedural knowledge. Contrary to our expectations, the scaffolding self-

explanation prompts did not help to avoid incorrect self-explanations but evidently even 

evoked them. As a consequence, the acquisition of procedural knowledge was impaired. 
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The latter contradicts the findings of Chi (2000) who assumed that incorrect self-

explanations are harmless. According to Chi, generating incorrect self-explanations might 

even create an opportunity for conflicts to occur which can lead to self-explaining episodes of 

trying to resolve it (Chi et al., 1989; cf. VanLehn, 1999: impasse-driven learning). In order to 

notice such conflicts, the learners must actively monitor what the text is saying and how it fits 

in their mental model (cf. de Leeuw & Chi, 2003). The crucial aspect in this respect may be, 

however, that the learners need enough free cognitive capacity to resolve their misconceptions 

or impasses. Evidently, this was not the case for our learners in the conditions with 

scaffolding self-explanation prompts. Even when learning with worked-out examples, they 

experienced a high amount of cognitive load – much higher than their counterparts in the 

conditions without self-explanation prompts. First, this may be explained by the fact that very 

complex learning materials were presented: textual problem formulation, pictorially presented 

tree-diagrams, and / or arithmetical equations, and – in the case with scaffolding self-

explanation prompts – the textual information included in the scaffolds. Secondly, the 

scaffolding self-explanation prompts evidently directed the attention on conceptual 

knowledge which was at the cost of procedural knowledge. Thus, findings of this Experiment 

2 show heterogeneity of learning outcomes: the two outcome measures were not 

homogeneously influenced by the scaffolding self-explanation prompts. This might be due to 

the highly complex learning environment. Evidently, the learners reached their upper limit of 

their working capacity by focusing conceptual knowledge so that correct essential processing 

with respect to procedural knowledge was hindered (Mayer & Moreno, 2003). 

The present results and the results by Große and Renkl (in press) as well as by Schworm 

and Renkl (2006b) suggest that in complex example-based learning environments (e.g., 

examples with multiple solution methods or with right or wrong solutions) instructional 

support procedures (e.g., self-explanation prompts or demands to look for errors) do not 

necessarily enhance general active processing but direct the attentional focus on specific 
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aspects. The effect specifity of instructional procedures such as self-explanation prompts are 

probably due to the fact that mentally representing the complex, multi-representational 

learning contents induce high working memory load just for the representation of the contents 

(intrinsic load; Sweller, 2005). This is probably especially true for learners with less 

favorable learning prerequisites (cf. General Discussion, section 6.1.1). For these learners, the 

intrinsic load may be overwhelmingly high. They have to hold all the elements of the complex 

learning material and their interrelations simultaneously in working memory – particularly 

because they cannot “chunk” information effectively. Thus, the complex learning material 

and the less favorable learning prerequisites of the learners can cause a high intrinsic load. 

In addition, there are very high demands of essential (Mayer & Moreno, 2003), learning-

related processing (germane load) when each representation and their interrelations should be 

understood. Further enhancement of essential processing (germane load) by instructional 

support procedures is hardly possible due to working memory limitations. Therefore, 

instructional procedures do not have profound general effects on active processing and 

learning outcomes, but direct the attentional focus on specific aspects. The instructional 

interventions of this Experiment 2 might have just supported the processing of specific 

aspects but they did not lead to generally more active processing and generally better learning 

outcomes. Therefore, the effects of our instructional interventions that were primarily 

intended to maximize the profit of learning from multiple representations were presumably 

confined to conceptual knowledge (for a comparison of the findings of Experiment 1 and 2 

see General Discussion, section 6.1). 

Another issue worth to be considered is that instructional procedures may indirectly 

communicate to the learners what is important. In addition, we conjecture that subjective 

learning goals play an important role in determining what the learners focus on and thereby 

influence what is learnt (see also Gerjets & Scheiter, 2003; Schnotz, 2005). Probably, the 

scaffolding self-explanation prompts indirectly communicated to concentrate on conceptual 
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knowledge – inducing a subjective learning goal of conceptual knowledge. Consequently, the 

learners directed their attention in the scaffolding self-explanation conditions to the rationale 

of the solutions (understanding-why) which was at the costs of acquiring procedural 

knowledge. Especially, the principle of cognitive economy formulated by Schnotz in his 

theory on multimedia learning from text and pictures implies that learners have goals that 

determine what they process: They try to invest just as much cognitive processing as it is 

necessary to reach the subjective learning goals. 

With respect to learning conceptual knowledge and procedural knowledge, it is not 

functional to assume that learners can “learn all at once” – at least for the participants of this 

Experiment 2 (cf. section 6.1). As a remedy, sequences of phases could be implemented that 

are devoted to conceptual knowledge as well as procedural knowledge. Such sequences 

should help to avoid dysfunctional concentration on certain aspects at the expense of other 

important learning goals. Mayer and Moreno (2003) recommend such an off-loading when 

learners are overloaded with essential processing demands. 

In sum, we plea for a realistic stance on learning with multi-representational examples. 

They offer unique possibilities of fostering understanding. However, for enhancing 

knowledge (i.e., procedural knowledge) which can also be acquired by processing one 

representation, it might be more parsimonious to provide the learners with only one 

representation. Thus, we agree with Ainsworth (in press): “... it seems wise to use the 

minimum number of representations” (p. 12). When implementing instructional support 

procedures such as scaffolding self-explanation prompts, it has to be considered that they 

implicitly guide the learners’ attention on specific aspects of the learning materials which 

might have trade-offs with respect to other aspects. If multiple learning goals are to be 

addressed, a sequencing strategy might be a remedy with this respect – especially if the 

learners have less favorable learning prerequisites. However, this assumption has to be tested 

in further experiments. 
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5.7.2 Practical Implications 

The most direct practical implication of this study is that learning environments that use 

multiple representations should include an integration help and scaffolding self-explanation 

prompts to enhance deep-level understanding. In addition, our results show that scaffolding 

self-explanations can lead to incorrect self-explanations which can hamper procedural 

knowledge. This suggests that incorrect self-explanations are not in any case as harmless as 

argued by Chi (2000) but can severely impede learning. In this context, it is important to note 

that the participants of this experimental research were school students, and our finding 

confirms the assumption of many school teachers – as we have heard in many further 

education course with (German) teachers – that a danger of self-explanations in contrast to 

instructional explanations are incorrect self-explanations which lead to incorrect knowledge. 

Thus, in the teaching of mathematics and in further research, it should be carefully analyzed 

how these incorrect self-explanations can be corrected. 

5.7.3 Limitations and Future Directions 

How far can the present findings be generalized? We have shown the use of multiple 

representations embedded in worked-out examples and of two instructional support 

procedures (integration help and scaffolding self-explanation prompts) in the context of one 

knowledge domain (i.e., complex events / probability theory). Thus, our research was 

embedded in mathematics, a well-structure learning domain. As self-explanations in general 

(i.e., not specifically related to the integration of different representations) have proved to be 

effective in many domains (e.g., Roy & Chi, 2005), it is probable that the present findings are 

also valid with respect to scaffolding self-explanations in different learning contents. 

However, an empirical test of this assumption is necessary in future studies. In addition, the 

effects of multiple representations and an integration help need to be examined in future 
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research in the context of other domains. 

A limitation that has to be acknowledged is that in this study only one type of learners 

(i.e., students of German gymnasiums, highest track of the German three track system) was 

included. More research is needed to include other populations, such as younger students or 

lower-achieving students. 

Furthermore, in future studies, learning environments with multiple representations 

should be analyzed that include different types of scaffolding self-explanation prompts for 

learners at different levels of skill acquisition (cf. Conati & VanLehn, 2000). Moreover, self-

explanations could be diagnosed online in order to provide an immediate and dynamic 

adaptation of scaffolding procedures (e.g., Aleven et al., 2001). 

An open question with respect to the scaffolding self-explanation prompts refers to long-

term effects. We suggest that scaffolding self-explanation prompts are especially helpful at 

early learning stages while as learners become more proficient in the specific topics even 

simpler forms of prompting can successfully trigger self-explanation (cf. Conati & VanLehn, 

2000). 

As mentioned above sequences of learning phases should be implemented that are 

devoted to – at least – conceptual knowledge as well as procedural knowledge. It should be 

experimentally tested if such sequences help to foster both conceptual knowledge and 

procedural knowledge. 
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6. General Discussion 

This last chapter concludes with an overall discussion of the results of this research. 

Furthermore, the theoretical and practical implications of this dissertation are discussed. 

Afterwards, limitations of this research are critically addressed. Based upon this discussion 

fruitful lines of future research are pointed out. Finally, a closing in is presented. 

6.1 Discussion of Results 

The overarching goal of this dissertation was to empirically test the effects of multiple 

representations embedded in worked-out examples and the instructional support procedures of 

an integration help and self-explanation prompts. 

In summary, this dissertation made four essential contributions to research on learning 

from worked-out examples. (a) Multiple representations embedded in worked-out examples 

and an integration help foster conceptual knowledge (additive effect). With respect to 

procedural knowledge, it is equally effective to provide multi- or mono-representational 

solutions or presenting the multi-representational solutions with or without an integration help 

(Experiment 2). (b) Self-explanation prompts – scaffolding (Experiment 1 and Experiment 2) 

and open (Experiment 1) – foster principle-based self-explanations and rationale-based self-

explanations (Experiment 1 and Experiment 2) as well as procedural (Experiment 1) and 

conceptual knowledge (Experiment 1 and Experiment 2). With respect to rationale-based self-

explanations and conceptual knowledge, scaffolding self-explanation prompts are especially 

effective when compared to open prompts (Experiment 1). Particularly, scaffolding self-

explanations support the integration of multiple representations, as indicated by the 

understanding of the multiplication rule (Experiment 1). (c) Moreover, scaffolding self-
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explanation prompts foster conceptual knowledge by the elicitation of rationale-based self-

explanations (Experiment 1 and Experiment 2). (d) Scaffolding self-explanation prompts 

foster principle-based self-explanations (Experiment 1 and Experiment 2) and thereby 

enhance procedural knowledge (Experiment 1) or conceptual knowledge (Experiment 2). 

Though, scaffolding self-explanation prompts also elicit incorrect self-explanations; the latter 

can hinder the acquisition of procedural knowledge (Experiment 2). 

6.1.1 Differentiated Effect of Scaffolding Self-Explanation Prompts on Procedural 

Knowledge 

In Experiment 1 and Experiment 2 – in which very similar learning materials and test 

materials were implemented – heterogeneous results of scaffolding self-explanation prompts 

on procedural knowledge, incorrect self-explanations, and mediation effects emerged. With 

respect to procedural knowledge, in Experiment 1, a positive effect of scaffolding self-

explanation prompts was obtained. In Experiment 2, a negative effect emerged. Moreover, 

though in both experiments, scaffolding self-explanation prompts fostered principle-based 

self-explanations, in Experiment 1, principle-based self-explanations mediated the effects on 

procedural knowledge whereas in Experiment 2 principle-based self-explanations (besides 

rationale-based self-explanations) were the crucial mediator with respect to conceptual 

knowledge. Furthermore, in Experiment 2, scaffolding self-explanation prompts elicited 

incorrect self-explanations that hindered the acquisition of procedural knowledge (paradox 

self-explanation prompt effect, cf. section 5.7.1). Thus, contrary to our expectations, in 

Experiment 2 the scaffolding self-explanation prompts did not help to avoid incorrect self-

explanations but evidently even evoked them. Presumably, the effect of prompts on 

procedural knowledge depends on the prior knowledge level of the learners. 

Apparently, attending to both knowledge types imposes high demands on essential, 

learning-related processing (cf. Mayer & Moreno, 2003). Learners who have less favorable 
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prior knowledge and who therefore cannot “cluster” information effectively may reach their 

upper limit of their working capacity (Mayer, 2005a; Sweller, 2005) so that the necessary 

essential processing does not occur. 

Against this background, it is important to note that the major difference between the two 

experiments was related to the type of learner: psychology students in Experiment 1 and 

gymnasiums students aged about 16 years in Experiment 2. Psychology students presumably 

have the better learning prerequisites as they have received more mathematics and statistics 

instruction in their life, and they are – in comparison to the school student population – a 

selected population with a positive bias: German psychology programmes are so-called 

numerus clausus programmes in which admission is primarily dependent on very good grades 

in school (gymnasiums). Their better learning prerequisites enabled the psychology students 

to attend to procedural aspects even when they were directed by the scaffolding self-

explanation prompts to conceptual knowledge. For the gymnasiums students with their less 

favorable prerequisites the direction of attention by the scaffolding self-explanation prompts 

on conceptual knowledge prevented a correct processing related to procedural knowledge. 

Evidently, the effect of scaffolding self-explanation prompts on procedural knowledge is 

dependent on the learning prerequisites of the learners. 

The assumption of the better learning prerequisites of the psychology students is 

confirmed by the following finding: In Experiment 1 and Experiment 2, two pretest problems 

were roughly comparable (the problem formulations have been simplified a bit for the 

gymnasiums students). Actually, the psychology students had higher solution rates for these 

two problems as compared to the gymnasiums students: M = .56 (SD = .50) versus M = .40 

(SD = .49); M = .53 (SD = .50) versus M = .43 (SD = .50). Thus, this supports the assumption 

of better learning prerequisites of the psychology students. 

Their better learning prerequisites enabled the psychology students to attend to both 

procedural and conceptual aspects. Consequently, their self-explanations were not only 
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related to conceptual knowledge but also to procedural knowledge and thereby also fostered 

procedural knowledge (mediation of principle-based self-explanations on procedural 

knowledge). Contrary, for the gymnasiums students with their less favorable prerequisites, it 

was only possible to attend to one knowledge type. Evidently, the scaffolding self-explanation 

prompts directed the attention of these learners exclusively on conceptual knowledge and 

simultaneously prevented a correct processing related to procedural knowledge. This 

assumption is confirmed by the finding that the self-explanations of the gymnasiums students 

were only related to conceptual knowledge (rationale-based self-explanations and principle-

based self-explanations mediated the effects on conceptual knowledge). Moreover, in the 

gymnasiums sample the scaffolding self-explanations also elicited incorrect self-explanations 

and thereby hindered the acquisition of procedural knowledge (paradox self-explanation 

prompt effect) – indicating that these learners reached their upper limit of their working 

capacity by focusing conceptual knowledge. This interpretation is confirmed by the 

significantly higher cognitive load scores when the learners were provided with scaffolding 

self-explanation prompts. 

In a nutshell, these across-experiment comparisons reveal that by employing very similar 

learning and testing materials across experiments with different samples, the possibility arises 

to detect differentiated effects on research participants with different learning prerequisites 

(see also section 6.2.1). It is particularly important that researchers on learning and instruction 

go into the schools to gain their participants and do not only recruit psychology students who 

evidently have better learning prerequisites. In sum, if researchers would like to generalize 

their findings on learning and teaching in school, school students should be included as 

research participants. 

This may sound rather trivial. Nevertheless, in many studies on learning and instruction, 

the nature of the research participants is chosen rather incidentally. For instance, while several 

studies involve school-age children as participants (e.g., Moreno & Mayer, 1999; Tarmizi & 
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Sweller, 1988), a number rely instead on college-age students (e.g., Atkinson, 2002), or 

university students, especially psychology students. However, it would be helpful to 

determine whether the results of the reported studies generalize across learners of different 

ages and different cognitive learning prerequisites. Nevertheless, evidently, in research on 

learning with multiple representations, there is a lack of systematic comparisons of research 

participants of different age and learning prerequisites (cf. section 6.4.2). 

6.1.2 Stable Effect of Scaffolding Self-Explanation Prompts on Conceptual Knowledge 

Contrary to the effects on procedural knowledge, the results with respect to conceptual 

knowledge in Experiment 1 (psychology students) and Experiment 2 (gymnasiums students) 

fully corresponded to the theoretical assumptions. Multiple representations (Experiment 2), an 

integration help (Experiment 2), and scaffolding self-explanation prompts (Experiment 1 and 

Experiment 2) all have positive effects on this knowledge types. The latter effect is mediated 

by rationale-based self-explanations (Experiment 1 and Experiment 2). 

The replication of the effect of the scaffolding self-explanation prompts on rationale-

based self-explanations and thereby also on conceptual knowledge for both the gymnasiums 

students and the psychology students strengthens the robustness of these findings and 

demonstrates that the instructional support measure of scaffolding self-explanation prompts 

indeed proves to be a suitable method to overcome the difficulties of learners with a different 

background when learning with multi-representational examples (scaffolding self-explanation 

effect, cf. section 4.7 and 5.7.1). Furthermore, this finding suggests that learning outcomes 

which especially benefit from the integration of multiple representations (i.e., conceptual 

knowledge, cf. section 4.5.3) particularly profit from learning with multiple representations 

and corresponding instructional support procedures. 
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6.1.3 Additional Information in the Scaffolds 

By providing only fill-in-the-blank self-explanations instead of complete instructional 

explanations and by fading out the scaffolds in the following isomorphic examples, it was 

assured that the learners did not just superficially and passively but rather actively processed 

the new information by explaining it to themselves. Nevertheless, as the scaffolding self-

explanation prompts included additional information compared to the open self-explanation 

prompts, it might be that not the scaffolding-fading procedure itself but only the additional 

information in the scaffolds fostered learning. Hence, it could be merely an effect of 

"receiving" an (incomplete) instructional explanation. However, there are two arguments that 

make this alternative explanation implausible: First, it was found that the quality of self-

explanations (i.e., number of rationale-based self-explanations and principle-based self-

explanations) mediated the effect of scaffolding self-explanation prompts on conceptual 

knowledge. Second, there are meanwhile numerous findings that usual instructional 

explanations in worked-out examples are rather inefficient (e.g., Atkinson & Catrambone, 

2000; Atkinson, Catrambone, et al., 2003; Gerjets, Scheiter, & Catrambone, 2003, in press; 

Hilbert et al., 2004; Renkl, 2002). Thus, it is not probable that the pure "reception" of the 

incomplete instructional explanation in the scaffolding self-explanation prompts in the initial 

worked-out examples was the crucial factor. Instead, we assume that the supplementary self-

explaining in the first example of each pair and the open self-explanation in the second 

isomorphic example was crucial. 

This interpretation is supported by Siegler (2002) who asked learners to self-explain 

either their own or another’s answers (i.e., the experimenter’s answers). The latter is similar to 

our scaffolds in the first isomorphic examples in the learning environment because both 

Siegler’s and our learners had to self-explain (part of) an expert’s answer. Participants who 

were best in explaining the presented answers of the experimenter also showed the best results 
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in providing correct answers on their own. Evidently, self-explaining a pre-existing answer of 

an expert more effectively fostered understanding than explaining one’s own answer. This 

was probably also due to the fact that the pre-existing answers were consistently correct 

whereas the answers of the participants without this scaffold were fragmented or (partially) 

incorrect. When explaining a provided correct answer, additional opportunities raise for 

comparing and contrasting this answer with one’s own (cf. Roy & Chi, 2005). Observing 

discrepancies between a correct answer and one’s own will naturally elicit repairs of one’s 

own representation and thereby foster learning (Chi, 2000). Anyhow, these learning processes 

only occur if the learners actively self-explain a presented answer or, in our case, the 

information included in the scaffolds in some form (e.g., by filling in blanks and answering 

open self-explanation prompts). Thus, we assume that self-explaining is probably the crucial 

factor. However, an empirical test of the specific contribution of the additional information in 

scaffolding self-explanation prompts is necessary in future studies (cf. section 6.4.4). 

6.2 Theoretical Implications 

Based on the results of this dissertation, the following theoretical implications can be 

deviated. 

6.2.1 Differentiated Effects of Instructional Measures on Conceptual and Procedural 

Knowledge 

As already outlined, learning outcome measures on different knowledge types, that is, 

conceptual and procedural knowledge were included in this research. By including conceptual 

knowledge as a learning outcome variable, the shifted focus in mathematics teaching from 

learning only procedural knowledge to an emphasis on insightful understanding (cf. 

Ainsworth, 1997) was addressed. 
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With respect to procedural and conceptual knowledge, this dissertation revealed 

differentiated effects (see also section 6.1.1 and section 6.1.2) of the instructional support 

measure scaffolding self-explanation prompts. In Experiment 1, both types of self-explanation 

prompts (scaffolding and open) fostered procedural knowledge, whereas for enhancing 

conceptual knowledge scaffolding self-explanation prompts were particularly effective. In 

Experiment 2 – including learners with lower learning prerequisites as participants – 

enhancing conceptual knowledge was at the cost of procedural knowledge. 

How to enhance conceptual and procedural knowledge is addressed quite often in 

research on learning and instruction (e.g., Rittle-Johnson, Siegler, & Alibali, 2001). For 

example, Rittle-Johnson et al. propose that conceptual and procedural knowledge develop in 

an iterative fashion and that improved problem representation is the crucial mechanism 

underlying the relations between them. 

However, interestingly, in the literature on learning and instruction, it is rather unusual 

that such differentiated findings on conceptual and procedural knowledge are reported. This 

statement was confirmed by J. Sweller (personal communication, July 23, 2005). He also tried 

to obtain differentiated effects on procedural and conceptual knowledge in many studies but – 

according to his own statement – never succeeded. Relating the differentiated findings of this 

research to Sweller’s cognitive load theory, it can be concluded that the effect specifity of 

instructional procedures such as self-explanation prompts are probably due to the fact that 

mentally representing the complex, multi-representational learning contents induce high 

working memory load just for the representation of the contents (intrinsic load; Sweller, 

2005). In addition, there are very high demands of essential (Mayer & Moreno, 2003), 

learning-related processing (germane load) when each representation and their interrelation 

should be understood. Further enhancement of essential processing (germane load) by 

instructional procedures cannot have profound general effects on active processing and 

learning outcomes, but direct the attentional focus on specific aspects. Consequently, the 
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learners concentrate intensively on these aspects but neglect other knowledge types. Thus, the 

iterative process with respect to conceptual and procedural knowledge proposed by Rittle-

Johnson et al. (2001) can only work if the learners have sufficient cognitive capacity to 

process both knowledge types simultaneously. 

In a nutshell, according to J. Sweller (personal communication, July 23, 2005) the 

differentiated findings on conceptual and procedural knowledge of this dissertation can 

supplement cognitive load theory by providing evidence for a specific essential processing 

which might be at the cost of essential processing of other aspects of the learning material. 

Moreover, these findings highlight the importance of including different learning 

outcome measures in order to have the possibility to assess possible differentiated effects of a 

learning arrangement. 

6.3 Practical Implications 

In the following, practical implications of this research are derived. 

6.3.1 Provide Multiple Representations and Enhance the Effects with Instructional 

Support Measures 

First, this research provides us with a set of empirically based principles that can 

practically guide the design of learning environments employing multiple representations. (a) 

Multiple representations. The findings with respect to this aspect suggest the following 

instructional design guideline for multimedia learning environments involving mathematics: 

Provide multiple representations instead of single representations only when they seem to be 

necessary or especially helpful in reaching certain learning goals. Otherwise refrain from 

multiple representations. Moreover, the potential of learning with multiple representations can 

only be exploited when instructional support measures (i.e., integration help and scaffolding 
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self-explanation prompts) are implemented (cf. Moreno & Durán, 2004). (b) Integration help. 

If an instructional designer intends to use multiple representations, there is the principle of 

integration help that should be kept in mind. If a classical integrated format cannot be 

realized, color-coding combined with a flashing procedure offer a promising possibility – if 

the integration of the multiple representations is needed for the learning goal (see above) and 

high visual-search conditions are presented (Atkinson, 2005). (c) Scaffolding self-explanation 

prompts. The findings with respect to scaffolding self-explanation prompts suggest the 

following instructional design guideline for learning with multiple representations: 

Scaffolding self-explanation prompts can strongly foster the integration and understanding of 

multiple representations (scaffolding self-explanation effect, cf. section 4.7 and section 5.7.1). 

However, the instructor has to carefully consider that instructional support procedures such as 

scaffolding self-explanation prompts implicitly guide the learners’ attention on specific 

aspects of the learning materials which might be at the cost of other aspects (paradox self-

explanation prompt effect, cf. section 5.7.1). 

6.3.2 Example-Based Learning Does Not Only Foster Procedural Knowledge but Also a 

Deep Conceptual Understanding 

A common misconception among teachers with respect to example-based learning is that 

example-based learning only fosters algorithmic knowledge (procedural knowledge), but not a 

deep conceptual understanding (cf. Renkl, Schworm, & Hilbert, 2004). 

It is assumed that learners try to remember the worked-out solution steps of a few 

worked-out examples and then apply these solution steps on similar tasks. This misconception 

is closely related to the assumption of many people that example-based learning is a 

traditional, nonconstructivist learning method with too much emphasis on presenting contents 

instead of construction activities (cf. Renkl, 2005) – to say it shortly: to train the learners to 

solve future similar tasks without a deep understanding. 
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However, such a conception of example-based learning completely neglects the potential 

of this method. By self-explaining the principles which are applied in the solution steps and 

the rationale of the principle, the learners gain a deep conceptual understanding of the 

subdomain. This dissertation put an emphasis on conceptual understanding and was able to 

show that multi-representational examples – supported by an integration help and scaffolding 

self-explanation prompts – cannot only enhance procedural (Experiment 1) but also 

conceptual knowledge (Experiment 1 and Experiment 2). Thus, it can be recommended to 

teachers and instructors to implement worked-out examples not only to enhance procedural 

knowledge but also to foster conceptual knowledge. 

6.4 Limitations and Guidelines for Future Research 

A last question that is raised refers to the generalizability of the findings of this research. 

Possible restrictions with respect to generalizability are discussed. Based upon this discussion 

fruitful lines of future research are pointed out. 

In this research, the use of multiple representations and two instructional support 

measures (an integration help and scaffolding self-explanation prompt) in the context of 

mathematics, a well-structured learning domain was analyzed. 

6.4.1 The Domain 

In this dissertation, the topic complex events of the subdomain probability theory was 

chosen as the learning content – addressing the critics of Atkinson (2005) that it is important 

to examine whether the findings on multiple representations can be generalized beyond 

geometry instruction to other subdomains of mathematics. Though it is a strength of this 

work, that a mathematical subdomain other than geometry was chosen, the question arises if 

the findings with respect to multiple representations, the integration help, and scaffolding self-
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explanation prompts can be generalized to similar well-structured domains such as physics 

and chemistry as well as also to ill-structured learning domains such as English (e.g., writing 

a poem) or arts (e.g., creating a sculpture). With respect to ill-structured learning domains, it 

is not possible to provide a manageable set of solution steps that directly lead to the final 

answer (Renkl, 2005). For these domains, an example provides just the problem and a 

solution (no steps); such examples are called solved example problems. Rummel and Spada 

(2005), for instance, provided video-based solved example problems of a successful 

computer-mediated collaboration in interdisciplinary problem solving on a psychiatric case 

which led to a better joint diagnosis than learning with a script. Taken together, the range of 

skill domains – including ill-structured domains – should be further broadened in research on 

multi-representational examples. 

6.4.2 The Type of Learners 

Though this dissertation has contrasted two types of learners (i.e., psychology students 

and gymnasiums students) – which is a benefit – more research is needed to determine how to 

incorporate other populations, such as younger students or lower-achieving students. As 

worked-out examples leave relatively many cognitive resources for gaining understanding, 

this approach should be especially appropriate for such populations. However, as the findings 

of this research indicated, learners with less optimal learning prerequisites than psychology 

students might have difficulties to focus on several aspects of the learning material (i.e., 

different knowledge types) at once. First, this finding suggests that in a series of experiments 

with participants of different age groups and different learning prerequisites, different levels 

of competence could be diagnosed, and it could be analyzed down to and up to which level of 

competence the learners still exploit the potential of learning with worked-out examples. 

Second, for learners with lower learning prerequisites, a remedy with respect to the cognitive 

overload might be to sequence the presentation of different aspects of the learning material so 



GENERAL DISCUSSION  95 

 

that, for example, in a first phase conceptual knowledge is focussed and after that, in a second 

phase, procedural knowledge. Such sequences should help to avoid dysfunctional 

concentration on certain aspects at the cost of other important learning goals. This should be 

addressed in future studies. 

6.4.3 Evidence from Experimental Settings of Limited Ecological Validity 

The two studies of this dissertation were conducted in well-controlled laboratory settings 

and within learning environments of a limited range with respect to both the content covered 

and the time span for the development of a complex skill. In order to test whether the findings 

of this dissertation hold true for real school settings, it would be fruitful to analyze the effects 

of (a) the implementation of the learning environment in a curriculum on complex events, (b) 

an extended learning environment that covers a broader topic (e.g., probability theory), and 

(c) in which the state-of-the-art of designing example-based learning is realized in a 

consequent way (e.g., including an integration help and scaffolding self-explanation prompts) 

and implemented in school lessons or university contexts (cf. Renkl, 2005). 

6.4.4 Effect of the Additional Information in the Scaffolds 

As mentioned in section 6.1.3, further studies should explore the specific contribution of 

the additional information in the scaffolding self-explanation prompts. Though it was found 

that the quality of self-explanations mediated the effect of scaffolding self-explanation 

prompts, an experimental study should compare the scaffolding condition with a condition 

providing the instructional explanations that were included in the scaffolds. 
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6.4.5 Subjective Learning Goals of the Learners 

Against the background of the findings of Experiment 2, it can be concluded, that 

learners seem to cope with the complexity of the learning demands by focusing attention on 

specific aspects of the learning materials. It can be conjectured that the focus is influenced by 

the subjective goals of the learners. Especially, the principle of cognitive economy formulated 

by Schnotz (2005) in his theory on multimedia learning from text and pictures implies that 

learners have goals that determine what they process: They try to invest as much cognitive 

processing as it is necessary to reach the subjective learning goals. As instructional 

procedures indirectly communicate to the learners what is important, it can be assumed that 

the learners derive the learning goals from the learning material – internalising them as their 

subjective learning goals. Consequently, the learners focus on these aspects. This, in turn, 

enhances corresponding learning outcomes (cf. Schnotz). In this research, the self-explanation 

prompts might have influenced the subjective learning goals of the participants. Though the 

subjective learning goals were not assessed in this research, the learning outcome data showed 

that without prompts, most learners concentrated on how problems are solved (as it is 

probably the case in most learning situations in schools). The latter indicates a subjective 

learning goal of procedural knowledge. Contrary, the prompts directed most learners’ 

attention to the rationale of the solutions (conceptual knowledge). Against this background, in 

future research, the subjective goals have to be taken into account when analyzing the use of 

multiple representations and the resulting learning outcomes (for the relevance of subjective 

goals in example-based learning see also Gerjets & Scheiter, 2003). 

6.4.6 Diagnosing the Incorrect Self-Explanations and Providing Adaptive Support 

The incorrect self-explanations elicited by the scaffolding self-explanation prompts 

might not only be a deficit – as clearly indicated by this research (contrary to Chi, 2000). 
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Several prominent models of cognitive skill acquisition such as VanLehn’s Cascade (e.g., 

1999) emphasize that errors are triggers for reflection that deepen understanding. 

Additionally, many classroom teachers emphasize that effective instruction should take up 

errors as opportunities for in-depth discussions in order to deepen understanding (Renkl, 

2005). Though this research suggests that learners were cognitively overwhelmed to engage in 

reflection, by providing adequate support measures combined with sufficient time, the deficit 

of incorrect self-explanations might become a chance for revising own misconceptions. 

Clearly, there needs to be significantly more research conducted on this topic in the future. 

6.5 In Closing 

The findings of the two experiments in this dissertation revealed four important 

implications for instruction and research on multi-representational examples: 

(a) Exploit the full potential of multiple representations by instructional support 

measures on integration and understanding. Including instructional support measures such as 

an integration help and scaffolding self-explanation prompts on integration and understanding 

in multi-representational learning environments is more effective than pure multi-

representational learning arrangements without such support (cf. Moreno & Durán, 2004). 

These results substantiate the need to provide support to the learners so that they can exploit 

the full potential of learning with multiple representations. 

(b) Scaffolding self-explanation effect and paradox self-explanation prompt effect. 

Scaffolding self-explanation prompts elicit high-quality self-explanations that are slightly out 

of reach for learners without this assistance and foster deep conceptual understanding. In this 

dissertation it is proposed to call this the scaffolding self-explanation effect. The case of the 

scaffolding self-explanation effect is a very good instance to support the notion that effective 
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learning needs a well-balanced mixture of provided structure and information (e.g., scaffolds) 

and room for active knowledge construction (e.g., self-explanations) (cf. Renkl, 2005). 

However, the scaffolding self-explanation prompts also elicited incorrect self-

explanations which had a detrimental effect on the acquisition of procedural knowledge. In 

this dissertation it is proposed to call this the paradox self-explanation prompt effect because 

an instructional support measure of scaffolding self-explanation prompts unexpectedly leads 

to incorrect self-explanations and hinders the acquisition of one knowledge type. The 

scaffolding self-explanation effect and the paradox self-explanation prompt effect are an 

innovation in research on self-explaining and supplement or respectively modify the work of 

Chi (e.g., Roy & Chi, 2005) and Renkl (2005) (cf. section 4.7 and section 5.7.1). 

(c) Differentiated effects on different learning outcomes. Although in this research a 

learning approach that reduces demands on the learner was implemented – example-based 

learning is a load-saving approach because the learners are released from finding a solution on 

their own – only one (i.e., conceptual knowledge) of the two knowledge types in the learning 

outcome measures was consistently increased in both experiments. Evidently, not all 

knowledge types can be equally effectively enhanced by multi-representational examples: 

Only learning outcomes that especially benefit from the integration of multiple 

representations (i.e., conceptual knowledge) particularly profit from multiple representations. 

Interestingly, the Experiment 2 of this dissertation is one of the first studies to show 

differential effects on the acquisition of conceptual and procedural knowledge. 

(d) Different learning outcomes of different types of learners. Learners with better 

learning prerequisites are able to focus different knowledge types whereas learners with less 

favorable learning prerequisites deal with the complexity of the learning environment by 

focusing on certain aspects which is at the cost of other knowledge types. These findings 

underscore that it is essential to systematically vary different types of learners in research on 

learning and instruction. 
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I hope that this research will contribute to a better understanding of learning with multi-

representational examples and corresponding instructional support measures. In addition, I 

hope that it will stimulate further investigations in this rapidly expanding area of research that 

has such important implications for future educational practice. 
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