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OVERVIEW

Multiple representations (e.g., an equation andagrdm) are commonly used because
they can provide unique benefits when learnerstiafiag to gain a deep understanding
(Ainsworth, in press). Regrettably, many studiegehshown that this promise is not always
achieved. Often, learners are overwhelmed with dbmplex demands of integrating and
understanding multiple representations. This suggesat learners might profit from learning
with multiple representations to a larger extentewhnstructional support measures on
integrating and understanding are employed.

Therefore, the main goal of this dissertation isxperimentally investigate the effects of
multiple representations and two correspondingruiciibnal support measures on learning
processes (i.eself-explanationsand learning outcomes (i.econceptualand procedural
knowledge Do students learn more deeply from multiple espntations than from one
representation alone? Do instructional support omregssuch as an integration help in form of
flashing and color-coding as well as self-explaragprompts further enhance the benefits of
multiple representations? What are the crucial ggses with this respect? These questions
are the focus of this dissertation.

To address these questions, two experiments wearducted in which we employed
worked-out examples from the domain of probabiiitgory and tested the effects of multiple
representations, an integration help in form ofasHing-color-coding procedure, and self-
explanation prompts. lExperiment 1the effects of two types of self-explanation ppdsn
(scaffolding vs. open) as help procedures for iatixyg and understanding multiple
representations were analyzdexperiment 2additionally tested the effects of multi- vs.

mono-representational solutions and an integratep. The findings of Experiment 1 were
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taken up insofar in Experiment 2 as we implemergeaffolding self-explanation prompts
which proved to be effective in Experiment 1.

Overall, results showed that multiple representatiombedded in worked-out examples
and an integration help fostered conceptual knogdedWith respect to procedural
knowledge, it was equally effective to provide muttr mono-representational solutions or
presenting the multi-representational solutionshwotr without an integration help. Self-
explanation prompts fostered high-quality self-exgitions and conceptual knowledge. With
respect to conceptual knowledge, scaffolding sebi@nation prompts were especially
effective when compared to open prompssaffolding self-explanation eff@¢ctThough,
scaffolding self-explanation prompts also evokembimnect self-explanations that impaired the
acquisition of procedural knowledgeafadox self-explanation prompt effect

Chapter 1 provides the general theoretical backgidor this dissertation involving a
disambiguation as well as information about theres approach and the domain of this
research. In chapter 2, the computer-based leasmagonment which was developed for this
research is described. Chapter 3 provides an ceraf the two experiments of this
dissertation and the main research questions atsordted. In chapter 4 and 5, the two
experiments are presented that examined the efféatsiltiple representations, an integration
help, and self-explanation prompts. These chapitectude a theoretical introduction
addressing the specific research problem, a pratsemtof the corresponding research
questions, the method and results as well as aisiism of the findings. Chapter 4 on
Experiment 1 describes the effects of two typesself-explanation prompts as help
procedures for integrating and understanding maltipepresentations. Chapter 5 on
Experiment 2 presents the effects of multi- vs. oacgpresentational solutions, an integration
help in form of a flashing-color-coding proceduaed scaffolding self-explanation prompts.
Chapter 6 concludes with an overall discussionhaf findings, theoretical and practical

implications, limitations as well as an outline ofuture research directions.



1. General Theoretical Background

The following chapter provides the general theoattbackground for this dissertation.
First, the topic of multimedia learning is addresskeecause learning from multiple
representations is often discussed under this hgadihe second section introduces the
learning approach multi-representational worked-examples and corresponding theories.

The third section deals with learning mathematicsnoltiple representations.

1.1 Multimedia L earning

In this section, first, a disambiguation of thentemultimedia learningis aimed.
Afterwards the question “How can multimedia (nof)ster meaningful learning?” is

discussed.

1.1.1 A Disambiguation

New technologies in general and multimedia in patér play an increasingly important
role in learning and teaching (Schnotz & Lowe, 2008hen reading the terrmultimedia
you might think of a computer with an integrateden, oral explanations, as well as texts,
pictures, and maybe other forms of information sasharithmetical equations. Although the
term multimedia is widespread, it is not suitabheits everyday sense for the scientific
discourse (cf. Weidenmann, 1997). Against this bemknd, some experts in the field
(Mayer, 2005b; Schnotz, 2005; Weidenmann) proposdifterentiate different meanings of
the term multimedia. According to Weidenmann, tlemt multimedia confounds the

categories medium, modality, external, and interegkesentation. Hence, instead of using
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the undifferentiated, sweeping catchword of multirae he suggests to distinguish between
the following categories:

(&) Medium. Mediums are objects or technical devices which cammunicate or
construct messages, for example, a personal compute@ book (Weidenmann, 1997).
Similarly, Mayer (2005b) and Schnotz (2005) refeithis category as technical level. Thus,
the term multimedium-basedncludes at least two mediums which are presemtedn
integrated manner, for example, a personal compuotiuding a video (Weidenmann). The
medium is of course very important in practice. ,Yieom an educational point of view
comprehension is not fundamentally different whetext passage is delivered either by a
computer screen or a printed book (cf. Schnotzjl&ily, Clark (1994) made the explicit and
clear claim that there were no pure learning bénebssible due to mediums. Already in his
early articles, Clark (cf. 1983, 1985) claimed,part, that media are “mere vehicles that
deliver instruction but do not influence studenhiagement any more than the truck that
delivers our groceries cause changes in our ratfi{il983, p. 445). Meta-analytic reviews of
media research which have produced evidence fopdiséive learning benefits of research
with various media were confounded because of patralling the instructional method.
Consequently, Clark (e.g., 1983) argues that ihesmethod which influences learning, not
the medium. Further, any necessary teaching metiootd be designed into a variety of
media presentations. Clark (1994) defines methedse provision of cognitive processes or
strategies that are necessary for learning buttwkiadents cannot or will not provide for
themselves.

(b) Modality (Schnotz, 2005; Weidenmann, 199he term modality refers to the sense
which is addressed (visual, auditive). If only aense is addressed, Weidenmann uses the
term “mono-modal” (e.g., only visual or only audé). The term “multi-modal” is

appropriate, if different senses receipt signs,eéwample, the eyes and ears are addressed
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which can be realized by an audio-visually predentae.g., written text and oral text) (cf.
sensory level; Mayer, 2005b).

(c) External representation (cf. Ainsworth, in mesr codality (codes or symbol
systems; cf. Weidenmann, 199¥he learning content can be presented in diffefembats
and symbol systems, that is, different externalresgntations (e.g., verbal, pictorial,
arithmetical). Multiple external representationsclimle the use of different forms of
representations (cf. Schnotz, 2005), for examplgictorial tree diagram and an arithmetical
equation. Some authors (e.g., Ainsworth, in press¢r to external representations as
modality. Instead, in this dissertation, it is proposedde the terncodality when referring to
representational systems (e.g., arithmetical egosti Modality, in contrast, should be used
when referring to senses (e.g., visual or auditigseg last paragraph).

(d) Internal representation (mental representatimnmental format, cf. Weidenmann,
1997). If the learners actively process the external espntations, the learning content is
mentally encoded. Thus, the learners build interepfesentations. It has to be stressed that
there is no one-to-one correspondence betweerxtemal and the internal representation (cf.
Weidenmann). When learners understand texts andres; they construct multiple mental
representations (cf. Schnotz, 2005). A textual inf@xternal representation) might also be
visually encoded (internal representation), andctupe (external representation) can lead to
mental propositional (textual) representations Zommer, 1993). In a nutshell, the external

representation is not inevitakyentical with the internal representation.

1.1.2 How Can Multimedia Presentation (Not) Foster M eaningful L earning?

A number of misconceptions arise amongst educékecause of a failure to distinguish
these different levels (cf. Weidenmann, 1997) dct fprevious research on so-called “media-
effects” has clearly established that it is misgdiénd overly simplistic to compare different

technical media with regard to their effects ond@ay without taking into account the aspects
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of modality, external, and internal representatioks mentioned above, Clark (1983, 1985)
presented evidence in support of the hypothesis ithstructional methods had been
confounded with media and that it is methods wiméluence learning. Clark (1994) suggests
that our failure to separate medium from methoddaased enormous confounding and waste
in a very important and expensive research area.

Rather, the other levels (modality, external, amernal representations) are generally
the crucial factors and a proper understandingp@intrequires expertise in cognitive science,
psychology, and educational science (Mayer, 200Bi)s, rather than searching for technical
media-effects, research on learning and instrucimuld focus on the levels of modality and
external representations as well as on their effecinternal representations that constitute
comprehension and learning (Mayer, 2005b; Schrz®@5).

Unfortunately, there are also misconceptions waspect to the level of modality and
external representations (Mayer, 2005b), for examgblat rich learning environments with
powerful visualization and sound techniques resuéixtensive cognitive processing and thus
create elaborated knowledge structures (cf. Schrafi@5). Consequently, the learners are
often completely overwhelmed. Therefore, recenttranger focus is put on more specific
questions, for example, how learning environment$uding multiple representations foster
meaningful learning. Against this background, tlissertation focuses exclusively on
learning with multiple representations (externg@resentations) — thereby only addressing the
visual sense (modality).

Multiple representations in learning materials (etgxt and pictures) are commonly used
because they provide unique potentials in fostemngerstanding. Unfortunately, many
studies have shown that the promise of multipleesgntations is not always achieved (cf.
Ainsworth, in press). Evidently, multiple repressidns — and especially their integration —
impose high demands on the cognitive processinth@flearners including the danger of

overwhelming the learners. What could be a sensitlgion?
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1.2 The Learning Approach: Multi-Representational Worked-Out

Examples

An important step towards the solution of the peablthat multiple representations can
overwhelm the learners may be to use a learningoapp and learning materials which
reduce demands on the learner. One such effeaitvél@ad-saving” method is learning from
worked-out examples. Worked-out examples consist moblem formulation, solution steps,
and the final solution itself. When it is referréd the termlearning from worked-out
examplesor example-based learnin@poth terms are used as synonyms) in this resgtrish
always meant that more than just a single exansplséd because it is more effective to use a
series of worked-out examples (cf. Sweller & Coode85).

Research has shown that learning from such exaniples major importance for the
initial skill acquisition of cognitive skills andearning in well-structured domains such as
mathematics, physics, and programming (for an agergee VanLehn, 1996). Often learners
have a limited understanding of the domain whelry ting to solve the first problems and
would be completely overwhelmed with complex, dediag learning arrangements.
Typically, learners rely on general, domain unsjegroblem-solving heuristics such as
means-ends analysis (Renkl, 2005). Thereby, theghtmeven find the right solution.
However, such striving for the correct answer doeslead to a profound understanding of
the domain. The basic idea of example-based leguiisito reduce problem solving demands
by providing worked-out solutions in initial staged skill acquisition, when gaining
understanding is the instructional main goal (ciefer, van Merriénboer, & Paas, 1998).
Thereby, more of the learners’ limited processiapacities (i.e., working memory capacities)
can be devoted to understanding the domain prie€ipind their application in problem
solving (Renkl, 2005). These assumptions are sumethin the worked-out principle in

learning that states that learners gain a deeprsiadeling of a skill domain when they
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receive worked-out examples in the beginning ofnitbge skill acquisition. In this case,
learners can also engage in domain-specific reagprwhich in turn can deepen their
understanding. However, many learners do not usie #vailable processing capacities for
trying to self-explain the example solutions tontiselves (Chi, Bassok, Lewis, Reimann, &
Glaser, 1989; Renkl, 1997). Accordingly, they ghitle understanding. Prompts (requests
directed to learners; cf. Renkl, 2005) for selflaikng example solutions have been shown
to successfully prevent this problem and fosternieg outcomes (e.g., Atkinson, Renkl, &
Merrill, 2003; Berthold, Nuckles, & Renkl, 2006).

Against the background that (a) worked-out examjgese relatively many cognitive
resources for gaining understanding and (b) meltigdpresentations and especially their
integration require many cognitive resources, it gensible to combine multiple
representations and worked-out examples by embgddinti-representational solutions in
worked-out examples. In this dissertation such giashare called multi-representational
examples.

The use of examples — in contrast to problems tedbeed — leaves more processing
capacities so that there is a better chance thatdes can successfully cope with the high
demands of learning from multiple representatidiere are mainly two types of theoretical
approaches that are relevant when analyzing legwmaitn multi-representational examples.

Theories on learning from multiple representatioifie most intriguing aspect of
learning with multiple representations is that usteEnding occurs when learners are able to
build meaningful connections between multiple reprgations — such as being able to see
how an arithmetical equation is related to a diagrén the process of trying to build
connections between two or more representatiorssnées are able to create a deeper
understanding than from one representation alohss. iflea is at the heart of the theories of

learning with multiple representations (cf. May2005b).
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Ainsworth (1999, in press; Ainsworth, Bibby, & Wqod998) intends to formulate
guidelines for when (and when not) to employ migtigpresentations. As many studies have
shown, multiple representations are not alwaysulgefg., de Jong et al., 1998; Hegarty,
Narayanan, & Freitas, 2002; Schnotz, Bockheler,0Gdziel, Gartner, & Wachter, 1998).
Learners often do not map different representatoomis each other so that the positive effects
that were intended by the use of multiple repredents do not occur to the expected extent
(e.g., Ainsworth et al.,, 1998; Tabachnek-Schijf &m8n, 1998). Hence, multi-
representational learning environments have toadvefally designed. Crucial aspects in this
context are the specific functions of multiple egentations and the task that learners have
when processing these multiple representationsAjasworth, in press). With this respect,
guidance has to be provided for how to processptiesented information — that is, for
determining what to pay attention to, how to mdptaiganize it, and how to relate it to prior
knowledge (Mayer, 2005b).

Theories with a capacity focuBoth the cognitive load theory (Sweller, 1999, 200
Sweller et al., 1998) and the theory of multimdd&rning (Mayer, 2005a; Mayer & Moreno,
2003) emphasize processing structures and limitsitid potential problem of learning from
multiple representations is that the learners arerwhelmed by the complexity of the
presented learning materials and the correspongiragessing demands. Instructional
prescriptions are formulated that try (a) to mir@eniunproductive processes in working
memory that are not related to the relevant aspeftghe learning contents (e.g.,
“unnecessary” visual search processes) and (b) awimize cognitive processes that are
related to understanding and learning outcomessd Ivestructional prescriptions also apply
on worked-out examples with multi-representatiosalutions. In order to profit from the
potential of multiple representations, it is in rmoases necessary to understand the relation
between different representations. Based on cegnitiad theory, two ways of fostering the

integration of different representations and unideding can be distinguished:
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(a) Reducing cognitive load that is not relatedpimcesses of learning (reduction of
extrinsic load). It is aimed to avoid, for example, visual searaglocpsses that do not
contribute to understanding and take away atteritiom processing the relevant learning
contents. A typical recommendation derived fromratige load theory is to integrate two
information sources (e.g., pictorial tree diagramd aarithmetical equation) into one
information source by bringing corresponding eletaapatially close to each other (principle
of integrated formatcf. Ayres & Sweller, 2005). Across several expets, Sweller and his
colleagues documented that non-integrated matemalered learning, presumably because
the learners had to retain the equations in thenking memory as they attempted to locate
the relevant elements in the diagram (Sweller, GleinTierney, & Cooper, 1990; Tarmizi &
Sweller, 1988). On the other hand, they found #raintegrated format facilitated learning.
The option of spatial integration, is, however, rahvays possible, for example, when
elements in one representation do not corresporgrtain, well-circumscribed parts in the
other representation (e.g., one number of the ragtital equation corresponds to several
branches of a tree diagram). In this case, othgp@t measures can be used such as color-
coding (i.e., assigning the same color to corredpan elements) or flashing (i.e.,
corresponding elements flash simultaneously) (efund, Chandler, & Sweller, 1997;
Kalyuga, Chandler, & Sweller, 1999). For instanoeprporating flashing in computer-based
learning environments can successfully guide learas they attempt to make sense of the
presented material (Jeung et al.). This is paditykrue for situations with high visual-search
complexity. Essentially, using signals to help teas discriminate relevant from irrelevant
information can help them effectively integrate tiplé representations.

(b) Increasing learning related processing (incregsgermane load)To benefit from
the advantages of multiple representations, ondecige is to engage learners in the active
knowledge construction necessary for learning (R®y Chi, 2005) which requires

considerable cognitive capacity. Yet, making saliehich elements correspond does not
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ensure that the conceptual relations between tpeegentations are in fact detected. A
potential problem is that learners’ mapping may aenat the surface level (cf. Seufert &
Briinken, 2004). In order to foster conceptual magpthe learners should actively integrate
multiple representations (cf. Bodemer, Plétznemdfiein, & Spada, 2004). A promising
approach are self-explanation prompts that ditexig¢arners’ self-explanations on integrating
and understanding multiple representations. Seqifegrations are explanations that are
provided by learners and mainly directed to thewesel(Renkl, 2005). People learn more
deeply when they spontaneously engage in or anagienl to provide explanations during
learning (Roy & Chi). Self-explanations containdmhation that is not directly given in the
learning materials and that refer to solution stapd the reasons for them. Several key
cognitive mechanisms are involved including genegatinferences to fill in missing
information, integrating information within the syt materials, referring to structural and
surface features of problems or problem types,gnateng new information with prior
knowledge, and monitoring and repairing faulty kitexge. Thus, self-explaining on multi-
representational examples is a cognitively demaniirt deeply constructive activity (Roy &

Chi) and is contextualized in a specific domaie.(imathematics).

1.3 Learning Mathematics by Multiple Repr esentations

Clearly, multi-representational learning is apphleaacross a wide range of domains
(Atkinson, 2005). In multi-representational leagnion science, a considerable amount of
research has been conducted (for a review, see rMay®loreno, 2002). Though, the
experimental research focusing on issues relatedntdti-representational learning of
mathematics is relatively small in comparison. Whte educational literature is filled with
many examples of articles describing “best prastioer explorative studies, there is an

extremely modest amount of sound, empirically basedearch (Atkinson, 2005).



12 GENERAL THEORETICAL BACKGROUND

Consequently, more experimental research is neemlexkplore how to advance learners’
understanding and learning in mathematics using tirepresentational learning
environments. However, in a recent review artiadeusing on learning with animations
(Mayer & Moreno, 2002), out of the 31 experimeritedas the sources, only one experiment
involved mathematics.

Beyond the deficit of research on learning mathexsdty multiple representations, there
is a lack of addressindifferent mathematical topics. In the available researchnpicy
instruction is focussed (for an exception see G&Renkl, in press).

Indeed, geometry is an ideal mathematical subdonmiexplore the effectiveness of
learning with multiple representations given thairds and graphics are so prevalent during
instruction. However, it is critical that the empdally derived instructional principles devoted
from these geometrical learning materials be gdzedh to additional mathematical
subdomains. Therefore, it is important to examimetier these findings can be generalized
beyond geometry instruction to other subdomaimaathematics.

Beyond the underrepresentation of mathematics iondoresearch on multiple
representations, interpretation of the nature othemaatical understanding has changed
recently. The focus has shifted from the learnihgpomal procedures and accepted facts to
an emphasis on mathematics as flexible, insightfntderstanding (Ainsworth, 1997).
Similarly, the National Council of Teachers of Mahatics’ 1989 launched the present
debate for the de-emphasis of rote practice anel m@morization of rules and algorithms
(Schoenfeld, 2004). Consistent with this approaadycational researchers such as Robert

Davis (1986) state:

If “mathematics” is seen as conformity to memorizidgials, if it is taught without meaning...if

meaningfulness compels a slow pace and a vasttingas in repetition, and if routine calculation is

the main goal, very little mathematics will be undéd in the curriculum (pp. 2#273).
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Both aspects — (a) the deficit of experimental aese in mathematical topics others than
geometry and (b) the emphasis on mathematics mhihg understanding — are addressed in
this research. With respect to (a), the mathematidadomain that is chosen in this research
is probability theory. This topic is an importardrp of mathematical competence (cf. the
mathematical areancertaintyin PISA; Blum et al., 2004). More specifically,ethopic of
complex events in probability theory was chosenydde the argumentation of Atkinson
(2005), this is a subdomain that is suited for wise of different representation codes (i.e.,
pictorial and arithmetical), that generally haglatively high difficulty level for learners, and
that is an important part of school curricula. Wiéispect to (b), the learning environment and

tests address an insightful understanding of madkieai rationales.
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2. Learning Environment

In this section, the learning environment which wamceptually constructed and

programmed (in Authorware 7.0) by the author iscdbsed. Probability theory (specifically:

complex events) was chosen as the learning dongirpievious section). The computer-
based learning environment included eight worked-@xamples

representational or multi-representational solupoomcedures (pictorial, tree-like solution and

an arithmetical solution; cf. Figure 1) were embetid

in which mono-

5. Example Task: Mountainbike lll

You and your friend take part in a two-day mountain bike course. Each day of the course the instructor brings along 5
helmets, each one of a different colour (orange, silver, brown, red, and green). The helmets are handed out

randomly and given back to the instructor at the end of the day.
What is the probability that you and your friend get the red and the green helmet on the first day of the course
(it does not matter who gets which colour)?
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brown
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green

acceptable outcomes 2
possible outcomes 5
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A = 2
£ 20
friend

The probability is 50"

These were your answers:
It is without replacement.

The number of the possible outcomes
changes.

Why do you calculate the total
possible outcomes by multiplying?

Each of the |_. initial events

([T helmets) can occur in combina-

tion with[_ _ other events

([ remaining helmets). Therefore, in
the tree diagram, each of the [ blue
initial branches forks into [ further blue
branches.

Thus, there are [ times[  branches.
Thereby, all possible combinations (os,
ob, or, ...) are included.

@®

Figure 1

Screenshot of the Learning Environment
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The cover stories of the tasks included realistiesaderations (e.g., Cooper & Harries,
2003). The patrticipants regulated the processimgémf the worked-out examples on their
own.

Specifically, in the worked-out examples four piples were addressed that are to be
applied when determining probabilities in the casfe&) order relevant, (b) order irrelevant,
(c) with replacement, and (d) without replacemdifte principles were instantiated by four
pairs of isomorphic worked-out examples. In eaclngpie pair, the application of the
following principle combinations was demonstratég:order relevant — without replacement,
(b) order relevant — with replacement, (c) ordeel@avant — without replacement, and (d)
order irrelevant — with replacement.

One special focus of our learning environment wag understanding of the
multiplication rule. This rule is central when aalkting the probabilities of complex events.
Usually, the learners understatidit the multiplication rule has to be applied, butytiharely
understandwhy the fractions have to be multiplied. For many heas, the latter is not
apparent. However, it is “encapsulated” in the mmalpresentational solution (cf. Figure 1).
The learner can “unpack” it by integrating the mhation of the multiplication sign of the
arithmetical code with the ramifications in theetr@iagram (for the numerator in Figure 1,
there is twice one branch; for the denominatoretlage five times four branches).

The worked-out solution procedures weredular (i.e., composed of a number of
separate units) — in contrast maolar procedures including a "holistic" formula (Gerjets
Scheiter, & Catrambone, 2004). In other words,ptubabilities of thesingleselections were
determined and multiplied (cf. Renkl, 2005). In d#ig 1, the multi-representational worked-
out solution procedure includes a modular soluti®articularly when integrating the
information of the modular equation with the trée2ldiagram, the learners can figure out
with relative ease why this solution works (e.g4 & the denominator of the second single

event can be mapped on the four branches of thende@amification of the tree diagram).
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Contrary, in statistics and mathematics text basksvell as in school lessons, molar solution
procedures are frequently used that are computdlyoefficient but hard to understand. For
example, the problem displayed in Figure 1 couldehleen solved in a molar way by the
general formula 1/(n!/[n-k]! k'), where is the number of possible events &id the number
of selections. Gerjets et al. (2004) compared malad modular worked-out solution
procedures from probability in several experimerise computationally not so efficient
modular solution procedures led to better perforeann isomorphic as well as novel
problems. The modular solutions are calahceptually oriented equatiorsy Atkinson,
Catrambone, and Merrill (2003), and these authts® abtained positive effects on transfer
tasks.

In the learning environment of this dissertatidre tearners should especially learn how
the multiplication rule is applied in problem salgi (procedural knowledge) and about the
rationale of the multiplication rule (conceptualokviedge about the "why" of solutions).
Thus, beyond employing conceptually oriented (magutquations, it was decided to direct
the attention of the learners on the numeratortaadlenominator separately by a combined
color and flashing procedure (see below). Therdhg, learners tried to understand the
multiplication rule on a combinatorics level. Inighvein the understanding of the
multiplication rule was facilitated. This was due the fact that when integrating the
information of the multiplication sign of the eqigat with the ramifications of the tree
diagram, the learner can immediately see thath®mumerator, there is twice one branch and
for the denominator, there are five times four bres. Thus, for example, for the
denominator each of the five first branches of tile® diagram forks out in four further
branches because each of the first five eventsocaar in combination of one of the four
remaining events. The prerequisite for this un@eding is to separately process the
numerator and denominator as well the modular presentation of the equation. If the

equation was presented in a molar way (i.e., Ji#J! k!), the learners would have had little
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chance to detect the combinations of the singlatsy¢hat is, understanding the rationale of
the multiplication rule.

In addition, in Experiment 1 and in two of the nwépresentational conditions in
Experiment 2, the learners were supported in iatégy the arithmetical information (e.g., the
multiplication signs) and the information from ttiee diagram (e.g., the ramifications) by an
integration help: Corresponding information frome thdifferent representations were
simultaneously flashing in the same color — “infatian pair” after “information pair”. At the
end, a colored freeze image was presented. Thugsponding colors cued relations between
different representations. This combined flashing aolor-coding procedure (Jeung et al.,
1997; Kalyuga et al., 1999) should prevent a hegrel ofextraneous loadqload not directly
relevant to learning) due to a type of split-atiemteffect (Ayres & Sweller, 2005). By
supporting the learners in finding the correspogduarts in the different representations,
cognitive capacity for self-explanation processed kearning was released. An integrated
format — as usually recommended in the case ofrepoesentations — could not be realized
because there is no simple one-to-one correspoadeetween the single elements in the
different representations (e.g., in the exampleiaiegp in Figure 1, the “20” in the
denominator of the resulting probability corresportd the twenty branches in the tree
diagram; cf. also Renkl, 2005).

Furthermore, some experimental conditions includeghffolding self-explanation
prompts (“fill-in-the-blank” explanations) or opeelf-explanation prompts (open questions).
This experimental manipulation is described in mdegail in section 4.5.1 and in section
5.5.1).

In the following, the learning environment is clfiesl according to Ainsworth’s DeFT-
framework (Ainsworth, in press). Specifically, & characterized in more detail with respect
to the criteria of design, functions, and learneoginitive tasks. This description refers to the

version of the learning environment that is thdoadty the best for the specified learning
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goals (Figure 1). In the experiments describedr,lageme features (e.g., self-explanation
prompts) are omitted in order to test the theoaktiationale and the effects of these features.

Design. In our learning environment, the solution part teoms three co-present
representational codes (pictorial, arithmetical,d atextual scaffolds included in self-
explanation prompts). Some important informationdistributed over the arithmetical,
pictorial, and textual representation (e.g., théonale of the multiplication rule). The
arithmetical representation (see Figure 1) incluthesinformation that the fractions have to
be multiplied — a fact that most learners grasheratasily. However, most learners do not
understand why the fractions have to be multipliEicis information is encapsulated in the
tree diagram (e.g., for the denominator, therefigeetimes four branches). Nevertheless, this
information is often not apparent to the learn@mstecting this information is scaffolded by
the self-explanation prompts including textual mf@tion (see Figure 1, the text with blanks
beside the tree diagram). These scaffolding sedfagvation prompts include some to-be-
supplemented instructional text in the first exaenpl a problem type. In the second example
of a problem type, an open self-explanation prommgirovided that just includes a question
(e.g., "Why is the total number of possible evelgtermined by multiplication?").

The translation (Ainsworth, in press) between thatiple representations was facilitated
at the representation and the domain level (cffeése& Brinken, 2004). At a representation
level, the learners are supported in integrating #rithmetical information (e.g., the
multiplication signs) and the information from theee (e.g., the ramifications) by an
integration help (see above). At a domain leved lgarners were supported to relate the
multiple representations to each other and to thmain by scaffolding self-explanation
prompts (e.g., “There are ... times ... branchéssTall possible outcomes are included.”). As
the interpretation of representations is an inhgresontextualised activity, it is crucial to

identify the relations between the representatiod #the domain it represents. This task is
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particularly difficult for learners because thisdenstanding must be forged upon incomplete
domain knowledge. Thus, corresponding scaffoldengensible (cf. section 4.3).

The learning environment included mostly static tmépresentational systems. Only the
integration help was dynamic. The multi-represeoa solutions (tree-like solutions and
arithmetical equations) were flashing at the sarmnee.t After the flashing procedure,
scaffolding self-explanation prompts appeared.

Functions Multiple representations serve at least three whffeinstructional functions in
supporting learning: to complement, to constrang & construct (Ainsworth, in press). The
multiple representations of this learning environimkad somecomplementary functions —
multiple representations complement each other Ugyparting different complementary
processes or containing complementary informatkeor. example, the information of the
multiplication sign in the arithmetical code showidt one has to multiply, whereas the
ramifications of the tree-diagram showedhy one has to multiply. Furthermore,
representations differ in their advantages forreay specific knowledge. Thus, the task that
is to be accomplished by the learners after legrmsnthe crucial factor to decide which
representation(s) are the best. Performance fatigwearning is most likely to be facilitated
when the structure of information required by thekt matches the form provided by the
representational notation (Ainsworth, in press; riken, Steinbacher, Schnotz, & Leutner,
2001; Schnotz, 2005). Thus, the function of a regnéation is directly related to the learning
goals to be achieved.

With respect to constraining functions two representations constrain and thereby
support each other's interpretation — one can tatethe ramifications in the pictorial tree-
diagram constrained the meaning of the multiplaratsign in the arithmetical equations —
indicating that the multiplication represents tlenbination of different events.

Finally, the multiple representations in our learning enwvinent supported the

construction of deeper understanding when leanméegrate information from the different
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representations to achieve insight that would Wicdit to gain by studying only a single
representationconstructing functios Thus, the three representations (arithmeticalppt
and textual) were designed to foster deep-levelceptual knowledge with a focus on
understanding the rationale of solutions. The leanwere supposed to abstract over
representations to identify the shared invariaatuees of the domain.

The differences between these functions of multipresentations are subtle (cf.
Ainsworth, in press). The multiple representatiamduded in the learning environment of
this research incorporated to some extent all threetions.

Learners' cognitive task.he cognitive tasks that a learner must perforred&on from
multiple representations include understandingioperties of the representations and the
relation between the representations and the doniie cognitive demand unique to
multiple representations is to understand howdodiate between two representations. There
is much evidence that this translation / integratgdifficult for learners.

The learning environment of this dissertation co@d representations of different
codalities. These representations are known to have veryrdiffecomputational properties
(e.g., Larkin & Simon, 1987). Consequently, leasnenay find it difficult to see the
relationship between such different forms of repn¢stion. In the learning environment, the
learners had to understand how to translate thblgro formulation into a pictorial tree-
diagram and an arithmetical equation as well asteehe multi-representational solution to
the domain. As already mentioned, the learners s@pported by self-explanation prompts in
the corresponding conditions. In addition, thegnégion of representations was supported by
an integration help including flashing and colodite (Jeung et al., 1997; Kalyuga et al.,
1999).

It is important to have a detailed characterizabbthe learning environments because it
is not sensible to assume that multi-representatitearning environments and included

support procedures have per se certain effecteamihg (Ainsworth, in press). Factors such
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as the ones discussed above have to be considdred predicting effects and when

comparing effects in different studies on learnith multiple representations.



23

3. Overview of the Experiments and Research Questions

The main goal of this dissertation is to experimntstudy the effects of multiple
representations and two instructional support meason learning processes and learning
outcomes. Do students learn more deeply from nieltpgpresentations than from one
representation alone? Do instructional support oregssuch as an integration help in form of
flashing and color-coding as well as self-explaraprompts further enhance the benefits of
multiple representations? What are the crucial ggees with this respect? These questions
are the focus of this dissertation.

As explicated before (cf. section 1.2), it can bguad that the employment of well-
designed worked-out examples reduces extraneousti#egload which enables the learners
to use “free” cognitive capacity with respect te thtegration and understanding of multiple
representations. This in turn may bring to bear adeantages of learning with multiple
representations, at least when the self-explanagictivity is supported by instructional
procedures such as prompting and scaffolding.

To test these assumptions, a computer-based lgamiwironment (cf. section 2)
including eight worked-out examples was developedhe experiments described later, some
features (e.g., self-explanation prompts) were t@aiin order to test the theoretical rationale
and the effects of these features.

In this dissertation, two experiments will be prasé that examined the effects of
multiple representations, an integration help, self-explanation prompts. In Experiment 1
(cf. chapter 4) the effects of two types of selplexation prompts (scaffolding vs. open) as
help procedures for integrating and understandingfiple representations were analyzed.
Experiment 2 (cf. chapter B¢sted the effects of multi- vs. mono-representatisolutions

and an integration help. Furthermore, the finding&xperiment 1 with respect to effective
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self-explanation prompts were taken up insofar & awned at replicating the effect of
scaffolding self-explanation prompts.

In both experiments, probability theory was choasrthe learning domain (cf. section
1.3). Furthermore, we used very similar learningl aesting materials — making across-
experiment comparisons possible. As learning ouespnprocedural knowledge (problem-
solving performance) and conceptual knowledge (kedge about the rationale of a solution
procedure) were assessed (for more informatiorherigarning outcome measures please see
section 4.5.3 and 5.5.3).

Overall, this dissertation seeks to establish waks (i.e., to determine which features
foster learning), to explain how it works (i.e.,aiyzing the learning processes), and to
consider where and for whom it works (i.e., analgzihe effects on different learning
outcomes and of different participants).

In the following, the main research questions &f thssertation are elaborated:

1. To what extent do open and scaffolding self-explanation prompts as help
procedures for integrating and understanding multiple representations foster
high-quality self-explanations as well as conceptual and procedural knowledge?

The quality of self-explanations is a major deteranit of learned contents from studying
worked-out examples (Roy & Chi, 2005). However, tntearners’ self-explanations on
worked-out examples are far from being optimal (®ed997). This suggests that self-
explaining has to be instructionally supported bgngpting (Renkl, 2005). However, even
when prompted, the quality of self-explanations agrs variable indicating that it is difficult
for some learners to engage in this activity (RoZRgi). The latter was also confirmed by an
own pilot study in which the experimental materiaf€Experiment 1 were used. In this pilot
study, we analyzed the effects of open self-expiangprompts that consisted of questions on

the interrelations between the tree-diagram andatiitbmetical equation as well as their
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relations to the domain. It turned out that therfees N = 6) had severe difficulties in
answering them. Oftentimes they just did not kntw &answer. Particularly, they were not
able to match important relations between the tegreasentations when they received open
self-explanation prompts. Specifically, they hadese difficulties in making use of the tree
diagram for understanding the multiplication rultaese deficits in the self-explanations can
lead to incomplete or incorrect knowledge, whiaf,the worst case, can severely impede
further learning. Thus, there is evidence that sdewners may profit from stronger
instructional support than open self-explanatioangts are able to provide. Prompts that
include some form of scaffolding are a promisirgrtatg point. Consequently, as a first step
it was necessary to develop and experimentallyineBxperiment 1 a&caffolding-prompting
procedure to optimize self-explanations on relaioluded in the multiple representations.
Thereby, deep-level conceptual knowledge with aisoan understanding should be fostered.
In sum, Experiment 1 was conducted to test theceffef using open self-explanation
prompts and scaffolding self-explanation promptsorder to foster learning from multi-

representational worked-out examples.

2. Do multiple representations foster high-quality self-explanations as well as
conceptual and procedural knowledge, and do instructional support measures on
integrating and under standing multiple representations (i.e., integration help and
scaffolding self-explanation prompts) have additive effects?

Multiple representations can provide unique besefiben learners are trying to gain a
deep understanding (Ainsworth, in press). Regrigttabany studies have shown that this
promise is not always achieved. Often, learnersoaegwhelmed with the complex demands
of integrating and understanding multiple represgos. This suggests that learners might
profit from learning with multiple representatiotosa larger extent when instructional support

measures that reduce load which is not relateddoesses of learning (cf. Ayres & Sweller,
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2005) and increase learning-related processingeram@oyed. For reducing load that is not
related to processes of learning, an integratidp Wweh a combined color-flashing procedure
(cf. Jeung et al., 1997; Kalyuga et al., 1999) waduded in the worked-out solutions to
facilitate the mapping between representationss@ttion 2 and section 5.5.1). To increase
learning-related processing, scaffolding self-empteons prompts on integrating and
understanding the multiple representations werdemented (cf. section 2 and section 5.5.1).
In sum, in Experiment 2, the effects of multi-reggetational vs. mono-representational
solutions, of an integration help, and of scaffotdiself-explanation prompts on the
understanding of probability theory (specific tapomplex events) were investigated.

The findings of Experiment 1 were taken up insadar scaffolding self-explanation
prompts which proved to be effective with respectonceptual and procedural knowledge

were implemented in Experiment 2.
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4. Experiment 1. Scaffolds for Self-Explanation Lead to

M eaningful Learning

Recently, Roy and Chi (2005) suggested on the lodsise-analysis of previous studies
that self-explanations are especially suited taefosearning from multi-representational
resources when different information formats hawebé integrated. Experiment 1 of this
dissertation takes up the assumption of Roy anda@thianalyzes the effects of different types

of self-explanation prompts when learning from natépresentational worked-out examples.

4.1 Learning with Multi-Representational Examples

As already mentioned, multiple representations aiten employed in order to foster
understanding. By combining different representetiovith different properties, learners are
not limited by the strengths and weaknesses oparigcular representation (cf. Ainsworth, in
press; Ainsworth, Bibby, & Wood, 2002). Furthermoiteis expected that if learners are
provided with a rich source of different represéntes of a domain, they build references
across these representations (Ainsworth, in press).

According to a functional taxonomy of Ainsworth (ness), multiple representations are
provided for three main purposes: (1) to suppdfedint ideas and processes, (2) to constrain
representations, and (3) to promote a deeper uadeiag (for more detailed explanations
see section 2). The last aspect was the focusqgirésent study.

A major problem in employing multiple representatiofor learning is that often the
expected learning outcomes do not occur (e.g.odg &t al., 1998). This is due to the fact
that learners are faced with complex learning delsavhen they are presented with a novel

multi-representational system (Ainsworth, in pres®articularly, learners experience
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difficulties to learn how the representations relat each other. Often they only concentrate
on one type of representation or fail to link diéfet representations to each other. As a result,
the positive effects that were intended by the afsaultiple representations do not occur to
the extent expected (e.g., Ainsworth et al., 1998).

On the one hand, multiple representations offerqumi possibilities of fostering
understanding. On the other hand, they impose deghands on the learners. What could be a
sensible solution?

One step towards a solution to the problem thattiptel representations can impose
cognitive overload may be to use a learning appredtch reduces demands on the learners
(cf. section 1.2). One such effective learning rodtis learning from worked-out examples
(for a detailed description of this learning metlssk section 1.2). This learning method’s
reduction in cognitive load (e.g., Renkl, 2005; 8&re 2005; Sweller et al., 1998) allows for
an opportunity to use this free cognitive capaéily integrating and deeply understanding
multiple representations (cf. also Schuh, GergtScheiter, 2005).

As already explained in section 1.2, worked-out ngxas consist of a problem
formulation, solution steps, and the final solutitself (cf. Figure 1 in section 2). Learning
from worked-out examples is a very effective methadinitial cognitive skill acquisition in
well-structured domains such as mathematics (favanview, see Atkinson, Derry, Renkl, &
Wortham, 2000; Renkl, 2005) because the learnees usmburdened from independent
problem-solving. Thereby — in terms of the cogmitiload theory (cf. section 1.2) —
extraneous load (load not directly relevant torleag) is reduced (cf. Paas, Renkl, & Sweller,
2003; Renkl, 2005; Sweller, 2005). In fact, varioesearchers suggest that only when
learning materials do not impose too high cognilvad, learners can engage in resource-
demanding activities such as self-explanation terrelating multiple representations (e.g.,
Mayer, Heiser, & Lonn, 2001; Moreno & Mayer, 1998hereby, the learners can concentrate

on understanding the solution (which can be preskimt a multi-representational format) and
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the underlying principles. Thugermane loadload imposed by processes aimed at acquiring

understanding) is enhanced.

4.2 Self-Explaining Wor ked-Out Examples

It is nevertheless important to note that the egmplent of worked-out examples does
not necessarily lead to an enhancement of gernzemt In fact, the quality of learning
processes and learning outcomes strongly dependtheorearners’ self-explanation. As
mentioned in 1.2, self-explanations are explanatigovided by learners and mainly directed
to themselves (Renkl, 2005). They contain infororatthat is not directly given in the
learning materials and that refer to solution staps the reasons for them. The classical study
on self-explanations of Chi and colleagues (Chalet1989) analyzed individual differences
with respect to how intensively learners self-expmd the solution steps of worked-out
examples (from the domain of physics). They foumat tearners who explained the worked-
out examples more actively to themselves learnee: niRenkl (1997) showed that even when
the study time was held constant, self-explanatictivity was related to learning outcomes.
Thus, the depth to which learners engage in sglfagation is a significant predictor of the
learners’ ability to develop deep meaningful untarding of the material studied (Roy &
Chi, 2005).

The role that self-explanation can play in mulfpesentational understanding has also
been considered (cf. Roy & Chi, 2005). Aleven anded#inger (2000) argue that self-
explanations prove particularly beneficial if thdyelp to integrate visual and verbal
knowledge. Self-explaining helps these learnerssti@ngthen their verbal declarative
knowledge and integrate it with visual knowledgangworth & Loizou, 2003). However,
learners show clear individual differences in pesteg worked-out examples. Most learners

do not actively self-explain worked-out exampldgttis, they do not productively use their



30 EXPERIMENT 1

free cognitive capacity for germane load (RenkB7)9 This suggests that self-explaining has
to be instructionally supported (Renkl, 2005) bykimg the link between representations
salient (e.g., by an integrated format or by seigcthe same color for corresponding parts in
different representations) and by prompting sefitanations.

In sum, the quality of self-explanations is a majeterminant of learned contents from
studying worked-out examples. As many learnersatsspontaneously engage in productive

self-explanation activities, they have to be supgzbm this respect.

4.3 Instructional Support for Self-Explaining

Chi, de Leeuw, Chiu, and Lavancher (1994) found #pontaneous self-explanations
during worked-out example study were not as effectas self-explanations that were
enhanced by prompting (see also Renkl, Stark, Gydb®andl, 1998). Prompts are requests
that require the learners to process the to-bedehcontents in a specific way (Renkl, 2005;
cf. also Berthold et al.,, 2006). They elicit setptanation activities that the learners are
capable of but do not show unpremeditated (Presglay,, 1992). In order to account for the
prompted self-explanation effect, it is necessarymiake the assumption that learners are
often not aware of gaps in their knowledge, untbey are explicitly prompted to reflect on
their understanding (Chi, 2000). Thereby, they-d&lfjnose their knowledge gaps, and these
gaps can be filled in by the learner, if there newgh support in the learning environment.
Thus, through prompting, the learners are encodrameduce the omitted information.

Learners benefit by self-explanation prompts presithy humans (Chi et al., 1994) and
by computers (Aleven & Koedinger, 2002). AtkinsdRenkl, et al. (2003) showed that
prompting principle-based self-explanations in ampater-based learning environment
providing worked-out examples led to favorable m&@g outcomes in terms of performance

on similar problems and novel problems in the donafi probability. They requested the
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learners to select the probability principle ungied a solution step from a list at each
worked-out step. After selecting a principle, tloerect one was displayed so that the learners
received feedback. Further evidence for the pasigffects of self-explanation prompting
when learning from computer-based worked-out exammlere provided, for example, by
Conati and VanLehn (2000) as well as by SchwormRikl (2006a, b). Thus, it is sensible
to design prompts that foster self-explanationsrioter to ensure that the free capacity that is
available for studying multi-representational ex#msps effectively used for integrating and
understanding representations.

However, even if prompted, the use of high-quadgyf-explanations remains variable,
indicating that it is difficult for some learners engage in this activity (Chi et al., 1989;
Renkl, 2002; Roy & Chi, 2005). An own pilot studgf.( section 3) confirmed these
difficulties of the learners. In this pilot studye analyzed the effects of open self-explanation
prompts (open questions inducing self-explanatieng,, “Why do you calculate the total
acceptable outcomes by multiplying?”) with the expental materials that we used in the
present study. It turned out that the learnersdeagre difficulties in answering the open self-
explanation prompts. Oftentimes the learners jigcshdt know the answer.

Thus, relying only on self-explanations has seveliashdvantages — even when self-
explaining is elicited by prompts. The quality dfet self-explanations elicited by self-
explanation prompts is in many cases far from opitiBometimes the learner is not able to
self-explain a specific solution step (cf. piloudy). Furthermore self-explanations can be
fragmented (Roy & Chi, 2005). Finally, sometimes tearners provide only partially correct
or even incorrect self-explanations (Renkl, 2002)ese deficits in the self-explanations can
lead to incomplete or incorrect knowledge thatyatst, can severely impede further learning.
Thus, there is evidence that some learners mayt fnai stronger instructional support than

open self-explanation prompts are able to provifieRoy & Chi).
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Prompts that include some form of scaffolding aneremising starting point. Collins,
Brown, and Newman (1989) refer to scaffolding @sijgport for the learners that relieve them
of parts of an overall task that the learners cagabmanage (e.g., explaining difficult parts
of a worked-out example). According to Vygotskigpeoaches, scaffolding is related to the
zone of proximal development (Vygotsky, 1978). Thisthe region of activity in which
learners can perform successfully given the aid sfipporting context. Thus, it is sensible to
support learners by scaffolding on knowledge carsion that would be out of reach for the
learners without assistance. The intention is, hawneto hand over responsibility to the
learners as soon as possible. The latter implfasliag process which consists of the gradual
removal of support until students are working agirtiown.

Yet, previous studies on various scaffolding prared in the context of self-
explanations provided mixed results. In a qualastudy, Chi (1996) demonstrated that a
tutor’s actions of knowledge co-construction — utthg also self-explanations of the tutee —
resulted in tutees' deep understanding. Hilbehw®em, and Renkl (2004) tried to foster
learning either by self-explanation prompts or byrecedure that changed during the course
of learning from instructional explanations to sefplanation prompts. However, the
transition from instructional explanations to seXplanation prompts was equally effective as
giving only self-explanation prompts. Thus, consting an effective scaffolding method is
not a trivial task. Nevertheless, there are expemis that successfully employed self-
explanation prompts that included scaffolding suppoform of menus providing "building
blocks" of self-explanations (Aleven & KoedingerQ(2; Conati & VanLehn, 2000).
However, theses studies did not experimentally @mnglifferent types of self-explanations

prompts (e.g., with and without scaffolds).
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4.4 Overview of Experiment 1 and Hypotheses

Against the background of the preceding discussiaan be argued that supporting self-
explanation activity by instructional procedurestsas prompting and scaffolding may bring
to bear the advantages of learning with multipfgesentations. Based on the assumption that
scaffolding supports knowledge construction thatuldobe out of reach for the learners
without assistance, scaffolding self-explanatioongpts may be especially effective with
respect to high-quality self-explanations and |legyoutcomes.

In the present experiment, we investigated thectffef using open self-explanation
prompts (open questions that induce self-explangficand scaffolding self-explanation
prompts (first fill-in-the-blank self-explanationen open questions). Probability theory was
chosen as the learning domaiArocedural knowledgeand conceptual knowledgevere
assessed as learning outcomes. Procedural knowledfgred to problem-solving
performance. Conceptual knowledge referred to kadge about the rationale of a solution
procedure (i.e., why is a solution procedure aplpirethis way). Specifically, the following
hypotheses were tested:

1. Self-explanation prompts (scaffolding and ops}ter high-quality self-explanations
on multi-representational examples.

2. Scaffolding self-explanation prompts have addai effects on high-quality self-
explanations when compared to open self-explangtiompts.

3. Self-explanation prompts (scaffolding and odesjer procedural knowledge acquired
from multi-representational examples.

4. Scaffolding self-explanation prompts have addai effects on procedural knowledge
when compared to open self-explanation prompts.

5. Self-explanation prompts (scaffolding and ogesjer conceptual knowledge acquired

from multi-representational examples.
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6. Scaffolding self-explanation prompts have adddi effects on conceptual knowledge
when compared to open self-explanation prompts.

7. The (potential) effects on procedural knowledged conceptual knowledge are
mediated by the type of self-explanations.

Furthermore, a focus of our learning environmentswan understanding the
multiplication rule in probability theory. Thus, weere especially interested in factors which

enhance the conceptual understanding of the makipin rule.

45 Methods

In the following the sample and design of Experimkmre presented. Furthermore, the

procedure and the instruments are introduced.

4.5.1 Sample and Design

The participants of this study were 42 female a@dnfale psychology students at the
University of Freiburg, Germany. The mean age wasia25 yearsM = 25.02,SD = 6.12).
The participants were randomly assigned to onehefthree conditions of a one-factorial
experimental design: “No self-explanation prompisi’ = 20), “open self-explanation
prompts” o = 22), and “scaffolding self-explanation prompfs’= 20).

In a computer-based learning environment (for aitbet description see section 2), all
learners studied four pairs of isomorphic worked-examples (i.e., eight examples in total).
The worked-out examples were presented with mefirgsentational solution procedures: a
pictorial, tree-like solution and an arithmeticalligion (see Figure 1 in section 2). All
learners were supported in integrating the inforomafrom the tree (e.g., the ramifications)
with the respective arithmetical information (e.ghe multiplication signs). This was

accomplished by an integration help with a combifladhing-color-coding procedure (cf.
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section 2). Additionally, participants of the coimai scaffolding self-explanation prompts
received self-explanations that consisted of gaestie.g., “Why do you calculate the total
acceptable outcomes by multiplying?”). In the firgorked-out example of each pair of
isomorphic examples, the answers were providedha form of fill-in-the-blank self-

explanations (e.g., “There are ... times ... braschThus, all possible outcomes are
included.”). In following isomorphic examples thisupport was faded out, and the
participants received open self-explanation prompise answers had to be typed into
corresponding boxes. In the condition open sellangtion prompts, the learners were
provided with open self-explanation prompts onlyg(e open answer to “Why do you
calculate the total acceptable outcomes by multigly’’). The condition no self-explanation
prompts (control condition) included no additiosalpport; the learners were only provided

with a text box for note-taking.

4.5.2 Procedure

The experiment was conducted in individual sessibirst, the participants were asked
to fill out a demographic questionnaire. Afterwartse learners worked on a pretest. Next,
they entered the computer-based learning envirohareh worked individually in front of a
computer. In order to provide or reactivate basiowdedge that allowed the participants to
understand the following worked-out examples, atructional text on the basic principles of
probability was provided. Afterwards, the partigipa studied eight worked-out examples.
During this phase, the experimental manipulatiors wealized, that is, the participants were
provided with the scaffolding self-explanation pfuts) open self-explanation prompts, or no
self-explanation prompts. Finally, the participantsnpleted a post-test on procedural and
conceptual knowledge.

The experiment lasted approximately two hoduis<128.63 minutesSD = 31.30). The

learning time (i.e., time spent on the worked-oxdireples) was significantly higher in the
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conditions with self-explanation prompt&0) = 5.65 p <.001 (Scaffolding self-explanation
prompts:M = 73.80 minutes$SD = 20.00; Open self-explanation prompés= 79.41 minutes,
SD = 21.62; No self-explanation prompt8 = 46.25 minutesSD = 17.68). The two
conditions with self-explanation prompts did najrsficantly differ with respect to learning
time (F < 1). The learning time was not, however, sigaffity related to the two learning
outcome measures= .12 between learning time and procedural knogded= .17 between
learning time and conceptual knowledge. Thus, dréable learning time was not included in

further statistical analyses.

4.5.3 Instruments

Pretest: Assessment of prior knowled§yeshort pretest on complex events containing six
problems examined the topic-specific prior knowkedy the participants. An example for a
pretest item is: “Two coins are tossed. Afterwargig;h coin lands heads or tails. What is the
probability that one coin lands heads and the otimer tails?” The maximum score for the
pretest was six points.

Self-explanations: Assessment of learning procedsesll conditions, the written
responses to the prompts were analyzed in detailSéhworm and Renkl (2006a) have
shown, the quality of written self-explanationsasgood indicator of the quality of the
learning processes. The protocols were thoroughlyméned for content segments that
corresponded to the following high-quality self-laqmation categories (Roy & Chi, 2005).

(a) Principle-based self-explanationA. learner assigns meaning to a solution step by
identifying the underlying domain principles (e.grder relevant, with replacement). This
activity fosters a principle-based understandinga@ition procedures (cf. Renkl, 2005). The
number of times that participants referred to thagiples of the topic complex events was
counted. However, if a principle was merely mergnvithout any elaboration (e.g., “order

relevant”), this category was not scored. Theretbdae some elaboration of a principle (e.g.,
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“the order is relevant because it does matter irchviorder you type in the numbers of a
PIN”). This category corresponds to the Chi etsg]1'989) codings of the learners’ references
to Newton'’s Laws (the underlying domain principieshat study).

(b) Rationale-based self-explanationBhis category did not directly correspond to
anything in previous studies. It referred to hidgkspslity self-explanations about the
rationale of a principle. Thus, rationale-based-egplanations exceed principle-based self-
explanations by giving reasons why the principlassit is. Hence, for rationale-based self-
explanations it was not enough for example, tcestdty one has to multiply in the sense of
correct application conditions of a principle (e‘tpecause it is AND”); the learners also had
to statewhy one has to multiply to provide a rationale of {henciple itself — typically
contextualized in reference to a specific exampleationale-based self-explanation on the
open prompt “Why do you calculate the total acdejptautcomes by multiplying?” could be:
“Because for the denominator there are tiveesfour branches. Thus, each of the first five
branches of the tree diagram forks out in fourbfertbranches because each of the first five
events can occur in combination with one of ther fmmaining events.” To provide such a
self-explanation it was helpful to integrate theltiplication sign of the equation with the
ramifications of the tree diagram. In sum, ratieabhsed self-explanations in our research
typically demanded reasoning about why a certaptiegble principle has to be applied.

The coding categories were distinct. In the scdif self-explanation prompts
condition the learners filled in the scaffolds hetfirst worked-out example of each pair
whereas the learners of the other two conditiorssvared open self-explanation prompts or
just took notes. The statistical analyses in thasuRe section refer only to the written
responses to the prompts or the annotations irtetkieboxes of every second isomorphic
example in order to assure comparability betweemnlitions (in any case empty boxes had to

be filled in).
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The written self-explanations of six participant®res coded by a student research
assistant and the author of this dissertationrdratier reliability with respect to assigning the
protocol segments to the coding categories was geog (Cohen’s Kappa .88). In case of
divergence, the author of this dissertation re-earath the protocols and made the final
decision. As the inter-rater reliability was veryogl, the rest of the protocols were only coded
by the author of this dissertation.

Post-test: Assessment of learning outcormée. learning outcomes were measured by a
post-test that contained 14 problems. These prablemre not identical to the pretest
problems. Most of these post-test problems weresrddficult than the pretest items. Seven
post-test problems assessed procedural knowlednensproblems required conceptual
knowledge.

(1) Procedural knowledge (Problem-solving performan The procedural knowledge
problems referred to actions or manipulations #&t valid within a domain (de Jong &
Ferguson-Hessler, 1996). An example would be thdtiphoation of two fractions to
calculate the probability of a complex event. Teasegory included four near transfer items
(same structure as the worked-out examples prekdotelearning but different surface
features, such as the cover story) and three daster items (different surface features and
also different structures, which means that a nredi$olution procedure had to be found). An
example of a near transfer item is “Bicycle numloeks usually have four digits. What is the
probability that one guesses the right digit seqaeon the first guess?” In each task, 0.5
points could be achieved if the numerator of thieitsm was correct and 0.5 points if the
denominator was correct. These scores were sumrpetb w@a total score of procedural
knowledge. Thus, a maximum score of seven poini&idee achieved in this category.

(2) Conceptual knowledg€onceptual knowledge problems referred to knowledgmit
facts, concepts, and principles that apply withimlanain (de Jong & Ferguson-Hessler,

1996). We focused especially on understanding-whgwhedge about the rationale of a
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solution procedure, that is, why the solution pthoes are as they are. Thus, in particular, it
includes understanding “what is behind the solugpwacedure.” This category contained
seven open questions which required written expiams on conceptual knowledge of
principles presented in the learning phase. Fomei@, the learners were to explauy the
multiplication rule has to be applied (e.g., “Whye dhe two fractions multiplied?”). As the
rationale for the multiplication rule can be figdreut relatively easily when the pictorial and
the arithmetical representations are integratad,pbst-test measure also assessed the quality
of representation integration. Two independentrsateeho were blind to the experimental
conditions, scored the open answers by using air@-pating scale ranging from Ing
conceptual understandipgto 6 (very clear conceptual understand)ngA very clear
conceptual understanding was indicated by a coemsiver with a high degree of reasoning

and elaboration. Inter-rater reliability was vegod (intra-class coefficient .90).

4.6 Results

Table 1 presents the means and standard devidtiotise three experimental groups on
the pretest, on principle-based self-explanatiomkrationale-based self-explanations, as well
as on procedural and conceptual knowledge. Additipnunderstanding of the multiplication
rule (which was part of the conceptual knowledgeyeported. The measures on learning
outcomes were subjected to a priori contrastsdbatsponded to the hypotheses (i.e., one-
tailed t tests). According to the recommendations of Rdsdrdand Rosnow (1985; see also
Rosenthal, Rosnow, & Rubin, 2000), we refrainednfreeporting overall ANOVA results
(except for the students’ topic-specific prior kdedge). Of particular interest were contrasts
comparing the (aggregated) self-explanation growjik the no-prompts group (control
group) and contrasts comparing the scaffolding-egbianation group with the open self-

explanation group. The latter accounted for add#ioeffects of the scaffolding self-
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explanation group when compared with the open esgifanation group. An alpha-level of
.05 was used for all statistical analyses. As dacefize measure, we usdd- qualifying
values of about .20 as weak effect, values of alifais medium effect, and values of about
.80 or bigger as large effect (cf. Cohen, 1988;285—287).

With respect to the students’ topic-specific primowledge, an ANOVA revealed no
significant differencesk- < 1. Hence, there was no a priori difference betwgroups with

respect to this important learning prerequisite.



Table 1

Means and Standard Deviations (in ParenthesesherPtetest, on the Self-Explanation Measures, anithe Learning Outcome Measures

Pretest Principle-based Rationale-based Procedural Conceptual Multiplication
explanations explanations knowledge  knowledge rule
No self-explanation prompts 2.35(1.86) 1.47 (2.80) .05 (.23) 3.63 (1.36) 2.58 (.77) 1.85 (.89)
Open self-explanation prompts 2.52 (1.69) 6.556R.7 2.50 (3.39) 4.41 (1.05) 2.98 (.87) 2.00 (1.08)

Scaffolding self-explanation prompts  2.30 (1.41) 757(2.38) 11.20 (7.57) 4.55 (1.20) 3.63 (1.02) I56B5)
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4.6.1 Effects of Self-Explanation Promptson Self-Explanations

Descriptively (cf. Table 1), higher means for pipte-based self-explanations emerged
in the groups with self-explanations prompts (sudffig self-explanation prompts and open
self-explanation prompts). As mentioned abovegst this difference, we aggregated the two
groups with self-explanation prompts and compahnednt with the no-prompts group (control
group). At test yielded a significant and very strong diffexerfor principle-based self-
explanations in favor of the self-explanation présnponditions{(59) = 7.63,p < .001,d =
2.08 (due to technical problems, a process datdsmte participant in the condition with no
prompts was lost. Thus, the degrees of freedomredaced by one in the corresponding
analyses). Hence, the self-explanation promptstetdicsignificantly more principle-based
self-explanations when compared with the no-promgiadition. At test on potential
additional effects of scaffolding self-explanatimmmpts on principle-based self-explanations
when compared to open self-explanation promptsdéib reach statistical significan¢&}0)
= 1.51,p = .070. Thus, the two conditions with self-expl@ma prompts did not significantly
differ in their principle-based self-explanatioria. summary, scaffolding and open self-
explanation prompts fostered such principle-baselfiexplanations. Yet, the two self-
explanation prompts groups did not differ in trespect.

With respect to rationale-based self-explanations, obtained descriptively higher
means in the groups with self-explanations prortgtaffolding self-explanation prompts and
open self-explanation prompts) (cf. Table 1).tAest revealed a significant and strong
difference for rationale-based self-explanationgavor of the (aggregated) self-explanation
prompts conditiong(41) = 5.93p < .001,d = 1.29 { test for unequal variances).tAest on
additional effects of scaffolding self-explanatigrompts on rationale-based self-explanations
yielded a significant and strong effect in favortbé scaffolding self-explanation prompts,

t(26) = 4.73,p < .001,d =.1.48 { test for unequal variances) when compared to cedn
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explanation prompts. Thus, scaffolding self-exptanma prompts had additional effects on
rationale-based self-explanations in comparison ofmen self-explanation prompts. In
summary, with respect to rationale-based self-ewgilans, scaffolding and open self-
explanation prompts were effective. Evidently, gatarly scaffolding self-explanation

prompts elicited this type of self-explanations.

4.6.2 Effects of Self-Explanation Prompts on L earning Outcomes

As Table 1 shows, we obtained higher means forguho@l knowledge in the groups
with self-explanations prompts (scaffolding selpEnation prompts and open self-
explanation prompts). To test this difference, thggregated) groups with self-explanation
prompts were compared to the no-prompts group Kgbgtoup). At test yielded a significant
and medium to strong difference for procedural kieolge in favor of the self-explanation
prompts conditiong(60) = 2.62p = .005,d = .68. Hence, participants who had received self-
explanation prompts performed significantly better procedural knowledge than those
learners who had received no such prompts.

A t test on additional effects of scaffolding self-Exm@tion prompts on procedural
knowledge, when compared to open self-explanatimmpts, failed to reach statistical
significance{(40) = .41,p = .688. Thus, the two conditions with self-explaoa prompts did
not differ with respect to procedural knowledge. sinmmary, with respect to procedural
knowledge, scaffolding and open self-explanatioangts fostered procedural knowledge.
Yet, the two self-explanation prompts groups didditier in this respect.

With respect to conceptual knowledge, the deswegpti highest mean was obtained in
the scaffolding self-explanation prompts conditiémllowed by the mean of the open self-
explanation prompts group. The lowest mean wasatedefor the no-prompts group (cf.
Table 1). At test comparing the groups with self-explanaticongpts against the no-prompts

group (control group) yielded a significant andety effect,t(60) = 2.84,p = .003,d = .80.
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The participants of the self-explanation promptsdittons outperformed their counterparts of
the no-prompts condition with respect to conceptrawledge. At test contrasting the
scaffolding self-explanation prompts group with tbeen self-explanation prompts group
revealed a significant and medium to strong effi€4Q) = 2.23p = .016,d = .68, in favor of
the first group. Thus, scaffolding self-explanatigmompts had additional effects on
conceptual knowledge in comparison to open selfaggiion prompts.

A special focus of our learning environment wasutalerstandvhy the multiplication
rule has to be applied. This type of knowledge atgbcates to what extent the different
representations were integrated because it caryhbed understood by studying just one
representation. Therefore, we tested whether ddaftp and open self-explanation prompts
fostered understanding of the multiplication ridescriptively, we obtained the highest mean
in the scaffolding self-explanation prompts coratiti whereas the means of the open self-
explanation prompts and no-prompts conditions wetfatively low (cf. Table 1). A test,
which tested whether the groups with self-explamaprompts outperformed the no-prompts
group, revealed a significant and medium to streffgct,t(58) = 2.85p = .003,d = .70 € test
for unequal variances). Thus, the participanthefdonditions with self-explanation prompts
outperformed their counterparts of the no-promptsdd@ion with respect to understanding the
multiplication rule. At test on the question of whether scaffolding sefftamation prompts
fostered understanding of the multiplication rulereeffectively than open self-explanation
prompts yielded a significant and strong effe32) = 3.60,p = .001,d = 1.13 { test for
unequal variances). Hence, the overall pattern efopmance indicated that above all
scaffolding self-explanation prompts fostered titegration of multiple representations.

In summary, self-explanation prompts on multi-reprgational examples fostered
principle-based self-explanations and rationaleebaself-explanations as well as procedural
and conceptual knowledge. With respect to prinefj@sed self-explanations and to

procedural knowledge, it did not make a differemdeether the learners were provided with
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scaffolding or with open self-explanation promg#awever, with respect to rationale-based
self-explanations and conceptual knowledge (esjwecienderstanding of the multiplication
rule), the overall effect of the self-explanationoppts can be mainly ascribed to the

scaffolding self-explanation condition.

4.6.3 Mediation of the L ear ning Outcomes by Self-Explanations

Having established that the prompts conditionsefest principle-based self-explanations
and procedural knowledge compared to the no-promptwdition (cf. section 4.6.1 and
section 4.6.2), the question arises whether theciple-based self-explanations mediated the
effects on procedural knowledge. Furthermore, t&#faslding prompts version in particular
elicited rationale-based self-explanati@msl fostered conceptual knowledge (cf. section 4.6.1
and section 4.6.2). This finding suggests that eptwl knowledge was fostereda
rationale-based self-explanations. Posed as qussti€an the effects on procedural
knowledge be explained by an increase of prindigalsed self-explanations? Can the effects
on conceptual knowledge be explained by an increésationale-based self-explanations?
To answer these questions, we conducted two mediatialyses.

To test whether principle-based self-explanatiordeeédmediatedthe influence of the
independent variablgrompts (self-explanation prompts vs. no prompts) on pdocal
knowledge, three regression equations were estilvetd tested for significance following
the procedures suggested by Baron and Kenny (1886)der to establish mediation, (1) the
independent variable (i.e., prompts) must influettte dependent variable (i.e., procedural
knowledge), (2) the independent variable (i.e.pgts) must influence the potential mediator
(i.e., principle-based self-explanations), andtf® influence of the independent variable on
the dependent variable should be significantly ceduwhen the mediator is included as an

additional predictor of the dependent variable.
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First, prompts accounted for 10% of the varianctheascores of procedural knowledge
(9% adjusted)F(1, 61) = 6.86p = .011. The second analysis demonstrated theeimlel of
the independent variable prompts on principle-basddexplanations-(1, 60) = 58.13p <
.001; it accounted for 50% of the variance in thagiple-based self-explanations. In the third
regression analysis, procedural knowledge was segokon the factor prompts and principle-
based self-explanations in a simultaneous multgdgession model. This regression equation
accounted for 17% of the variance (14% adjustE¢{D), 60) = 5.74p = .005. As expected,
principle-based self-explanations significantlygoted procedural knowledge, 3 = .3&0)
= 2.24,p = .029, whereas the influence of the factor pr@awpds no longer significant, 3 = -
.04,1(60) = -.23,p = .823. Following Baron and Kenny (1986), thist@at of results indicates
mediation. In order to directly test whether thedragon effect differed significantly from
zero, we used the procedure suggested by MacKi(2@bR; see also MacKinnon & Dwyer,
1993). This test procedure includes the computaiiomvo regression equations: Mediator =
a*Independent + errgrand Dependent =<*Independent +b*Mediator + erros. The
mediation effect is defined as the product of ggression weighta andb, that is, the effect
of the independent variable on the mediator mudithby the effect of the mediator on the
dependent variable when the independent varialderigolled. The statistical significance of
the mediation effect is determined as follows: a*b / sey, with sey, being the standard error
of the mediation effe*b, sq, = V(a2*[se]2+ b2*[se]?). In such an analysis, we obtained a
score of -2.14 that was significant on the 5% leVa&is finding indicated that the effect of the
prompts on procedural knowledge was significantigdrated by the number of principle-
based self-explanations. Thus, the prompts fostprededural knowledge because the self-
explanation prompts effectively supported the leesnin generating principle-based self-
explanations.

Furthermore, we tested if rationale-based selfangions mediated the influence of the

independent variablescaffolding prompts vs. open prompi® conceptual knowledge.
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Therefore, three further regression equations wstienated and tested for significance. The
first analysis demonstrated that the type of prenf{ptaffolding prompts vs. open prompts)
accounted for 11% of the variance in conceptuaitedge (9% adjustedl(1, 41) = 4.96p
=.032. A second analysis showed that the independgiable (scaffolding prompts vs. open
prompts) significantly influenced the potential nzdr (i.e., rationale-based self-
explanations). This regression equation accounte®7% of the variance (36% adjusted),
F(1, 41) = 23.84p < .001. Thirdly, the influence of the independeatiable (scaffolding
prompts vs. open prompts) on the dependent vari@aeceptual knowledge) was clearly
reduced when the mediator (rationale-based selbaations) was included as an additional
predictor of the dependent variable. This regressquation accounted for 28% of the
variance (24% adjustedf;(2, 41) = 7.44,p = .002. As expected, rationale-based self-
explanations significantly predicted conceptual wiealge, 3 = .52t(60) = 2.99,p = .005,
whereas the influence of the factor scaffoldingngpts vs. open prompts was no longer
significant, 3 = -.024(60) = -.103p = .919. In a mediation analysis according to Macidin
(2002), we obtained a score of -2.53 that was significant on the 1% levidlus, the
rationale-based self-explanations did in fact medibe impact of the scaffolding prompts on
conceptual knowledge. Conclusively, the scaffoldimgmpts fostered conceptual knowledge
because the scaffolding prompts effectively sumabthe learners in generating rationale-

based self-explanations.

4.7 Discussion

In summary, our study made five essential contigimgt to the problem of supporting
effective self-explanations during learning with ltrtepresentational examples: (a) Self-
explanation prompts (scaffolding and open) fostengple-based self-explanations and

rationale-based self-explanations. With respect ragionale-based self-explanations,
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scaffolding self-explanation prompts are especiealtigctive. (b) Self-explanation prompts
foster procedural and conceptual knowledge in mmaftfresentational learning. This result
adds to the growing body of evidence that shows hampting self-explanations is crucial
with respect to learning outcomes in example-bdsarhing. (c) With respect to fostering
principle-based self-explanations and proceduraiwkedge, it is equally effective to use
open or scaffolding self-explanation prompts. Hpleebased self-explanations are the crucial
mediator in fostering procedural knowledge. (d) W#spect to fostering rationale-based self-
explanations and conceptual knowledge, scaffoldielfrexplanation prompts are especially
effective. Rationale-based self-explanations medidahe effects on conceptual knowledge.
(e) Scaffolding self-explanations are particulargffective for integrating multiple
representations, as indicated by the understardafitige multiplication rule. This rule can be
understood by integrating the multiplication sigh tbhe arithmetical equations and the
ramifications of the tree diagram. Thus, our figimalso suggest that scaffolding prompts
particularly support the integration of multiplgoresentations.

The present findings confirm the assumption of Rayd Chi (2005) that self-
explanations are suited for integrating multiplpresentations and, thereby, foster learning
outcomes. In comparison to other procedures ofgraten help such as the use of an
integrated format, the employment of self-explamadi prompts have the advantage that they
go beyond the surface level with respect to thegration of different representations. They
require the learner to focus on tt@nceptuakorrespondences (cf. Seufert & Briinken, 2004),
such as the type of correspondence between thaphwaition sign in the arithmetical
equation and the ramification in the tree diagrarthe present learning environment.

However, the question arises as to why scaffoldel§explanation prompts in particular
were effective with respect to fostering rationbssed self-explanations and thereby
enhancing conceptual knowledge, whereas with rédpeprinciple-based self-explanations

and procedural knowledge, providing open self-exai@n prompts were sufficient.
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Conceptual understanding (e.g., understanding thkipiication rule) is more demanding
than gaining procedural knowledge — in particul&cduse such a type of conceptual
understanding is seldom addressed in mathematgsorie in school or at university.
Nevertheless, it is crucial for further learnindherlfinding that scaffolding self-explanation
prompts (as opposed to open self-explanation pr&mpere shown to be effective with
respect to the elicitation of rationale-based sgfflanations and conceptual knowledge may
be related to the zone of proximal development @fgky, 1978). The scaffolding self-
explanation prompts fostered the integration of tmeltiple representations, highly
demanding self-explanations, and the conceptuaénstahding that was all slightly out of
reach for learners without this assistance. Faante, most of the learners were not able to
self-explain the rationale of the multiplicatiorley even if they were prompted by open self-
explanation prompts. These prompts were only capabeliciting self-explanations that the
learners were capable of but spontaneously dicshotv — such as the principle-based self-
explanations. In contrast, the highly demandingonaie-based self-explanations could only
be elicited if in the initial worked-out exampleket fill-in-the-blank self-explanations
provided the learners with the pieces of informatihey needed to integrate and to
conceptually understand the multi-representatiena@mples (e.g., “There are ... times ...
branches. Thus, all possible outcomes are incltjdedonceptual understanding refers in
particular to a deep understanding of the rationafle(multi-representational) solution
procedures. Evidently, the scaffolds supported l&@eners in the troublesome process of
looking behind the multi-representational solutioAs a consequence, our findings suggest
that scaffolding self-explanation prompts shouldppevided if understanding the learning
contents is slightly out of reach for learners withassistance. We call this teeaffolding
self-explanation effeathich refers to the elicitation of high-qualitylfsexplanations and the

acquisition of deep understanding.
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Our findings suggest that scaffolding self-explératprompts have to be provided if
understanding the learning contents is slightlyafutach for learners without this assistance.
Yet, to diagnose the dimensions of the zone of iptak development is a difficult task
(Ainsworth et al., 1998). Nevertheless, we showddable to identify its lower boundary by
analyzing the learner’s unscaffolded performanceh\ttiis information, it should be possible
to construct scaffolding prompts on knowledge thatut of reach for the unsupported learner
and which therefore falls within the learner’s zarigoroximal development. In future studies,
learning environments with multiple representationsld be designed that include different
types of scaffolding self-explanation prompts faarners at different levels of skill
acquisition (cf. Conati & VanLehn, 2000). Furthemeoself-explanations could be diagnosed
online in order to provide an immediate and dynaadeptation of scaffolding procedures
(e.g., Aleven, Popescu, & Koedinger, 2001).

A last question that is raised refers to the gdizalality of the present results. We have
shown the use of (scaffolding) self-explanationstii@ integration of multiple representations
in the context of mathematics, a well-structuredrdéng domain. As self-explanation in
general (i.e., not specifically related to the gngion of different representations) has proven
to be fruitful in many domains (e.g., Roy & Chi,(@X), we conjecture that it is appropriate to
generalize the present findings across differaarnieg contents. Regardless, an empirical test

of this conjecture is necessary in future studies.
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5. Experiment 2. Multiple Representations, an Integration Help,
and Scaffolding Self-Explanation Prompts All Foster

Under standing

Multiple representations (e.g., an arithmeticalatmqun and a pictorial tree diagram) in
learning materials provide unique benefits whenrlegs are to gain a deep understanding.
Often, however, multiple representations do notl léa the expected results because the
(weaker) learners are cognitively overloaded, d®ay o not integrate the information from
the different representations (e.g., Moreno & May&99). Due to such problems, it seems
wise to instructionally support the integration amttlerstanding of multiple representations.
One support procedure is to design the learningemads in a way that helps the learners to
figure out which elements in different represewtadi correspond to each other (e.g., Renkl,
2005). Additionally, Roy and Chi (2005) argued thelf-explanations are especially suited to
foster learning when different information form#isve to be integrated (cf. chapter 4). The
present study took up these assumptions. We armhlime effects of mono- and multi-
representational solutions when learning from wdrkat examples and an integration help in
form of a flashing-color-coding procedure. Furthere the findings of Experiment 1 with
respect to effective self-explanation prompts weaken up insofar as we aimed at replicating

the effect of scaffolding self-explanation prompts.
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5.1 Learning with Multiple Representations

The following section contrasts an optimistic viewd a pessimistic view on learning

with multiple representations.

5.1.1 The Optimistic View

Multiple representations are often employed in ptdefoster understanding. Especially,
proponents of cognitive constructivism emphasize importance of using multiple
representations of concepts and information (Sptedtovich, Jacobson, & Coulson, 1995).
When new information is presented through more tba@ codality (i.e., representational
systems) and processed in a variety of ways, degrstructures become more complex and
contain rich associations. In their cognitive flakty theory, Spiro and his colleagues (e.g.,
Spiro & Jehng, 1990) argue that the ability to ¢ard and switch between multiple
representations is fundamental to successful legrriviayer (2005a) describes a theory of
multi-media learning, which states that learnemguae more knowledge when they receive
multiple representations.

What are the specific benefits of multiple repréatons? By combining different
representations with different properties, learnare not limited by the strengths and
weaknesses of one particular representation (clsworth, in press; Ainsworth et al., 2002).
Representing concepts or procedures in a multesgmtational format allows learners to
construct an understanding that prepares themrbiettetransfer, with each example and
representation adding connections and perspectiasothers miss (Sternberg & Frensch,
1993). Furthermore, teaching with more represemmatican facilitate and strengthen the
learning process by providing several mutually mifg sources of information (Kozma,
Russell, Jones, & Marx, 1996). Thus, one affordasfamultiple representations is to support

learners in active knowledge construction (Roy &,Q2005).



EXPERIMENT 2 53

It is expected that learners build references acdifferent representations of a domain
(Ainsworth, in press). Thus, the learners gain adewustanding not only how individual
representations operate and how they are embeddetiei domain but also how the
representations relate to each other. Howeverrdaerao benefit from multi-representational
learning materials, the learners must actively taosa conceptual knowledge representation
that relates and integrates different kinds of rimfation from diverse sources and codalities
into a coherent structure (Schnotz & Bannert, 2008 opportunity to construct such rich
integrated structures constitutes a unique corttabwf multiple representations to learning.
The learners can achieve insights that are difficuachieve with a single representation.

Many of the expected benefits of multiple repreagons result from their integration
and co-ordination. The ability to integrate differeepresentational formats is a characteristic
of expertise (e.g., Kozma, Chin, Russell, & Mar@0Q). According to Ainsworth (in press),
multiple representations can have three main fansti (1) to support different ideas and
processes, (2) to constrain representations, antb(Bromote a deeper understanding (for

detailed information see section 2). The latteeasfs focused in the present study.

5.1.2 The Pessimistic View

As already mentioned in section 4.1, a major problef employing multiple
representations is that often the expected leamirttgomes do not occur (e.g., de Jong et al.,
1998). This is due to the fact that learners acedawith complex learning demands when
confronted with multi-representational system (Amsth, in press): (a) They must learn the
format and operators of each representation, (lerstand the relation between each
representation and the domain it represents, anttgen how the representations relate to
each other. Particularly the latter demand is difti for learners. Frequently they just
concentrate on one type of representation orddihk different representations to each other

so that the intended positive effects do not ogeuy., Ainsworth et al., 1998). In addition,
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guiding learners to coordinate multiple represeémat has been found to be far from trivial
(de Jong et al., 1998).

For instance, Tarmizi and Sweller (1988) presentsners multi-representational
solutions (a graphical representation, e.g., a alegi triangle, and an arithmetical
representation, e.g., computation of an angle). Wthe two external representations were —
as usual — presented separately from each otheldeéinners had to devote many cognitive
resources in order to mentally integrate them. Deand imposed a heavy cognitive load
and hindered learning.

In sum, the optimistic stance suggests that legraith multiple representations offers
unique possibilities of fostering understandinge Tdessimistic stance suggests that multiple
representations impose (too) high demands on thendes. An important step toward the
solution of the problem that multiple representagican impose cognitive overload may be to

use a learning approach that reduces load (ciosett?).

5.2 Multiple Representations in Worked-Out Examples. Supporting the

Integration

One such method that is load-saving and nevertheliésctive is learning from worked-
out examples (Renkl, Gruber, Weber, Lerche, & Scheve2003; see also Paas & van Gog,
in press; Renkl, 2005; Sweller et al., 1998). lbyies opportunity to use free cognitive
capacity for integrating and understanding multipdpresentations (cf. also Schuh et al.,
2005).

As already explained in section 1.2 and section lédrning from worked-out examples
is a very effective method for initial cognitiveikkacquisition in well-structured domains
such as mathematics (cf. Atkinson et al., 2000, kR&®05) because the learners are relieved

from finding a solution on their own (cf. sectior2)l Thereby — in terms of the cognitive load
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theory — extraneous load (load not directly reléariearning) is reduced (cf. Paas, Renkl, et
al., 2003; Renkl, 2005).

Mayer and colleagues (e.g., Mayer et al., 2001;evlor& Mayer, 1999) argue that only
if the learning materials do not impose too higtramxeous cognitive load, learners are able to
engage in resource-demanding activity such aseselanations or interrelating multiple
representations. For instance, as previously adlimarmizi and Sweller (1988) presented
multi-representational problems from the domairgedbmetry that were to be solved in one
condition and worked-out examples in the other @@ In this case, they did not find the
usual advantage of worked-examples. Does this nteaihthere is nexample effectn
learning with multiple representations? Definitalgt. The authors explained this finding by
the fact that the two information sources (graphieay., a depicted triangle, and arithmetical,
e.g., computation of an angle) were not integrated] the learners had to devote many
cognitive resources in order to mentally relates¢hsources to each other which imposed a
heavy extraneous load. This phenomenon was lalbkedplit-attention effect (Ayres &
Sweller, 2005). Thereby, thesource-savin@ffect of learning from worked-out example was
countermanded. However, worked-out examples in vkhe multiple representations were
spatially integrated (integrated format) enhancearriing in comparison to conventional
problem solving and split-source examples. Thesdirigs were replicated by Ward and
Sweller (1990) for physics examples and by Mwangl &weller (1998) for examples of
mathematical word problems. By placing correspog@ispects of the representations next to
each other, cues for integration are available l@adners do not have to waste cognitive
processing by scanning around the page (Ayres &ll&wdlayer, 2005c). Besides physical
integration, color codes can reduce search efortsthus produce similar effects as spatial
contiguity (Folker, Ritter, & Sichelschmidt, 200%ung et al., 1997; Kalyuga et al., 1999).
Color provides orientation and reduces search geass thus leading to an enhanced

integration process (cf. Kalyuga et al.). Moreovesmputer-based learning environments
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offer the possibility of flashing in order to hefpudents build connections among multiple
representations (e.g., Mayer, 2005c). Therebydhenkr’s attention can be directed towards
the corresponding parts in the different represems. Techniques such as flashing and
color-coding are especially appropriate when eldmen one representation do not
correspond to certain, well-circumscribed partgha other representation; in this case no
spatial one-to-one allocation is possible (Ren@0%).

In a nutshell, it is important to avoid formatsttihr@guire learners to split their attention
between multiple representations that are diffidoltintegrate (Ayres & Sweller, 2005).
Instead, multi-representational solutions shouldcbebined with instructional techniques
such as integrated format, color-coding, or flaghiso that the mapping between
representations becomes easier. Thereby, the oe&zhfners to extensively engage in search
processes in the multiple representations is obdiédyres & Sweller; cf. Renkl, 2005: easy-
mapping principle). By reducing visual search pss&s, resources for productive learning
processes such as self-explanations are freed.eyethe learners can concentrate on
understanding the solution (which can be presentednulti-representational format) and the
underlying principles. Thus, germane load (Swetleal., 1998) (load imposed by processes

aimed to gain understanding) is enhanced.

5.3 Scaffolding Self-Explaining

As already explained in section 4.2, it is, howeuaportant to note that the employment
of — even well-designed — worked-out examples dussnecessarily lead to effective self-
explanations and learning: Learners show cleawviddal differences in processing worked-
out examples (for more detailed information on -egiblanations see section 4.2). This
suggests that self-explaining has to be instruatigrsupported (Renkl, 2005) by making the

link between representations salient (e.g., integraformat) and by prompting self-
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explanations (cf. section 4.3).

However, even when self-explanations are promgtezly quality is in many cases far
from being optimal (Chi et al., 1989; Renkl, 2002y & Chi, 2005). Sometimes the self-
explanations are only partially correct or evenomect (Renkl, 2002). This can lead to
incomplete or incorrect knowledge that can sevampede further learning.

In contrast, Chi (2000) assumes on the basis gfemtive empirical analyses that
incorrect self-explanations are harmless. Accordin@hi et al. (1989), generating incorrect
self-explanations can even create an opportunitycégnitive conflicts which lead to self-
explanation episodes resolving these conflicts\{(efaLehn, 1999: impasse-driven learning).
Although Conati and VanLehn (2000) believe, as @000), that even incorrect and
incomplete self-explanations can improve learnthgy argue that helping students generate
more correct self-explanations can extend theseflien

The instructional method of scaffolding offers ampising starting point to optimize self-
explanations (cf. section 4.3). In Experiment 1 (fapter 4), we compared the effects of
three conditions when self-explaining multi-repregsgional worked-out examples from the
domain of probability: scaffolding self-explanatioprompts (fill-in-the-blank self-
explanations and then open self-explanations), goempts (right from the beginning), and
no self-explanation prompts (Berthold & Renkl, 2R0Both types of self-explanation
prompts fostered procedural knowledge (problemisglperformance). However, conceptual
knowledge (knowledge about the rationale of a smbuprocedure) was particularly fostered
by scaffolding self-explanation prompts (fill-inefblank explanations). The latter effect was
mediated by self-explanations that do not onlytestasolution step to an underlying principle
but also explicate the rationale of the principlhus, for enhancing both procedural
knowledge and conceptual understanding, scaffoldieff-explanation prompts are best
provided. We took up this finding in this Experinieh and employed scaffolding self-

explanation prompts.
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5.4 Overview of Experiment 2, Hypotheses, and Resear ch Questions

Against the background of the preceding discussibncan be argued that the
employment of worked-out examples reduces extrameognitive load which enables the
learners to use "free" cognitive capacity for theegration and understanding of multiple
representations (cf. section 1.2). The free capawdy, in turn, bring to bear the advantages
of learning with multiple representations. This sldo be especially true when support
procedures such as an integration help or selfamgtion prompts are employed. In this
Experiment 2, the effects of multi-representatiorsal mono-representational solutions, of an
integration help in form of a flashing-color-codiqgocedure, and of scaffolding self-
explanation prompts (replication of Experiment h)learning probability were investigated
(specific topic: complex events). Conceptual knalgke (knowledge about the rationale of a
solution procedure) and procedural knowledge (@mwb$olving performance) were assessed
as learning outcomes. Specifically, we tested tleviing hypotheses:

1. Multi-representational examples foster concdptkaowledge and procedural
knowledge.

2. An integration help in form of a flashing-colooding procedure that is included in the
multi-representational examples foster conceptonaltedge and procedural knowledge.

3. Scaffolding self-explanation prompts foster aptoal knowledge and procedural
knowledge.

In addition, we addressed the following "two-sideelSearch questions.

4. To what extent do scaffolding self-explanatiosarppts actually foster different types
of self-explanations? Do the type of representali@xamples (multi- vs. mono) and the
integration help also influence self-explanatiotivaty?

5. Are the (potential) effects on conceptual knalgke and procedural knowledge

mediated by the type of self-explanations?
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6. Does the type of representational examples {fnwdt mono), an integration help, and

scaffolding self-explanation prompts influence dtiga load during learning?

5.5 Methods

In the following the sample and design of Experitn2rare presented. Afterwards, the

procedure and the instruments are introduced.

5.5.1 Sample and Design

The patrticipants of this study were 87 female aBdrle students from grades 10 and
11 of German gymnasiums (i.e., highest track in@eeman three-track system). The mean
age was 16.21 yearSD=.91).

In an experiment with eight conditions, four mompresentational (pictorial or
arithmetical representation) conditions and four Ithmmapresentational (pictorial and
arithmetical representation) conditions were immated (see Table 2): (1) “Pictorial
solutions / no self-explanation prompts”, (2) “pigal solutions / self-explanation prompts”,
(3) “arithmetical solutions / no self-explanatiorompts”, (4) “arithmetical solutions / self-
explanation prompts”, (5) “pictorial and arithmetisolutions / no integration help / no self-
explanation prompts”, (6) “pictorial and arithmeticsolutions / no integration help / self-
explanation prompts”, (7) “pictorial and arithmeticsolutions / integration help / no self-
explanation prompts”, (8) “pictorial and arithmeiticsolutions / integration help / self-
explanation prompts”. The four multi-representagioconditions constituted a 2x2 design -
Factor 1. integration help (with versus withoutgckor 2: self-explanation prompts (with

versus without). The participants were randomlygaesd to each of the eight conditions.
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Table 2

Design of the Experiment

Scaffolding self-explanation No self-explanation

prompts prompts
Pictorial solutions n=21 n=21
Arithmetical solutions n=21 n=22
Pictorial and arithmetical n=21 n=22
solutions / no integration help
Pictorial and arithmetical n=21 n=21

solutions / integration help

In a computer-based learning environment (for aitbet description see section 2), all
learners studied four pairs of isomorphic worked-examples (i.e., eight examples in total).
In the mono-representational conditions, a pictdree-diagram or an arithmetical equation
was presented. In the multi-representational candit both a pictorial tree diagram and an
arithmetical equation were provided in each exanfpée Figure 1). In two of the multi-
representational conditions, the learners were @@ in integrating the arithmetical
information (e.g., the multiplication signs) an@ ihformation from the tree diagram (e.g., the
ramifications) by an integration help.

Participants of the conditions with scaffolding fsetplanation prompts received
questions that should elicit self-explanations.(é¢\yhy do you calculate the total acceptable
outcomes by multiplying?”). In the first worked-oakample of each pair of isomorphic
examples, the answers were provided in form ofiriithe-blank explanations (e.g., “There

are ... times ... branches. Thus, all possibleaynés are included.”). In following isomorphic
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examples this support was faded out, and the paatits received open self-explanation
prompts. The answers had to be typed into correpgrboxes. The groups without prompts

were just provided a text box in order to take sote

5.5.2 Procedure

The experiment was conducted in group sessions.l&draeers worked individually in
front of a computer screen. First, the participaweye asked to fill out a demographic
qguestionnaire. Afterwards, the learners worked gmedest. Then, they entered the learning
environment. In order to provide or reactivate basiowledge that allowed the participants
to understand the following worked-out examplesiratructional text on basic principles of
probability was provided. Afterwards, the partigipa studied eight worked-out examples.
During this phase, the experimental manipulatios wealized. After every second worked-
out example, the participants were asked to ansieguestions on cognitive load. Finally,
the participants completed a post-test on procédmchconceptual knowledge.

The experiment lasted on average 151.97 8= 28.31). The learning time (i.e., time
spent on the worked-out examples) was approximataly hour M = 55.99 min,SD =
18.87). With respect to this learning time, we fdwignificant differences between the eight
experimental conditiong;(7, 169) = 10.55p < .001,1? = .31. Although learning time was
related to learning outcomes in a statisticallyngigant way, it accounted for very small
portions of variance of the learning outcomes @4.8r conceptual knowledge, 3 = 14,69)
=1.82,p =.071 and 3.3 % for procedural knowledge, 3 5 t@A®9) = - 2.60 p = .010).
Nevertheless, we used learning time as a covarniatases where it significantly (5 % level)

contributed to the learning outcomes in the respe&NCOVA models.
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5.5.3 Instruments

Pretest: Assessment of prior knowled@ée pretest on complex events with twelve
items examined the topic-specific prior knowled@ehe participants. It included four simple
items which assessed basic knowledge of probabiipry (e.g., “You play a game with a
dice, and it is your turn to throw. If you throwBayou win. What is the probability that you
will throw a 3?”). In addition, eight multiple-cha® items and calculation items were included
(e.g., “Your Latin teacher draws lots for two stoteof the Latin course (altogether 7
students) who are supposed to read aloud theislataon. Stupidly, you have copied it from
your friend. What is the probability that the twyou are allotted?”). The items were scored
by zero points (incorrect answer) or by one poaairiect answer). On the whole, 12 points
could be achieved. This sum was divided by the rarmnalb items (12) so that the test score
represented the percentage of items solved coyrectl

Self-explanations: Assessment of learning procedsesll experimental groups, the
written responses to the prompts or the annotationthe text boxes, respectively, were
analyzed. The quality of written self-explanatiaasa good indicator of the quality of the
learning processes (Schworm & Renkl, 2006a). Smak in Experiment 1, the protocols
were thoroughly examined for content segments toatesponded to the following high-
quality self-explanation categories (Roy & Chi, 3P0

(a) Principle-based self-explanationA. learner assigns meaning to a solution step by
identifying the underlying domain principles (e.grder relevant, with replacement). This
activity fosters a principle-based understandinga@ition procedures (cf. Renkl, 2005). The
number of times that participants referred to pples was counted. However, if a principle
was merely mentioned without any elaboration (¢ayder relevant”), this category was not
scored. There had to be some elaboration of aipkine.g., “the order is relevant because it

does matter in which order you type in the numioérg PIN”). This category corresponds to
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the Chi et al.’s (1989) category of references ®whdn’'s Laws (the underlying domain
principles in that study).

(b) Rationale-based self-explanatiofsis category was introduced in Experiment 1. It
referred to self-explanations about the rationafe ao principle. Rationale-based self-
explanations exceed principle-based self-explanatly giving reasons why the principle is
as it is. For that reason, for rationale-basedesgitanations it was, for example, not enough
to explain whyone has to multiply in the sense of the correctliegiion conditions of a
principle (e.g., “Because it is AND.”) but alsehy one has to multiply in the sense of
providing a rationale of the principle itself (elso section 4.5.3).

(c) Incorrect self-explanationsThis category was scored if the learner generated
incorrect self-explanation (e.g., misconcepts, gsioin of two principles, or wrong
elaboration of a principle).

The coding categories were distinct. In the coodgiwith scaffolding self-explanation
prompts the learners filled in the scaffolds in first worked-out example of each pair
whereas the learners of the conditions without tsrjust took notes. The statistical analyses
in the Results section refer only to the writtegp@nses to the prompts or the annotations in
the text boxes of every second isomorphic examplarder to assure comparability between
conditions (i.e., in all conditions empty boxes hade filled out in the second isomorphic
examples).

The written self-explanations of six participanteres coded by two student research
assistants and the author of this dissertatioperrter reliability with respect to assigning the
protocol segments to the coding categories was geogd (Cohen’s Kappa .88). In case of
divergence, the author of this dissertation re-emath the protocols and made the final
decision. As the inter-rater reliability was veryagl, the rest of the protocols were just coded
by one rater.

Due to technical problems, the process datasetsnoparticipants were lost (two from
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the groups arithmetical solutions / no self-exptenmaprompts and pictorial and arithmetical

solutions / no integration help / no self-explaoatiprompts respectively as well as one
dataset of each of the other groups). Thus, theedegof freedom are reduced by ten in the
analyses including self-explanations.

Cognitive load questionsAssessment of cognitive demandster every second
isomorphic example, the learners were asked to emsi questions on various aspect of
cognitive load on a 9-point rating scale (1 = loinsore, 9 = highest score). An example for
a cognitive load item is: “How difficult is it foyou to find the information you need in the
learning environment?” (cf. Paas, Tuovinen, Tabb&rsan Gerven, 2003). For the analyses
reported in the Results section, the scores ofithquestions were aggregated.

Post-test: Assessment of learning outcoriiég. post-test contained 23 problems. Most
of these problems were more difficult than the gseitems. All items were scored by zero
points (incorrect answer) or one point (correctvwaTy. The post-test assessed the following
knowledge types.

(1) Procedural knowledge (Problem-solving performan The procedural knowledge
problems referred to actions or manipulations #rat valid within a domain, for example,
multiplying two fractions to calculate the probatyilof a complex event (cf. de Jong &
Ferguson-Hessler, 1996). This category included dpen questions, 11 near transfer items
(same structure as the worked-out examples prekdotelearning but different surface
features, such as the cover story), and four tarster items (different surface features and
also different structure, which means that a mediolution procedure had to be found). An
example of an open question is: “The ball bath$k&A contains balls in different colors
among which red, yellow, green, and orange. Plelaseribe in your own words how you
would determine the probability that a blindfoldgdld will pick a red ball, then a green one,
followed by a yellow, and an orange ball.” An exdenfor a near-transfer item is “You spin a

wheel of fortune twice. The wheel has got nine ce@msurate segments with different
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pictures (among which a cloverleaf and a pig). Yein if you once hit the segment
“cloverleaf’” and the other time the segment “pig/hat is the probability that you win?” An
example for a far-transfer item is: “Eight driverfsdifferent sports clubs (A, B, C, D, E, F, G,
and H) take part in a soap box competition. Theneirreceives 100 Euro, the second place
finisher gets 50 Euro, and the third gets 25 Euitee drivers of the soap boxes which finish
fourth and fifth get consolation prices in the foaitickets for a hot springs. You bet with
your brother, that the driver of the sports clulwill win 100 Euro, the driver of the sports
club H 50 Euro, the one of the sports club E 25Eand the drivers of the sports clubs A and
B the consolation prizes. What is the probabilitgttyou win your bet?” On the whole, 17
points could be achieved. This sum was dividedhgyrtumber of items (17) so that the test
score represented the percentage of items solveecty.

(2) Conceptual knowledgeConceptual knowledge referred to knowledge abawgtsf
concepts, and principles that apply within a donf{de Jong & Ferguson-Hessler, 1996). We
focused especially on understanding-why knowledgeug the rationale of a solution
procedure, that is, why the solution procedures asethey are. Thus, it included
understanding about “what is behind the solutioocedure.” This category contained six
open questions which required written explanatmmshe principles presented in the learning
phase. For example, the learners were to explajntiadnfractions have to be multiplied (e.g.,
“Why are the two fractions multiplied?”). As thetiomale for the multiplication rule can be
figured out relatively easily when the pictorial dathe arithmetical representations are
integrated, this post-test measure also tappetenquality of representation integration. One
point was assigned for a correct answer with a taubal degree of reasoning and
elaboration. Other answers were scored with zerot§00On the whole, 6 points could be
achieved. This sum was divided by the number ohst€6) so that the test score represented

the percentage of items solved correctly.
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5.6 Results

Table 3 presents the means and standard deviaifaie pretest, principle-based self-
explanations, rationale-based self-explanationsprimect self-explanations, cognitive load,
conceptual knowledge, and procedural knowledgeha éight experimental groups. For
testing the hypotheses or addressing the reseaedtigns, we employefd tests. According
to the recommendations of Rosenthal and Rosnows(1€& also Rosenthal et al., 2000), we
refrained from reporting overall ANOVA results whaot motivated by respective research
questions. Of particular interest werE tests comparing the (aggregated) multi-
representational groups with the mono-represemaitigroups, the groups with an integration
help with the groups without an integration helpg @ahe self-explanation groups with the no
self-explanation groups. Furthermore, the multrespntational conditions were considered
as a 2x2 design (with and without integration helph and without prompts). An alpha-level
of .05 was used for all statistical analyses. Agféect size measure, we usgd- qualifying
values of about .01 as weak effect, values of alfifiias medium effect, and values of about
.14 or bigger as large effect (cf. Cohen, 1988; 285—287). With respect to the students’
topic-specific prior knowledge, an ANOVA revealed significant differenced:(7, 168) =
1.29,p = .261. Hence, there was no a priori differencevben groups with respect to this

important learning prerequisite.



Table 3

Means and Standard Deviations (in ParenthesesherPretest, on Self-Explanation Measures, on Ciwgnitoad, and on the Learning Outcomes

Pretest  Principle-basedRationale-based

explanations

explanations

Incorrect  Cognitive  Conceptual Procedural

explanations load knowledge knowledge

Pictorial / no self-explanation prompts 46 (.16) 50 (1.57)
Pictorial / self-explanation prompts 41 (.21) 5(2019)
Arithmetical / no self-explanation prompts 43015 .15 (.37)

Arithmetical / self-explanation prompts .33(.16) .6G(2.52)

Pictorial and arithmetical / no integration .45 (.20) 15 (.37)
help / no self-explanation prompts

Pictorial and arithmetical / no integration .44 (.19) 4.70 (3.03)
help / self-explanation prompts

Pictorial and arithmetical / integration help /.40 (.18) .25 (.64)

no self-explanation prompts

Pictorial and arithmetical / integration help /.46 (.19) 4.90 (2.53)
self-explanation prompts

.00 (.00)
2.60 (2.91)
.00 (.00)
1.85 (2.16)

.00 (.00)

2.55 (3.27)

.10 (.31)

3.70 (3.20)

45(.83)  3.56(1.52) .29 (.17) .44 (.22)

3.25(2.20) 5.07(1.52) .4@).1
25 (44) 3.55(1.27) .36).1
2.95(2.68) 4.25(1.11) (.23)

85(1.63) 2.87 ().05 .33 (.18)

2.20 (1.85) 5DA&3) .48 (.17)

10(.31)  2.62(1.19) .41 (.23)

250 (1.91) 3B33) .59 (.19)

.35 (.15)
49 (.18)

41 (.20)

48 (.22)

36 (.19)

46 (.21)

49 (.21)
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5.6.1 Effects on L earning Outcomes

Learners who received multi-representational sohgti acquired significantly more
conceptual knowledge than learners with just opeesentationf(1, 169) = 5.71p = .018,

p? = .033 (small to medium effect). With respect to mharal knowledge, the groups with
multi-representational solutions and with mono-esgntational solutions did not différ< 1
(learning time was included as a covariate; it icgmtly predicted procedural knowledge,
F(1, 169) = 6.60p = .011).

The participants in the multi-representational grauho received an integration help
outperformed the learners without such a help wé$pect to conceptual knowledde(1,
169) = 4.57,p = .035, 5> = .05 (small to medium effect). With respect to q@oural
knowledge, we did not find a statistically signéit differencef(1, 84) = 1.48p = .227
(learning time was included as a covariate; it icgmtly predicted procedural knowledge,
F(1, 169) = 5.21p = .025).

The scaffolding self-explanation prompts fosteredaeptual knowledgef (1, 169) =
20.40,p < .001,p% = .11 (medium to strong effect). We also found gnificant effect on
procedural knowledgds(1, 169) = 4.60p = .033,p% = .03 (small to medium effect) (in this
case, the influence of learning time as a covadatenot reach the level of significandg(1,
169) = 2.97p = .087). However, it was a negative effect, tlsatthe prompts impeded the
acquisition of procedural knowledge.

When considering the multi-representational coodgi as a 2x2 design (with and
without integration help; with and without promptt)e interaction between integration help
and self-explanation prompts with respect to cotadknowledge did not reach the level of
significanceF < 1. The same was true with respect to procedumaledge F(1, 81) = 2.37,

p =.128. Hence, the effects of the two instructigmalcedures did not depend on each other.

In sum, conceptual knowledge was fostered by mnefiresentational solutions, the
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integration help, and scaffolding self-explanatmompts. These results correspond fully to
our corresponding hypotheses. Contrary to our dafiens, scaffolding self-explanation

prompts had a negative effect on procedural knogded

5.6.2 Effects on Self-Explanations

With respect to rationale-based self-explanatiaves,found a significant difference in
favor of the scaffolding self-explanation promptsup, F(1, 159) = 64.93p < .001,5° = .29
(strong effect). We also obtained a significanfeségnce in favor of the scaffolding self-
explanation prompts groups with respect to prireiphsed self-explanations(1, 159) =
262.49,p < .001,p% = .62 (strong effect). Hence, the scaffolding seiplanation prompts
elicited more principle-based self-explanations amore rationale-based self-explanations
when compared with the groups without self-explamaprompts. However, scaffolding self-
explanation prompts also evoked significantly mmmerrect self-explanation$;(1, 159) =
74.88,p < .001,p° = .32 (strong effect).

The groups with multi-representational and monaesentational solutions did not
differ in their self-explanationsF(1, 159) = 1.49,p = .224 for rationale-based self-
explanations;Fs < 1 for principle-based self-explanations andoirect self-explanations.
Similarly, no significant differences were foundtivrespect to the integration heky(l, 79)
= 1.03, p = .314 for rationale-based self-explanatiofts, < 1 for principle-based self-
explanations and incorrect self-explanations. Wbemsidering the multiple representations
conditions as a 2x2 design (with and without aegmation help; with and without prompts),
the interaction effects between integration helg self-explanation prompts with respect to
rationale-based self-explanatiofigl, 80) = 1.05p = .309, principle-based self-explanations,
F < 1, and incorrect self-explanatiodg1, 80) = 2.25p = .138, did not reach the level of
significance.

In sum, scaffolding self-explanation prompts fosterationale-based self-explanations
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and principle-based self-explanations. However,y tiadso evoked more incorrect self-

explanations.

5.6.3 Mediation of the L ear ning Outcomes by Self-Explanations

We have established that self-explanation promptdked rational-based explanations,
principle-based self-explanations but also incdrssdf-explanations (cf. section 5.6.2hd
thatthey fostered conceptual knowledge but hinderecduogisition of procedural knowledge
(cf. section 5.6.1). Did the different types of fsetplanations mediate the effects on
conceptual and procedural knowledge? The pattemesafits obtained so far suggested that
conceptual knowledge was fostengd rationale-based self-explanations and principleeda
self-explanations and that procedural knowledge hdered via incorrect self-explanations.
In other words, we address the following questiof@: Can the effects on conceptual
knowledge be explained by rationale-based selfagilons and principle-based self-
explanations? (b) Can the effects on proceduraiveuge be explained by incorrect self-
explanations?

(a) Rationale-based self-explanations and prindiplsed self-explanations were
substantially intercorrelated € .55,p < .001). In addition, we found significant cortéas
between rationale-based self-explanations and ptmakeknowledger(= .43,p < .001) as
well as between principle-based self-explanatiomd$ eonceptual knowledge € .43,p <
.001). These latter correlations further suppottedassumption of mediation. Thus, first we
directly tested whether rationale-based self-exgilans mediated the influence of the
independent variablgrompts (scaffolding self-explanation prompts vs. no proshpbon
conceptual knowledge. Therefore, conceptual knogdeslas regressed on the factor prompts
and rationale-based self-explanations in a simatiae multiple regression model. The
mediation hypotheses would have been supporteldeifeffect of the independent variable

prompts was substantially reduced when the medvedsrincluded as an additional predictor
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of the dependent variable (Baron & Kenny, 1986)isTproved to be true. As expected,
rationale-based self-explanations still predictedoeptual knowledge, 3 = .37159) = 4.39,
p < .001, whereas the influence of the factor pramms no longer significant, 3 = .1(1,69)
= 1.33,p = .187. In order to directly test whether the naéidn effect differed significantly
from zero, we used the test procedure of MacKinf&)92; see also MacKinnon & Dwyer,
1993). This procedure included the computationved regression equations: Mediator =
a*Independent + errgrand Dependent =*Independent +b*Mediator + errog. The
mediation effect is defined as the product of ggression weighta andb, that is, the effect
of the independent variable on the mediator mudithby the effect of the mediator on the
dependent variable when the independent variablecostrolled. Then the statistical
significance of the mediation effect is determined:a*b / sey,, with sey, being the standard
error of the mediation effec*b, se, = V(a?*[sg]>+ b?*[seJ?). In such an analysis, we
obtained az score of 3.88 that was significant on the 1% algias finding supported the
assumption that scaffolding self-explanation prarfpstered conceptual knowledge because
they effectively supported the learners in genegatationale-based self-explanations.

Furthermore, we tested whether also principle-baselflexplanationsamediatedthe
influence of the independent varialpeompts(scaffolding self-explanation prompts vs. no
prompts) on conceptual knowledge. As to expediéndase of mediation, in the simultaneous
regression model principle-based self-explanataiilispredicted conceptual knowledge, 3 =
48, 1(159) = 4.08 p < .001, whereas the influence of the factor pr@ampas no longer
significant, 3 = -.07{(169) = .56,p = .579. In the procedure of MacKinnon (2002}, score
of 3.00 that was significant on the 1% alpha leneslulted. Thus, not only rationale-based
self-explanations but also principle-based selfl@xgations were a crucial mediator with
respect of acquiring conceptual knowledge.

When including both rationale-based self-explanatiorend principle-based self-

explanations as mediators in a simultaneous regresmodel, rationale-based self-
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explanations, 3 = .31(159) = 3.64p < .001, and principle-based self-explanations, .B8;
t(159) = 3.28,p = .001, still significantly predicted conceptuahdwledge, whereas the
influence of the factor prompts was no longer gigant, 3 = -.15§(159) = -1.33p = .185.
Thus, the effect on conceptual knowledge was medidily both rationale-based self-
explanations and principle-based self-explanations.

(b) With respect to incorrect self-explanations anocedural knowledge, we obtained a
significant correlation of = -.25,p = .001. This finding — in addition to the signéit effect
of scaffolding self-explanation prompts on incotreelf-explanationgnd on hindering the
acquisition of procedural knowledge — supported desumption of mediation. In order to
directly test whether incorrect self-explanatiomsléed mediated the influence of the
independent variablgrompts (scaffolding self-explanation prompts vs. no préshpon
procedural knowledge, procedural knowledge wasessgd on the factor prompts and
incorrect self-explanations in a simultaneous mlétiregression model. As expected,
incorrect self-explanations still predicted procediknowledge, 3 = -.25(159) = - 2.61p =
.010, whereas the influence of the factor promgs no longer significant, 3 = -.0(169) =
-.14,p = .888. In the procedure of MacKinnon (2002}, score of -2.55 that was significant
on the 1% alpha level resulted. This finding intkchthat the effect of the scaffolding self-
explanation prompts on procedural knowledge wasifseggntly mediated by the number of
incorrect self-explanations. Thus, the scaffoldisglf-explanation prompts hindered the

acquisition of procedural knowledge because théydanore incorrect self-explanations.

5.6.4 Effects on Cognitive L oad

Surprisingly, participants who had received monaresentational solutions reported a
significant higher cognitive load than the learnerghe multi-representational grougs(1,
159) = 4.26p = .041,y° = .03 (small to medium effect). The participantsowbere provided

an integration help experienced significantly lesgnitive load than their counterparts in the
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groups without such an integration hefigl, 79) = 4.33p = .041,3% = .05 (small to medium
effect). In the groups with scaffolding self-expéion prompts, the participants experienced
significantly more cognitive load than their couptts in the groups without such prompts,
F(1, 159) = 45.75p < .001, n° = .23 (strong effect). When considering the multi-
representational conditions as a 2x2 design (wiith &ithout an integration help; with and
without scaffolding self-explanation prompts), timeraction between integration help and
scaffolding self-explanation prompts with respectognitive load did not reach the level of
significance,F(1, 85) = 2.01p = .160. In sum, mono-representational solutioaayring
without an integration help, and scaffolding sedfplanation prompts increased cognitive

load.

5.7 Discussion

We found the following main results. Conceptual kiezlge was fostered by multi-
representational solutions, the integration helpd acaffolding self-explanation prompts.
Scaffolding self-explanation prompts had, howevar, negative effect on procedural
knowledge. With respect to self-explanations, stdihg self-explanation prompts elicited
rationale-based self-explanations as well as piadlased self-explanations but also
incorrect self-explanations. Both rationale-baself-explanations and principle-based self-
explanations mediated the effects of scaffoldinfj-esgplanation prompts on conceptual
knowledge whereas the negative effect on procedunavledge was mediated by incorrect
self-explanations. Cognitive load was increased nbgno-representational examples, by
providing the multi-representational examples withan integration help, and by scaffolding

self-explanation prompts.
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5.7.1 Learning with M ulti-Representational Examples. The Realistic View

Our findings neither support a totally optimistitarsce on learning with multiple
representations nor a totally pessimistic stane¢hé&t, we suggest adoptingealistic view
Multiple representationsan be a powerful aid to teaching and learning — urgfecific
conditions. Specifically, our realistic view on teang with multiple representationscludes
two main assumptions: (a) Not all knowledge typas be equally effectively enhanced by
multiple representations. Evidently, this reseastfowed that learning outcomes which
especially benefit from thentegration of multiple representations can be particularly
enhanced by learning with multiple representati@®s, conceptual knowledge). (b) Learning
with multiple representations should be supportgdnistructional procedures: Our findings
show that learners evidently profit from an intégna help in form of flashing and color-
coding and from scaffolding self-explanation prospivhen learning with multiple
representations. Obviously, the potential of leagrnwith multiple representations can only be
fully exploited when instructional support measum@® implemented. Importantly, our
findings extend the growing body of research shgwimat multi-representational learning
environments which include instructional supportaswees are more effective than pure
multi-representational learning arrangements withewch support (cf. Moreno & Duran,
2004). Both assumptions of our realistic view agaia taken up in the followings.

Multiple representations and an integration helstés conceptual knowledge but not
procedural knowledgeSchnotz (2005) argues that the effects of certauttimedia (i.e.,
multi-representational) elements such as pictunetexts differ depending on the task that
should be accomplished later on. Schnotz as welAiasworth (in press) assume that
performance is best fostered when the structurfofmation required for a test problem
corresponds with the information structure in #g&hing materials. Schnotz calls this rule the

structure-mapping effecEurthermore, Ainsworth (in press) stresses thatanly for certain
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functions and associated learning goals that learsieould master the demanding cognitive
task of translating between two representations.aidgy the background of these
considerations, we conjecture that it was not resrgs(though helpful; cf. Experiment 1) for
the learners to integrate the different represemtsiin order to reach the goal of learning how
to solve problems (procedural knowledge). Reachkiveggoal of understanding the “why” of
solution procedures, was, however, much more diffisvithout integrating the different
representations. This conjecture is supported bYitiding that both instructional procedures
focusing on integration — integration help and -selblanation prompts — fostered
performance on conceptual problems. In contrashigiht have been sufficient — even more
parsimonious and in that sense appropriate — tacjugentrate on the arithmetical equations
for later problem solving. Only if the intendedreiag goals (e.g., conceptual understanding)
require multiple representations, they should leided, and learners should be supported in
integrating them (e.g., Moreno & Durén, 2004).

Moreover, the learning goal and the required repriegions to achieve it should be
explicitly stated. Otherwise, the learners migherevspontaneously translate the single
representation into other representations, wheatkeessary for the learning goal or not. In
our study, this assumption was confirmed. We infdlyobserved that learners who were
provided mono-representational examples — espgdrathe conditions with tree diagrams —
often spontaneously translated the representatioio ianother representation (e.g.,
arithmetical equations). This translation might énaaused the higher amount of cognitive
load in the mono-representational conditions.

Similarly, the learners who received multi-repréagonal examples without an
integration help had to invest much effort in ortteimap the two representations onto each
other, with the consequence of an increased ceognikbad. Our finding that multi-
representational examples without an integratioip le@hanced the level of cognitive load

confirms the corresponding assumption of cognilvad theory (e.g., Ayres & Sweller,
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2005).

Scaffolding self-explanation prompts elicit ratitedpased self-explanations and
principle-based self-explanations and thereby fostenceptual knowledgelhese findings
confirm the assumption of Roy and Chi (2005) ad wasglthe findings of Experiment 1 (cf.
Berthold & Renkl, 2005) that self-explanations areted for enhancing understanding of
multiple representations and, thereby, learningc@ues. The scaffolding self-explanation
prompts fostered high-quality self-explanations andonceptual understanding that both
seemed to be slightly out of reach for learnerout this assistance (cf. zone of proximal
development; Vygotsky, 1978). In particular, theafsmding self-explanation prompts
stimulated learners to generate types of self-engtians (i.e., rationale-based self-
explanations and principle-based self-explanatiathst they rarely show spontaneously
although they are very useful for learning. Conaapknowledge refers in particular to an
understanding about what the logic of solution prhoes is. Evidently, the scaffolds
supported the learners in the demanding processoto behind the multi-representational
solutions. We call this the scaffolding self-ex@#aan effect which refers to the elicitation of
high-quality self-explanations and the acquisittdrleep understanding (cf. section 4.7).

Scaffolding self-explanation prompts increase inectr self-explanations and thereby
hinder the acquisition of procedural knowledg8caffolding self-explanation prompts
increased the number of rationale-based self-eafiams and principle-based self-
explanations but also of incorrect self-explanaidncorrect self-explanations had, in turn, a
detrimental effect on the acquisition of procedwmbwledge. We call this thearadox self-
explanation prompteffect because the instructional support measure of ddaify self-
explanation prompts unexpectedly leads to incoresf-explanations and hinders the
acquisition of procedural knowledge. Contrary tar @xpectations, the scaffolding self-
explanation prompts did not help #@void incorrect self-explanations but evidently even

evokedhem. As a consequence, the acquisition of prae¢#tnowledge was impaired.



EXPERIMENT 2 77

The latter contradicts the findings of Chi (2000hovassumed that incorrect self-
explanations are harmless. According to Chi, gemgrancorrect self-explanations might
even create an opportunity for conflicts to occtiicli can lead to self-explaining episodes of
trying to resolve it (Chi et al., 1989; cf. VanLeHr®99: impasse-driven learning). In order to
notice such conflicts, the learners must activebnitor what the text is saying and how it fits
in their mental model (cf. de Leeuw & Chi, 2003heTcrucial aspect in this respect may be,
however, that the learners need enough free cugratipacity to resolve their misconceptions
or impasses. Evidently, this was not the case far learners in the conditions with
scaffolding self-explanation prompts. Even wherriesy with worked-out examples, they
experienced a high amount of cognitive load — mhigher than their counterparts in the
conditions without self-explanation prompts. Fiteis may be explained by the fact that very
complex learning materials were presented: texguattlem formulation, pictorially presented
tree-diagrams, and / or arithmetical equations, anth the case with scaffolding self-
explanation prompts — the textual information imgd in the scaffolds. Secondly, the
scaffolding self-explanation prompts evidently diexl the attention on conceptual
knowledge which was at the cost of procedural kedgé. Thus, findings of this Experiment
2 show heterogeneity of learning outcomes: the teidcome measures were not
homogeneously influenced by the scaffolding sefftamation prompts. This might be due to
the highly complex learning environment. Evidentlye learners reached their upper limit of
their working capacity by focusing conceptual kneside so that correct essential processing
with respect to procedural knowledge was hindekéalyer & Moreno, 2003).

The present results and the results by GrolRe ankll Re press) as well as by Schworm
and Renkl (2006b) suggest that in complex exampget learning environments (e.g.,
examples with multiple solution methods or withhtigor wrong solutions) instructional
support procedures (e.g., self-explanation prongptslemands to look for errors) do not

necessarily enhance general active processing ibetit dhe attentional focus on specific



78 EXPERIMENT 2

aspects. The effect specifity of instructional gaares such as self-explanation prompts are
probably due to the fact that mentally representing complex, multi-representational
learning contents induce high working memory laast for the representation of the contents
(intrinsic load Sweller, 2005). This is probably especially true fearners with less
favorable learning prerequisites (cf. General Déston, section 6.1.1). For these learners, the
intrinsic load may be overwhelmingly high. They bBadw hold all the elements of the complex
learning material and their interrelations simuétansly in working memory — particularly
because they cannot “chunk” information effectivelyhus, the complex learning material
andthe less favorable learning prerequisites of thenlers can cause a high intrinsic load.

In addition, there are very high demands of esakfilayer & Moreno, 2003), learning-
related processing (germane load) when each reyetm and their interrelations should be
understood. Further enhancement of essential mimceggermane load) by instructional
support procedures is hardly possible due to wgrkmemory limitations.Therefore,
instructional procedures do not have profound gdneffects on active processing and
learning outcomes, but direct the attentional foousspecific aspects. The instructional
interventions of this Experiment 2 might have jgsipported the processing of specific
aspects but they did not lead to generally moreagirocessing and generally better learning
outcomes. Therefore, the effects of our instrueiomterventions that were primarily
intended to maximize the profit of learning from Itiple representations were presumably
confined to conceptual knowledge (for a comparisbthe findings of Experiment 1 and 2
see General Discussion, section 6.1).

Another issue worth to be considered is that insiwnal procedures may indirectly
communicate to the learners what is important. dditeon, we conjecture that subjective
learning goals play an important role in deterngnwhat the learners focus on and thereby
influence what is learnt (see also Gerjets & Semngi2003; Schnotz, 2005). Probably, the

scaffolding self-explanation prompts indirectly anomicated to concentrate on conceptual
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knowledge — inducing a subjective learning goataficeptual knowledge. Consequently, the
learners directed their attention in the scaffajdgelf-explanation conditions to the rationale
of the solutions (understanding-why) which was la¢ tcosts of acquiring procedural
knowledge. Especially, the principle of cognitiveoeomy formulated by Schnotz in his
theory on multimedia learning from text and pictuimplies that learners have goals that
determine what they process: They try to invest assmuch cognitive processing as it is
necessary to reach the subjective learning goals.

With respect to learning conceptual knowledw®d procedural knowledge, it is not
functional to assume that learners can “learntatinee” — at least for the participants of this
Experiment 2 (cf. section 6.1). As a remedy, seqgegrmf phases could be implemented that
are devoted to conceptual knowledge as well asepigal knowledge. Such sequences
should help to avoid dysfunctional concentrationcentain aspects at the expense of other
important learning goals. Mayer and Moreno (2068)ommend such an off-loading when
learners are overloaded with essential proces®ntadds.

In sum, we plea for a realistic stance on learnuitp multi-representational examples.
They offer unique possibilities of fostering undargling. However, for enhancing
knowledge (i.e., procedural knowledge) which casoabe acquired by processing one
representation, it might be more parsimonious tovide the learners with only one
representation. Thus, we agree with Ainsworth (fesp): “... it seems wise to use the
minimum number of representations” (p. 12). Wherplamenting instructional support
procedures such as scaffolding self-explanatiormpts, it has to be considered that they
implicitly guide the learners’ attention on specifispects of the learning materials which
might have trade-offs with respect to other aspeltsnultiple learning goals are to be
addressed, a sequencing strategy might be a remghlythis respect — especially if the
learners have less favorable learning prerequiditesever, this assumption has to be tested

in further experiments.
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5.7.2 Practical Implications

The most direct practical implication of this studythat learning environments that use
multiple representations should include an integnahelp and scaffolding self-explanation
prompts to enhance deep-level understanding. litiaddour results show that scaffolding
self-explanations can lead to incorrect self-explemms which can hamper procedural
knowledge. This suggests that incorrect self-exadians are not in any case as harmless as
argued by Chi (2000) but can severely impede legrrin this context, it is important to note
that the participants of this experimental reseangre school students, and our finding
confirms the assumption of many school teachers -wa have heard in many further
education course with (German) teachers — thatngetaof self-explanations in contrast to
instructional explanations are incorrect self-erplgons which lead to incorrect knowledge.
Thus, in the teaching of mathematics and in furtlesearch, it should be carefully analyzed

how these incorrect self-explanations can be ctedec

5.7.3 Limitations and Futur e Directions

How far can the present findings be generalized?haie shown the use of multiple
representations embedded in worked-out examples @ndwo instructional support
procedures (integration help and scaffolding sefft@nation prompts) in the context of one
knowledge domain (i.e., complex events / probabitiheory). Thus, our research was
embedded in mathematics, a well-structure leardmgain. As self-explanations in general
(i.e., not specifically related to the integratioindifferent representations) have proved to be
effective in many domains (e.g., Roy & Chi, 2006)s probable that the present findings are
also valid with respect to scaffolding self-explaos in different learning contents.
However, an empirical test of this assumption isessary in future studies. In addition, the

effects of multiple representations and an integnahelp need to be examined in future
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research in the context of other domains.

A limitation that has to be acknowledged is thathis study only one type of learners
(i.e., students of German gymnasiums, highest toddke German three track system) was
included. More research is needed to include gbopulations, such as younger students or
lower-achieving students.

Furthermore, in future studies, learning environteewith multiple representations
should be analyzed that include different typesaiffolding self-explanation prompts for
learners at different levels of skill acquisitiasf.(Conati & VanLehn, 2000). Moreover, self-
explanations could be diagnosed online in ordepravide an immediate and dynamic
adaptation of scaffolding procedures (e.g., Alegtal., 2001).

An open question with respect to the scaffoldinfreseplanation prompts refers to long-
term effects. We suggest that scaffolding self-amption prompts are especially helpful at
early learning stages while as learners become m@fcient in the specific topics even
simpler forms of prompting can successfully triggelf-explanation (cf. Conati & VanLehn,
2000).

As mentioned above sequences of learning phasaddsihe implemented that are
devoted to — at least — conceptual knowledge akasegbrocedural knowledge. It should be
experimentally tested if such sequences help toefoboth conceptual knowledge and

procedural knowledge.
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6. General Discussion

This last chapter concludes with an overall discus®f the results of this research.
Furthermore, the theoretical and practical implas of this dissertation are discussed.
Afterwards, limitations of this research are catlg addressed. Based upon this discussion

fruitful lines of future research are pointed dtihally, a closing in is presented.

6.1 Discussion of Results

The overarching goal of this dissertation was tieically test the effects of multiple
representations embedded in worked-out exampleshandstructional support procedures of
an integration help and self-explanation prompts.

In summary, this dissertation made four essenbaltrtbutions to research on learning
from worked-out examples. (a) Multiple represenitadi embedded in worked-out examples
and an integration help foster conceptual knowledadditive effect). With respect to
procedural knowledge, it is equally effective tooyide multi- or mono-representational
solutions or presenting the multi-representati@o#litions with or without an integration help
(Experiment 2). (b) Self-explanation prompts — &adfng (Experiment 1 and Experiment 2)
and open (Experiment 1) — foster principle-basdfiesgolanations and rationale-based self-
explanations (Experiment 1 and Experiment 2) ad a®lprocedural (Experiment 1) and
conceptual knowledge (Experiment 1 and Experimgni\2th respect to rationale-based self-
explanations and conceptual knowledge, scaffoldieifrexplanation prompts are especially
effective when compared to open prompts (ExperinigntParticularly, scaffolding self-
explanations support the integration of multiplepresentations, as indicated by the

understanding of the multiplication rule (Experirhel). (c) Moreover, scaffolding self-
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explanation prompts foster conceptual knowlebtgehe elicitation of rationale-based self-
explanations (Experiment 1 and Experiment 2). (daff®lding self-explanation prompts
foster principle-based self-explanations (Experim&nand Experiment 2) anthereby

enhance procedural knowledge (Experiment 1) or eptu@l knowledge (Experiment 2).
Though, scaffolding self-explanation prompts alBoiteincorrect self-explanations; the latter

can hinder the acquisition of procedural knowleffeperiment 2).

6.1.1 Differentiated Effect of Scaffolding Self-Explanation Prompts on Procedural

Knowledge

In Experiment 1 and Experiment 2 — in which vemnifar learning materials and test
materials were implemented — heterogeneous resulieaffolding self-explanation prompts
on procedural knowledge, incorrect self-explanatjcemd mediation effects emerged. With
respect to procedural knowledge, in Experiment Ipositive effect of scaffolding self-
explanation prompts was obtained. In Experimena 2egative effect emerged. Moreover,
though in both experiments, scaffolding self-explon prompts fostered principle-based
self-explanations, in Experiment 1, principle-basetf-explanations mediated the effects on
procedural knowledge whereas in Experiment 2 principle-baselftexplanations (besides
rationale-based self-explanations) were the crumialdiator with respect t@onceptual
knowledge. Furthermore, in Experiment 2, scaffajdiself-explanation prompts elicited
incorrect self-explanations that hindered the asitjon of procedural knowledge (paradox
self-explanation prompt effect, cf. section 5.7.Thus, contrary to our expectations, in
Experiment 2 the scaffolding self-explanation préesngid not help taavoid incorrect self-
explanations but evidently eveavoked them. Presumably, the effect of prompts on
procedural knowledge depends on the prior knowléelgsd of the learners.

Apparently, attending tdoth knowledge types imposes high demands on essential,

learning-related processing (cf. Mayer & MorenoP2p Learners who have less favorable
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prior knowledge and who therefore cannot “clusiefbrmation effectively may reach their
upper limit of their working capacity (Mayer, 2005aweller, 2005) so that the necessary
essential processing does not occur.

Against this background, it is important to notattthe major difference between the two
experiments was related to the type of learnercipsipgy students in Experiment 1 and
gymnasiums students aged about 16 years in Expafrignd®sychology students presumably
have the better learning prerequisites as they heagived more mathematics and statistics
instruction in their life, and they are — in compan to the school student population — a
selected population with a positive bias: Germagcipslogy programmes are so-called
numerus clausugrogrammes in which admission is primarily depenaa very good grades
in school (gymnasiums). Their better learning pyarsites enabled the psychology students
to attend to procedural aspects even when they weeseted by the scaffolding self-
explanation prompts to conceptual knowledge. Ferghmnasiums students with their less
favorable prerequisites the direction of attentignthe scaffolding self-explanation prompts
on conceptual knowledge prevented a correct proggselated to procedural knowledge.
Evidently, the effect of scaffolding self-explamati prompts on procedural knowledge is
dependent on the learning prerequisites of theézar

The assumption of the better learning prerequisdéshe psychology students is
confirmed by the following finding: In Experimentahd Experiment 2, two pretest problems
were roughly comparable (the problem formulatiorseh been simplified a bit for the
gymnasiums students). Actually, the psychology estisi had higher solution rates for these
two problems as compared to the gymnasiums studeints.56 SD = .50) versusvl = .40
(SD=.49);M = .53 SD = .50) versu = .43 SD = .50). Thus, this supports the assumption
of better learning prerequisites of the psycholsiggents.

Their better learning prerequisites enabled theclpsipgy students to attend to both

procedural and conceptual aspects. Consequentty;, felf-explanations were not only
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related to conceptual knowledge but also to pro@@dinowledge and thereby also fostered
procedural knowledge (mediation of principle-bassédlf-explanations on procedural
knowledge). Contrary, for the gymnasiums studentb their less favorable prerequisites, it
was only possible to attend to one knowledge tigvedently, the scaffolding self-explanation
prompts directed the attention of these learnerdusively on conceptual knowledge and
simultaneously prevented a correct processing e@lab procedural knowledge. This
assumption is confirmed by the finding that thd-s&planations of the gymnasiums students
were only related to conceptual knowledge (ratie+msed self-explanatioasd principle-
based self-explanations mediated the effects oreminal knowledge). Moreover, in the
gymnasiums sample the scaffolding self-explanatadas elicited incorrect self-explanations
and thereby hindered the acquisition of procedkradwledge (paradox self-explanation
prompt effect) — indicating that these learnerscied their upper limit of their working
capacity by focusing conceptual knowledge. Thisermtetation is confirmed by the
significantly higher cognitive load scores when tbarners were provided with scaffolding
self-explanation prompts.

In a nutshell, these across-experiment comparisareal that by employing very similar
learning and testing materials across experimeittsdifferent samples, the possibility arises
to detect differentiated effects on research papdms with different learning prerequisites
(see also section 6.2.1). It is particularly impattthat researchers on learning and instruction
go into the schools to gain their participants dachot only recruit psychology students who
evidently have better learning prerequisites. Imsiu researchers would like to generalize
their findings on learning and teaching in schawhool students should be included as
research participants.

This may sound rather trivial. Nevertheless, in ynatudies on learning and instruction,
the nature of the research participants is chaaer incidentally. For instance, while several

studies involve school-age children as participgetg., Moreno & Mayer, 1999; Tarmizi &
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Sweller, 1988), a number rely instead on college-atydents (e.g., Atkinson, 2002), or
university students, especially psychology studemtswever, it would be helpful to

determine whether the results of the reported studeneralize across learners of different
ages and different cognitive learning prerequisitésvertheless, evidently, in research on
learning with multiple representations, there gk of systematic comparisons of research

participants of different age and learning prersites (cf. section 6.4.2).

6.1.2 Stable Effect of Scaffolding Self-Explanation Prompts on Conceptual Knowledge

Contrary to the effects on procedural knowledge, risults with respect to conceptual
knowledge in Experiment 1 (psychology students) Brgeriment 2 (gymnasiums students)
fully corresponded to the theoretical assumptidfdtiple representations (Experiment 2), an
integration help (Experiment 2), and scaffolding-s&planation prompts (Experiment 1 and
Experiment 2) all have positive effects on this kiezige types. The latter effect is mediated
by rationale-based self-explanations (Experimesund Experiment 2).

The replication of the effect of the scaffoldingfssplanation prompts on rationale-
based self-explanations and thereby also on comakekhowledge for both the gymnasiums
students and the psychology students strengthemsrabustness of these findings and
demonstrates that the instructional support measuseaffolding self-explanation prompts
indeed proves to be a suitable method to overcomelifficulties of learners with a different
background when learning with multi-representati@xamples (scaffolding self-explanation
effect, cf. section 4.7 and 5.7.1). Furthermorés tmding suggests that learning outcomes
which especially benefit from the integration of Itiple representations (i.e., conceptual
knowledge, cf. section 4.5.3) particularly profibrin learning with multiple representations

and corresponding instructional support procedures.
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6.1.3 Additional Information in the Scaffolds

By providing only fill-in-the-blank self-explanatis instead of complete instructional
explanations and by fading out the scaffolds in fisllowing isomorphic examples, it was
assured that the learners did not just superfycetld passively but rather actively processed
the new information by explaining it to themselvékevertheless, as the scaffolding self-
explanation prompts included additional informatmempared to the open self-explanation
prompts, it might be that not the scaffolding-fagiprocedure itself but only the additional
information in the scaffolds fostered learning. Eenit could be merely an effect of
"receiving” an (incomplete) instructional explawoati However, there are two arguments that
make this alternative explanation implausible: frirs was found that the quality of self-
explanations (i.e., number of rationale-based eghilanations and principle-based self-
explanations) mediated the effect of scaffoldindf-egplanation prompts on conceptual
knowledge. Second, there are meanwhile numeroudingis that usual instructional
explanations in worked-out examples are ratherfisient (e.g., Atkinson & Catrambone,
2000; Atkinson, Catrambone, et al., 20@&rjets, Scheiter, & Catrambone, 2003, in press;
Hilbert et al., 2004; Renkl, 2002). Thus, it is mpybbable that the pure "reception” of the
incomplete instructional explanation in the scafioy self-explanation prompts in the initial
worked-out examples was the crucial factor. Insteaglassume that the supplementary self-
explaining in the first example of each pair ané thpen self-explanation in the second
iIsomorphic example was crucial.

This interpretation is supported by Siegler (2002)o asked learners to self-explain
either their own or another’s answers (i.e., theeexnenter’'s answers). The latter is similar to
our scaffolds in the first isomorphic examples e tlearning environment because both
Siegler's and our learners had to self-explaint(pér an expert's answer. Participants who

were best in explaining the presented answerseoéxperimenter also showed the best results
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in providing correct answers on their own. Evidgnslelf-explaining a pre-existing answer of
an expert more effectively fostered understandimantexplaining one’s own answer. This
was probably also due to the fact that the pretiegisanswers were consistently correct
whereas the answers of the participants withowt $kaffold were fragmented or (partially)
incorrect. When explaining a provided correct ansvaslditional opportunities raise for
comparing and contrasting this answer with one’s1 daf. Roy & Chi, 2005). Observing
discrepancies between a correct answer and onaisvollvnaturally elicit repairs of one’s
own representation and thereby foster learning, (8000). Anyhow, these learning processes
only occur if the learners actively self-explainpeesented answer or, in our case, the
information included in the scaffolds in some fofeng., by filling in blanks and answering
open self-explanation prompts). Thus, we assumesti&explaining is probably the crucial
factor. However, an empirical test of the speaibnitribution of the additional information in

scaffolding self-explanation prompts is necessaryiure studies (cf. section 6.4.4).

6.2 Theoretical Implications

Based on the results of this dissertation, theoWalg theoretical implications can be

deviated.

6.2.1 Differentiated Effects of Instructional Measures on Conceptual and Procedural

Knowledge

As already outlined, learning outcome measures ifiarent knowledge types, that is,
conceptual and procedural knowledge were includddis research. By including conceptual
knowledge as a learning outcome variable, the eshifocus in mathematics teaching from
learning only procedural knowledge to an emphagis imsightful understanding (cf.

Ainsworth, 1997) was addressed.
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With respect to procedural and conceptual knowleddpes dissertation revealed
differentiated effects (see also section 6.1.1 section 6.1.2) of the instructional support
measure scaffolding self-explanation prompts. Ipdginent 1, both types of self-explanation
prompts (scaffolding and open) fostered procedéradwledge, whereas for enhancing
conceptual knowledge scaffolding self-explanationnmpts were particularly effective. In
Experiment 2 — including learners with lower leamiprerequisites as participants —
enhancing conceptual knowledge was at the costoaiplural knowledge.

How to enhance conceptual and procedural knowladgaddressed quite often in
research on learning and instruction (e.g., Rittenson, Siegler, & Alibali, 2001). For
example, Rittle-Johnson et al. propose that coned¢pind procedural knowledge develop in
an iterative fashion and that improved problem espntation is the crucial mechanism
underlying the relations between them.

However, interestingly, in the literature on leaiand instruction, it is rather unusual
that such differentiated findings on conceptual pratedural knowledge are reported. This
statement was confirmed by J. Sweller (personalnconication, July 23, 2005). He also tried
to obtain differentiated effects on procedural andceptual knowledge in many studies but —
according to his own statement — never succeedddtifRy the differentiated findings of this
research to Sweller’'s cognitive load theory, it d@nconcluded that the effect specifity of
instructional procedures such as self-explanatimmpts are probably due to the fact that
mentally representing the complex, multi-repres@mtal learning contents induce high
working memory load just for the representationtled contents (intrinsic loadSweller,
2005). In addition, there are very high demandsesgential (Mayer & Moreno, 2003),
learning-related processing (germane loatien each representation and their interrelation
should be understood. Further enhancement of eslsgmbcessing (germane load) by
instructional procedures cannot have profound géneffects on active processing and

learning outcomes, but direct the attentional foousspecific aspects. Consequently, the
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learners concentrate intensively on these aspettsdglect other knowledge types. Thus, the
iterative process with respect to conceptual ammtemural knowledge proposed by Rittle-
Johnson et al. (2001) can only work if the learnease sufficient cognitive capacity to
process both knowledge types simultaneously.

In a nutshell, according to J. Sweller (personanwmnication, July 23, 2005) the
differentiated findings on conceptual and procedirzowledge of this dissertation can
supplement cognitive load theory by providing ewicke for a specific essential processing
which might be at the cost of essential processfrgher aspects of the learning material.

Moreover, these findings highlight the importanck including different learning
outcome measures in order to have the possibiligssess possible differentiated effects of a

learning arrangement.

6.3 Practical Implications

In the following, practical implications of thisgearch are derived.

6.3.1 Provide Multiple Representations and Enhance the Effects with Instructional

Support Measures

First, this research provides us with a set of eicglly based principles that can
practically guide the design of learning environtsegmploying multiple representatioria)
Multiple representationsThe findings with respect to this aspect suggest ftillowing
instructional design guideline for multimedia leag environments involving mathematics:
Provide multiple representations instead of simgf@esentations only when they seem to be
necessary or especially helpful in reaching certaarning goals. Otherwise refrain from
multiple representations. Moreover, the potentidéarning with multiple representations can

only be exploited when instructional support measui.e., integration help and scaffolding
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self-explanation prompts) are implemented (cf. Mor& Duran, 2004)(b) Integration help.

If an instructional designer intends to use mudtiptpresentations, there is the principle of
integration help that should be kept in mind. Ifclassical integrated format cannot be
realized, color-coding combined with a flashing qggdure offer a promising possibility — if
the integration of the multiple representationsegded for the learning goal (see above) and
high visual-search conditions are presented (Atan2005).(c) Scaffolding self-explanation
prompts. The findings with respect to scaffolding self-exgéon prompts suggest the
following instructional design guideline for leangi with multiple representations:
Scaffolding self-explanation prompts can stronglgtér the integration and understanding of
multiple representations (scaffolding self-explamaeffect, cf. section 4.7 and section 5.7.1).
However, the instructor has to carefully considiett instructional support procedures such as
scaffolding self-explanation prompts implicitly g the learners’ attention on specific
aspects of the learning materials which might béatcost of other aspects (paradox self-

explanation prompt effect, cf. section 5.7.1).

6.3.2 Example-Based L earning Does Not Only Foster Procedural Knowledge but Also a

Deep Conceptual Under standing

A common misconception among teachers with redpeekample-based learning is that
example-based learning only fosters algorithmiciedge (procedural knowledge), but not a
deep conceptual understanding (cf. Renkl, Schwariilbert, 2004).

It is assumed that learners try to remember thekegbout solution steps of a few
worked-out examples and then apply these solutepsson similar tasks. This misconception
is closely related to the assumption of many pedpkt example-based learning is a
traditional,nonconstructivistearning method with too much emphasis on presgrmimtents
instead of construction activities (cf. Renkl, 2P65to say it shortly: to train the learners to

solve future similar tasks without a deep undeditam
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However, such a conception of example-based legrwcompletely neglects the potential
of this method. By self-explaining the principlesioh are applied in the solution steps and
the rationale of the principle, the learners gaimep conceptual understanding of the
subdomain. This dissertation put an emphasis oceminal understanding and was able to
show that multi-representational examples — suppldolyy an integration help and scaffolding
self-explanation prompts — cannot only enhance gquoml (Experiment 1) but also
conceptual knowledge (Experiment 1 and Experim@n{TBus, it can be recommended to
teachers and instructors to implement worked-oairgtes not only to enhance procedural

knowledge but also to foster conceptual knowledge.

6.4 Limitations and Guidelinesfor Future Resear ch

A last question that is raised refers to the gdizatality of the findings of this research.
Possible restrictions with respect to generaliigglre discussed. Based upon this discussion
fruitful lines of future research are pointed out.

In this research, the use of multiple representatiand two instructional support
measures (an integration help and scaffolding esgifanation prompt) in the context of

mathematics, a well-structured learning domain aresyzed.

6.4.1 The Domain

In this dissertation, the topic complex eventshad subdomain probability theory was
chosen as the learning content — addressing thesooif Atkinson (2005) that it is important
to examine whether the findings on multiple repnésttons can be generalized beyond
geometry instruction to other subdomains of math@saThough it is a strength of this
work, that a mathematical subdomain other than gé&gnwas chosen, the question arises if

the findings with respect to multiple representagiahe integration help, and scaffolding self-
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explanation prompts can be generalized to similedi-structured domains such as physics
and chemistry as well as also to ill-structuredreay domains such as English (e.g., writing
a poem) or arts (e.g., creating a sculpture). \Wapect to ill-structured learning domains, it
is not possible to provide a manageable set oftisolisteps that directly lead to the final
answer (Renkl, 2005). For these domains, an exampigides just the problem and a
solution (no steps); such examples are callgded example problemRummel and Spada
(2005), for instance, provided video-based solve@ngle problems of a successful
computer-mediated collaboration in interdisciplingroblem solving on a psychiatric case
which led to a better joint diagnosis than learnivith a script. Taken together, the range of
skill domains — including ill-structured domainshkould be further broadened in research on

multi-representational examples.

6.4.2 The Typeof Learners

Though this dissertation has contrasted two tygdsasners (i.e., psychology students
and gymnasiums students) — which is a benefit -emesearch is needed to determine how to
incorporate other populations, such as youngeresiisdor lower-achieving students. As
worked-out examples leave relatively many cognitigsources for gaining understanding,
this approach should be especially appropriatsd@ich populations. However, as the findings
of this research indicated, learners with lessnoglilearning prerequisites than psychology
students might have difficulties to focus on selvaspects of the learning material (i.e.,
different knowledge types) at once. First, thigliitg suggests that in a series of experiments
with participants of different age groups and dif& learning prerequisites, different levels
of competence could be diagnosed, and it coulchbé/zed down to and up to which level of
competence the learners still exploit the potemialearning with worked-out examples.
Second, for learners with lower learning preredessia remedy with respect to the cognitive

overload might be to sequence the presentatiofiffefent aspects of the learning material so
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that, for example, in a first phase conceptual Kedge is focussed and after that, in a second
phase, procedural knowledge. Such sequences shioeld to avoid dysfunctional
concentration on certain aspects at the cost @rathportant learning goals. This should be

addressed in future studies.

6.4.3 Evidence from Experimental Settings of Limited Ecological Validity

The two studies of this dissertation were conduatedell-controlled laboratory settings
and within learning environments of a limited ravgéh respect to both the content covered
and the time span for the development of a comgiték In order to test whether the findings
of this dissertation hold true for real schoolisgs, it would be fruitful to analyze the effects
of (a) the implementation of the learning enviromin@ a curriculum on complex events, (b)
an extended learning environment that covers ademotopic (e.g., probability theory), and
(c) in which the state-of-the-art of designing ep#erbased learning is realized in a
consequent way (e.g., including an integration laglg scaffolding self-explanation prompts)

and implemented in school lessons or universityeds (cf. Renkl, 2005).

6.4.4 Effect of the Additional Information in the Scaffolds

As mentioned in section 6.1.3, further studies &heuplore the specific contribution of
the additional information in the scaffolding seplanation prompts. Though it was found
that the quality of self-explanations mediated #féect of scaffolding self-explanation
prompts, an experimental study should compare ¢th#fadding condition with a condition

providing the instructional explanations that wierdduded in the scaffolds.
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6.4.5 Subjective Learning Goals of the Learners

Against the background of the findings of Experitn@n it can be concluded, that
learners seem to cope with the complexity of tlernmg demands by focusing attention on
specific aspects of the learning materials. Itloarconjectured that the focus is influenced by
the subjective goals of the learners. Especidily drinciple of cognitive economy formulated
by Schnotz (2005) in his theory on multimedia l@agnfrom text and pictures implies that
learners have goals that determine what they psoddtey try to invest as much cognitive
processing as it is necessary to reach the swgedéarning goals. As instructional
procedures indirectly communicate to the learndmatvis important, it can be assumed that
the learners derive the learning goals from thenieg material — internalising them as their
subjective learning goals. Consequently, the lgarfecus on these aspects. This, in turn,
enhances corresponding learning outcomes (cf. $zhno this research, the self-explanation
prompts might have influenced the subjective leggrgoals of the participants. Though the
subjective learning goals were not assessed ingb&arch, the learning outcome data showed
that without prompts, most learners concentratedhow problems are solved (as it is
probably the case in most learning situations imosts). The latter indicates a subjective
learning goal of procedural knowledge. Contrarye tbrompts directed most learners’
attention to the rationale of the solutions (congapknowledge). Against this background, in
future research, the subjective goals have to kentanto account when analyzing the use of
multiple representations and the resulting learmntgomes (for the relevance of subjective

goals in example-based learning see also Gerj&sh&iter, 2003).

6.4.6 Diagnosing the Incorrect Self-Explanations and Providing Adaptive Support

The incorrect self-explanations elicited by the flatding self-explanation prompts

might not only be a deficit — as clearly indicateyl this research (contrary to Chi, 2000).
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Several prominent models of cognitive skill acqiosi such as VanLehn’s Cascade (e.g.,
1999) emphasize that errors are triggers for reflec that deepen understanding.
Additionally, many classroom teachers emphasizé effactive instruction should take up
errors as opportunities for in-depth discussiontider to deepen understanding (Renkl,
2005). Though this research suggests that leaweses cognitively overwhelmed to engage in
reflection, by providing adequate support measoossbined with sufficient time, the deficit
of incorrect self-explanations might become a ckafar revising own misconceptions.

Clearly, there needs to be significantly more reseaonducted on this topic in the future.

6.51n Closing

The findings of the two experiments in this disasgoh revealed four important
implications for instruction and research on mrafpresentational examples:

(a) Exploit the full potential of multiple repredations by instructional support
measures on integration and understandiimgluding instructional support measures such as
an integration help and scaffolding self-explamatioompts on integration and understanding
in  multi-representational learning environments nsore effective than pure multi-
representational learning arrangements without sugiport (cf. Moreno & Duran, 2004).
These results substantiate the need to provideosufpthe learners so that they can exploit
the full potential of learning with multiple repeggations.

(b) Scaffolding self-explanation effect and paradeedf-explanation prompt effect.
Scaffolding self-explanation prompts elicit highadjty self-explanations that are slightly out
of reach for learners without this assistance astef deep conceptual understanding. In this
dissertation it is proposed to call this the sddifig self-explanation effect. The case of the

scaffolding self-explanation effect is a very ganstance to support the notion that effective
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learning needs a well-balanced mixture of providdcture and information (e.g., scaffolds)
and room for active knowledge construction (e glfrexplanations) (cf. Renkl, 2005).

However, the scaffolding self-explanation promptisoa elicited incorrect self-
explanations which had a detrimental effect onabquisition of procedural knowledge. In
this dissertation it is proposed to call this tlaegolox self-explanation prompt effect because
an instructional support measure of scaffolding-eeplanation prompts unexpectedly leads
to incorrect self-explanations and hinders the mtiipn of one knowledge type. The
scaffolding self-explanation effect and the paradgeX-explanation prompt effect are an
innovation in research on self-explaining and sep@nt or respectively modify the work of
Chi (e.g., Roy & Chi, 2005) and Renkl (2005) (efcson 4.7 and section 5.7.1).

(c) Differentiated effects on different learningt@ames.Although in this research a
learning approach that reduces demands on theelearais implemented — example-based
learning is a load-saving approach because thedesare released from finding a solution on
their own — only one (i.e., conceptual knowledgelhe two knowledge types in the learning
outcome measures was consistently increased in brfgeriments. Evidently, not all
knowledge types can be equally effectively enhanogdnulti-representational examples:
Only learning outcomes that especially benefit froime integration of multiple
representations (i.e., conceptual knowledge) pdatity profit from multiple representations.
Interestingly, the Experiment 2 of this dissertatics one of the first studies to show
differential effects on the acquisition of concegdtand procedural knowledge.

(d) Different learning outcomes of different typefs learners. Learners with better
learning prerequisites are able to focus diffeierdwledge types whereas learners with less
favorable learning prerequisites deal with the clexip/ of the learning environment by
focusing on certain aspects which is at the cosbtbér knowledge types. These findings
underscore that it is essential to systematicaly different types of learners in research on

learning and instruction.
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| hope that this research will contribute to a detinderstanding of learning with multi-
representational examples and corresponding iriginad support measures. In addition, |
hope that it will stimulate further investigatioimsthis rapidly expanding area of research that

has such important implications for future eduacaiqractice.
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