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Abstract

The purpose of this study was to develop an open, flexible and extendable frame-
work for ink-jet simulation in Mathematica.

The developed software tool allows to inspect and engage in all processes during
simulations. With the facility to model different lumped networks and partial
differential equations simultaneously and in one software environment we have
great flexibility at hand.

The proposed computational approach relies on one basic component: mod-
elling with operators. We identify a methodology to combine, both, lumped net-
works and mesh based partial differential equation methods into graphs. Sub-
sequently these graphs will be converted to systems of (differential algebraic)
equations, which then can be solved with backward difference formulae.

We introduce Lagrangian dynamics and the Modified Nodal Approach for lumped
electrical networks. Both methods are combined to derive a Lagrangian Modi-
fied Nodal Approach. Based on this combined approach we exemplary model
electrical circuits.

For a general and mostly automatic treatment of partial differential equations
we present six fundamental operators and appropriate methodologies with which
we are able to solve arbitrary dimensional multi-physics coupled non-linear par-
tial differential equations consisting of up to second order derivatives in space
and time.

The presented automatic linearisation process is applied to the Navier-Stokes
equation and results in a system of equations including the tangent stiffness
matrix and is suitable to be solved with an affine invariant Newton method. The
free surface, separating the two immiscible fluids, is presented by an implicit
function and advected with a linear Level-Set method. Fitting into the framework
we model the surface tension as a volume force.

The discretisation of the operators is derived and the partial differential equa-
tions operators are based on the finite element method. The extendable im-
plementation was done based on the functional programming paradigm. Due to
the symbolic nature of Mathematica the framework allows for symbolic, complex
imaginary and/or numeric designs.

Diverse numerical examples with increasing complexity are presented to verify
the presented algorithms. The examples including the advection of a circular
bubble, the static behaviour of a bubble suspended in a liquid, a range of rising
bubbles showing different degrees of skirted bubbles, the rising of an oil bubble
bursting through a surface and an ink-jet simulation model are compared to
analytical, numerical and experimental data and found to be in good agreement.

With this simple framework complex phenomena such as ink-jet simulations
can be described.
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Zusammenfassung

Das Ziel dieser Arbeit ist es ein offenes, flexibles und erweiterbares Gerüst für
die Ink-Jet Simulation in Mathematica zu erstellen.

Das entstandene Softwarewerkzeug ermöglicht es, zu jedem Zeitpunkt der Si-
mulation alle Prozesse zu überprüfen und mit denselben in Wechselwirkung zu
treten. Die Möglichkeit, verschiedenartige konzentrierte Netzwerke und partiel-
le Differentialgleichungen gleichzeitig und in derselben Softwareumgebung zu
modellieren, bietet große Freiheiten.

Die vorgestellte Methodik beruht auf einem einzigen grundlegenden Konzept:
Modellierung mit Operatoren. Wir stellen eine Methode vor, die konzentrier-
te Netzwerke und partielle Differentialgleichungen in Graphen verbindet. Jene
Graphen werden nachfolgend in Systeme von, möglicherweise algebraischen,
Differentialgleichungen überführt.

Wir führen Lagrangesche Dynamik und ein Modified Nodal Approach für kon-
zentrierte Netzwerke ein. Beide Methoden werden zu einem Lagrange Modified
Nodal Approach zusammengeführt. Aufbauend auf jenen verbundenen Ansatz
zeigen wir exemplarisch die Modellierung elektrisalgebraischencher Netzwerke.

Die allgemeingültige und größtenteils automatische Behandlung von partiellen
Differentialgleichungen beruht auf sechs fundamentalen Operatoren. Es wer-
den Methoden vorgestellt, die es ermöglichen, beliebig dimensionale gekoppelte
nichtlineare Gleichungen mit bis zu zweiter Ordnung in Raum und Zeit zu lö-
sen.

Der vorgestellte automatische Linearisierungsprozess wird auf die Navier-Stokes
Gleichung angewandt und liefert ein System von Gleichungen, welches die Tan-
gentensteifigkeitsmatrix beinhaltet und für dessen Lösung eine affin invariantes
Newton Verfahren geeignet ist. Die freie Oberfläche, die zwei nicht mischbare
Flüssigkeiten trennt, wird durch eine implizite Funktion dargestellt und mittels
der Level-Set Methode transportiert. Die Oberflächenspannung wird als Volu-
menkraft modelliert.

Die Diskretisierung der Partialdifferentialgleichungsoperatoren wird, auf der
Methode der Finiten Elemente basierend, hergeleitet. Die erweiterbare Imple-
mentierung orientiert sich stark an den Paradigmen der funktionalen Program-
mierung. Auf Grund der symbolischen Fähigkeiten von Mathematica können
Fragestellungen symbolischer, komplexer und numerischer Natur gleichzeitig
behandelt werden.

Abschließend werden mehrere Beispiele mit zunehmender Komplexität zur Ve-
rifikation der Algorithmen vorgestellt. Die Beispiele schließen solwohl das stati-
sche Verhalten als auch den Transport von kreisförmigen Blasen ein. Weiterhin
werden eine Reihe von aufsteigenden Blasen aus verschiedenen Fluidbereichen
sowie eine Ölblase die, durch eine Oberfläche bricht, vorgestellt. Als letztes Bei-
spiel wird die Simulation eines Ink-Jet gezeigt. Die numerischen Experimente
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werden mit analytischen, numerischen und experimentellen Daten verglichen
und eine gute Übereinstimmung wird festgestellt.

Wir haben gezeigt, daß mit verhältnismäßig einfachen Operatoren komplexe
Phänomene wie Ink-Jet Simulation beschrieben werden können.

If you like this thesis and/or have questions do not hesitate to contact me under:
ruebenko-AT-imtek.de.

The software is available on-line:

http://www.imtek.uni-freiburg.de/simulation/mathematica/IMSweb/
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1 Introduction

Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura

ché la diritta via era smarrita.
(Dante Alighieri)

1.1 Objectives of the Thesis 6
1.2 Overview 6
1.3 Major Results 7
1.4 Document license 9

SIMULATION is becoming well established. The application area of simulations
range from quick feasibility checks to highly complicated models to gain funda-
mental understanding of complex natural phenomena. This thesis deals with
the simulation of ink-jets, a fairly complicated and long winded process due to
the demanding nature of the involved parameters. Small time and length scales
as well as fluids with hard physical properties are to be dealt with. By taking
a small detour - namely generality - we develop an ink-jet model, simulate and
verify the model.
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1 Introduction

This thesis can be of value to you even if have no intention whatsoever to simu-
late ink-jets. We present techniques to deal with partial and ordinary differential
equations in a very general manner. You will see how to computationally treat
lumped systems such as electrical networks; no restriction implied here. The
lumped systems can be from any physical kind such as from the mechanical,
fluidic or the magnetic domain or a mixture there of.

Otherwise, a simple yet general approach to coupled non-linear partial differ-
ential equations is offered. Here, a way to automatically linearise partial differ-
ential equations is shown. The simplicity lies in the fact that only six so called
operators are need to deal with partial differential equations up to second order
time and and space derivatives, which allows for partial differential equations to
be dealt with in a consistent way. These operators are implemented in an open
source environment delivering both, arbitrary dimensional and symbolic finite
element operators.

1.1 Objectives of the Thesis

The objective of this thesis was to develop an ink-jet printing simulation tool. A
tool flexible enough to handle different print head geometries and ink material
properties. Furthermore, the simulation should address the ejection of the ink
as well as the flight of the droplet. The thesis actually goes one step beyond by
including the landing of the ink droplet into the simulation.

1.2 Overview

The thesis is organised as follows. The first chapter gives a rough overview of
the objectives and major results obtained in this thesis. In order to reach the
objectives a very general approach to computer simulation has been taken. The
engineering problem of simulating an ink-jet is set aside for the moment.

Instead of directly dealing with the ink-jet in Chapter 2 we present a general
framework for the derivation of systems of ordinary differential equations. The
chapter bases its generality on the observation that engineering problems com-
monly are described by nodes connecting elements; such as in electrical net-
works. The connectivity of the elements is represented in a graph. It is shown
that a graph stemming from an engineering application can be converted to a
system of ordinary equations by means of operators. Chapter 3 goes into the
details of using lumped elements to build systems of equations. Here, in an
exemplary manner, electrical network elements are used as lumped elements.
It is, however, made clear that the concept is by no means restricted to lumped
electrical elements. In Chapter 4 we introduce how to use partial differential
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1.3 Major Results

equation operators in the same frame work, to, again, build systems of equa-
tions. Only a hand full of operators are necessary to model coupled non-linear
partial differential equations.

Now, that all the tools are available, in Chapter 5 we model an ink-jet in the
operator framework. Therefor the Navier-Stokes equation is automatically lin-
earised and put into the partial differential equations frame work. For repre-
senting the interface between two fluids - the free surface - we use the well
established level-set method.

Up until now the operators are only specified in their interface, that is what is
inserted into them and what is returned by them. Chapter 6 then describes the
derivation of both, the lumped and partial differential equations operators. We
show the mechanics that make the operators work. In this work we have chosen
to use the finite element method for the partial differential equations operators.
Also in this chapter you will find some information on boundary conditions as
well as explanations of some challenges for the ink-jet model. Next, in Chapter 7
we give details of the actual implementation and show some sample sessions in
the integrated engineering development environment. Finally, in Chapter 8 we
extensively verify the program code with common free surface flow test cases.
Last we show an ink-jet simulation. The thesis is concluded with an outlook of
what could be done in the future to further enhance the obtained results. We
also mention some experiments which could not be concluded successfully and
discuss the possible reasons for the new challenges.

1.3 Major Results

In the opinion of the author the biggest success of the thesis is the fact that
the software developed [4] is downloaded and used on a regular basis, among
others by companies like Additive [1] and institutions like MIT [3] or CERN [2].
It seems useful to other people.

7



1 Introduction

Integrated engineering development environment

We have developed and implemented
a simple yet general and extendable
modelling environment. The concept is
based on entities called operators. Op-
erators transform engineering compo-
nents to systems of ordinary differential
equations. The operator framework is
suitable to coevally treat both lumped
systems and possibly non-linear, cou-
pled partial differential equations up to
second order in space and time.
Chapter 2 introduces essentials of the
transformation where Chapters 3 and 4
introduce lumped and partial differen-
tial equation operators respectively.

Different components of the work
flow dealt with in this thesis.

Functional finite element & lumped operators

We have theoretically derived a gen-
eralised finite element master opera-
tor from “first principals”. Several
specialised operators have been imple-
mented. These arbitrary dimensional
operators are, due to their implemen-
tation in Mathematica, suitable for nu-
meric and complex imaginary computa-
tion or symbolic code generation. The
operators handle arbitrary mixed ele-
ment type meshes. Also lumped opera-
tors have been discretised to fit into the
work-flow. Both derivation and discreti-
sation are presented in Chapter 6.

∫
Ω(ek)

p∐
i=1

κi ⊗D (Ni, r, oi) dΩ(ek)

The integral representing the mas-
ter finite element operator

8



1.4 Document license

Free surface fluid flow solver

As an application example we have de-
veloped a model for an ink-jet simula-
tion. The model is based on the Navier-
Stokes equation for the fluid flow and
the Level-Set method for the free sur-
face representation and is presented
in Chapter 5. The results of the free
surface flow solver are summarised in
Chapter 8.

An ink-jet after ejecting.

1.4 Document license

Copyright (c) 2007 Oliver Rübenkönig. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

References

[1] http://www.additive-net.de/software/mathematica/packages.

[2] http://it-des.web.cern.ch/IT-DES/SIS/mathematics/
mathematica_Addons.html.

[3] http://web.mit.edu/acs/www/numerical.html.

[4] O. Rübenkönig and J. G. Korvink. Imtek mathematica supplement. http:
//www.imtek.uni-freiburg.de/simulation/mathematica/IMSweb/,
2002 – 2007.
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2 Modelling with Operators

What makes it possible to study such a sequence of different
applications is that mathematically they fit in the same framework.

The theories are separate but parallel.
(Gilbert Strang)

2.1 Nodes, Elements & their Graphs 12
2.2 Systems of Equations 13
2.3 From Graphs to Systems 14
2.4 Illustrations 15

WE present a general framework for the derivation of systems of ordinary
differential equations, where special attention will be paid to three issues: First
we observe that we would like to be able to deal with lumped models. Such
models arise when physical properties are condensed and captured in an ide-
alised element. An omnipresent task such as electrical circuit modelling makes
use of lumped elements [2, 5]. At the same time we would like to be able to deal
with partial differential equations.

11



2 Modelling with Operators

To account for both situations, lumped models and partial differential equa-
tions, the derivation of the ordinary differential equations is based on the cen-
tral observation that elements are connected to each other through nodes. To
this end the notion of nodes, elements, and graphs is introduced. Graphs pro-
vide a convenient method to embrace nodes and elements. Therefore, graphs
represent the starting point.

In a second step we introduce numerical systems of linear second order ordinary
differential equations. Once we are able to establish such systems, standard
analytical methods such as time integration or Eigenwert computation can be
applied.

Now that we have introduced graphs and systems we show the general concept
of operators in their role as a transforming entity. Operators transform elements
and nodes of graphs to entries in systems of ordinary differential equations. Op-
erators can be seen as the mediators between graphs and systems of equations.
This mediation process is presented in two steps. First the process of applying
operators to elements is discussed on a general level. Second, the assembly of
matrices which define the system of ordinary differential equations is presented.
The chapter will end with several examples, illuminating the theory.

2.1 Nodes, Elements & their Graphs

We start from the observation that engineering systems are constructed from
"basic" components and these components are related to each other via some
connectivity to be further specified. Along this connectivity we can transform
components into parts of systems of linear ordinary differential equations. For
concreteness, consider the components of an electrical circuit. Let us restrict
ourselves, without loss of generality, to RLC networks. Such a network consists
of two sorts of components:

1. elements

2. nodes.

The elements are connected to each other via nodes. Each element and the way
it is connected contribute to a system of equations, more specifically, a system
of second order linear ordinary differential equations.

The elements are not restricted to circuit elements but can be any element the
engineer might need, for example lumped mechanical elements such as masses,
dampers, and springs. To generalise even further, mesh elements for a finite
discretisation method are of interest. Whatever the application, the elements
and nodes form a graph.

12



2.2 Systems of Equations

Definitions: A graph [1] is a pair G = (V,E) of sets such that for each element
E we have the association E ⊆ [V ]k, where we denote by [A]k the set of all
k-element subsets of A. A two node element would imply k = 2. A graph
with node set V is said to be a graph on V . The node set of a graph G

is referred to as V (G), its edge set as E(G). A node n ∈ V (G) also written
n ∈ G is incident with an edge e ∈ E(G) or e ∈ G if n ∈ e; then e is an edge
at n. Two nodes x, y are adjacent, or neighbours to each other if x, y is an
edge of G. Two edges e 6= f are adjacent, or neighbours if they have a node
in common. If all nodes of G are pairwise adjacent then G is complete. The
incidence matrix B = (bij)n×m of a graph G = (V,E) with V = {n1, .., nn} and
E = {e1, .., em} is defined over the two element field F2 by

bij :=
{

1 if ni ∈ ej

0 otherwise.

Then B and BT define linear maps. B : E(G) 7→ V (G) and BT : V (G) 7→
E(G). A directed graph assigns to every edge e an initial node i and a
termination node t. The edge e is then said to be directed from i to t. A
directed graph may have several edges between the same nodes x, y. Such
edges are called multiple edges.

The incidence matrix B is never explicitly built. Instead, lists are established
which store the actual incidents ik for each element k. For each row i of bij only
the values j are stored for which bij = 1.

Some graph elements may have more nodes than the so-called primary nodes
which we have presented so far. Additional secondary nodes may be of interest
for higher order (finite) elements.

2.2 Systems of Equations

Let
L = Su+Du̇+Mü (2.1)

be a system of second order ordinary linear differential equations. S is the stiff-
ness matrix, D the damping matrix, and M the mass matrix. u is the unknown
and u̇, ü are the first and second time derivatives respectively. L is the load
vector, or a collection of load vectors, which is implied by the matrix notation
for L. In matrix form the system of equations reads

13



2 Modelling with Operators

 l1
...
ln

 =

 s11 · · · s1n

...
. . .

...
sn1 · · · snn


 u1

...
un

+

 d11 · · · d1n

...
. . .

...
dn1 · · · dnn


 u̇1

...
u̇n



+

 m11 · · · m1n

...
. . .

...
mn1 · · · mnn


 ü1

...
ün

 ,

where for uncoupled systems the number of equations is n = max(n ∈ G). We
call the coefficient matrices S, D, and M global matrices. Sometimes not all
matrices are populated, in such cases the system may reduce to a first order or
stationary system of equations.

For an extension to parametric systems see Moosmann [4] and for an extension
to nonlinear systems see Lienemann [3]. In this work we show that for non-
linear coupled partial differential equations a linear system is sufficient.

2.3 From Graphs to Systems

In this section we introduce the notion of operators and matrix assembly. Oper-
ators are mathematical entities which mediate between the graph and a system
of equations. In essence an operators takes an element of the graph, applies its
functionality and returns an element matrix. This so-called local element ma-
trix is then built into the global system of equations, which is called the matrix
assembly step.

2.3.1 Applying operators to graph elements

To arrive at the system of equations we take each element of the graph in turn
and compute its contribution to the system of equations. This process is called
application of operators L to graph elements e. An operator L is an entity that,
given e ∈ G, computes the contribution of that one element to the system of
equations.

L(e)→ {L(e), S(e), D(e),M (e)} ∀e ∈ G (2.2)

Since the X(e) represent the contributions from each element they are called
local element matrices. They indicate the local element load vector, element
stiffness, and damping and mass matrix, respectively. Each local element ma-
trix contributes to its equivalent global matrix.

Different applications may require different operators L1,L2, ...,Ln. Each oper-
ator Lx may contribute to the load, stiffness, damping or mass matrices. A de-
tailed discussion of the lumped operators can be found in Chapter 3, whereas

14



2.4 Illustrations

the partial differential equation operators and their viable modelling are de-
scribed in some detail in Chapter 4 . Once L(e) is computed the question re-
mains as to how the local result is assembled into the global system of equa-
tions.

2.3.2 Assembly of local elements to global systems of equations

The last step in arriving at a system of equations is the matrix assembly step.
Once an operator has computed the contribution of an element the result has to
be put into the mass, damping, or stiffness matrix or the load vector. Depending
on how the elements are connected with each other the element values are
placed in the system matrices.

Xn∈ek
+X

(ek)
n∈ek

→ Xn∈ek
,

where X is any of the global system matrices, n ∈ ek is the connectivity of
element k, and X(ek) the local contribution from L(ek).

2.4 Illustrations

The versatility of the presented framework is demonstrated in several examples.

2.4.1 Lumped element matrix assembly

Consider the lumped electrical circuit on the left of Figure 2.1. We have in red
the vertices V = {n1, n2, n3, n4} and in blue the elements E = {e1, e2, e3, e4, e5}.
The actual meaning of the elements is, for now, irrelevant. V and E make up a
graph G = (V,E). The uncoupled system of ordinary differential equations has
n = max(n ∈ G) = 4 degrees of freedom.

We apply the operators to each element. Here, the exemplary element e2 is
considered

L(e2)→ {L(e2), S(e2), D(e2), M (e2)},

where each of the local element matrices is a square matrix of size m×m, with
m the number of nodes which are incident to the element considered. With
{n2, n4} ∈ e2 ∈ G it follows that m = 2. The local load vector contribution is m×1.
The contribution of element e2 to the global matrices thus is

L(e2)→

{(
l
(e2)
2

l
(e2)
4

)
,

(
s
(e2)
22 s

(e2)
24

s
(e2)
42 s

(e2)
44

)
,

(
d
(e2)
22 d

(e2)
24

d
(e2)
42 d

(e2)
44

)
,

(
m

(e2)
22 m

(e2)
24

m
(e2)
42 m

(e2)
44

)}
.
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2 Modelling with Operators
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Figure 2.1: Left: A lumped electrical circuit. Depicted in red are the nodes V =
{n1, .., n4} and in blue the elements E = {e1, .., e5}. Right: A mesh consisting of four
mesh elements. The node numbers are again depicted red and the element numbers
blue.

In particular, we consider the way element e2 contributes to the stiffness matrix

S + S
(e2)
n∈e2

→ S,

in detail

0BB@
s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44

1CCA +

0@ s
(e2)
22 s

(e2)
24

s
(e2)
42 s

(e2)
44

1A →

0BBBB@
s11 s12 s13 s14
s21 s22 + s

(e2)
22 s23 s24 + s

(e2)
24

s31 s32 s33 s34
s41 s42 + s

(e2)
42 s43 s44 + s

(e2)
44

1CCCCA .

In the same manner all local elements computed by the operator L are assem-
bled into the global stiffness matrix. The values of the sxy may be anything,
typically they are zero when the matrix assembly process is started. The other
global matrices are assembled in the same manner.

Remark: Without knowing the actual values of each local element we are never-
theless able to set up the global matrices according to the incidents given
in the graph G.

2.4.2 Mesh element matrix assembly

The same procedure presented for lumped elements holds for mesh elements.
On the right-hand side of Figure 2.1 we have a mesh with quadrilateral and tri-
angular elements, in red the nodes V = {n1, .., n7} and in blue the elements
E = {e1, .., e4}. An uncoupled system of equations will thus consist of n =
max(n ∈ G) = 7 degrees of freedom. The elements’ contribution for the quadrilat-
eral elements {n1, n2, n4, n3} ∈ e1 ∈ G will be mquad = 4× 4 and for the triangular
elements {n3, n5, n4} ∈ e3 ∈ G it will be mtri = 3× 3.

16



2.4 Illustrations

If we introduce the short form gk
ij, where k is the element ek and i, j are incident

to ek, then the assembled global matrix will have contributions from the local
elements in the following form

0BBBBBBBBBB@

g1
11 g1

12 g1
12 g1

13 g1
14 0 0 0

g1
21 g1

22 + g3
22 g1

22 + g3
22 g1

23 g1
24 + g3

24 g3
25 0 0

g1
31 g1

32 g1
32 g1

33 + g2
33 g1

34 + g2
34 0 g2

36 g2
37

g1
41 g1

42 + g3
42 g1

42 + g3
42 g1

43 + g2
43 g1

44 + g2
44 + g3

44 + g4
44 g3

45 + g4
45 g2

46 g2
47 + g4

47
0 g3

52 g3
52 0 g3

54 + g4
54 g3

55 + g4
55 0 g4

57
0 0 0 g2

63 g2
64 0 g2

66 g2
67

0 0 0 g2
73 g2

74 + g4
74 g4

75 g2
76 g2

77 + g4
77

1CCCCCCCCCCA

For the same graph the incident matrix is

B =


1 1 1 1 0 0 0
0 0 1 1 0 1 1
0 1 0 1 1 0 0
0 0 0 1 1 0 1

 .

To preserve the graph’s direction the incidents are stored in mathematically
positive orientation

i1 : {1, 2, 4, 3}, i2 : {3, 4, 7, 6}, i3 : {2, 5, 4}, and i4 : {4, 5, 7}

ik is the incident of element ek. ik,l is the lth part of ik. These lists ik may, for
example, be used to traverse a mesh in a systematic manner or to establish a
list of neighbouring elements or to find the elements connected to a node.

2.4.3 Mesh traversal

Some algorithms later in this work depend on a traversal of the mesh, or a
graph, more generally speaking. Therefore, we present a method with which we
will be able to do so. First, however, the way in which elements are connected
to each other has to be found.

2.4.3.1 Connected elements

To find the connected elements we first define a list of empty sets of the length
of the largest incident

s := {{}1, .., {}max(∪n)}.

Then the update function for one incident entry ik,l and counter c ∈ I returns a
set with the old set for this incident si and the current counter

f(ik,l, c) := sik,l
= {sik,l

, c}.
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2 Modelling with Operators

The update function is then applied to all incidents of one element

fe(ik, c) := f(ik,1, c), ..., f(ik,l, c)

and in a last step the element update function is applied to all incidents

fc(i1, .., ik) := fe(i1, 1), ..., fe(ik, k).

For the example mesh above this results in the connected elements list ec

ec = {{1}, {1, 3}, {1, 2}, {1, 2, 3, 4}, {3, 4}, {2}, {2, 4}}.

Here each entry in the row corresponds to one node and the elements connected
to this one node. This means that for example node number 6 is only connected
to the element 2.

2.4.3.2 Graph traversal

To traverse a graph we proceed as follows: First, all elements are marked as not
visited

vi(e) := False.

The function walk finds the surrounding elements

walk(ek) := ∪ (ec(∪ (i(ek))))∩ !vi(e)

where i are a list of incidences per element and ek is the k-th element under
inspection. Here ∪ is the union, which sorts and removes double entities in
the list given to it. The function step marks elements as visited and walks the
elements

step(ek) := (vi(ek) = True; walk(ek); ).

The function step can be nested while the element list is not an empty list
e 6= {}.

Example: We traverse the above mesh and set all elements as not visited

vi({1, 2, 3, 4}) := False.

We wish to start from element 1 with

step(e1) := (vi(e1) = True; walk(e1);

which leads to
walk(e1) := (∪ec(∪i(e1)))∩ !vi(e)

18



2.4 Illustrations

with
∪i(e1) = i1 = {1, 2, 4, 3},

with ec from above this leads to

∪ec({1, 2, 4, 3}),

∪({1}, {1, 3}, {1, 2, 3, 4}, {1, 2}) = {1, 2, 3, 4}

and then to the result

{1, 2, 3, 4}∩ !vi(e) = {2, 3, 4}.

In Figure 2.2 the traversal of a triangular mesh is displayed. Four randomly
chosen elements mark the starting point for the traversal front which propa-
gates in some 18 steps through the displayed mesh made up of roughly 1500
elements. A set of connected - possibly closed - elements could just as well have
been chosen as starting elements.

Figure 2.2: Graph traversal of a triangle mesh. The traversal is started at 4 ran-
domly chosen elements from which the traversal front propagates. Three further
time steps are displayed. The mesh consists of roughly 1500 elements.
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3 Modelling with Lumped Operators

9 weniger 10 - das geht nicht.
Da müssen wir uns eins borgen.

(Alte Schulweisheit)

3.1 Lagrangian Dynamics 22
3.2 Modified Nodal Approach 25
3.3 Lagrangian Modified Nodal Approach 25

L UMPED simulation deals with the simulation of elements where the elements’
physical properties could be condensed into mostly one continuous equation.
For example, Ohm’s1 law U = RI represents such an equation were the material
property resistance R relates the current I to the voltage U . Such relations
can be found in numerous engineering areas: thermal, mechanical, and fluidic
elements are not the only known items.

1Georg Simon Ohm (1789-1854) published a pamphlet “Die galvanische Kette mathematisch bear-
beitet” about the theory and applications of electrical current, where he introduced “Ohm’s law”.
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3 Modelling with Lumped Operators

Lumped operators are the mathematical operators that transform a continuous
lumped equation into a discrete set of equations suitable for assembly into a
system of equations such as presented in Equation 2.1. In the following we
show the derivation of the lumped operators for circuit elements based on La-
grangian dynamics. First a short revision of Lagrangian dynamics for circuit
elements is given. Since Lagrangian dynamics has some shortcomings for a
computer implementation, in the next section we introduce the Modified Nodal
Approach which will be shown in the final section to circumvent the previous
shortcomings.

3.1 Lagrangian Dynamics

In Lagrangian dynamics [3] two formulations for circuit models are common:
the charge formulation and the flux linkage formulation. The charge formu-
lation is based on finding closed loops for the analysis based on Kirchhoff ’s2

voltage rule. Since in our system approach we focus on nodal values, the flux
linkage formulation seems more appropriate. The flux formulation is based on
Kirchhoff ’s current law which states that the sum of the currents entering any
node must be zero. The requirements for the system must then be of the form

dλk

dt
= ek, (3.1)

where λk is the kth generalised coordinate. λ is the unacquainted flux linkage
in Weber3 and e the voltage in Volt.

Lagrange’s4 equation is given by

d

dt

(
∂L

∂λ̇k

)
− ∂L

∂λk
= Ik.

The electrical circuit Lagrangian function L, usually simply called the Lagrangian,
for flux linkage variables is defined as

L = W ∗
e −Wm,

where W ∗
e is the electric co-energy and Wm the magnetic energy. W ∗

e is pop-
ulated through capacitive elements and Wm through inductances. Ik is the

2Gustav Robert Kirchhoff (1824-1887) formulated the circuit laws while he was a student in 1845.
3Wilhelm Eduard Weber (1804-1891) in 1831, on the recommendation of Gauß, he was called to

Göttingen as professor of physics, although but twenty-seven years of age.
4Joseph-Louis, Comte de Lagrange (1736-1813) is regarded as the greatest mathematician of the

18th century after Leonhard Euler. Lagrange made, among other things, important contributions
to mechanics. By the age of 20 he held a chair for geometry.
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3.1 Lagrangian Dynamics

contribution of generalised non-conservative currents

δWnc =
N∑

i=1

Ik δλk.

The δWnc part comprises current sources and resistances. The following table
composes the primary idealised elements in the flux linkage formulation.

W ∗
e Wm δWnc

Cλ̇2

2
λ2

2L I(t) δλ
− 1

R λ̇ δλ

Example: We consider the circuit in Figure 3.1 and derive the system of equa-
tions via Lagrange’s formulation:

1. Generalised coordinates

λk : λ1 λ2 λ3 λ4

here λ1 = λ5 = λ6. Strictly speaking also λ1 is not neccessary since the
potential is equal to 0.

2. Lagrangian

W ∗
e =

1
2
C1

(
λ̇3 − λ̇2

)2

+
1
2
C2

(
λ̇4 − λ̇3

)2

Wm =
λ2

2 − λ2
1

2L

3. Generalised currents

δWnc = − 1
R

(λ̇4 − λ̇1) (δλ4 − δλ1) + I(δλ3 − δλ1) =
2∑

k=1

Ik δλk

with λ̇1 = λ̇5.

4. Lagrange’s equation applied then results in
−I(t)

0
I(t)

0

 =


1
L − 1

L 0 0
− 1

L
1
L 0 0

0 0 0 0
0 0 0 0




λ1

λ2

λ3

λ4

+


1
R 0 0 − 1

R

0 0 0 0
0 0 0 0

− 1
R 0 0 1

R




λ̇1

λ̇2

λ̇3

λ̇4

+


0 0 0 0
0 C1 −C1 0
0 −C1 (C1 + C2) −C2

0 0 −C2 C2




λ̈1

λ̈2

λ̈3

λ̈4
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3 Modelling with Lumped Operators

Several comments concerning this example are appropriate: In the classical
formulation it is not necessary to include λ1. In this work we, however, include
every node in the schematic. From a computer implementation point of view it
is far easier and more general to later deal with them in an appropriate manner
than to previously decide which nodes to include and which not. Furthermore,
not removing nodes is very instructive for the construction of lumped operators.
We thus see by inspection that an element connecting nodes i and j contributes
to the appropriate global matrix at positions {{i, i}, {i, j}, {j, i}, {j, j}. For exam-
ple, the capacitance C1 is to be found in four positions in the mass matrix5;
solely specified by the identification numbers of the embracing nodes λ2 and λ3.
It is then possible to assemble the system of equations automatically.

1

2

3

4

5

6

L

C
1

C
2

I

R
W
1

W
2

Figure 3.1: A small electrical circuit with inductance L, current source I, two
capacitances C1 and C2, a resistance R, and ground G. Wires W1 and W2 are also
shown.

Remark: The unknown variable is λ. However, we are much more interested in
the voltage ek which can be computed by Equation 3.1

Several open questions remain:

1. How to automatically deal with the nodes which are on the same potential
as λ1 as has been done in the example above?

2. How to build in voltage sources without transforming them to current
sources?

3. How to deal with the wires between nodes λ1, λ5 and λ6?

5We keep the matrices’ names as introduced in Section 2.2. These names stem from the domain
of mechanics and are instructive. For example, in a flux linkage formulation the resistive parts
make up the damping of the system of equations.
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3.2 Modified Nodal Approach

3.2 Modified Nodal Approach

The questions posed in the previous section were essentially the same as in
the nodal analysis prior to 1975 when the Modified Nodal Approach [1] paper
was published. The nodal approach (and as a matter of fact the modified nodal
approach too) differs from the Lagrangian method in the fact that the voltage ek

is the unknown variable and not λk as in the Lagrangian method. We can use
the modified nodal approach to circumvent the above-mentioned shortcomings.

In the modified nodal approach a system of equations of the form

Y · U = J

is formulated were Y is the admittance matrix, U represents the sought nodal
voltages, and J the current source vector. The modified nodal approach intro-
duces branch currents as additional variables and the constitutive relations as
additional equations to the form[

YR B

C D

]
·
[
U

I

]
=
[
J

E

]
,

where YR is the reduced form of the nodal matrix excluding contributions due
to voltage sources, current controlling elements, and the like. B contains the
partial derivative of the Kirchhoff current equations with respect to the addi-
tional current variables. This implies a value of ±1 for the introduced branch
relations. The branch constitutive relations, differentiated with respect to the
unknown vector, are represented in matrices C and D. This is shown further
down with more detail.

3.3 Lagrangian Modified Nodal Approach

We now adapt the modified nodal approach to the Lagrangian method. Since we
use a flux linkage formulation we can say that the resistive components belong
to the damping matrix, the inductive components to the stiffness matrix, and
the capacitive components to the mass matrix. The exact discretisation can be
found in Chapter 6. The method is best illustrated by an example.

Example: The following system of equations is the result of a Lagrangian mod-
ified modal approach applied to the circuit in Figure 3.1 and will be ex-
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plained below

0BBBBBBBBBB@

0
0
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0
0

−i

0
0
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=
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.

.

.
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·
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+

0BBBBBBBBBBB@

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

R
− 1

R
0 0 0

0 0 0 − 1
R

1
R

0 1 0
0 0 0 0 0 0 −1 1
0 0 0 0 1 −1 0 0

−1 0 0 0 0 1 0 0

1CCCCCCCCCCCA
·

0BBBBBBBBBBB@

λ̇1
λ̇2
λ̇3
λ̇4
λ̇5
λ̇6
λ̇7
λ̇8

1CCCCCCCCCCCA
+

0BBBBBBBBBB@

0 0 0 0 0 0 0 0
0 C1 −C1 0 0 0 0 0
0 −C1 C1 + C2 −C2 0 0 0 0
0 0 −C2 C2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1CCCCCCCCCCA
·

0BBBBBBBBBBB@

λ̈1
λ̈2
λ̈3
λ̈4
λ̈5
λ̈6
λ̈7
λ̈8

1CCCCCCCCCCCA
.

For now the ground is ignored and not present in the system of equations.
Equations 1-6 are added like in a Lagrangian method. The current source
is inserted in the load at nodes 3 and 6.
Only the voltage source enlarges the system of equations, hence the sub-
matrices C and B in the modified nodal approach. Wires are handled like
voltage sources, only that the voltage U is 0. We see that the system has
been enlarged by equations for λ7 and λ8. In essence the added equations
are λ5 − λ6 = 0 and −λ1 + λ6 = 0. Similarly, if a voltage source were located
between nodes 5 and 6 then the equations were λ5−λ6 = U , where U is the
voltage of the source. Please note that in this case BT = C.
Adding a ground imposes a Dirichlet boundary condition of value 0 and
offsets are allowed. The mechanism which describes how to insert the
boundary condition is discussed in Chapter 7.

The element matrices of the different circuit elements are called stamps and are
presented in Chapter 6.

Lagrange’s Method was originally derived for mechanical systems and thus a
system which applies to mechanics is possible within the same framework. The
extensions to the fluid domain are of interest and can be found elsewhere [2].
Furthermore, the combination of the different domains is possible. An extension
to the micro electro-mechanics domain with its comb-drives and other devices
might be promising.
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4 Modelling with Partial Differential
Equation Operators

Das Gegenwärtige ist begrenzt.
Das Mögliche unermesslich.

(Unknown)

4.1 Building Blocks 30
4.2 Combining Operators to Model Partial Differential Equations 34

SINCE the early days of computerisation, scientist from all fields have been
making use of computers to automate complex computational tasks. Obviously,
modelling nature is the fundamental challenge, the primary goal being to pro-
mote the understanding of nature and its innermost working. Independent, but
hugely promoted by the computer revolution, different methodologies for pro-
jecting observed natural phenomena into the domain of physics evolved - the
common tongue being mathematics. In this work we use differential equations,
which, however, are not solely amenable for modelling natural phenomena. We
first provide building blocks for partial differential equations which then are
shown to be suitable for treating coupled and non-linear systems of equations.
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4 Modelling with Partial Differential Equation Operators

4.1 Building Blocks

We start by looking at mathematical entities we call differential operators. In
the broadest sense a differential operator evokes function differentiation. In
a partial differential equations (PDE) context, differential operators differentiate
an unknown, sought after function u. In order to be able to treat a wide range of
partial differential equations we are about to discuss a general set of differential
operators. In other words, we learn to view partial differential equations not
as a single equation but as equations composed of basic building blocks. As a
prerequisite we look at the Nabla operator.

Nabla operator

The Nabla operator1 ∇ is a pseudo vector and indicates the notion of differ-
entiation. The operator, however, is completely independent from coordinates
and dimensions; those are defined solely by the function to be differentiated. In
n-dimensional space Rn

∇� =


∂�
∂x1
...

∂�
∂xn


returns all partial derivatives of a scalar function �. This is known as the
gradient. Here ∇ : R 7→ Rn. The differentiation property acts on the character to
its right, while the vector property is applied as a normal vector. ∇ applied to a
vector field

∇ ·� =

(
n∑
i

∂�xi

∂xi

)
where in this case ∇ : Rn 7→ R.

In the following, we consider scalar unknown fields denoted by u.

4.1.1 Diffusion operator

The diffusion operator models 2nd order derivatives in space as for example in
the Laplace2 equation

∇2u = 0

1The operator was introduced by Hamilton, who used the rotated form / and it was P. G. Tait
who established the form known today. The symbol ∇ is possibly derived from a Hebrew string
instrument close to a harp which had a similar form. The resemblance of the ∇ operator to an
Assyrian harp made R. Smith suggest the ελληνικη γλωπα (old Greek) name of nabla.

2Pierre-Simon, Marquis de Laplace (1749-1827) translated the geometric studies of mechanics
used by Isaac Newton to one based on calculus. He also discovered the Laplace equation.
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4.1 Building Blocks

The equation describes a potential distribution in a medium and consists of two
parts. The diffusion operator ∇2u and a right-hand side term, which is 0. In the
form presented, the equation holds for isotropic media. To extend the equation
in order to be able to handle anisotropic media we rewrite the equation in the
following form

∇T · (−σ∇u) = 0,

where σ is a rank-2 tensor and can be a function of the same coordinates as
the ∇ operator. The dimension of σ is a function of the dimension of ∇. The
following holds in Rn

dim
(
∇T
)

= {1, n}
dim (σ) = {n, n}
dim (∇) = {n, 1}.

Different settings for σ model different, possibly anisotropic, media. By setting

σij = δij

and noting that δij is the Kronecker3 delta we can again model isotropic media.

The diffusion operator in Equation 4.1 is the single most important operator.

∇T · (−σ∇u) (4.1)

4.1.2 Load operator

The next step is to model Poisson’s equation

∇2u = L(f)

for which we need to incorporate a right-hand side different from 0 . This is
achieved with the load operator.

L (4.2)

The most notable difference of the load operator, besides its functionality, is the
fact that this operator does not involve the unknown function u. L computes
the load f to the equation. f can, nevertheless, be a function of the coordinates
of the ∇ operator. The following holds in Rn

dim (f) = 1

3Leopold Kronecker (1823 - 1891) was a German mathematician. The Kronecker delta is defined

as δij =

(
1 i = j

0 i 6= j
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4 Modelling with Partial Differential Equation Operators

4.1.3 Reaction operator

To model Helmholtz’s equation

∇2u+ au = f

we additionally need a so-called reaction operator. The reaction operator

au (4.3)

models equations with 0th order derivative. a is a rank-0 tensor (scalar) and in
the physical context the operator can be interpreted as local change in u due to
sources, sinks and reactions. a can be a function of the coordinates of the ∇
operator. The following holds in Rn

dim (a) = 1.

Sometimes the reaction operator is called absorption operator.

4.1.4 Convection operator

Now that we have 2nd and 0th order spatial operators we accommodate 1st order
spatial derivatives. We introduce the convection operator

β · ∇u. (4.4)

In the physical context β is a rank-1 tensor and can physically be interpreted
as the velocity with which a convection takes place. β can be a function of the
coordinates of ∇. The following holds in Rn

dim (β) = {1, n}
dim (∇) = {n, 1}.

4.1.5 Conservative flux convection operator

The following operator does not have much of a physical meaning. The main
functionality of this operator is in the linearisation process of non-linear partial
differential equations (see Section 4.2.4). Terms involving the conservative flux
convection operator will appear at a later stage.

∇T · (−αu) (4.5)

32



4.1 Building Blocks

The following holds

dim
(
∇T
)

= {1, n}
dim (α) = {n, 1}.

4.1.6 Load derivative operator

The following operator does not have much of a physical meaning. The main
functionality of this operator is in the linearisation process of non-linear partial
differential equations (see Section 4.2.4). Terms involving the load derivative
operator will appear at a later stage.

∇T · (γ)

The following holds

dim
(
∇T
)

= {1, n}
dim (γ) = {n, 1}.

4.1.7 1st order time derivative

To model transient behaviour of the first kind we introduce the 1st order tran-
sient operator

τ1
∂

∂t
u. (4.6)

This operator models the first time derivative of function u. τ1 is a rank-0 ten-
sor (scalar) and in the physical context τ1 is a damping constant. τ1 can be a
function of the coordinates of ∇. The following holds in Rn

dim (τ1) = 1.

4.1.8 2nd order Time Derivative

To model the wave equation

∂2

∂t2
u− c∇2u = 0

we introduce the 2nd order transient operator:

τ2
∂2

∂t2
u. (4.7)
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4 Modelling with Partial Differential Equation Operators

τ2 is a rank-0 tensor (scalar) and in the physical context τ2 is an inertia constant.
τ2 can be a function of the coordinates of ∇. The following holds in Rn

dim (τ2) = 1.

4.1.9 Operators: A different viewpoint

To summarise: We have n-dimensional scalar valued operators from zeroth or-
der to second order in space and time. Where each differential operator has a
so-called input function which specifies the operator’s physical behaviour. The
input function may depend on the coordinates defined by ∇. Physical behaviour
can thus be switched on and off in different regions of the simulation domain
Ω. This topic will be broadened subsequently.

4.2 Combining Operators to Model Partial Differential
Equations

Now that we have introduced the building blocks we begin to combine these
differential operators.

4.2.1 Coefficient Form

We postulate the partial differential equation 4.8 to be fundamental [2, 1]:

τ2
∂2

∂t2
u+ τ1

∂

∂t
u+∇T · (−σ∇u− αu+ γ) + β · ∇u+ au = f (4.8)

Even though Equation 4.8 has limited physical meaning as such, it is possible to
map a wide range of problems from the physical domain onto the mathematical
domain, which makes for a great deal of the equation’s elegance. Essentially
we view Equation 4.8 as the sum of the operators defined in Equations 4.1 to
4.7. The presence of all operators is not mandatory. With the combination of
the operators we are able to model a wide range of scalar-valued linear partial
differential equations with at most 2nd order time derivatives and at most 2nd

order space derivatives in Rn. For concreteness, Table 4.1 of selected partial
differential equations and the necessary input functions for the operators is
presented.

4.2.2 Transient convection-diffusion example

Consider the following problem: In a piece of bulk silicon we have an embedded
heater device (see Figure 4.1). To the right and left thereof two temperature

34



4.2 Combining Operators to Model Partial Differential Equations

Table 4.1: Classical partial differential equations and the necessary input func-
tions for the differential operators. The different equations are presented in differ-
ent space dimensions n. For the equations additional problem/material dependent
parameters (a, b, c, ρ, k, V ) have to be specified which may be dependent on the coor-
dinates in Rn. Here I is the identity matrix in n dimensions.

Name Partial Differential Equation n τ2 τ1 σ a f

Telegraph τ2
∂2

∂t2
u + τ1

∂
∂t

u−∇T σ∇u + a u = 0 1 1 a + b c I a ∗ b 0

Heat −∇T σ∇u = ρ(x, y) 2 0 0 c I 0 ρ

Schrödinger τ1
∂
∂t

u−∇T σ∇u + a u = 0 2 0 ı~ − ~2

2m
I −V 0

Wave τ2
∂2

∂t2
u−∇T σ∇u = 0 3 1 0 c I 0 0

Helmholtz −∇T σ∇u + a u = 0 2 0 0 I k2 0

Klein-Gorden τ1
∂
∂t

u−∇T σ∇u + a u = 0 2 0 1
c2

I k2 0

sensors are embedded. If the heater is switched on, both sensors will measure
the same temperature. Once a flow field is flowing over the silicon device, the
temperature distribution will shift according to the direction and magnitude of
the flow field. From the temperature difference between the two sensors, it
is possible to deduce the speed of the flow field. This is the principle of an
anemometer build by Ernst [3, 4].

The system can be modelled by the following operators:

τ1
∂

∂t
u−∇Tσ∇u+ β · ∇u = f,

where u is the temperature distribution. We subdivide the simulation domain
Ω into 4 sub domains where ∪Ωi=1..4 = Ω. Each of the operators is active in
all regions, which, however, can mean that the contributing is zero. The input
functions in this context are the density times specific heat τ1 , the heat con-
duction σ , the velocity times density times specific heat β , and the heat source
f . The input functions themselves can be functions of space, so they switch on
and off different parameters. The following table summarises the values of the
input functions:

τ1 = ρ c σ β = v τ f

10−6 [Kg/m s K] 106 [Kg m/s2 K] 103 [Kg/s2 K] 10−6 [Kg/s2 m]

Ω1/ bulk Si 2330 ∗ 700 148 ∗ I
`

0 0
´

0

Ω2/ heater Si 2330 ∗ 700 148 ∗ I
`

0 0
´

1010

Ω3/ free cut 1000 ∗ 1.29 0.024 ∗ I
`

0 0
´

0

Ω4/ flow zone 1000 ∗ 1.29 0.024 ∗ I
`

1.29 ∗ p 0
´

0
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Flow Field

Silicon

Heater

Thermo Sensors

1

2

3

4

Figure 4.1: The anemometer sketch depicts a piece of bulk silicon (region 1) with
an embedded heater device (2). Under the silicon device we have a free cut area (3)
and above the silicon the flow field area (4). Once the heater is switched on and
a flow passes the heater a temperature difference can be measured at the thermal
sensors. Based on the magnitude of the temperature difference and material data
the flow speed can be estimated.

We set p =
(
(y−a−b)2/b2 − 1

)
. Here a and b are parameters for the flow profile. In

Figure 4.2 we present the solution at different time steps.

Figure 4.2: Anemometer solution at four different time steps.

Remark: A plausibility check can be performed by inserting the input functions
into the partial differential equation and checking that the units are in
agreement.

4.2.3 Coupled systems of partial differential equations

For the next level of complexity we would like to model coupled systems of
equations. Now, the sought after function u is vector-valued. We present a
technique to model systems of equations with the previously defined scalar-
valued differential operators. No new operators need to be introduced. The
procedure is best described by several examples
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4.2 Combining Operators to Model Partial Differential Equations

Example: The following system of two partial differential equations is given and
we would like to find the input functions to the differential operators that
represent the same system of equations

4 ∂
∂y2 v(x, y) + ∂

∂x2u(x, y) = 0

9 ∂
∂y2u(x, y) + ∂

∂x2 v(x, y) = 0.

First we write in matrix notation and thus rearrange the equation to(
∂

∂x2 4 ∂
∂y2

9 ∂
∂y2

∂
∂x2

)(
u

v

)
=
(

0
0

)
.

Next we subdivide the matrix(
a11 | a12

a21 | a22

)(
u

v

)
=
(
∇ · (σ11∇) | ∇ · (σ12∇)
∇ · (σ21∇) | ∇ · (σ22∇)

)(
u

v

)
=
(

0
0

)
.

Now we consider each part of the matrix separately. Which input functions
are sought depends on the order of differentiation present in the system
of equations. In this case we have second order spacial derivatives. This
implies we seek the input functions σ of the diffusion operator. The num-
ber of input functions needed to be specified is the number of unknowns
squared. Here we have 2 unknowns, namely u and v. So we will need 4 σ
input functions. One for each quadrant. For the matrix entry a11 we ask
the question: What must the input function σ11 look like to model ∂/∂x2.

This is achieved by selecting σ11 =
(

1 0
0 0

)
. In this same manner all aij

are handled. We obtain the 4 input functions as

(
σ11 | σ12

σ21 | σ22

)
=


(

1 0
0 0

)
|
(

0 0
0 4

)
(

0 0
0 9

)
|
(

1 0
0 0

)
 .

A generalised way of writing the coefficient matrix of the diffusion operator’s
input function can be derived from the special case where we have a vector-
valued unknown function composed of s = 2 scalar-valued functions (e.g. u and
v) in Rn=2 (e.g. x and y)

(
σ11 | σ12

σ21 | σ22

)
=


(
σ1111 σ1112

σ1121 σ1122

)
|
(
σ1211 σ1212

σ1221 σ1222

)
(
σ2111 σ2112

σ2121 σ2122

)
|
(
σ2211 σ2212

σ2221 σ2222

)
 = σijkl
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4 Modelling with Partial Differential Equation Operators

where i, j = 1, .., s and k, l = 1, .., n.

The input for other operators can be found in a similar manner. For the con-
vection operator we have

βijk

where i, j = 1, .., s and k = 1, .., n. For two unknowns this means(
β11 | β12

β21 | β22

)
=

((
β111 β112

)
|
(
β121 β122

)(
β211 β212

)
|
(
β221 β22

) ) = βijk.

For the second and first transient operator and the reaction operator we have

ψij ,

where i, j = 1, .., s. Here we use ψ to represent τ1, τ2 and a. For two unknowns
this means (

ψ11 | ψ12

ψ21 | ψ22

)
.

For the load operator we have
fi,

where i = 1, .., s. For two unknowns this means(
f1
f2

)
.

The next example shows how to model the × (cross or curl) operator with the
basic operators.

Example: In order to model the Coriolis force the × operator is of importance.
Here we illustrate how to use the basic operators to model the curl opera-
tor. Note that

(2ω × v) = 2

 ωx

ωy

ωz

×
 vx

vy

vz

 = 2

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 vx

vy

vz

 .

The input functions for the 9 convection operators are

2

0@
`

0 0 0
´ `

0 0 −1
´ `

0 1 0
´`

0 0 1
´ `

0 0 0
´ `

−1 0 0
´`

0 −1 0
´ `

1 0 0
´ `

0 0 0
´

1A .

Example: Maxwell’s equation

∇× 1
µ0µr

(∇×A)
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4.2 Combining Operators to Model Partial Differential Equations

can also be modelled. We view this as a system of equations and write a11 a12 a13

a21 a22 a23

a31 a32 a33

 Ax

Ay

Az

 ,

with the diffusion operator coefficients

0BBBBBBBBBBBBBBBBBB@

0BB@
0 0 0
0 1

µ0µr
0

0 0 1
µ0µr

1CCA
0B@ 0 0 0

− 1
µ0µr

0 0

0 0 0

1CA
0B@ 0 0 0

0 0 0
− 1

µ0µr
0 0

1CA
0B@ 0 − 1

µ0µr
0

0 0 0
0 0 0

1CA
0BB@

1
µ0µr

0 0

0 0 0
0 0 1

µ0µr

1CCA
0B@ 0 0 0

0 0 0
0 − 1

µ0µr
0

1CA
0B@ 0 0 − 1

µ0µr
0 0 0
0 0 0

1CA
0B@ 0 0 0

0 0 − 1
µ0µr

0 0 0

1CA
0BB@

1
µ0µr

0 0

0 1
µ0µr

0

0 0 0

1CCA

1CCCCCCCCCCCCCCCCCCA

.

Without adding any new operators we have expanded the basic operator’s func-
tionality tremendously by viewing coupled partial differential equations from the
right angle.

4.2.4 Non-linear systems & the General Form

Now that we have a mechanism for treating coupled PDEs with scalar-valued
operators we extend this technique further to treat nonlinear coupled PDEs,
again with the same scalar-valued operators. For this purpose, and only for
this purpose, we introduce the so-called general form. The general form does
not introduce any new operators, it merely reorganises them in a different way
to be able to deal with coupled nonlinear equations in an easy manner. The
general form is given by

τ2
∂2u

∂t2
+ τ1

∂u

∂t
+∇Γ = F, (4.9)

with
Γ = −σ(u)∇u− α(u)u+ γ(u)

and
F = f(u)− β(u) · ∇u− a(u)u.

The linearisation of a, possibly coupled, nonlinear partial differential equation
can be done by evaluating the following once [1]:

σijkl = − ∂Γik

∂
“

∂uj
∂xl

” αijk = −∂Γik

∂uj
f = F

βijk = − ∂Fi

∂
“

∂uj
∂xk

” aij = − ∂Fi

∂uj
γ = Γ,

with ũ = u − u0 where u0 is the linearisation point. With i, j = 1, .., s and k, l =
1, .., n. s is the number of scalar equations (e.g. u and v ) and n the number of
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4 Modelling with Partial Differential Equation Operators

independent variables (e.g. x and y) in Rn. The resulting equations are linearised
and can be looped over until convergence is reached.

Example: We consider the inviscid Burger’s equation

∂

∂t
u+ u∇u = 0.

It can be linearised as follows. First we identify Γ and F

Γ = 0

F = −β(u) · ∇u = u · ∇u

We then set the space dimension to n = 2 which implies R2 and k, l =
1, .., 2. We have one equation implying s = 1. Thus, i, j = 1. Building the
derivatives first for σ

σijkl = −
∂Γik

∂

„
∂uj
∂xl

«
i,j=1z}|{

= σ11kl = −
∂Γ1k

∂

„
∂u1
∂xl

« =

0BBBBB@
∂Γ11

∂

„
∂u1
∂x1

« ∂Γ11

∂

„
∂u1
∂x2

«
∂Γ12

∂

„
∂u1
∂x1

« ∂Γ12

∂

„
∂u1
∂x2

«
1CCCCCA =

„
0 0
0 0

«
.

Then for α we write

α11k = −
∂Γ1k

∂u1
=
„

− ∂Γ11
∂u1

− ∂Γ12
∂u1

«
=
`

0 0
´

.

Next for β we have

β11k = −
∂F1

∂

„
∂u1
∂xk

« = −

0@ ∂F1

∂

„
∂u1
∂x1

« ∂F1

∂

„
∂u1
∂x2

« 1A = −

0B@ ∂
“

u
“

∂
∂x

u+ ∂
∂y

u
””

∂

„
∂u1
∂x1

« ∂
“

u
“

∂
∂x

u+ ∂
∂y

u
””

∂

„
∂u1
∂x2

«
1CA = −

`
u u

´
.

And last for a
a11 = −

∂F1

∂u1
=

∂
“

u
“

∂
∂x

u + ∂
∂y

u
””

∂u1
=

 
∂

∂x
u +

∂

∂y
u

!
.

To sum up we note that the complexity and difficulty to find general solution
procedures in both coupled and nonlinear partial differential equations can be
handled with the simpler process of finding the correct operator’s input func-
tions.
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5 Modelling Free Surface Flow with
Operators

q. e. d.
quite easily done

(Unknown)

5.1 Flow: The Navier-Stokes Equation 44
5.2 Free Surfaces: The Level-Set Method 47
5.3 Coupling Components 51

MODELING is the basis for design. In this section we show how an ink-jet
model can be designed adopting the operator framework developed previously.
To this end we first linearise the Navier-Stokes equation. In a next step we in-
troduce implicit functions as a free surface representation. In combination with
an advection equation this leads to the level-set method. The free surface rep-
resentation will then be coupled to the Navier-Stokes equations. The coupling
is dual; both the Navier-Stokes equations will receive information from the free
surface via an external volume force and the advection of the free surface will be
conducted through an advection equation powered by the velocity field obtained
from the Navier-Stokes equation.
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5 Modelling Free Surface Flow with Operators

5.1 Flow: The Navier-Stokes Equation

5.1.1 Linearisation

The incompressible Navier-Stokes equation in vector form is given as

ρ
∂

∂t
u + ρ (u · ∇)u−∇µ∇u +∇p = f

∇ · u = 0. (5.1)

µ is the dynamic viscosity, ρ is the density, u is the vector valued velocity field,
p is the pressure and f is a vector valued volume force field. In component form
the equation reads

ρ
∂

∂t
u+ ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
−
(
∂

∂x
µ
∂u

∂x
+

∂

∂y
µ
∂u

∂y

)
+
∂p

∂x
= f1

ρ
∂

∂t
v + ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
−
(
∂

∂x
µ
∂v

∂x
+

∂

∂y
µ
∂v

∂y

)
+
∂p

∂y
= f2

∂u

∂x
+
∂v

∂y
= 0.

Since the Navier-Stokes equation is non-linear we rearrange the equation to fit
into the general form. The general form in vector notation is given by

τ1
∂

∂t
u +∇ · Γ = F.

The rearranged vector form of the Navier-Stokes equation reads

ρ
∂

∂t
u +∇ · (−µ∇u) = f − ρ (u · ∇)u−∇p

0 = − (∇ · u) .

The rearranged Navier-Stokes equation in component form reads as

ρ
∂

∂t
u+

 ∂

∂x

(
−µ∂u

∂x

)
︸ ︷︷ ︸

Γux

+
∂

∂y

(
−µ∂u

∂y

)
︸ ︷︷ ︸

Γuy

 = f1 − ρ
(
u
∂u

∂x
+ v

∂u

∂y

)
− ∂p

∂x︸ ︷︷ ︸
F u

ρ
∂

∂t
v +

 ∂

∂x

(
−µ∂v

∂x

)
︸ ︷︷ ︸

Γux

+
∂

∂y

(
−µ∂v

∂y

)
︸ ︷︷ ︸

Γuy

 = f2 − ρ
(
u
∂u

∂x
+ v

∂u

∂y

)
− ∂p

∂y︸ ︷︷ ︸
F u
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5.1 Flow: The Navier-Stokes Equation

0 = −
(
∂u

∂x
+
∂u

∂y

)
︸ ︷︷ ︸

F p

.

The identification of the terms in the general form delivers the following identi-
ties

Γ =

 Γux Γuy

Γvx Γvy

Γpx Γpy

 =

 −µ∂u
∂x −µ∂u

∂y

−µ ∂v
∂x −µ∂v

∂y

0 0


and

F =

 Fu

F v

F p

 =


f1 − ρ

(
u∂u

∂x + v ∂u
∂y

)
− ∂p

∂x

f2 − ρ
(
u ∂v

∂x + v ∂v
∂y

)
− ∂p

∂y

−
(

∂u
∂x + ∂v

∂y

)
 .

Now we have identified the terms of the general form. To automatically find a
linearisation we transform the general form to the coefficient form. The coeffi-
cient form is given by

τ2
∂2

∂t2
u+ τ1

∂

∂t
u+∇T · (−σ∇u− αu+ γ) + β · ∇u+ au = f.

The coefficient form corresponds to the general form with

Γ = −σ∇u− αu+ γ

and
F = f − β · ∇u− au.

The transformation form general to coefficient form is done according to the
later rules:

σijkl = − ∂Γik

∂
“

∂uj
∂xl

” αijk = −∂Γik

∂uj
γij = Γij

βijk = − ∂Fi

∂
“

∂uj
∂xk

” aij = − ∂Fi

∂uj
fi = Fi.

Which deliver the following input functions:

σ =



(
µ 0
0 µ

) (
0 0
0 0

) (
0 0
0 0

)
(

0 0
0 0

) (
µ 0
0 µ

) (
0 0
0 0

)
(

0 0
0 0

) (
0 0
0 0

) (
0 0
0 0

)


α = 0

45



5 Modelling Free Surface Flow with Operators

γ =

 −µ∂u
∂x −µ∂u

∂y

−µ ∂v
∂x −µ ∂v

∂x

0 0



β =


(
ρu ρv

) (
0 0

) (
1 0

)(
0 0

) (
ρu ρv

) (
0 1

)(
1 0

) (
0 1

) (
0 0

)


a =

 ρ∂u
∂x ρ∂u

∂y 0
ρ ∂v

∂x ρ∂v
∂y 0

0 0 0


f = F.

Re-inserting the above into the coefficient form results in the linearised
Navier-Stokes equations. The linearised equations in component form read as
follows:

ρ
∂

∂t
u−

(
∂

∂x
µ
∂u

∂x
+

∂

∂y
µ
∂u

∂y

)
︸ ︷︷ ︸

σ11

+ ρ

(
uk ∂u

∂x
+ vk ∂u

∂y

)
︸ ︷︷ ︸

β11

+
∂p

∂x︸︷︷︸
β13

+ ρ
∂u

∂x

k

u︸ ︷︷ ︸
a11

+ ρ
∂u

∂y

k

v︸ ︷︷ ︸
a12

=

f1 − ρ

(
uk ∂u

∂x

k

+ vk ∂u

∂y

k
)
− ∂p

∂x

k

︸ ︷︷ ︸
F1

+
∂

∂x
µ
∂u

∂x

k

︸ ︷︷ ︸
γ11

+
∂

∂y
µ
∂u

∂y

k

︸ ︷︷ ︸
γ12

ρ
∂

∂t
v −

(
∂

∂x
µ
∂v

∂x
+

∂

∂y
µ
∂v

∂y

)
︸ ︷︷ ︸

σ22

+ ρ

(
uk ∂v

∂x
+ vk ∂v

∂y

)
︸ ︷︷ ︸

β22

+
∂p

∂y︸︷︷︸
β23

+ ρ
∂v

∂x

k

u︸ ︷︷ ︸
a21

+ ρ
∂v

∂y

k

v︸ ︷︷ ︸
a22

=

f2 − ρ

(
uk ∂v

∂x

k

+ vk ∂v

∂y

k
)
− ∂p

∂y

k

︸ ︷︷ ︸
F2

+
∂

∂x
µ
∂v

∂x

k

︸ ︷︷ ︸
γ21

+
∂

∂y
µ
∂v

∂y

k

︸ ︷︷ ︸
γ22

∂u

∂x︸︷︷︸
β31

+
∂v

∂y︸︷︷︸
β32

=

−

(
∂u

∂x

k

+
∂v

∂y

k
)

︸ ︷︷ ︸
F3

Note that the γ parts are on the right hand side. γ is independent of the un-
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known u and may be moved to the right hand side of the equation.

5.1.2 Boundary conditions and constraints

After the discretisation we are left with the tangential stiffness matrix

K(u) = −∂L(u)
∂U

=

 Kuu Kuv Kup

Kvu Kvv Kpv

Kpu Kpv Kpp


where

∂Lu

∂u
= Kuu et cetera.

In our notation K corresponds to the left hand side of the equation and L to
the right hand side. To account for the boundary conditions we use Lagrangian
multipliers and extend the system of equations in the following manner[

K(uk) NT

N 0

]
︸ ︷︷ ︸

Ke

·
[
δu

Λ

]
=
[
L(uk)−NT · Λk

M −N · uk

]
︸ ︷︷ ︸

Le

.

Here Λ are the Lagrangian multipliers. N is the Jacobian of M . That is N =
−∂M/∂U. M are the boundary values.

The update is then done by
uk+1 = uk + λδu.

Here λ is a damping factor. λ must be 0 < λ ≤ 1 and is computed with the affine
invariant newton method [4, 6] as outlined on page 113.

5.2 Free Surfaces: The Level-Set Method

In the context of computational fluid dynamics free surfaces are defined to be
the interface between two or more materials of different physical property.

The interface region is assumed to be infinitely small, there is no transition
region as such which is a simplification. The domain Ω under inspection can
thus be divided in three distinct parts

∪Ω = ΩOutside + ΓInterface + ΩInside

To represent ΓInterface (ΓI) explicit and implicit approaches exist.
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5.2.1 Implicit functions

To represent ΓI two methods are in common use. Explicit and implicit represen-
tations. In an explicit approach we work with coordinates explicitly describing
the interface location. In the implicit approach we utilise an implicit function to
locate the interface. In the explicit representation a circle in R2 can be portrayed
through a collection of coordinates in 2-dimensional space. Between these co-
ordinates an interpolation is then assumed and therewith the points connected
which represents ΓI. In the context of free surface flow this technique leads to
the volume of fluid method (VOF) [5]. Here the cell fractions c ranging from 0 to
1 are stored in a mesh which is put over the computational domain. From these
cell fractions the explicit surface is reconstructed. This presents the technique
used by most commercial free surface simulation tools.

In the implicit approach we use a scalar valued function such as

φ(x, y) =
√

(x− xo)2 − (y − y0)2 −R (5.2)

to represent the interface. Where φ : R2 7→ R and x0, y0 is the centre of a circle
and R the circle’s radius. Each computed value for x and y can be understood
as a height value. We group these height values together to φc to make a set of
contours. ΓI is typically represented by φ0, the 0-contour. We define

φ(x, y) =


0
< 0
> 0

ΓI

ΩInside

ΩOutside

See Figure 5.1 for the representation of a circle by an explicit and an implicit
method. To be useful the surface representation must be easily submittable
to fundamental computational geometry operations such as finding the union,
intersection and complement of several representations. Such operations are
based on intersecting convex polygons. In [7] an algorithm for intersecting con-
vex polygons in R2 can be found. The algorithm can be extended to operations
such as finding the convex union and complement. Each concave polygon can
be split to several convex polygons; this endeavour is everything else but trivial
in R3.

Not so for implicit representations. Modelling with implicit functions as done in
Bloomenthal [1, 10] can be accomplished by using min, max and − 1. For two
spheres

s1 =

√(
x− 1

2

)2

+ y2 + z2 − 1

s2 =

√(
x+

1
2

)2

+ y2 + z2 − 1

48



5.2 Free Surfaces: The Level-Set Method

Figure 5.1: Explicit and implicit representation of a circle in R2. The explicit rep-
resentation (left) is based on connecting coordinates to lines to form the interface
ΓI. In the implicit approach a function such as φ(x, y) =

p
x2 − y2 − 1

2
cuts the R2

plane, which represents ΓI. Middle: Viewing from R+ showing φ > 0 with a red band
marking values 0 ≤ φ ≤ 0.05. Left: Viewing from R− showing φ < 0 with a blue band
marking −0.05 ≤ φ ≤ 0.

the intersection of s1 ∩ s2
min(s1, s2)

the union of s1 ∪ s2 is
max(s1, s2).

and the free cut of s2 from s1 is

min(s1,−s2)

This is depicted in Figure 5.2.

(a) Intersection (b) Union (c) Free cut

Figure 5.2: Basic modelling operations for implicit functions. Left we have an
intersection of two spheres, in the middle a union and to the right a free cut.

5.2.2 Dynamics of implicit functions - level set

Free surfaces, no matter which representation is used, are advected with

∂

∂t
φ+ v · ∇φ = 0 (5.3)
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5 Modelling Free Surface Flow with Operators

The combination of implicit functions such as 5.2 with 5.3 is called Level Set
Method [8, 9]. Here v is the driving velocity field, later obtained from the solution
of the Navier-Stokes equation.

5.2.3 Surface tension

Brackbill showed that the surface tension can be modelled as volume force [2]

fst = γκδn

with γ the constant surface tension coefficient, κ the curvature, δ is the Dirac
distribution and n is the normal to the interface. κ, n and δ are functions of φ.
We will investigate them separately. The computation of the normal n can be
done via

n =
∇φ
|∇φ|

∣∣∣∣
φ=0

nx =
φx√
φ2

x + φ2
y

ny =
φy√

φ2
x + φ2

y

.

The computation of the delta distribution we proceed along the lines of Torn-
berg [11, 12]. We replace δ with δhw where δhw is a smooth function with sup-
port width hw and a measure for δ. One possible choice is the derivative of a
smoothed Heaviside function (see Chapter 6.3.6).

To compute the curvature we might use [2]

κ = ∇T ·
(
∇φ
|∇φ|

)∣∣∣∣
φ=0

.

If we can guarantee the signed distance property of φ in Ω then

|∇φ| = 1|Ω

and thus
κ = ∇T · (∇φ)

∣∣
φ=0

.

This formulation has the distinct disadvantage that we need to compute the
second derivative of φ to compute κ. The surface tension can also be written as
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[3]

γκδn = ∇ ·T
T = γ

(
I−

(
nnT

))
δ

where I is the identity matrix. In this formulation we avoid computing the
second derivative, previously necessary for the computation of κ.

5.3 Coupling Components

Coupling the Navier-Stokes equation and the Level Set equation results in

ρ
∂

∂t
u−∇Tµ∇u + ρ(u · ∇u) +∇p+ γκδn = f

∇u = 0
∂

∂t
φ+ u · ∇φ = 0.

In this work we proceed as follows: First, we compute the Navier-Stokes equa-
tion with the load f which includes the surface tension force fst. κ, δ, n and fst

are dependent on φ. The resulting velocity field u is then, in a second step, used
to time integrate the level set equation and thus compute the new location of φ.
In a third step the implicit function φ is re-initialised and/or re-set.
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6 Operator Discretisation

A mathematician is a machine that turns coffee into theorems.
(Paul Erdös)

6.1 Lumped Operators 54
6.2 Weighted Residual Method 58
6.3 Finite Element Method 62
6.4 Initial & Boundary Conditions 85

DISCRETISATION is the process where continuous mathematical formulae are
adapted for computer processing. To this end the continuous formulae are
transformed into discrete formulae which are suitable for computer implemen-
tation. An algorithm1 is then found since this is in effect a re-written discretised
formula.
1The word algorism comes from the name al-Khwarizmi - "the one from Khwarizm" - of an early

9th century Persian mathematician, possibly from what is now Khiva in western Uzbekistan.
The word evolved into the modified form algorithm, with a generalisation of the meaning to any
set of rules specifying a computational procedure. Occasionally algorism is also used in this
generalised meaning, especially in older texts.
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6 Operator Discretisation

The discussion is divided into four sections. First the lumped operators are
discussed briefly. In the second section we introduce the weighted residual
method as a general framework for discretising partial differential equations.
We discuss several possible discretisation methods and support the theory with
an example. The third section, the largest part of the discussion, sheds some
light on the finite element method. In the fourth and last section we present
both boundary and initial conditions, both, in a general light and some specifics
encountered in fluid settings.

6.1 Lumped Operators

In this section we present stamps for the lumped circuit operators. We start
with the basic elements and move to more advanced elements later. The stamps
are presented in the following manner

Matrix Type i j . . .

i

j
...

values,

where the “Matrix Type” represents the system matrices the stamps are built
into. The options are the stiffness matrix S, the damping matrix D, the mass
matrix M , and the load vector L. Depending on the type of analysis to be
performed on the lumped system of equations the lumped system has to be
assembled in a different manner. Due to this three destination matrices are
given as Matrix Type, first the transient case, then the harmonic case, and last
the stationary case. D/S/S indicates that the considered stamp is built into the
damping matrix if a transient analysis is to be performed and into the stiffness
matrix if a harmonic or stationary analysis is required. Usually, in a system
suitable for a transient analysis all the matrices are populated. Stationary and
harmonic analyses get by with the stiffness matrix and load vector. The indices
i, j, ... specify where in the global matrices the stamps are to be inserted. See
Chapter 2 for more details on the matrix assembly process. Some of the stamps
require that the system of equations be enlarged. This is indicated by using
Greek indices.

6.1.1 Basic R, L, and C elements

We start with the R, L, and C stamps. Each element is connected to nodes i

and j. The basic R, L and C stamps

D/S/S i j

i 1
R − 1

R

j − 1
R

1
R

S/S/− i j

i 1
L − 1

L

j − 1
L

1
L

M/S/− i j

i C −C
j −C C
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6.1 Lumped Operators

then give the entries for the global element matrix. For a transient analysis the
resistive parts belong to the damping matrix, the inductive parts belong to the
stiffness matrix, and the capacitive parts to the mass matrix.

For a harmonic analysis the capacitive elements are multiplied by a harmonic
factor ı ω and the inductive parts by 1/(ı ω). Here ı is the imaginary unit. The
resistive parts are not subject to change. Each component is then built into the
stiffness matrix. Other methods for setting up harmonic systems are as well
possible.

For a stationary analysis the capacitances are removed from the system alto-
gether and inductances are treated as wires, since the capacitances are a break
of the circuit and the inductances are a short circuit. With this in mind we can
then directly form the system of equations where the resistive parts are inserted
into the stiffness matrix.

6.1.2 Ground and wires

Ground has no stamp but imposes a Dirichlet boundary condition with value 0,
however, all other values are possible. A wire can be treated as a special case of
a voltage source, were the voltage U is 0.

6.1.3 Uncontrolled sources

Generally speaking, we have two different kinds of sources. Controlled and
uncontrolled sources. We begin with the uncontrolled sources, namely current
and voltage source.

Current source

The current can be discretised as in

L i

i I

j −I

Here we note that the current source is built into the load vector.

Voltage source

By contrast, the voltage source is made up of two parts. One part goes into the
load vector, the other part goes into the damping matrix for a transient analysis
and into the stiffness matrix for other kinds of analyses. The voltage source can
be discretised as
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6 Operator Discretisation

D/S/S i j κ

i 0 0 1
j 0 0 −1
κ 1 −1 0

L i

i 0
j 0
κ U

The voltage source enlarges the system of equations and adds a new row and
column at position κ and the actual voltage U is inserted into the load vector at
position κ.

6.1.4 Controlled sources

We have four different kinds of controlled sources. All of them work by intro-
ducing a ratio of the output source to the input source and thus no modification
of the load is necessary. Controlled sources can, for example, be used to model
transistors.

Voltage controlled current source

First, we present the voltage controlled current source. In this device the output
current between nodes k and l depends on the voltage applied at the input
terminals at nodes i and j. The two are related by the transconductance g

which is the ratio of the output current to the input voltage and is measured in
Siemens2.

i

j

k

l

D/S/S i j k l

i 0 0 0 0
j 0 0 0 0
k g −g 0 0
l −g g 0 0

Voltage controlled voltage source

Second, we have the voltage controlled voltage source where the output voltage
at nodes k and l depends on the input voltage at nodes i and j. The ratio of
the output voltage to the input voltage determines the voltage gain A. This
device enlarges the system of equations and the solution vector. Position µ of
the solution vector gives the current through the output nodes k and l.

2 Ernst Werner von Siemens (1816-1892) invented, among other things, a telegraph that used a
needle to point to the right letter, instead of using Morse code.
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6.1 Lumped Operators

i

j

k

l

D/S/S i j k l µ

i 0 0 0 0 0
j 0 0 0 0 0
k 0 0 0 0 1
l 0 0 0 0 −1
µ −A A 1 −1 0

Current controlled current source

Next, the current controlled current source is presented. The output current
at the nodes k and l of this source depends on the current through the input
nodes i and j. The relating ratio of the input current to the output current is
the current gain F .

i

j

k

l

D/S/S i j k l µ

i 0 0 0 0 1
j 0 0 0 0 −1
k 0 0 0 0 F

l 0 0 0 0 −F
µ 1 −1 0 0 0

Current controlled voltage source

And last, we introduce the current controlled voltage source. The input current
at nodes i and j is related to the output voltage at nodes k and l by R. This
parameter is called the transresistance, which is the ratio of the output voltage
to the input current and is measured in Ohm.

i

j

k

l

D/S/S i j k l µ ν

i 0 0 0 0 0 1
j 0 0 0 0 0 1
k 0 0 0 0 1 0
l 0 0 0 0 −1 0
µ 0 0 1 −1 0 −R
ν 1 −1 0 0 0 0
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6 Operator Discretisation

6.1.5 Mutual inductance
We present the discretised version of a mutual induc-
tance. A mutual inductance couples two coils with in-
ductances L1 and L2 by a coupling coefficient K. L1

connects the nodes i and j and L2 connects k and l. For
K = 1 we have 100% coupling and all energy is trans-
ferred. K = 0 implies no coupling. K is the ratio of the
mutual inductance M to the square root of the induc-
tances. We thus have 0 < K = M√

L1L2
< 1.

i

j

k

l

S/S/− i j k l

i 1
(1−K2)L1

− 1
(1−K2)L1

1
(−1+K2)

√
L1L2

− 1
(−1+K2)

√
L1L2

j − 1
(1−K2)L1

1
(1−K2)L1

− 1
(−1+K2)

√
L1L2

1
(−1+K2)

√
L1L2

k 1
(−1+K2)

√
L1L2

− 1
(−1+K2)

√
L1L2

1
(1−K2)L2

− 1
(1−K2)L2

l − 1
(−1+K2)

√
L1L2

1
(−1+K2)

√
L1L2

− 1
(1−K2)L2

1
(1−K2)L2

.

The destination matrices are the same as for an ordinary inductance and so is
the multiplication with the harmonic factor ı ω.

6.1.6 Non-linear elements

Diodes are non-linear, but can nevertheless be discretised by

i

j

L i

i −
(
−1− exp

Udi
−Udj

n·Uth

)
Is

j

(
−1− exp

Udi
−Udj

n·Uth

)
Is.

Here Ud is the voltage across the diode. This voltage dependency is what makes
the diode non-linear. Is is the saturation current and Uth is the thermal voltage.
The emission coefficient is n.

In a similar manner transistors or even operation amplifiers can be modelled in
their non-linear region. An alternative is to use the basic diode element provided
here, so that a library can be built on top of it. Non-linear elements, however,
require a good non-linear system solver.

6.2 Weighted Residual Method

The weighted residual method represents a unification of many approximate so-
lution methods for partial differential equations. The following outline parallels
the treatments of [1, 4].
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6.2 Weighted Residual Method

With the weighted residual method we try to find approximate continuous solu-
tions to partial differential equations. We have

L (u) = 0

B (u) = 0.

where L (·) is a general differential operator in the domain Ω and B (·) on the
boundary ∂Ω. We assume a trial solution of the form

u = u∂Ω (x, t) +
N∑

j=1

uj(t)αj (x) (6.1)

where u is an approximation to ue, the exact solution. The αj(x) are chosen, an-
alytical functions, so-called “Ansatzfunktionen”. The uj(t) represent unknown
constants which we would like to compute. u∂Ω(x, t) is a known function that
satisfies the essential boundary conditions. In general this means that

u∂Ω = g, αj = 0, ∀x on ∂Ω.

The finite summation implies the transition from the continuous to a discrete
representation.

The residual3 is defined as
rΩ = L (u)− f (6.2)

and the boundary residual r∂Ω as

r∂Ω = B (u)− g.

The residual is a measure of the extent to which function u satisfies the differ-
ential equation. For N → ∞ the hope is that rΩ, r∂Ω → 0. The exact solution is
obtained when both residuals are zero. This would be the ideal case. This also
means that each of the N components of rΩ and r∂Ω are equal to zero. We can
soften this requirement in the sense that we require that rΩ and r∂Ω are zero in
an average sense. To do so we set the inner product of rΩ and some prescribed
weighting function wi for i = 1, .., N to zero

〈rΩ, wi〉 = 0 and 〈r∂Ω, ŵi〉 = 0,

where
〈u, v〉 =

∫
Ω

uv dΩ.

In the case where u = ue the equation is still satisfied. Thus we set the integral
3The residual is not to be confused with the error which is defined as ‖u− ue‖p in some norm p.

Note that the residual is readily computable; the error is in most cases not amenable.

59



6 Operator Discretisation

of the weighted residuals equal to zero∫
Ω

rΩwi dΩ +
∫

∂Ω

r∂Ωŵi d∂Ω = 0. (6.3)

Requiring that the integrals are satisfied ∀i as N →∞ can be viewed as requiring
that u→ ue for N →∞. So, if the weighted residual

∫
Ω
rΩwi dΩ = 0 ∀i, then rΩ is

minimal with respect to the chosen Ansatzfunktionen [1].

Now we substitute Equation 6.1 in Equation 6.2

rΩ = L (u)− f = L

u∂Ω (x, t) +
N∑

j=1

uj(t)αj (x)

− f, (6.4)

where we have j = 1, .., N unknowns. Since uj(t) are constants we can write in
matrix form

Au = b,

where we have inserted Equation 6.4 in Equation 6.3

Aij =
∫

Ω

L (uj)wi dΩ

bi =
∫

Ω

fwi dΩ +
∫

∂Ω

L (uΓ(x, t)) ŵi d∂Ω.

Further detail can be seen in the example below.

Usually wi = ŵi. The essential question is the choice of the weighting function
wi. The weighting function can be chosen in several different ways where i =
1, .., N :

1. Collocation method (leading to the Finite Difference Method)

In this approach we select as many points as there are undetermined pa-
rameters i and choose the parameters to ensure that the residual is zero
at these points - which does not imply that the approximate solution will
be equal to the exact solution at these points - the error may still be sub-
stantial. The weighting functions are Dirac delta distributions,

wi = δ(x− xi).

2. Sub-domain method (leading to the Finite Volume Method)

In this method we subdivide the simulation domain Ω into as many sub-
intervals Ωi as there are free parameters so that the average value of the
residual over each sub-interval is zero

wi =
{

1; ∀i ∈ Ωi

0; else
.
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6.2 Weighted Residual Method

3. Interior method (leading to the Boundary Element Method)

Here we assume the weighting function is similar to the solution. The
weights are so called "Green’s functions", and the nodes (where the centre
of these functions is located) are placed on the material boundaries [2].

4. Least squares method

Here the weighting is chosen

wi =
∂rΩ
∂αi

,

where the residual is differentiated with respect to the Ansatzfunktionen.
This can be understood as the minimisation of an energy norm. The re-
sulting system of equations is, however, often ill conditioned [4].

5. Bubnov-Galerkin4 method (leading to the Finite Element Method)

In this approach the weighting functions are chosen to be the same as the
Ansatzfunktionen

wi = αi

We look at this method in further detail in the example further down.

6. Petrov-Galerkin

Here the weighting function is not chosen to be the Ansatzfunktion but

wi = hi,

where hi is an analytic function with additional terms to further constrain
the approximate solution. This is frequently used if the convective part of
a partial differential equation is dominant compared to the diffusive part.
The Petrov-Galerkin method is a generalisation of the Bubnov-Galerkin
method.

The following example is to illustrate the procedure so far derived.

Example: We investigate the weighted residual method with a Bubnov-Galerkin
approach. We consider 1-dimensional heat conduction [4]. In the domain
Ω ∈ [0, L] we have the partial differential equation

∂2

∂x2
u(x) + f(x) = 0

and on ∂Ω the boundary conditions

u(0) = u(1) = 0.
4In recent papers and books the traditional name “Galerkin method” is replaced by the name

Bubnov-Galerkin method to account for both independent contributors to the method.
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6 Operator Discretisation

Here we have
f(x) = x.

The equation has the exact solution

ue =
1
6
(
L2 − x2

)
x.

We choose αj = sin(jπx/L) and wi = αi with L1(u) = ∂2

∂x2u and L2(u) = x. For
simplicity and without restriction of generality we set L = 1. Then we have
for N = 2

Aij =
∫

Ω

L1(αj)wi dΩ =

(
−π2

2 0
0 −2π2

)
and

bi =
∫

Ω

L2(αj)wi dΩ =
(
− 1

π
1
2π

)
.

The solution is thus
uj =

(
2

π3 − 1
4π3

)
and the sum according to Equation 6.1 is then

u = 0 +
2∑

j=1

ujαj =
2 sin (πx)

π3
− sin (2πx)

4π3
.

The l2 error norm can be computed as

||u− ue||2 ≈ 0.0019.

Remark: The fact that A is diagonal is a coincidence. Choosing a polynomial for
αj, for example a series expansion with

αj = sin(jπx/L) ≈ jπx

L
−
(
j3π3

)
x3

6L3
+
j5π5x5

120L5
−
(
j7π7

)
x7

5040L7
+

j9π9x9

362880L9
+O

(
x10
)

will also deliver a result. Now A is, however, fully populated, which is not
wanted since computational complexity in time and space will rise during
the inversion of A.

6.3 Finite Element Method

In this section we introduce shape functions which will help to overcome some
of the shortcomings of the example presented in the weighted residual section.
Next we derive the discretised equations for the partial differential equation
operators. This is then followed by a discussion of numerical integration. Some
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6.3 Finite Element Method

aspects of meshes are presented. Furthermore, numerical challenges such as
recovery of derivatives, regularisation, and re-initialisation are discussed.

6.3.1 Shape functions

Independent of the discussion of the weighted residual method, we consider
the problem of finding an interpolation to a set of data points [2]. This can be
achieved by Equation 6.1 and using a least squares method [8] for the coeffi-
cients. By increasing the degree of the polynomial the unknown data points are
fitted with a higher accuracy. Unfortunately, the polynomial may oscillate un-
acceptably between the data points. Polynomials, however, have the desirable
property that they are easily differentiable. As a remedy we give up the global
interpolation intention and we subdivide the data points into subsections. To
do so the domain Ω is split into non-overlapping elements where

Ω ≈ ∪nΩ
e=1Ωe and ∂Ω ≈ ∪n∂Ω

i=1 ∂Ωe,

with nΩ and n∂Ω the number of elements and the number of boundary segments
respectively. The splitting of the domain Ω may not always be possible exactly.
The elements are connected at their nodes to each other and form a mesh.
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Figure 6.1: Left: Data interpolation with a high order polynomial on a global level.
Middle: A subdivision into three elements and a interpolation with low order poly-
nomials. The interpolation is discontinuous as shown by the red circles. Right: C0

continuous local interpolation based on three elements and four additional nodes
where values u1, .., u4 have been introduced.

Now we interpolate in those elements with low order polynomials as shown
in Figure 6.1. This local interpolation may not be continuous at the element
boundaries and to enforce at least C0 continuity5 additional constraints are
necessary. To do so we define a linear variation between two values ui and uj

u(r) = Ni(r)ui +Nj(r)uj

with

5We speak about C0 continuity if two functions are continuously joined. We speak of C1 continuity
if also the derivatives of first order are continuous across the interface.
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6 Operator Discretisation

Ni(r) =
(1− r)

2
and Nj(r) =

(1 + r)
2

∀r ∈ [−1, 1].

Here r is a scaled, local coordinate of the form

r =
x− (xi + xj)/2

(xj − xi)/2

with xi and xj the left and right global coordinate of element ek respectively. We
call N(ri) shape functions where ri is a scaled coordinate in a so-called mother
element. Line elements use the domain Ω(ek) ∈ [−1, 1] as mother element.

For a function to be a shape function the following must hold in the element’s
domain Ω(ek):

n∑
i=1

Ni = 1,

which is known [13] as the partition of unity and the second condition

Ni(rj) = δij =

{
1; i = j

0; i 6= j
,

which states that the shape function Ni has a value of unity at node ri and is
zero at all other nodes. This is shown in the triangle mesh depicted in Figure
6.2. At the blue node for each red element the linear shape functions are unity
and zero everywhere else. The weighting functions from the dashed black ele-
ments do not contribute to the global matrix, only weighting functions in red
elements contribute.

Figure 6.2: A triangle mesh with linear shape functions. At the blue node the shape
functions are at unity height and have only local support in the red elements.

Shape functions have only local support6 in Ωe. This has two consequences for
the weighted residual method. One, the contribution to the global matrix needs
to be computed if and only if the shape function and the weighting function
are in the same element. Second, by requiring only local support for the An-

6In mathematics the support of a function is the range in which it is non-zero.
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6.3 Finite Element Method

satzfunktionen, matrix A from the above example becomes sparse. Also, shape
functions retain the feature of being nicely differentiable.

What follows is a list of shape functions [7], where r, s, t always refer to lo-
cal coordinates. The presented shape functions are C0 continuous and of the
serendipity7 family. The position of the nodes supporting the shape functions
in the mother elements can be seen from Figures 6.4 to 6.6. A list of shape
functions is compiled in Table 6.18.

Table 6.1: Shape functions for line elements in R1 in the unit domain [−1, 1] and
in R2 for quads in the unit domain [−1, 1]2 and for triangles in the unit domain
[0, 1]× [0, 1− r] of order 1 and 2.

order line quad triangle

1 1/2 (1− r) 1/4 (r + 1) (s+ 1) −r − s+ 1
1/2 (r + 1) 1/4 (1− r) (s+ 1) r

1/4 (1− r) (1− s) s
1/4 (r + 1) (1− s)

2 1/2 (r2 − r) 1/4 (r + 1) (s+ 1) (r + s− 1) 2r2 + 4sr − 3r + 2s2 − 3s+ 1
1− r2 1/4 (1− r) (s+ 1) (−r + s− 1) 2r2 − r
1/2 (r2 + r) 1/4 (1− r) (1− s) (−r − s− 1) 2s2 − s

1/4 (r + 1) (1− s) (r − s− 1) −4r2 − 4sr + 4r
1/2 (1− r2) (s+ 1) 4rs
1/2 (1− r) (1− s2) −4s2 − 4rs+ 4s
1/2 (1− r2) (1− s)
1/2 (r + 1) (1− s2)

6.3.2 Operators

In this section we derive the discretised versions of the partial differential equa-
tion operators presented in Equations 4.1 to 4.7. At the end of a derivation we
will highlight the implemented formula.

6.3.2.1 Diffusion

We start from the weighted residual formulation∫
Ω

r wi dΩ = 0

7The implications of the fact that these element are serendipity elements will be introduced at a
later stage and is of no relevance at this point.

8For R3 shape functions consult the program file: Imtek‘ShapeFunctions.m. See the implementa-
tion part in Chapter 7 for more details.
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6 Operator Discretisation

with the residual
r = L(u)− f.

Inserting the diffusion operator from Equation 4.1 we obtain

L(u) = ∇T · (−σ · ∇u) and f = 0

and inserting into the weighted residual integral we obtain∫
Ω

∇T · (−σ · ∇u) wi dΩ = 0. (6.5)

If shape functions were inserted now, they would need to be of at least second
order. A linear shape function would simply vanish by differentiating twice. To
circumvent this shortcoming the residual rΩ is chosen in a weak sense. That is
we apply the first of Green’s Theorems9

∫
Ω

∇T · (k · ∇g)h dΩ = −
∫

Ω

(
(k · ∇g)T · ∇h

)
dΩ +

∫
∂Ω

h (k · ∇g) · n d∂Ω, (6.6)

where g and h are arbitrary differentiable functions defined on Ω and its bound-
ary ∂Ω and k is a second order tensor. Note that the weak form reduces the
demand on the differentiability of the differential equation by one but increases
the demand on differentiability of the weighting function by one10.

Equation 6.6 applied to Equation 6.5 results in∫
Ω

(σ · ∇u)T · ∇wi dΩ−
∫

∂Ω

(
(σ · ∇u)T · n

)
wi d∂Ω = 0

with

u = u∂Ω (x, t) +
N∑

j=1

uj(t)αj (x, t)

and
wi = αi.

We thus have a system of linear equations

NX
j=1

26664
„Z

Ω

(σ · ∇αj)
T · ∇αi dΩ

«
uj +

Z
Ω

(σ · ∇u∂Ω)T · ∇αi dΩ| {z }
Dirichelt Boundary

−
Z

∂Ω

(σ · ∇αj)
T · nαjd∂Ω| {z }

Neumann Boundary

37775 = 0

(6.7)
The integrals and the Ansatzfunktionen are defined and valid on the entire do-

9This is sometimes also referred to as the Green-Gauss Theorem or the Green Lemma.
10Some authors already call Equation 6.3 weak form.
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main. This brings considerable computational cost. In order to reduce this cost
we replace the Ansatzfunktionen α with the shape functions N which have only
local support11. Only in regions where the support of Ni overlaps the support of
Nj the integral has a result different from 0 and thus an element point of view
is appropriate

S
(ek)
ij =

∫
Ω(ek)

(σ · ∇Nj)
T · ∇Ni dΩ . (6.8)

The operator’s contribution in the sense defined by Equation 2.2 is thus

LFEMDiffusion(ek)→ {0(ek), S
(ek)
ij ,0(ek),0(ek)}

6.3.2.2 Convection

The convection operator as defined by Equation 4.4 is

β · ∇u.

We replace ∇u with the shape function derivative ∇Nj and multiply with the
shape function Ni as a test function to get

S
(ek)
ij =

∫
Ω(ek)

(β · ∇Nj)
T ·Ni dΩ . (6.9)

The operator’s contribution to the system is

LFEMConvection(ek)→ {0(ek), S
(ek)
ij ,0(ek),0(ek)}.

6.3.2.3 Reaction

From the reaction operator defined by Equation 4.3 as

au

by replacing u with the shape function Nj and multiplying with the shape func-
tion Ni as test function we get

S
(ek)
ij =

∫
Ω(ek)

(aNj)
T ·Ni dΩ . (6.10)

11Apart from the support Ansatzfunktionen and shape functions are the same.

67



6 Operator Discretisation

The contribution to the system of equations is

LFEMReaction(ek)→ {0(ek), S
(ek)
ij ,0(ek),0(ek)}.

6.3.2.4 Load

From the load operator defined by Equation 4.2 as

L

multiplying with the test function Ni yields

L
(ek)
i =

∫
Ω(ek)

fNi dΩ . (6.11)

The contribution to the system of equations is

LFEMLoad(ek)→ {L(ek)
i ,0(ek),0(ek),0(ek)}.

6.3.2.5 Operator for first order time derivative

We start from the integral defined by Equation 4.6∫
Ω

τ1
∂u

∂t
dΩ

with

u = u∂Ω (x, t) +
N∑

j=1

uj(t)Nj (x) and wi = Ni.

Since the shape function Nj and the test function Ni are not time dependent we
may write [9]

N∑
j=1

(∫
Ω

τ1
∂Nj

∂t
Ni dΩ

)
uj =

∂

∂t

N∑
j=1

(∫
Ω

τ1NjNi dΩ
)
uj

which leads to

D
(ek)
ij =

∫
Ω(ek)

(τ1Nj)
T ·Ni dΩ . (6.12)

The contribution to the system of equations is

LFEMTransient(ek)→ {0(ek),0(ek), D
(ek)
ij ,0(ek)}.

Remark: Note that this is the same as the reaction operator. Strictly speaking
we do not need the transient operators.
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6.3.2.6 Operator for second order time derivative

Along the same line of reasoning as for the first order time derivative operator
we may write for the second order time derivative operator defined by Equation
4.7

M
(ek)
ij =

∫
Ω(ek)

(τ2Nj)
T ·Ni dΩ (6.13)

and thus
LFEMTransient(ek)→ {0(ek),0(ek),0(ek),M

(ek)
ij }.

6.3.2.7 Generalisation

It is well worth noting that the operators can be generalised further to one
master operator. In fact the generalisation is then done in several directions.
We start by introducing

D (N, r, o)

where D is the general derivative operator. D differentiates the shape function
N with respect to the local coordinate vector r up to order o. The order ranges
from 0 . . . n. Where D(N, r, 0) = N . The general partial differential operator is
then ∫

Ω(ek)

p∐
i=1

κi ⊗i D (Ni, r, oi) dΩ(ek).

The integral has the same function as before. κi is the ith input function multi-
plied in an appropriate manner ⊗i with the derivative operator D. Depending on
the order oi of the derivative of the shape function the multiplication is a normal
× or a dot product ·, where the dot-product operator is defined as

p∐
i=1

xi = xp · . . . · x1.

Here the transposes are implied by the multiplication.

Example: The diffusion operator is then∫
Ω(ek)

2∐
i=1

κi ⊗i D (Ni, r, oi) dΩ(ek) =∫
Ω(ek)

κ2 ⊗2 D (N2, r, o2) · κ1 ⊗1 D (N1, r, o1) dΩ(ek).

with
κ2 = σ and κ1 = 1
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and
o2 = o1 = 1

which leads to∫
Ω(ek)

σ ⊗2 D (N2, r, 1) · 1⊗1 D (N1, r, 1) dΩ(ek) =∫
Ω(ek)

σ · ∇N2 · 1×∇N1 dΩ(ek)

6.3.3 Numerical integration in unit domains

The operators need to be integrated over the domain of an element Ω(ek). This el-
ement domain can be located anywhere in the simulation domain Ω. To simplify
matters we proceed as follows. Each element is mapped to a unit domain mother
element. After the mapping the integration is performed over this mother ele-
ment. To this end the integral itself is replaced by a finite summation where
we relay on integration points ri and integration weights ĉi to reach a desired
accuracy.

For the mother line element, which is defined in Ω(M) ∈ [−1, 1], we use Gauß-
Legendre integration [7] ∫ 1

−1

F (r) dr =
q∑

i=1

ciF (ri),

where F is the integral kernel evaluated at the integration points ri and weighted
with the integration weights ci. q is the number of integration points.

For the mother quad element, which is defined in [−1, 1]d=2, we use∫ 1

−1

∫ 1

−1

F (r, s) dr ds =
q∑

i=1

q∑
j=1

cicjF (ri, sj)

and the same procedure is applied. To simplify matters further we can rewrite
the double summation to a single summation by adjusting the summation
length and the product factors to

q∑
i=1

q∑
j=1

cicjF (ri, sj) =
n∑

i=1

ĉiF (ri), (6.14)

where n = qd is the number of integration points to the power of the space
dimension d. For d = 1 we have n = q and for d = 2 we have q2 integration
points. The ĉi are the coefficients and ri is a vector which holds the ri and sj

appropriately adjusted. Please note that this formulation also holds for d = 1.
Then ci = ĉi, n = q1 and ri = ri.

The theory extends along similar lines for hexahedron mother elements and
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generally for n-dimensional hypercubes.

For triangular mother elements and tetrahedra mother elements we also use
Equation 6.14. Here, however, the integration limits are different, namely∫ 1

0

∫ 1−r

0

F (r, s) dr ds =
n∑

i=1

ĉiF (ri)

and ∫ 1

0

∫ 1−r

0

∫ 1−s

0

F (r, s, t) dr ds dt =
n∑

i=1

ĉiF (ri).

The integration points and weights for different mother elements are derived in
the following sub-sections.

6.3.3.1 Line, quad & hexahedron elements

We start with line elements and thus the dimension is d = 1. The integration
points ri for elements based on the domain Ω ∈ [−1, 1] are the roots of the
Legendre-Polynomial Pz(x) which is defined [12] by

Pz(x) =
1

2zz!
dz

dxz

(
x2 − 1

)z
with z ∈ N0.

The Legendre-Polynomial Pz(x), z ≥ 1 has z single roots in the open interval
(−1, 1) (for proof see [12]). First we compute the z roots from the recursion
formula

P0(x) =1

P1(x) =x

Pz(x) =
(

2z − 1
z

)
xPz−1 (x)−

(
z − 1
z

)
Pz−2 (x) for z ≥ 2

and then compute the integration weights ci by comparing coefficients. This is
illustrated in the following Example [12].

Example: To compute 3 integration points on a unit line element we use the
Legendre-Polynomial of degree z = 3

P3(x) =
5
2
x2 − 3

2
x

which has integration points ri (roots) i = 1, .., z

x1 = −
√

3
5 , x2 = 0, x3 =

√
3
5
.
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To find the integration weights ci we calculate∫ 1

−1

f(x)dx ≈ c1f

(
−
√

3
5

)
+ c2f (0) + c3f

(√
3
5

)
,

which is exact for polynomials of degree m ≤ 5. We now evaluate the
integrals for f(x) = xi−1 where i = 1, .., z

f(x) = 1 :
∫ 1

−1
1 dx = 2 = c1 + c2 + c3

f(x) = x :
∫ 1

−1
x dx = 0 = −

√
3
5c1 +

√
3
5c3

f(x) = x2 :
∫ 1

−1
x2 dx = 2

3 = 3
5c1 + 3

5c3

.

We thus have∫ 1

−1

f(x)dx =
5
9
f

(
−
√

3
5

)
+

8
9
f (0) +

5
9
f

(√
3
5

)
+ E

where E is an error.

This process can be automated and implemented and will result in analytical
integration points and weights which are important for a symbolic finite element
environment. We present a table of integration weights and points. Note that
for ri > 5 the roots become complex and other numerical schemes have to be
applied.

To proceed for quads, hexahedra or higher dimensional hypercubes we take
the outer product of the integration points and weight to obtain the new vector
integration points and integration weight. For example the integration points
and weights for a quad with q = 2 integration points results in n = 22 = 4 and

ĉi = {1, 1, 1, 1}

and
ri = {{ 1√

3
,

1√
3
}, { 1√

3
,− 1√

3
}, {− 1√

3
,

1√
3
}, {− 1√

3
,− 1√

3
}}.

6.3.3.2 Triangle & tetrahedra elements

We give the following tables: Table 6.3 for triangles and Table 6.4 for tetrahedra
integration points and weights.

Remark: Some authors [7] give the integration weights for triangles and tetra-
hedra in a slightly different form. This is due to the fact that the actual
integration formula used by those authors is different. For example for

72



6.3 Finite Element Method

Table 6.2: Analytical integration points and weights for line elements in the unit
element Ω ∈ [−1, 1] in R1. In those integration point formulae where a ± sign appears
the convention in this text is to first use the positive and then the negative values

position and magnitude of order ri ĉi
integration points and weight 2n− 1

0

0.5

1

1.5

2

1 0 2

0

0.5

1

1.5

2

3 ± 1
3
√

3
1
1

0

0.5

1

1.5

2

5 ± 1
5
√

15
0

5
9
8
9

0

0.5

1

1.5

2

7
±
q

3
7 + 1

21
√

30

±
r

1
35

“
15 − 2

√
30
” 1

2 − 1
36
√

30
1
36

“
18 +

√
30
”

0

0.5

1

1.5

2

9

±
q

5
9 + 2

63
√

70

± 1
3

r
1
7

“
35 − 2

√
70
”

0

1
900

“
322 ± 13

√
70
”
0

1
900

“
322 ± 13

√
70
”

triangles ∫ 1

0

∫ 1

0

F (r, s) dr ds =
1
2

n∑
i=1

ĉiF (ri)

and for tetrahedra∫ 1

0

∫ 1

0

∫ 1

0

F (r, s, t) dr ds dt =
1
6

n∑
i=1

ĉiF (ri)

is used. In our case the factors 1/2 and 1/6 are multiplied into the integra-
tion weights and we thus can use Equation 6.14 for all types of elements
in 1 or arbitrarily more dimensions.

73



6 Operator Discretisation

Table 6.3: Triangle integration points and weights

position and magnitude of order ri ĉi
integration points and weight

-0.2

0

0.2

0.4

0.6

1
n

1
3 , 1

3

o
1
2

-0.2

0

0.2

0.4

0.6

2

n
1
6 , 1

6

on
2
3 , 1

6

on
1
6 , 2

3

o
1
6
1
6
1
6

-0.2

0

0.2

0.4

0.6

3

n
1
3 , 1

3

on
3
5 , 1

5

on
1
5 , 3

5

on
1
5 , 1

5

o
− 9

32
25
96
25
96
25
96

-0.2

0

0.2

0.4

0.6

5
1
21

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

n
6 −

√
15, 6 −

√
15
on

9 + 2
√

15, 6 −
√

15
on

6 −
√

15, 9 + 2
√

15
on

6 +
√

15, 9 − 2
√

15
on

6 +
√

15, 6 +
√

15
on

9 − 2
√

15, 6 +
√

15
o

{7, 7}

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;

“
155−

√
15
”

2400“
155−

√
15
”

2400“
155−

√
15
”

2400“
155+

√
15
”

2400“
155+

√
15
”

2400“
155+

√
15
”

2400
9
80

6.3.3.3 Element mapping

For the integration the question remains as to how to map an arbitrary element
to its respective mother element. Also of interest is a methodology to evaluate
an operator’s input function in the un-mapped element.

We start with the second question. To map from the mother element in r, s, t
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Table 6.4: Tetrahedra integration points and weights

position and magnitude of order ri ĉi
integration points and weight

0

0.5

1

1 1
4 {{1, 1, 1}} 1

6

0

0.5

1

2
1

20

8>>>>><>>>>>:

n
5 + 3

√
5, 5 −

√
5, 5 −

√
5
on

5 −
√

5, 5 + 3
√

5, 5 −
√

5
on

5 −
√

5, 5 −
√

5, 5 + 3
√

5
on

5 −
√

5, 5 −
√

5, 5 −
√

5
o

9>>>>>=>>>>>;

1
24
1
24
1
24
1
24

0

0.5

1

3
1
12

8>>>><>>>>:
{3, 3, 3}
{6, 2, 2}
{2, 6, 2}
{2, 2, 6}
{2, 2, 2}

9>>>>=>>>>;

− 4
30
9

120
9

120
9

120
9

120

coordinates to the element in x, y, z coordinates we write [13]

x = N ′
1x1 +N ′

2x2 + ... =N′

 x1

x2

...

 = N′x

y = N ′
1y1 +N ′

2y2 + ... =N′

 y1
y2
...

 = N′y (6.15)

z = N ′
1z1 +N ′

2z2 + ... =N′

 z1
z2
...

 = N′z,

where N′ are standard C0 shape functions in local r, s, t coordinates. The x1, y1, z1
are the element nodal points in global coordinates. This is illustrated by an
example.

Example: To find the mapping from a mother triangle element to a triangle in
global domain we proceed as follows: The local shape functions are

{1− r − s, r, s}
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The global triangle is supposed to be at coordinates

{{1, 1}, {2, 1}, {3/2, 3/2}}.

The mapping then is

{{1− r − s, r, s}} · {{1, 1}, {2, 1}, {3/2, 3/2}} = {1 + r + s/2, 1 + s/2}.

By inspection, for {r, s} = {0, 0} the mapping results in {1, 1}.

In this case we used linear shape functions for the mapping. If for computation
also linear mapping is employed, which implies

N = N′

we speak of isoparametric elements. In the case where a higher order shape
function is used than the order of the computational shape function we speak of
superparametric elements and in the case where the order of the computation
shape function is higher than the order of the mapping shape functions we
speak of subparametric elements. Even though other settings are possible, in
this work we use isoparametric elements.

To answer the question of how to map an arbitrary element to its respective
mother element, we note that in the expression in Equations 4.1 to 4.7 the
derivatives of the shape functions also need to be computed. If we consider local
coordinates r, s, t and apply the rules of partial differentiation we may write ∂Ni

∂r
∂Ni

∂s
∂Ni

∂t

 =

 ∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

 ∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

 = J

 ∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

 ,

where J is the Jacobian matrix. We note that the left-hand side is known since
the Ni are local shape functions. The coordinates x, y, z are known through
Equation 6.15 and can be written in terms of the mapping shape functions N′

as

J =


∑ ∂N ′

i

∂r xi

∑ ∂N ′
i

∂r yi

∑ ∂N ′
i

∂r zi∑ ∂N ′
i

∂s xi

∑ ∂N ′
i

∂s yi

∑ ∂N ′
i

∂s zi∑ ∂N ′
i

∂t xi

∑ ∂N ′
i

∂t yi

∑ ∂N ′
i

∂t zi

 =


∂N ′

1
∂r

∂N ′
2

∂r . . .
∂N ′

1
∂s

∂N ′
2

∂s . . .
∂N ′

1
∂t

∂N ′
2

∂t . . .


 x1 y1 z1

x2 y2 z2
...

...
...

 ,

(6.16)
where the right-hand side is readily available, i.e. the mapping shape function
derivatives and the element coordinates.

For the computation we need the derivatives of the global shape functions which
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can now be expressed as  ∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

 = J−1

 ∂Ni

∂r
∂Ni

∂s
∂Ni

∂t


One further point has to be considered when employing element mapping. The
element integration in Equations 4.1 to 4.7 is defined in global coordinates. To
transform to local coordinates an adjustment has to be made

dx dy dz = det(J)dr ds dt

6.3.3.4 Pre-integrated shape functions

In our case the integral kernel F (ri) involves the shape functions and their
derivatives. Since the integration is done in the unit mother element the inte-
gration points remain the same. We can thus pre-integrate the shape functions
and their derivatives at the integration points ri. In the actual integration pro-
cess we then only need look-up tables to look up the pre-integrated shape func-
tion or derivative and multiply them appropriately with the integrated operator’s
input functions and integration weights. Some authors go further [8] and thus
establish pre-evaluated element matrices which then only need to be multiplied
with the Jacobian. This, however, rules out the use of input functions and is
thus of limited interest only.

The disadvantage is then that the number of integration points and weights is
in some way attached to the shape function. It is then a little more difficult to
change the integration order of an element. In other words a “new” element with
the same shape function but different integration order has to be pre-integrated
in order to use an element with a different integration order.

6.3.3.5 Input function integration

The integration of the operator’s input function can be done in the following
manner: we make use of the fact that we have the pre-integrated shape func-
tions. We dot-multiply them with the elements’ coordinates and evaluate the
input function at these points. The appropriate weighting can then be done in
the integration procedure. Please see the implementation in Chapter 7.4.3 on
page 104 for further detail.

6.3.4 Area coordinates

In previous sections we propagated the following procedure for the finite element
method:
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1. Map the mesh element to its corresponding unit element

2. Multiply the input function to the mapped element

3. Integrate appropriately over the unit element.

There is, however, a further method for triangle and tetrahedra elements to
compute the finite elements. This method relies on so-called area coordinates12.
Using area coordinates has the advantage that analytical results for the element
integration exist in some circumstances. As long as the operator’s input func-
tions are not dependent on the coordinates, an analytical result of the integral
exists [6, 13]. This circumstance makes the evaluation very fast. However, such
results exist only for triangles and tetrahedra. Even though it is possible to use
higher order elements it is not possible to use serendipity type elements or quad
or hexahedron elements.

Nevertheless, area coordinates are of importance for interpolation purposes and
there is an efficient way to check if coordinates are inside an element or not.
Both functionalities are essential in this work and thus we take the time to
introduce area coordinates.

1

2

3

B

h2

h

A2

A1

A3

Figure 6.3: Area coordinates relate the area A2 to the total area of the triangle [6].

Area coordinates are normalised coordinates for triangles and tetrahedra [6].
We consider the triangle in Figure 6.3. We define

L2 =
h2

h

and L1 and L3 similarly. We note that

A2 =
Bh2

2

12Area coordinates are also called barycentric coordinates
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and that the entire area of the triangle is

A =
Bh

2

which leads to

L2 =
Bh2/2
Bh/2

=
A2

A

or generally

Li =
Ai

A
.

Area coordinates are defined by relating the area of sub-triangles Ai in terms of
the complete area A of the triangle. Ai may be expressed as

Ai =
1
2

∣∣∣∣∣∣
1 xp yp

1 xj yj

1 xk yk

∣∣∣∣∣∣ = 1
2

(ai + bixp + ciyp)

where xp and yp are the coordinates of an arbitrary point inside the triangle and

ai =xjyk − xkyj

bi =yj − yk

ci =xk − xj .

Area coordinates can be used as shape functions if we consider for example
that L2 = 1 if p is at node 2 and L2 = 0 if p is at node 1 or 3. Furthermore, the
variation in between is linear. In this case the shape functions are

Ni = Li, with i = 1, 2, 3.

The argumentation for tetrahedra is along similar lines. To construct elements
of higher order we list without derivation for quadratic triangle elements [3]

Ni = Li(2Li − 1) with i = 1, 2, 3

and
N4 = 4L1L2, N5 = 4L2L3, N6 = L3L1.

We would like to point out that the exact integration formulae exist∫
Ω(ek)

La
1L

b
2L

c
3 dΩ

(ek) =
a!b!c!

(a+ b+ c+ 2)!
2A,
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with A the triangles area and a, b, c ∈ I. Also∫
∂Ω(ek)

La
1L

b
2 ∂Ω =

a!b!
(a+ b+ 1)!

S,

where S is the path length. For R3 we have∫
Ω(ek)

La
1L

b
2L

c
3L

d
4 dΩ

(ek) =
a!b!c!d!

(a+ b+ c+ d+ 3)!
6V,

where V is the tetrahedron’s volume.

To compute if a coordinate xp is inside a linear tetrahedron13 we use [5]

min(Li, 1− Li) ≥ 0

where 
L1

L2

L3

L4

 =


x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1


−1

xp

yp

zp

1


for R3.

Remark: Care has to be taken when handling computational precision14.

Remark: For higher order triangles and tetrahedra we simply use the primary
nodes. The notion of primary and secondary nodes will be properly intro-
duced in Chapter 6.3.5. This simplification may be wrong for higher order
serendipity elements and improvement is needed for such cases. For linear
quads and hexahedra we split them into triangles and tetrahedra respec-
tively. For higher order quads and hexahedra we need to insert additional
points if we would like to use the splitting method. We have not checked
as to how the splitting may influence the interpolation results.

6.3.5 Meshes

In the following section we introduce unstructured meshes and their elements.

6.3.5.1 Mesh elements

A list of mesh elements and their primary and secondary incidents are depicted
in Figures 6.4 to 6.6.

13To check if a coordinate is inside a triangle we can proceed in a similar fashion.
14The single most important rule is to never check against zero. A statement of the form p = 0

should always be recast into the following form: |p| ≤ ε, where ε is a small number.
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Figure 6.4: 1D mesh elements. Red nodes are primary nodes and blue nodes are
secondary nodes. Left: Linear mesh elements. Right: Second order mesh elements.
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Figure 6.5: 2D mesh elements. Red nodes are primary nodes and blue nodes are
secondary nodes. Left: Linear mesh elements. Right: Second order mesh elements.

Here the so-called primary nodes are coloured in red and the secondary nodes
are in blue. The primary nodes are sufficient to plot the element and they are
also sufficient for numerous computations. If an element is of higher order then
it has additional secondary nodes, for example to support higher order shape
functions. The secondary nodes supplement the primary nodes. This means an
element made up of primary nodes such as the triangle

{n1, n2, n3} ∈ e1

can be converted to a higher order element by using

{n1, n2, n3, n4, n5, n6} ∈ e1.

It is important to note that the nodes n1 to n3 are the same nodes and they are
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Figure 6.6: 3D mesh elements. Red nodes are primary nodes and blue nodes are
secondary nodes. Left: Linear mesh elements. Right: Second order mesh elements.

at the same position in the incidents list,

i1 = {n1, n2, n3}.

These are the primary nodes since they are present in all higher order types of
the specific element. The additional nodes n4 to n6 have to be added and they
are appended to the incidents list i1. These nodes are called secondary nodes.

6.3.5.2 Serendipity type elements

Serendipity15 type elements are truncated polynomials. The shape functions of
higher than first order presented in this work are serendipity elements. Since
these elements do not need points inside the elements - nodes on the element
boundary suffice - the resulting element matrices are smaller. Furthermore,
these elements are suitable for curved linear boundaries as well. Figures 6.4 to
6.6 do not display the serendipity character of the implemented mesh elements.

6.3.6 Numerical challenges

In this section some specific problems are addressed. Some of the problems are
shortcomings of the finite element method while others are general problems
15Serendipity elements are named after the fairytale “The three princes from Serendip.” by Horace

Walpole. These princes had the ability to make unexpected and fortunate discoveries and thus
the word serendipity was coined [7].
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of the weighted residual method or some are problems of the level set method.
They are presented in no particular order.

6.3.6.1 Recovery of derivatives

We use the interpolation with area coordinates and recover the derivatives via
those. The interpolation function is then input to the operator’s input function.

6.3.6.2 Re-initialisation

To avoid that the level set becomes too flat it is important that the level set
remains a signed distance function. However, while updating the level set with
Equation 5.3 and at the same time satisfying ∇u = 0 from the Navier-Stokes
equations 5.1, it will not remain as such [10]. To counteract the deviation
of the signed distance function from |∇φ| = 1, the computation is interrupted
periodically and the level set φ is re-initialised.

To re-initialise φ two methods are common. The first possible choice is to solve
the following equation

∂

∂t′
+ F |∇φ| = 0,

where F is the normal velocity. We note that t′ is a pseudo time variable. To find
the new signed distance we set F = 1 and follow the interface forward and back-
ward in time t′ until each node has had a change in sign. The crossing times
are the new signed distances. This introduces another non-linear equation.

We have chosen a second, simpler alternative. In this case the φ0 is found, for
example by a contour plotting routine, and then the signed distance from each
node is recalculated by computing the distance to the interface.

In both methods we can take advantage of the fact that we need not re-initialise
the entire domain. It is sufficient to re-initialise a so-called narrow band around
φ0 since only the φ0 interface is of interest. Should φ0 move then the appropriate
nodes are re-initialised. It would be desirable to avoid the re-initialisation step
entirely. In Figure 6.7 we display a non-signed distance function φ2. Both, the
entire re-initialisation and the narrow band re-initialisation are shown. In the
entire re-initialisation a new φ1 is found in the entire domain. In the narrow
band, which is represented by the elements marked in red, only elements in
some vicinity of the interface Γ ∈ φ2 are re-initialised.

6.3.6.3 Level-Set correction

Re-initialisation is not done without changing the zero level-set φ0. In Figure
6.8 two types or errors are discussed. Both errors lead to a loss of mass in the
level set method. This is explained in Figure 6.9.
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Φ1

Φ2 Φ2

Figure 6.7: Left: Once a level set function has deviated from the signed distance
property as φ2 a re-initialisation step has to be made. In a full re-initialisation each
mesh node is assigned the newly computed value of φ1. Right: A narrow band re-
initialisation of φ2. The red elements mark the band width which, in this case, is 2.
Elements outside this band width are not reinitialised.

Since the values for φ0 < 0 will be re-initialised too small and values φ0 > 0 will
be re-initialised with values that are too big, we have a loss of mass. Thus, after
each re-initialisation step we use a level set correction step.

It can be shown that the loss of mass can be compensated [11]. Let Ω+ be that
part of the domain Ω where Ω+ = {x ∈ Ω : φr > 0} and φr is the re-initialised level
set. Then the level set correction Cφ can be computed in the following manner

Cφ =
Se − S(Ω+)

L(Γ)
.

Se is the exact volume in R3 or area in R2 which is known to us. S(Ω+) is the
volume or area after the re-initialisation and L(Γ) is the area in R3 or the length
in R2 of the interface. If Se > S(Ω+) then Cφ < 0 and the level set φr is to be
lowered and vice versa.

6.3.6.4 Regularisation

Some of the terms in coupled Navier-Stokes - Level-Set equations are problem-
atic from a numerical point of view. We have jump conditions for µ and ρ and
need to discretise δΓ.

To discretise the delta distribution is problematic. We use a smoothed and
weighted derivative of a Heaviside16 function. The smoothed Heaviside function

16Oliver Heaviside (1850-1925).
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Figure 6.8: Two types of errors that may be introduced during re-initialisation. The
red line represents the true φ0. In blue are the segments that are found by the con-
tour plotting utility. The segments intersect the mesh elements and are computed
by a linear interpolation between nodal values. Left: Even if the intersection points
are found with sufficient precision, the blue segment does not capture the true φ0

due to the segment’s linear nature. Right: In this case the intersection is not found
correctly.
In both cases, by using the blue φ0 representation an error in recomputing the dis-
tance function is made.

has the form

Ĥ(x) =


−1 ≤ x ≤ 1; 1

2 + x
(

15
16 − x

2
(

5
8 −

3
16x

2
))

x ≤ −1; 0

1 ≤ x; 1

and its derivative

Ĥ ′(x) =

{
−1 ≤ x ≤ 1; 15

16 − x
2
(

5
8 −

3
16x

2
)

+ x
(

3
8x− 2x

(
3
8 −

3
16x

2
))

else; 0
.

To model δΓ we use

δ̂Γ(x) =
1
hw

Ĥ ′
(
x

hw

)
,

where x is the value of the level set function φ and hw is the interface width and
typically in the size of a few typical mesh elements. The process is depicted in
Figure 6.10.

6.4 Initial & Boundary Conditions

Because of our inability to solve fully coupled non-linear equations analytically,
we reverted to discrete solution techniques. This, however, also enforces us to
deal with initial and boundary conditions.

Initial conditions represent the system’s starting state. From this point in time
the system is advanced to future states. Initial conditions are only of interest if
the system of equations is time dependent. Boundary conditions represent the
interaction of the system with its surroundings. Since only a finite extension
of a system can be modelled, boundary conditions play the role of the interface
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Figure 6.9: Level set loss of mass. Left: We assume the true level set φ0 at the
red point of intersection with the grey mesh line. Due to re-initialisation errors the
assumed point of intersection is the blue point. While re-initialising the distance
from mesh node 1 to the blue intersection is computed; here an error e1 = −|φ0− φ̂o|
is introduced and φ̂o at mesh node 1 that is too small by e1. Likewise at mesh node
2 the error is e2 = +|φ0 − φ̂o|. Consequently φ̂o at node 2 is re-initialised too high.
Right: Displays the same problem in an exaggerated manner on a mesh in R2.

between the system and its surroundings. The surroundings are captured in
the boundary conditions. Boundary conditions must always be given.

6.4.1 Boundary conditions

6.4.1.1 Dirichlet - essential conditions

To specify a value of the unknown u at ∂Ω

u∂Ω = f(x)

is a Dirichlet boundary condition, where f(x) : Rn 7→ R. Dirichlet boundary
conditions are essential in the sense that not specifying them on some part of
∂Ω implies Neumann zero - natural - boundary conditions, which would leave
the system floating. A system is called floating if only derivatives are specified
at the boundary ∂Ω.

6.4.1.2 Neumann - natural conditions

To specify the derivative of the unknown u at ∂Ω

∂

∂n
u = f(x)
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Φ

Figure 6.10: With the aid of a smoothed Heaviside function derivative the δΓ

distribution for the surface tension term computation is modelled. The level set
φ =

p
(x− 1/2)2 + (y − 1/2)2 − 1/4 cuts the R2 plane at φ0, which is marked in red.

The φ values are input to the smoothed Heaviside function. At φ0 the Heaviside func-
tion has its maximum. For demonstration purposes the derivative of the Heaviside
function is scaled.

is a Neumann boundary condition, where f(x) : Rn 7→ R. The special case where
no boundary conditions are specified on some part of ∂Ω implies

∂

∂n
u = 0

This can be understood from the boundary part of Equation 6.6∫
∂Ω

(
(σ∇u)T · n

)
wid∂Ω.

Ignoring the term implies the assumption that

∂

∂n
u = 0.

Not specifying anything thus implies a natural boundary condition, namely Neu-
mann zero.

Besides specifying the flux over ∂Ω Neumann boundary conditions can be used
to model symmetry. If a line of symmetry is present, no flux passes over this
line.

6.4.1.3 Cauchy - mixed conditions

A generalisation of Dirichlet and Neumann boundary conditions is the Cauchy
condition
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α
∂

∂n
u+ βu = f(x).

6.4.1.4 Time dependent boundary conditions

Boundary conditions can be time dependent. This is especially true for inflow
or inlet boundary conditions in the fluid flow area. It is important to evaluate
the boundary conditions at the “right point in time”. Let us say we are at
simulation time tn. For an explicit time integration method we evaluate the
boundary conditions at time tn. For an implicit time integration algorithm we
evaluate the boundary conditions at time tn +4t where 4t is the step size to the
next time step tn+1.

6.4.2 Initial conditions

So far we have dealt with spatial conditions only. Initial conditions deal with
the system’s state at some point in time. Depending on which of the tempo-
ral derivatives are present, first and/or second derivative, we speak of initial
conditions of the first or second kind.

6.4.2.1 Initial conditions of the first kind

Here the systems state u0 at some point in time t0 is prescribed

τ1
∂

∂t
u⇒ u0∀Ω,

where u0 is the systems state a t0 in the entire domain Ω.

6.4.2.2 Initial Condition of the Second Kind

Should a second time derivative be present - even if no first time derivative is
present - we need to specify an initial velocity u̇0 in addition to the initial state
u0

τ2
∂

∂t2
u+ τ1

∂

∂t
u⇒ u̇0, u0∀Ω

6.4.3 Fluid boundary conditions

In the fluid literature several concepts of technical initial and boundary condi-
tions have been introduced. We quickly summarise them and show how they
can be expressed using mathematical terminology.
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6.4.3.1 Inlet conditions

At inlets either the pressure or the velocity components are prescribed by some
fixed value. Inflow conditions may be time-dependent. We thus enforce the
appropriate Dirichlet boundary conditions at each time step. Should the entire
boundary ∂Ω consist of prescribed velocity conditions, it is useful to set at least
one point on the boundary to a Dirichlet pressure boundary condition since else
the pressure would be implicitly set to Neumann zero which would imply that
the system is floating.

6.4.3.2 Outlet conditions

Employ the same mechanism as with the inlet conditions.

6.4.3.3 Walls - No-Slip

On walls we have no-slip conditions. No-Slip conditions assume that both the
tangential and normal velocity component are zero. This can be achieved by
setting all velocity parts to Dirichlet zero. For example u = 0.

6.4.3.4 Walls - Free-Slip and Symmetry

In the slip (also known as symmetry) boundary condition only the normal ve-
locity is set to Dirichlet zero as in u · n = 0 and the tangential component is set
(implicitly) to Neumann zero.

6.4.3.5 Initial conditions

In the case of the Navier-Stokes equations first time derivatives are present.
This implies that the initial state u0 of the system of equations must be known.
It is best to start the system from an initial state at rest. Then an initial state
u0 = 0 in Ω is taken.
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IMPLEMENTATION is challenging. In the following chapter we show some aspects
of the implementation. Particular attention has been paid to choosing code
segments which are of central importance to understanding the concept behind
the implementation. Some other code segments have been chosen since some
novel ideas have been tried out.
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The implementation was done in Mathematica and resulted in the open source
IMTEK Mathematica Supplement, or IMS for short. The Add-On packages are
available for free download [14]. Furthermore, a mailing list for further assis-
tance is available.

We try to present the ideas in a way which is a natural work flow. In the first
part the work is presented in an overview. Then we weave our way along and
point out the sights.

Some portions of the code rely on the reader to have a good understanding of
the Mathematica programming language. Some good references include Mäder
[10, 11] and the tutorials in the IMS [14].

7.1 Design Philosophy

7.1.1 Less is more

In order to implement a programming project like the one presented in this work
it is essential to have a direction to avoid cluttering of the program.

Perfection is reached not when there is no longer anything to add
but when there is no longer anything to take away.

(Antoine de Saint-Exupéry)

Antoine de Saint-Exupéry’s sentence is a design philosophy and thus a compass
and supposed to point to the right direction. Also, the future development and
maintenance of the software project must be manageable by as few people as
possible which is another call for simplicity.

7.1.2 Programming style

Traditionally most numerical implementations have been done in a imperative
programming language like FORTRAN or C. Imperative languages are based on
Turing1 machines.

Functional programming languages are based on Church’s2 λ-calculus. Church
and Turing then proved that both the Turing machine and the λ-calculus are
1Alan Mathison Turing (1912 - 1954) provided an influential formalisation of the concept of algo-

rithm and computation with the Turing machine, formulating the now widely accepted "Turing"
version of the Church-Turing thesis, namely that any practical computing model has either the
equivalent or a subset of the capabilities of a Turing machine.

2Alonzo Church (1903 - 1995). The lambda calculus emerged in his famous 1936 paper showing
the existence of an "undecidable problem". This result preempted Alan Turing’s famous work on
the halting problem which also demonstrated the existence of a problem unsolvable by mechan-
ical means. He and Turing then showed that the lambda calculus and the Turing machine used
in Turing’s halting problem were equivalent in capabilities, and subsequently demonstrated a va-
riety of alternative "mechanical processes for computation." This resulted in the Church-Turing
thesis.
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equivalent. Nevertheless, the ability to generate and modify functions is unique
to functional languages like Lisp. This idea leads eventually to the vanishing of
the barriers between data structure and function. The relation between func-
tional and imperative programming is summed up [1]

Pascal is for building pyramids - imposing, breathtaking, static struc-
tures built by armies pushing heavy blocks into place. Lisp is for
building organisms – imposing, breathtaking, dynamic structures built
by squads fitting fluctuating myriads of simpler organisms into place.
The organizing principles used are the same in both cases, except
for one extraordinarily important difference: The discretionary ex-
portable functionality entrusted to the individual Lisp programmer
is more than an order of magnitude greater than that to be found
within Pascal enterprises. Lisp programs inflate libraries with func-
tions whose utility transcends the application that produced them.
[...] As a result the pyramid must stand unchanged for a millennium;
the organism must evolve or perish.
(Alan J. Perlis)

The choice in favour of the programming environment Mathematica was made
since it is an advanced programming language in the sense that it does not try
to restrict the programmer to one programming paradigm but offers a wealth
of programming techniques from imperative over functional or rule based pro-
gramming to pattern matching and logical paradigms. Mathematica being fully
garbage collected relieves the programmer of another burden.

The disadvantage is that the Mathematica programming language is closed
source and thus no bugs can be fixed. Also it is not predictable what func-
tion names future versions will provide and thus it was decided to prefix every
newly added function with ims which stands for IMTEK Mathematica Supple-
ment. From a temporal and spatial performance perspective Mathematica is not
able to match specialised C or even Assembler code. However, using vectorised
computations Mathematica is faster than commonly anticipated.

However, programming language development advances and one promising al-
ternative in the future will be the Lisp Universal Shell (LUSH), which offers the
capability to automatically generate C code from Lisp and interface existing C
libraries.

7.1.3 Abstract programming via constructors & selectors

Throughout the implementation the constructor/selector paradigm has been
used. Each new data type introduced is created with a constructor. To select
from the newly generated data type selectors are employed. With this simple
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mechanism it is possible to change the underling data structure without modi-
fying the parts of the code that are built on top of it. It is also evident from this
that a careful design of the interface - the constructors, selectors and mutators
- has to be made [1]. All constructors are characterised by a Make in their func-
tion name, all selectors show a Get in their name. Mutators, which may re-set
some values of a data structure have a Set in their name.

Function names that are Listable3 have the postfix s attached to their names.
So the function imsGetNodeIds operates on either one node or a list of nodes
returning one node’s id or a list of node ids, respectively. This, in retrospect,
was a poor design choice; wrongly spelt words like imsGetDatas contribute
more to confusion than anything else.

The constructor/selector paradigm has, at least in Mathematica, the disadvan-
tage that it comes at some cost of performance. So that this cost is not usury
we compromised on not necessarily using the constructor/selector paradigm if
we are inside one package. From the outside, however, it is strictly used.

7.2 Program Flow

The core program and work flow can be summed up in the following steps which
we call the design cycle:

1. Create a Graph from nodes and elements:

a) Manual creation:
imsMakeNexus[boundaryNodes,interiorNodes,elements]→ imsNexus

b) Automatic creation based on geometry data:
imsGraphics3DToNexus[Graphics3D]→ imsNexus

2. Apply operators L to graph elements i:
imsMakeElementMatrix[L[imsNexus,i]]→ imsElementMatrix

3. Assemble local element matrices into empty global matrices Ae:
imsAssemble[{imsElementMatrix,...}, Ae]→ A

4. Create systems of equations:
imsMakeSystem[f, S,D,M]→ imsSystem

5. Analyse system of equations:

a) Stationary analysis:
imsStationarySolve[imsSystem]→ List

3A function has attribute Listable if it can be threaded - that is applied - over a list of its input
arguments.
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b) Transient analysis:
imsTimeIntegrate[imsSystem]→ List

c) Harmonic analysis:
imsHarmonicSolve[imsSystem]→ List

d) Eigenwert analysis:
Eigensystem[A]→ List

6. Visualise

a) 2D:
List→ Graphics

b) 3D:
List→ Graphics3D

In the next sections we fill this skeleton and show how the steps interface with
each other and with themselves.

7.3 Graphs

Graphs consist, as elaborated in Chapter 2.1 on page 12, of nodes and elements.
Also, in the implementation we call a graph a nexus4. In the following we first
introduce nodes and then different element libraries. We then introduce the
mechanism of how to implement new element libraries.

7.3.1 Nodes

The implementation of a node is realised by means of a constructor.

imsMakeNode[id_,coords_,marker_Integer:0,value_:{{0.}},data___] /;
MatrixQ[value] := imsNode[id,coords,marker,value,data];

Each node has its identification (id) and its coordinates (coords) as mandatory
input parameters. Both have no type requirement but commonly an integer and
a numerical list, respectively, are chosen. Furthermore, an integer as a marker
which defaults to 0 and a value which defaults to a 1 × 1 matrix with value
numerical 0. can be given. The marker may, for example, be used to specify to
which part of a boundary a node belongs. Values are to store the result of a

4Etymologically nexus comes from Latin and means connection, link. The fact that a graph is
called nexus has historical reasons. First the implementation was called graph which conflicted
with provided Mathematica functions. The data structure was then renamed nexus. It was only
after this conversion that all ims functions where prefixed with ims to generate unique function
names; renaming the nexus to imsGraph was then a too delicate code refactoring since virtually
everything is based on the nexus data structure.
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simulation. The creation of the node will fail if the given value is not of matrix
form. As a last input specification data of arbitrary type can be given. The node
data type is returned. For each input parameter a selector exists and for some
a mutators exists This will be illustrated.

Loading the node package In[1]:= Needs["Imtek‘Nodes‘"]

Creation of a node with identification
number 1 and the coordinates {0, 0}.

In[2]:= n = imsMakeNode[1,{0,0}]
Out[2]= imsNode[1,{0,0},0,{{0}}]

Selection of the node’s id. In[3]:= imsGetIds[n]
Out[3]= 1

A node may hold more than one value. The additional degrees of freedom are
stored in the columns of the node’s value. If the node should hold transient
simulation results those are stored in the rows of the node’s values.

Resources:

Implementation Nodes.nb\.m

Documentation NodesDocu.nb

Examples see Nexus

7.3.2 Element library types

7.3.2.1 Mesh element library

The main purpose of the mesh element library is to provide a data structure
for partial differential equation operators built on mesh based discretisation
methods as discussed in Chapter 6. The mesh elements and the corresponding
nodes will be input to partial differential equation operators.

As an example we inspect the 1 degree of freedom per node triangle element.
The principles presented hold for all other mesh elements. The constructor is
defined as

imsMakeTriangleLinear1DOF[id_Integer,nodesIds_List,marker_Integer:0,datas___] :=
imsTriangleLinear1DOF[id,nodesIds,marker,datas];

This creates a linear triangle mesh element with 1 degree of freedom nodes.
Each element has a unique identification number (id) and a list of node ids
which form the element’s vertices. Markers can be used to specify the affiliation
of an element to a specific area in the simulation domain (see convection diffu-
sion example in Chapter 4). The marker defaults to integer 0. Optional data can
be given. A triangle mesh element is returned.
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Remark: Strictly speaking keeping the degrees of freedom as part of the mesh
element name is cumbersome and not necessary since the degrees of free-
dom are transported by the nodes alone; and they can carry the burden.

One further issue needs to be addressed, namely the visualisation of nodes. To
tie in with constructors and selectors we call them representors. The code for
the triangle element is

imsDrawElements[te_imsTriangleLinear1DOF,nodes_] :=
Line[imsClosePolygon[imsGetCoords[nodes]]];

imsGetCoords returns the coordinates of the nodes. To close the coordinates
to a closed line segment the function imsClosePolygon is engaged.

Resources:

Implementation MeshElementLibrary.nb\.m

Documentation MeshElementLibraryDocu.nb

7.3.2.2 Domain element library

The purpose of domain elements is to unify the input data structure for mesh
generation. The simulation domain’s boundary ∂Ω is described by domain seg-
ments.

To generate the necessary input in 2 dimensions the function imsConvex-
Intersect is available and is further subsidised by the hosting package Imtek‘-
Polygon. It is thus possible to intersect convex polygons in O(n log n) temporal
complexity. In 3 dimensions the routine imsGraphics3DToNexus converts ar-
bitrary 3 dimensional graphics objects into a graph made up from domain seg-
ments. We can thus draw on the wealth of mathematical functions provided by
Mathematica itself or extensions such as shown by Barrere [3]. The conversion
is performed by a unique hash-table5 based node creation which is elucidated
in the following example

We create a function f with coordinates
as arguments and assign an integer.

In[1]:= f[{1,0}] = 1;
In[2]:= f[{2,0}] = 2;

Each time a function is called it evalu-
ates to the assigned integer.

In[3]:= f[{2,0}]
Out[3]= 2

This process is utilised in the function imsPolygonToDomainSegments which
converts a polygon given by coordinates to a list of boundary nodes and domain
segment elements.

5Hash-tables have a temporal complexity of O(1) and are thus very fast data structures. This then
allows for a fast conversion of Graphics3D objects to input for mesh generators.
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imsPolygonToDomainSegements[polygons_] := Module[
{i,f,boundaryNodes,domainSegments,coords,incidents},
coords = Union[Flatten[List @@@ Flatten[polygons],2]];
i=1;
(f[#]=i++)& /@ coords;
incidents = Map[f,(Sequence @@@ polygons),{2}];
i=1;
boundaryNodes = imsMakeNode[i++,#]& /@ coords;
i=1;
domainSegments = imsMakeDomainSegment[i++,#]& /@ incidents;
Return[{boundaryNodes,domainSegments}];];

We find the sorted union of all coordinates which is a process of O(n log n) com-
plexity and after which duplicate coordinates have been eliminated. Then we
create functions named f which, when called with any one of the coordinates
as arguments, return the unique integer id i. f is then mapped to the sequence
of the polygon at level 2 which then returns the incidents. We can proceed by
creating the boundary nodes and the domain segments and return a nexus.

Unfortunately, Mathematica itself does not provide selectors for Graphics3D
objects. So, brute force is the only resort. We convert the Grapichs3D to a
List and extract the polygons which are then given to imsPolygonToDomain-
Segments.

The conversion of a Graphics3D object is then done by

imsGraphics3DToNexus[gr_Graphics3D] := Module[
{polygons,boundaryNodes,elements},
polygons = Cases[Flatten[List @@gr],_Polygon];
{boundaryNodes,elements} = imsPolygonToDomainSegements[polygons];
Return[imsMakeNexus[boundaryNodes,{},elements]];];

In the following code segments we demonstrate the procedure

We import a stl file. In[1]:= g = Import["Giraffe.stl"];

We load the appropriate packages
and convert the Graphics3D to an
imsNexus

In[2]:= Needs["Imtek‘DomainElementLibrary‘"];
In[3]:= Needs[

"Imtek‘Interfaces‘TetgenInterface‘"];

We convert the Graphics3D to an
imsNexus

In[4]:= domainSegementNexus =
imsGraphics3DToNexus[g];

The nexus is converted to the mesh gen-
erator tetgen’s input file, exported and
run through tetgen.

In[5]:= meshFile = imsToTetgenInputFile[
domainSegementNexus];

In[6]:= filePath = Export["test.poly",
meshFile,"Table"];

In[7]:= Run["tetgen -pq "<>filePath];

The mesh is loaded back and we query
the number of elements

In[8]:= tetgenMesh = imsReadTetgenOutput[
{"test.1.node","test.1.ele"}];

In[9]:= Length[imsGetElements[tetgenMesh]]
Out[9]= 730937
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To depict the surface mesh we load the
faces file and the coordinates and re-
move unneeded data.

In[10]:= faces = Drop[Cases[Import[
"test.1.face","Table"],
{_Integer,___}],1][[All,{2,3,4}]];

In[11]:= coords = Cases[Import[
"test.1.node","Table"],
{_,_,_,_,_}][[All,{2,3,4}]];

We display the new surface mesh. In[12]:= Show[Graphics3D[Polygon/@
(coords[[#]]&/@faces)]];

Remark: The stl files need to be well-behaved in the sense that no intersecting
polygons are allowed.

Resources:

Implementation DomainElementLibrary.nb\.m

Documentation DomainElementLibraryDocu.nb

7.3.2.3 Circuit element library

In principle the circuit element library behaves in the same manner. The differ-
ence here is the need of circuit elements to carry a value in which, for example,
the resistor carries its resistance. The constructor is then

imsMakeResistance[id_Integer,nodesIds_List,values_,datas___] :=
imsResistance[id,nodesIds,values,datas];

Resources:

Implementation CircuitElementLibrary.nb\.m

Documentation CircuitElementLibraryDocu.nb

7.3.2.4 Creating new element libraries

To extend the libraries the reader must know the following rules.

• Each element needs an identification number and a list of incidents spec-
ifying the identification numbers of the nodes spanning the element.
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• For both id and incidents at least the selectors imsGetIds and imsGet-
IncidentsIds must be defined

• The function imsDrawElements must be defined

Consider the following definition of a new element

MakeMyNewElement[id_,nodes_]:=MyNewElement[id,nodes];
imsGetIds[e_MyNewElement]:=e[[1]];
imsGetIncidentsIds[e_MyNewElement]:=e[[2]];
imsDrawElements[e_MyNewElement,nodes_]:=myDraw[imsGetCoords[nodes]];

The myDraw routine is problem dependent and specifies the way in which the
connection of the coordinates of the element’s nodes are drawn.

Resources:

Examples see Nexus

7.3.3 Nexus

7.3.3.1 The nexus data structure

In essence the nexus is little more than a wrapper.

imsMakeNexus[boundaryNodes_List,interiorNodes_List,elements_List] :=
imsNexus[boundaryNodes,interiorNodes,
Sort[elements,OrderedQ[imsGetIds[{#1,#2}]]&],
Sort[Join[boundaryNodes,interiorNodes],
OrderedQ[imsGetIds[{#1,#2}]]&]];

We see that the nexus contains the boundary and interior nodes, a sorted list of
the elements and a duplicated but sorted list of the joined boundary and interior
nodes.

It is instructive to investigate the internal functioning of the imsDrawElements
procedure

imsNexus/:imsDrawElements[a_imsNexus,ids___] :=
imsDrawElements[#,imsGetNodes[a,imsGetIncidentsIds[#]]]&
/@ imsGetElements[a,ids]

The imsDrawElements procedure is overloaded6 for a nexus expression. By
these means it is further possible to specify a range of element ids of a nexus to
be drawn.
6We speak of overloaded when two procedures are given the same name in order to operate on

different levels of data structures. In this specific case the imsNexus is a higher level data
structure than the elements, since the nexus is made up of elements.

100



7.4 Operators & Matrix Assembly

7.3.3.2 Future extensions

For now the graph representation as presented is limited. Mainly the disability
to contain sub-circuits is a lack of flexibility. Sub-circuits would be of great
attraction for lumped sub-circuits. This could be overcome by implementing
the ability that a nexus may contain a nexus, perhaps recursively.

Resources:

Implementation Graph.nb\.m

Documentation GraphDocu.nb

7.4 Operators & Matrix Assembly

Operators transform graph elements to local element matrices. Each operator,
as a bare minimum, must thus return an element matrix for further processing
in the matrix assembly step. The element matrix is a mere wrapper

imsMakeElementMatrix[values_?MatrixQ,rows_List,columns_List] :=
imsElementMatrix[values,rowPos,columnPos];

For all data of the constructor appropriate selectors exist.

Example: The destination of the local element values {{e11, e12}, {e21, e22}} in the
global matrix A are stored in the rows {2, 3} and columns {3, 4}. This
specifies that in the global matrix A the following entries must be set

A2,3 ← e11, A2,4 ← e12, A3,3 ← e21 and A3,4 ← e22.

The matrix assembly step is more intricate; not because it is theoretically diffi-
cult but because temporal performance is absolutely crucial and a direct, im-
perative implementation is thus not feasible in Mathematica. The following com-
mented code shows the workings of a vectorised matrix assembler.

An empty matrix and two element ma-
trices are created.

In[1]:= matrix = Table[0,{i,3},{j,3}];
In[2]:= elems = {imsMakeElementMatrix[

{{a11,a12},{a21,a22}},{1,2},{1,2}],
imsMakeElementMatrix[

{{b11,b12},{b21,b22}},{3,2},{3,2}]};

We create a helper function that gener-
ates the matrix positions from the rows
and columns the element is supposed
to go to.

In[3]:= convertToInci[
imsElementMatrix[ma_,r_,c_]]:=
Outer[List,r,c];
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The incidents are extracted and flat-
tened to level 2. The ordering is found
and stored. The ordered incidents are
then split.

In[4]:= incidents = Flatten[convertToInci
/@ elems,2];

In[5]:= orderedList = Ordering[incidents]
Out[5]= {1,2,3,4,8,7,6,5}
In[6]:= incidents = Split[

incidents[[orderedList]]]
Out[6]= {{{1,1}},{{1,2}},{{2,1}},{{2,2},

{2,2}},{{2,3}},{{3,2}},{{3,3}}}

The incidents are now split in a manner where duplicate entries are consecutive.

The values are extracted and ordered. In[7]:= vals = Flatten[
imsGetElementMatrixValues
/@ elems][[orderedList]]

Out[7]= {a11,a12,a21,a22,b22,b21,b12,b11}

As a next step we would like to add the values which point to the same entry
in the global matrix. For this we use the fact that the duplicate entries are
consecutive.

Starting from 1 we fold Plus around the
list of length of global index positions.
We generate input for Take and apply
Plus to the taken values.

In[9]:= startPos = FoldList[Plus,1,Length
/@ incidents]

Out[9]= {1,2,3,4,6,7,8,9}
In[10]:= takePos = Drop[Transpose[

{#,RotateLeft[#]-1}&[startPos]],
-1]

Out[10]= {{1,1},{2,2},{3,3},{4,5},{6,6},
{7,7},{8,8}}

In[11]:= addedVals = (Plus @@
Take[vals,#])& /@ takePos

Out[11]= {a11,a12,a21,a22+b22,b21,b12,b11}

The sparse matrix is created and added
to the original matrix

In[12]:= matrix += SparseArray[
incidents[[All,1]]->addedVals,
Dimensions[matrix]]

Resources:

Implementation Assembler.nb\.m

Documentation AssemblerDocu.nb

7.4.1 Numerical integration

Not much needs to be said here: For the triangular based elements the Tables
6.3 and 6.4 are implemented and for the quad based the details given in Chapter
6.3.3 are implemented.

Resources:

Implementation NumericalIntegration.nb\.m

Documentation NumericalIntegrationDocu.nb
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7.4.2 Shape functions

Motivated by the fact that for the numerical integration in the finite element op-
erators the pre-integrated shape functions are used, we present the mechanism,
i.e. the function imsShapeFunctionSymbols to automatically generate the nec-
essary symbols. Via these symbols we can then access, among other things, the
pre-integrated shape function. As an input to imsShapeFunctionSymbols we
give an arbitrary name, the shape function - for example one from Table 6.1,
the integration points and integration weight.

First we load the package and define
a shape function. The shape func-
tion is then used to generate the nec-
essary functions which are attached to
the imsLineLinear1DOF symbol.

In[1]:= Needs["Imtek‘ShapeFunctions‘"];
In[2]:= sf = Function[{r},{(1-r)/2,(1+r)/2}];
In[3]:= imsShapeFunctionSymbols[

imsLineLinear1DOF,sf,
{{1/Sqrt[3]},{-1/Sqrt[3]}},{1,1}];

Now, several symbols have been cre-
ated. imsShapeFunction returns the
defined shape function.

In[4]:= imsShapeFunction[
imsLineLinear1DOF]

Out[4]= Function[{r},{(1-r)/2,(1+r)/2}]

imsShapeFunctionDerivative re-
turns the derivative of the defined
shape function.

In[4]:= imsShapeFunctionDerivative[
imsLineLinear1DOF]

Out[4]= Function[{r},{(-1/2,1/2}]

imsNIntegratedShapeFunction re-
turns the numerical values of the shape
function evaluated at the integration
points.

In[5]:= imsNIntegratedShapeFunction[
imsLineLinear1DOF]

Out[5]= {{0.211325,0.788675},{0.788675,
0.211325}}

Also the functions imsIntegrationWeights and imsIntegratedShapeFunc-
tionDerivative are generated for the element. Each generated function exists
in a symbolic and in a numeric version, made visible through the capital N in
the function name. The automatic differentiation is handled by the following
lines of private7 code.

SetAttributes[sFD,Listable];
sFD[shapeFunction_] :=

Derivative[Sequence@@#][shapeFunction]& /@
Outer[KroneckerDelta,Range[#],Range[#]]&
[Length[shapeFunction[[1]]]];

Here the derivatives are generated symbolically in all directions of space held by
the shape function. Some excerpts of the code of the function imsShapeFunc-
tionSymbols are presented.

7Private means that the function is only defined locally, in the Private‘ context and not exported
to the Global‘ context.
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imsShapeFunctionSymbols[name_Symbol,function_,quadPoints_,quadWeights_] :=
CompoundExpression[imsShapeFunction[name] = function,
...
imsShapeFunctionDerivative[name] = sFD[imsShapeFunction[name]],
...
imsIntegratedShapeFunction[name] = imsShapeFunction[name][Sequence@@#]&
/@ quadPoints,
imsNIntegratedShapeFunction[name] = N[imsIntegratedShapeFunction[name]],
imsIntegratedShapeFunctionDerivative[name] =
Through[imsShapeFunctionDerivative[name][Sequence @@ #]]&
/@ quadPoints,
...
imsIntegrationWeights[name]=quadWeights,
...]

Resources:

Implementation ShapeFunctions.nb\.m

Documentation ShapeFunctionsDocu.nb

7.4.3 Finite element operators

A generic skeleton for a finite element operator is presented next. First the
coordinates and the markers are extracted from the nodes and the element, re-
spectively. Next the head of the element is read. The element names are chosen
to be the shape function names. This is the means by which the shape function
steps into the operator. Thereafter, we extract the values as well as the row
and column incidents of this local element. Now we look up the above defined
pre-integrated shape functions and their derivatives which are attached to the
above generated symbols. The integration weights are also loaded. Since the
shape functions are defined in local coordinates we do a coordinate transfor-
mation. To this end we compute the Jacobians via Equation 6.16 and find the
determinants and the inverses. The operator’s input function needs to be inte-
grated. This is done by applying the operator’s input function to the mapping
created with the dot product of the integrated shape function and the coordi-
nates. We also note that here the marker is handed over to the input function,
for the user to specify input functions dependent on the mapped coordinates
and/or the marker of an element.

imsFEMxyOperator[{inESM_,inERHS_},elem_,elementNodes_,coefficient_] :=
Block[{....},

(* element data *)
coords = imsGetCoords[elementNodes];
marker = imsGetMarkers[elem];
sfElement = Head[elem];
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(* retrieve element parts *)
outESMvalues = imsGetElementMatrixValues[inESM];
rows = imsGetElementMatrixRows[inESM];
cols = imsGetElementMatrixColumns[inESM];

(* shape functions *)
sf = imsIntegratedShapeFunction[sfElement];
sfrsderiv = imsIntegratedShapeFunctionDerivative[sfElement];
integrationWeight = imsIntegrationWeights[sfElement];

(* mapping *)
jacobians = Transpose[(#.coords)]&/@sfrsderiv;
jDets = Det[#]&/@jacobians;
jInverses = Inverse[#]&/@jacobians;

(* function integration *)
coefficientVals = (coefficient @@ Flatten[{marker,#}])& /@ (sf.coords);

(* integration *)
....

Return[{imsMakeElementMatrix[outESMvalues,rows,cols],inERHS}];];

The actual integration is presented in the following sections. What remains
is the output of the newly computed local element matrix. For the stiffness,
damping, and mass matrices the outESMvalues are used. For a load element
matrix, or rather vector, the outERHvalues are used8.

Remark: In the course of this work a finite element operator returns either a
local element matrix for the global stiffness, damping or mass matrix or
a contribution to the load vector. The respective other returned value is
empty. If we wish, in contrast to this work, to deal with non-linearities
on an element level we may do so. In such a case both the local element
matrix and load contribution may be different from zero. It is thus possible
to alter the linearisation process and yet not leave the presented operator
framework.

Now we proceed with a close look at the specific implementations for the differ-
ent operators.

7.4.3.1 Diffusion

The integration for the diffusion operators is given by

8The reason why the two input element matrices are called inESM and inERHS is historical. If you
write a differential equation in a more traditional manner such as ∂u

∂t
+ (∇σ)T · ∇u = f then

you have the load vector f on the right-hand side. Thus the name E(lement) R(ight) H(and) side,
where the other acronym stands for E(lement) S(tiffness) M(atrix).
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(* integration *)
Do[ (* deriv of sf *)
sfxyderiv = Transpose[jInverses[[step]]].sfrsderiv[[step]];
weight = integrationWeight[[step]]*jDets[[step]];
outESMvalues += Transpose[sfxyderiv].coefficientVals[[step]].sfxyderiv*weight;,
{step,Length[integrationWeight]}];

7.4.3.2 Convection

The integration for the convection operators is given by

(* integration *)
Do[(* deriv of sf *)
sfxyderiv = Transpose[ jInverses[[ step ]] ]. sfrsderiv[[ step ]];
weight = integrationWeight[[ step ]] * jDets[[ step ]];
outESMvalues += Transpose[{sf[[step]]}] .
(coefficientVals[[step]] . sfxyderiv) * weight;,
{step,Length[integrationWeight]};];

7.4.3.3 Reaction & Transient

The integration for both transient and the reaction operators is given by

(* integration *)
outESMvalues += Plus @@ (coefficientVals *
(Dot[Transpose[{#}],{#}]& /@ sf) * integrationWeight * jDets);

7.4.3.4 Load

The integration for the load operators is given by

(* integration *)
outERHSvalues += Plus @@ (coefficientVals*sf*integrationWeight*jDets);
Return[{inESM,imsMakeElementMatrix[outERHSvalues,rows,{1}]}];

7.4.4 Lumped operators & creation of lumped systems

In the case of lumped elements only one operator is really necessary. The opera-
tor will be overloaded for each lumped element. In essence the lumped elements
store the stamps presented in Chapter 6.1. For lumped systems the implemen-
tational complexity lies not so much in the operators as it does in the creation
of the system; quite in contrast to the partial differential equation operators. As
an example, the implementation for a resistor is shown.
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imsLumpedOperator[r_imsResistance] :=
imsMakeElementMatrix[1/imsGetValues[r]*{{1,-1},{-1,1}},
imsGetIncidentsIds[r],imsGetIncidentsIds[r]];

The following code segments show most parts of the lumped system creation.
First we filter the options to see what kind of analysis is required and what the
frequency symbol for the harmonic analysis is. It is important to distinguish be-
tween the different analysis methods since this is the mechanism which creates
systems suitable for different kinds of analyses. For brevity’s sake the variable
definitions have been deleted.

imsMakeLumpedSystem[nexus_imsNexus,opts___] :=
Module[{...},
(* options definitions *)
{analysisMethod,harmonicSymbol} = {imsAnalysisMethod,imsHarmonicSymbol}
/. Flatten[{opts}] /. Options[imsMakeLumpedSystem];

If[harmonicSymbol === Automatic,
fVariable = I * Global‘\[Omega],
fVariable = harmonicSymbol];

From the length of the nodes we get the degrees of freedom and thus the initial
size of the system matrices. We select from the nexus those elements which are
designated for the damping matrix and assemble them into the global damping
matrix. Even for a stationary analysis we start from the damping matrix; the
matrix will then later be copied into the appropriate place.

(* element extraction *)
nexusLength = Length[imsGetNodes[nexus]];
nexusElements = imsGetElements[nexus];

(* damping matrix - resistances *)
dampingMatrix = Table[0,{nexusLength},{nexusLength}];
elemsDamping = imsLumpedOperator[Select[nexusElements,imsLumpedDampingQ]];
imsAssemble[elemsDamping,dampingMatrix];

In the next step we select the load elements, assemble them and enlarge the
system of equations if there are voltage sources. Also the load is adjusted to the
voltage value.

(* load vector - current sources *)
load = Table[0,{nexusLength},{1}];
elemsLoad = imsLumpedOperator[Select[nexusElements,imsLumpedLoadQ]];
imsAssemble[elemsLoad,load];
loadFlatten = Flatten[load];

(* voltage sources *)
imsLagrangeMultipliers[{dampingMatrix,loadFlatten},

{imsGetIncidentsIds[#]},{imsGetValues[#]},{1,-1}]& /@
Select[nexusElements,imsLumpedPotentialQ];
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Next we select the voltage controlled voltage sources. If there are any present
the system is first enlarged and then the appropriate values are built into the
matrices. This procedure is applied in a similar manner to the current con-
trolled current source and the current controlled voltage source.

(* voltage controlled voltage source *)
elemsVCVS = Select[nexusElements,imsLumpedVCVSQ];
If[Length[elemsVCVS] > 0,

imsLagrangeMultipliers[{dampingMatrix,loadFlatten},
{imsGetIncidentsIds[#]},{0},{0,0,0,0} ];

lengthDamping = Length[dampingMatrix];
dampingMatrix[[lengthDamping,imsGetIncidentsIds[#][[1]]]] =

-imsGetValues[#];
dampingMatrix[[lengthDamping,imsGetIncidentsIds[#][[2]]]] =

imsGetValues[#];
dampingMatrix[[lengthDamping,imsGetIncidentsIds[#][[3]]]] = 1;
dampingMatrix[[lengthDamping,imsGetIncidentsIds[#][[4]]]] = -1;
dampingMatrix[[imsGetIncidentsIds[#][[3]],lengthDamping]] = 1;
dampingMatrix[[imsGetIncidentsIds[#][[4]],lengthDamping]] = -1;,
Null ] &/@ elemsVCVS;

(* current controlled current source *)
...
(* current controlled voltage source *)
...

Wires enlarge the system and, again, this is done via the Lagrangian multipliers.

(* wires *)
imsLagrangeMultipliers[{dampingMatrix,loadFlatten},

{imsGetIncidentsIds[#]},{0},{{1,-1}}]& /@
Select[nexusElements,imsLumpedConnectorQ];

If the analysis method is stationary the stiffness elements of the lumped circuit
are added by enlarging the system further. This is due to the fact that in a
stationary analysis inductances are replaced by wires; setting the inductance to
0 is not an option since 1/L would result in a division by zero.

(* lumped matrix elements short circuited for stationary solution *)
If[analysisMethod === "imsStationary",

imsLagrangeMultipliers[{dampingMatrix,loadFlatten},
{#},{0},{{1,-1}}]& /@ Partition[Flatten[imsGetIncidentsIds[
Select[nexusElements,imsLumpedStiffnessQ]]],2];,

Null;];

Now that all “enlarging” elements have been built into the system of equations,
we can insert ground as a Dirichlet boundary condition9. We now know the final
size of the system of equations.
9The method in which the Dirichlet boundary condition is inserted is not complete. If a Dirichlet

condition is to be inserted then actually row and column i of the mass and damping matrix need
to be set to 0, which is neglected in the current code fragment.
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(* ground *)
imsDirichlet[{dampingMatrix,loadFlatten},

imsGetIncidentsIds[#],{imsGetValues[#]},1]& /@
Select[nexusElements,imsLumpedGroundQ];

lengthDamping = Length[dampingMatrix];
load = Partition[loadFlatten,1];

If the analysis method is either transient or harmonic we need to assemble
the inertia/mass matrix and the stiffness matrix and assemble them into their
respective global matrices. This can only be done now, since it is only after
including all the “enlarging” elements that we know the final size of the system.

(* create inertia and stiffness matrix *)
Which[analysisMethod === "imsTransient" ||

analysisMethod === "imsHarmonic",

(* inertia matrix - capacitances *)
inertiaMatrix = Table[0,{lengthDamping},{lengthDamping}];
elemsInertia = imsLumpedOperator[Select[nexusElements,

imsLumpedInertiaQ]];
imsAssemble[elemsInertia,inertiaMatrix];

(* stiffness matrix - inductances *)
stiffnessMatrix = Table[0,{lengthDamping},{lengthDamping}];
elemsStiffness = imsLumpedOperator[Select[nexusElements,

imsLumpedStiffnessQ]];
imsAssemble[elemsStiffness,stiffnessMatrix];];

In the last step we create the system according to the analysis method. It is
noteworthy that for the stationary analysis we insert the damping matrix into
the place of the stiffness matrix and thus solve directly for e and not λ.

(* return condition *)
Which[analysisMethod === "imsTransient",

Return[imsMakeSystem[load,
stiffnessMatrix,dampingMatrix,inertiaMatrix]];,

analysisMethod === "imsHarmonic",
Return[imsMakeSystem[load,
1/(fVariable) * stiffnessMatrix + dampingMatrix + (fVariable) *
inertiaMatrix]];,

analysisMethod === "imsStationary",
Return[imsMakeSystem[load,dampingMatrix]];,
True,
Message[imsMakeLumpedSystem::"analysisMethod",analysisMethod];];];

7.5 Boundary Conditions

We consider two kinds of boundary conditions.
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7.5.1 Dirichlet

To implement Dirichlet boundary conditions three possibilities exist of which
two have been implemented. The first method is called the engineers method
[8]. In practise this is nowadays seldom used and thus not further discussed.

The second method is to rearrange the equations. This method will always
enforce the exact Dirichlet boundary conditions prescribed - even if they are
unphysical10. The third method, the Lagrangian multiplier method, will allow
for softer Dirichlet boundary conditions in the sense that unphysical settings
will be smoothed out.

7.5.1.1 Equation rearrangement

The function imsDirichlet implements equation rearrangement. Assume we
have a system of equations

A · u = f =
(
a11 a12

a21 a22

)
·
(
u1

u2

)
=
(
f1
f2

)
.

Now, we would like the Dirichlet boundary condition u2 = 3. We thus proceed in
the following manner(

a11 0
a21 0

)
·
(
u1

u2

)
=
(
f1 − a12u2

f2 − a22u2

)
.

Since u2 is specified we have two possibilities. We could now delete row and
column 2 of matrix A and row 2 of load vector f and then solve for the remaining
unknowns, in this case u1. The advantage is that the system of equations is
smaller. In contrast this would leave us with reinserting the known Dirichlet
value u2 into the solution. If one wants to avoid the reinsertion it it possible to
proceed as follows (

a11 0
0 1

)
·
(
u1

u2

)
=
(
f1 − a12u2

3

)
,

which leaves the order of the solution vector unaffected. The core of the vec-
torised implementation looks as follows

matrix[[All,pos]] = 0;
matrix[[pos,All]] = 0;
matrix += SparseArray[Transpose[{pos,pos}]->
Table[diagVal,{Length[pos]}],Dimensions[matrix],0];

10Unphysical means that between two Dirichlet specified nodes the values must be sufficiently
smooth.
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The fact that we use a SparseArray to construct the diagonal values is purely
for performance reasons. The variable diagVal has a default value of numeric
1. The default numeric 1 was chosen for performance reasons. If the user needs
purely symbolic computations a value of integer 1 can be seamlessly given.

7.5.1.2 Lagrangian multipliers

Another option is to introduce additional degrees of freedom. If we take the
above example (

a11 a12

a21 a22

)
·
(
u1

u2

)
=
(
f1
f2

)
where u2 is subject to the constraint u2 = 3. This can be written in the form

B · x = h

where B is the boundary condition matrix. The expanded form is

(
0 1

)
·
(
u1

u2

)
= (3) .

We introduce a set of quantities λi, called Lagrangian multipliers, by

λT (Bx− h) = 0.

This can be considered as the energy required to maintain the boundary condi-
tions. We now assume we have

I = xTAx− xT f ,

adding both
J = xTAx− xT f + λT (Bx− h)

leads to an expression in which the total energy in the system is modified by
the boundary conditions. The minimum of the expression with respect to xi

and λi represents the best possible solution subject to the imposed boundary
conditions. Therefore,

δJ =
∂J

∂xi
δxi +

∂J

∂λi
δλi = 0.

Now, δλi and δxi are arbitrary which implies that ∂J
∂xi

= ∂J
∂λi

= 0 since only then
arbitrary values can be fulfilled. So(

A BT

B 0

)
·
(

x
λ

)
=
(

f
h

)
.
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This leads to the enlarged system of equations a11 a12 0
a21 a22 1
0 1 0

 ·
 u1

u2

λ1

 =

 f1
f2
3



7.5.2 Neumann

Neumann boundary operators are currently not generally implemented. This
implies that only a Neumann 0 boundary condition can be realised. For other
Neumann boundary conditions linear triangle elements have to be employed for
which non zero Neumann boundary conditions are implemented. To generally
implement Neumann boundary conditions the Neumann part in the partial dif-
ferential equations operators such as in Equation 6.7 have to be implemented.

7.6 Systems

The imsSystem data structure implements an interface for Equation 2.1. The
implementation, however, for imsSystem is special. In principle, the implemen-
tation needed for imsSystem is again little more than a constructor and selector.
The fact that behind the scenes imsSystem is a very complex implementation is
to be found in the reason that it is able to provide parametric and polynomial
systems, which are useful for (non-linear) model order reduction. This, how-
ever, is not scope of this presented work and the interested reader may consult
other sources [9, 12].

The point is that for the presented work a simple constructor and selector is
sufficient. As a matter of fact the first implementation of imsSystem was just
that and has been subsequently changed - without the user being aware of it -
to a polynomial representation.

A sample session for a system of equations is given below:

We load the package and create dummy
matrices.

In[1]:= Needs["Imtek‘System’"];
In[2]:= f = Table[{1},{3}];
In[3]:= s = d = m = Table[{1},{3},{3}];

We create a system and a formatted out-
put is returned.

In[4]:= imsMakeSystem[f,s,d,m]
Out[4]= imsSystem[3,{1,1,1,1}]

The returned formatted output displays information about the contents of the
system. This system has 3 degrees of freedom and has 1 load vector, 1 stiffness,
1 damping and 1 mass matrix11.

11The fact that the system can carry more than one of the matrices is irrelevant for this work.
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Resources:

Implementation System.nb\.m

Documentation SystemDocu.nb

7.7 System Analysis

The ultimate goal for engineers is design. In order to make a good design the
ability to reflect and analyse is essential. In this work we focus on how the
different analysis methods interact with the imsSystem data structure.

7.7.1 Stationary

The stationary solution of a system of equations is the solution at t = ∞ when
the system has - if it can - reached a stable state. A stationary solution is found
by

u = S−1f

which implies the use of a LinearSolve. The function imsStationarySolve is
a wrapper for LinearSolve.

7.7.2 Non-linear

A non-linear analysis can also be performed by imsTimeIntegrateNonlinear
or imsStationarySolve, which are also discussed in [9].

The main non-linear solver for this work, however, is a damped affine invariant
newton solver due to [4]. Valuable details for implementation can be found in
[13, 6]. Since the implementation does not wary to much from its original we do
not present any details. The function is called imsNonLinearSolve.

Resources:

Implementation NonlinearSolve.nb\.m

Documentation NonlinearSolveDocu.nb

7.7.3 Transient

imsTimeIntegrate does the transient, id est time dependent analysis of a sys-
tem of equations and is discussed in [9]. imsTimeIntegrate is employed for
advecting the implicit function. For the time integration of the Navier-Stokes
equation we use a backward differentiation formula (BDF). We use a constant
step size algorithm. Since the Navier-Stokes equation and the level-set equa-
tion are of first order we consider a first order time integration algorithm. The
backward differentiation formulae have the property of integrating differential
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algebraic equations (DAEs) and stiff equations and is thus very well suited for
our purpose [5, 2, 15, 16, 7]. We start with a first order system of equations in
the spirit of 2.1

L = Su+Du̇ (7.1)

or
L− Su = f(t, u) = Du̇.

The equation is rewritten

u̇ = D−1 (L− Su) = φ(t, u).

To derive the backward differentiation formulae we first interpolate u and then
find the derivative of the interpolation. Assume that in Equation 7.1 we have
solutions at times un−k+1, . . . , un. In order to derive a formula for un+1 we set
up an interpolation polynomial q(t) which interpolates the values {(ti, ui)|i =
n−k+1, . . . , n+1}. The polynomial is expressed in terms of backward differences

q(t) = q(tn + sh) =
k∑

j=0

(−1)j

(
−s+ 1
j

)
∇jun+1.

The backward differences are recursively defined as

∇0fn = fn, ∇j+1fn = ∇jfn −∇jfn−1 .

We are interested in the solution of

q̇(tn+1) = φ(tn+1, un+1).

Now we can rewrite

dq(t)
dt

=
dq(t)
ds

ds

dt
⇔ dt

ds

dq(t)
dt

=
dq(t)
ds

.

With dt/ds = h and keeping in mind that the differentiation is performed at s = 1
we have

h
dq(t)
dt

= hφ(tn+1, un+1) =
dq(t)
ds

=
d

ds

k∑
j=0

(−1)j

(
−s+ 1
j

)
∇jun+1

∣∣∣∣∣∣
s=1

.

This results in
k∑

j=1

1
j
∇jun+1 =

k∑
j=1

αjun−k+1+j = hφn+1. (7.2)
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The coefficients αj and the order k then are

k = 1 : −1un + 1un+1 = hφn+1

k = 2 : 1
2un−1 − 2un + 3

2un+1 = hφn+1

k = 3 : − 1
3un−2 + 3

2un−1 − 3un+ 11
6 un+1

= hφn+1

k = 4 : 1
4un−3 − 4

3un−2 + 3un−1 − 4un + 25
12un+1 = hφn+1

k = 5 : − 1
5un−4 + 5

4un−3 − 10
3 un−2 + 5un−1 − 5un + 137

60 un+1 = hφn+1.

Two steps remain. First, we must account for the damping matrix D and sec-
ondly, rewrite Equation 7.2 such that it is suitable for the non-linear solver. In
each step we pre-evaluate

tail =
1
αk

k−1∑
j=1

αjun−k+1+j

and set up the residual function

g(un+1) := D(tn+1, un+1) · (un+1 + tail)− h

αk
f(tn+1, un+1)

and the Jacobian

m(un+1) := D(tn+1, un+1)−
h

αk
J(tn+1, un+1).

The implementation of the algorithm is thus given as:

imsBDFStep[f_,jacobian_,mass_,oldVals_,currentTime_,dt_,coeffs_,opts___?OptionQ ]
:= Module[{bk = 1/coeffs[[-1]],g,m,tail},
tail = (Plus @@ Times[Most[coeffs],oldVals])/coeffs[[-1]];
g[un_List] := mass[currentTime+dt,un].(un+tail)-dt*bk*f[currentTime+dt,un];
m[un_List] := mass[currentTime+dt,un]-dt*bk*jacobian[currentTime+dt,un];
imsNonlinearSolve[m,g,oldVals[[-1]],opts] ]

With a few more lines of code we can implement the solver which continuously
applies the imsBDFStep.

imsBDFSolve[f_,j_,m_,oldVals_,{tStart_,tEnd_,dt_},coeffs_,opts___?OptionQ ] :=
Block[{thisVals = RotateRight[oldVals]},
{Partition[Join[#,{tEnd}],1],
ToPackedArray[FoldList[
imsBDFStep[f,j,m,thisVals=Rest[Join[thisVals,{#1}]];
thisVals,#2,dt,coeffs,opts]&,Last[oldVals],#]]}&[Range[tStart,tEnd-dt,dt]]]
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7.7.4 Harmonic

In harmonic analysis the representation of functions as superposition of basic
waves - harmonics - is studied. After a harmonic analysis we can draw con-
clusions about the filter characteristics of the system. The system may expose
low-pass, high-pass, or band-pass characteristics.

The function imsHarmonicSolve does a harmonic analysis for the Laplace12

transformed of a system. For first order systems this solves in effect

s = (ı ωD + S)−1
f.

For second order systems

s =
(
−ω2M + i ωD + S

)−1
f

is solved. As input the user must specify the frequencies g of interest which are
then transformed via

ω = 2πg.

7.7.5 Eigenwert

For the Eigenwert computation we use the Mathematica internal function Eigen-
system.

Resources:

Implementation SystemAnalysis.nb\.m

TimeIntegrate.nb\.m

Documentation SystemAnalysisDocu.nb

TimeIntegrateDocu.nb
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In mathematics you don’t understand things.
You just get used to them.

(von Neumann)

8.1 Verification of the Code 120
8.2 Test Cases 122
8.3 The Ink-Jet Model 135
8.4 Final Remarks 138

POSSIBLE scientific and engineering duties that can be solved with IMS are
numerous; and it is clear that not all can be presented here. We restricted our-
selves to show the results concerning the free surface flow. First, however, some
measurement and convergence analysis techniques are introduced. These tech-
niques are then, in a second step, applied to free surface flow with increasing
complexity. We start with a pure advection of a circular bubble. Next we ex-
amine the behaviour of bubbles in different flow regimes. In the last section we
show the simulation of an ink-jet print head, taking into account the ejection,
flight and impact on a target of the liquid droplet.
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8.1 Verification of the Code

8.1.1 How to measure...

In this section we verify the program code. It is necessary to describe the math-
ematical tools employed and to define the anticipated results. Unfortunately,
very few analytical results are available for free surface flow. To remedy this
short coming we compare to analytical test problems where possible and rely
on numerical measurements of other colleagues where no analytical results are
available.

8.1.1.1 Errors, precision & accuracy

If we have an exact solution denoted by ue we measure two kinds of errors. First
the absolute error: ea = ue − u where u is the approximate solution. Secondly,
we have the relative error: er = (ue−u)/ue. The relative error can be represented
as a percentage by multiplying the relative error by 100. Also, if an approximate
value has a relative error of about 10−p, then its decimal representation has
about p correct significant digits (significant digits are the leading nonzero digits
and all following digits). The relative error thus refers to the accuracy of the
number. The precision of a number refers to the amount of digits necessary to
express a number [6].

8.1.1.2 Convergence rate

An iterative method is said to converge with rate r if

lim
k→∞

‖ek+1‖
‖ek‖r

= C

for some finite constant C > 0. Here ek denotes the error at iteration k [6].

8.1.1.3 Norms

For measurements we use the p-norm or variants of it. The p-norm is defined
as

||u||p =

(
M∑
i=1

|ui|p
)1/p

.

8.1.2 ...and what to expect

120



8.1 Verification of the Code

8.1.2.1 Spacial integration

For spacial integration we use finite elements. As a rule of thumb it holds that
finite element shape functions of order q have an order of accuracy of q + 1.

Example: We use second order elements for velocity and first order elements for
pressure. The accuracy for the velocity behaves proportional to hq+1. If
we half the mesh size h in each space direction ( ≈ four times the number
of elements in 2-dimensions) we expect (h/2)

2+1

= 1/8h3. The accuracy
should thus be 8 times better. For the linear pressure elements we expect
an improvement of (h/2)

1+1

= 1/4h2, which corresponds to a 4 times better
accuracy.

8.1.2.2 Non-linear iteration

For the rate of convergence for Newton’s method it holds that [10]:

||uk+1 − ue||∞ ≤ C||uk − ue||2∞ , with ||u0 − ue||∞ ≤ ε.

C is a constant. The quadratic convergence only holds if the initial guess u0 to
the exact solution ue is in the convergence region ε. In other words: the number
of correct digits is roughly doubled at each iteration of Newton’s method [6]. For
mesh based non-linear iterations it is useful to use the root mean square (RMS)
norm [9]

‖·‖rms =
1
N

(
N∑
u2

i

)1/2

.

8.1.2.3 Time integration

Once the spacial discretisation is done a backward differentiation formulae
(BDF) solver is appointed for integrating the resultant ordinary differential equa-
tion. In the case of the Navier-Stokes equation we deal with a system of differ-
ential algebraic equations (DAE). Good references on the topic of BDF and DAE
are given by Gear and others [4, 1, 15, 5].

The order of accuracy of a BDF of order q is proportional to 4tq. Half the time
step size (4t)/2 thus leads to ((4t)/2)q improvement in the accuracy of the
result.

Example: We use a second order BDF. Thus q = 2. If follows that ((4t)/2)2 =
1/4 (4t)2. The accuracy should improve by a factor of 4 if the time step size
is halved.
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8.2 Test Cases

The free surface algorithm presented allows for setting the frequency at which
the implicit function φ is re-initialised (see 6.3.6.2 on page 83). For better com-
parability we have chosen to do full re-initialisation after each time step for all
presented test cases. Also the correction of the implicit function is done after
each time step. The most delicate issue is the good choice of the interface width
hw introduced on page 84. It takes a lot of experience and patience to find
suitable initial setting. As a starting point an interface thickness of about 3.5
elements to each side of the interface is chosen.

8.2.1 Advecting a cylindrical bubble in a tube

In the first test case we investigate the pure advection of a cylindrical bubble [8].
The purpose of this test case is to establish whether a one-directional coupling
from the Navier-Stokes solver to the level-set works on a very simple level. The
surface tension is neglected and thus the position of the interface does not
influence the fluid flow. In other words, the fluid flow is decoupled from the
position of the interface. Since there is no interaction from the free surface term
to the fluid we have a quasi analytical solution. Furthermore, the parameters
of the fluids are chosen to be not very demanding on the Navier-Stokes solver.
The solver will thus find the correct flow field quickly and with high precision
and it is not an issue from which hassle in respect to the level-set method is to
be expected. In this case the flow field is 1 m/s and pointing upward. It is this
flow flied that is plugged into the level-set method to advect the circular bubble.
This setup provides an analytical solution: after 1 s the bubble is advected 1 m
and no change to the bubble’s form can occur.

The settings for the test problem are summarised as follows:

ρ1 = ρ2 = 1 kg/m3, µ1 = µ2 = 1Pa s, σ = 0 N/m, g = 0 m/s2.

The dynamic viscosity µ and density ρ are set to 1. The surface tension σ is set
to 0 and thus the interface width hw needs not to be set. Gravity g is neglected
and set to 0. The spacial domain is Ω ∈ [0, 2]× [0, 4]. On the vertical walls we have
a slip boundary condition. On the bottom we have an inflow boundary condition
with u = 0 m/s and v = 1 m/s. At the top the pressure boundary condition p is set
to 0. A simulation is performed from time t0 = 0 s until te = 2 s in a step size of
4t = 0.25 s. The bubble radius is set to R = 1/2 meters and its centre’s initial
location is at (1, 1). Figure 8.1 shows the circular bubble at different time steps.
In this case the bubble is advected 2 meters, which is exactly the behaviour that
was expected. Also the bubble’s shape is conserved.
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(a) t = 0 (b) t = 1 (c) t = 2

Figure 8.1: To test the interaction between the Navier-Stokes solver and the level-
set method on a fundamental level a circular bubble is placed into an upward flow
field. The geometry and the physical data are selected in such a manner that the
resulting flow field is u = (0, 1) m/s upwards. Since the buoyancy force is neglected
the flow field is decoupled from the position of the bubble. The figures show from
left to right the bubble at time steps t = 0, 1, 2 s. The form of the bubble remains
unchanged. The grid lines are for measurement purposes only. The actual compu-
tation hast been done with 1024 triangular elements.

8.2.2 Static bubble - Testing surface tension

With the following experiment we will investigate the working of the surface
tension term. For this we set up a circular static bubble in equilibrium. The
bubble is situated in a liquid. This experiment is based on the Laplace-Young
law which relates a pressure difference of two static fluids to the surface tension
and the radius of the bubble. The pressure outside of the bubble pout, that is the
pressure in the liquid, is assumed constant, as is the radius R of the bubble.
For a given value of the surface tension σ we examine the pressure pin inside
the bubble. The experiment is repeated on different meshes and with different
interface thicknesses hw. The velocity field u of the fluids is zero every where.
This test was considered by Lafauriel [7] and later by Smolianski [13]. The
analytical solution is summarised as:

u = 0

p =

{
pin = pout + σ

R if x2 + y2 ≤ R2

pout else
.

The simulation domain is Ω ∈ [0, 1]2. The radius of the bubble is set to R =
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1/4 meters and its centre is set to (1/2, 1/2). At this point the pressure p5 is
measured. The outside pressure pout is specified somewhere on a point of the
domain border. The physical parameters of the experiment are set up as follows:

ρ1 = ρ2 = 1 kg/m3, µ1 = µ2 = 1Pa s, σ = 1 N/m, g = 0 m/s2.

The dynamic viscosity µ and density ρ are set to 1. The surface tension σ is
set to 1. Gravity g is neglected and set to 0. On the boundary (∂Ω) we set no
slip conditions for the velocity components (i.e. u = 0 m/s) and one pressure point
(∂∂Ω1) is set. (i.e. pout = 0). The pressure inside the bubble can then be expected
to be pin = 0 + 1/1/4 = 4Pa. The computations are performed until te = 5 s in
steps of 4t = 0.05 s. The resultant pressure on different meshes is depicted in
Figure 8.2.
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(a) 512 elements and
hw = 0.11
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(b) 2048 elements and
hw = 0.11/2

0
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(c) 8192 elements and
hw = 0.11/4

Figure 8.2: To test the surface tension a bubble is placed into a liquid. The Laplace-
Young law relates a pressure difference of two static fluids to the surface tension σ
and the radius R of the bubble. pin = pout + σ/R. Here, the outside pressure pout

is set to zero. The surface tension σ is set to one and the radius is set to 1/4
meters. The figures show the pressure pin inside the static bubble for three different
interface width hw and three different mesh sizes.

We conduct the same experiment with three different meshes. In order to es-
timate the convergence we use 512, 2048 and 8196 elements. This increases the
number of elements by a factor of 4 - which corresponds to a factor of 2 in each
space direction. At the same time we decrease the interface width hw by a fac-
tor of 2 starting from hw = 0.11. In the experiment based on the fine grid we
do an additional fourth experiment where the interface thickness is not further
divided and set to hw = 0.11/2. To asses the free surface algorithm’s computa-
tional complexity we first measure the error of the velocity part of the solution

1If ∂Ω indicates the boundary of a domain, then ∂∂Ω indicates a part of the boundary. In two
dimensions the boundary ∂Ω is a line and ∂∂Ω indicates a point on that line.
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vector in an averaged norm. The velocity norm used is

‖·‖1 =
1
N

N∑
i=1

|ui| .

Also of interest are the absolute and relative error of the pressure. Last, we
also give the pressure p5 measured at the centre point (0.5, 0.5) of the simulation
domain. The discussed results are summarised in Table 8.1.

Table 8.1: The table presents the order of accuracy measurements for the static
bubble experiment. The accuracy depends on the number of elements and the
interface thickness hw. First the error in the velocity is listed. Then the absolute
and relative errors of the pressure, based on the maximum pressure value found in
the simulation domain. In the last column we list pressure p5 at the point (0.5, 0.5).

h2 hw ||u− ue||1 |pin − pout − σ
R |

|pin−pout− σ
R |

σ
R

× 100% p5

1/512 0.11 0.00030945 0.18 4.5 4.13116
1/2048 0.11/2 0.0000895176 0.11 2.75 4.02749
1/8192 0.11/2 0.0000225063 0.045 1.125 4.0256
1/8192 0.11/4 0.0000336096 0.098 2.45 4.00652

First we consider the scenario where the sequence of the interface thickness is
set to hw = 0.11, 0.11/2 and 0.11/2. For the velocity we find that order q in the
discrete L1 (“average”) norm is

q =

√
0.00030945

0.0000895176
= 1.86

q =

√
0.0000895176
0.0000225063

= 1.99.

We find that despite the pressure discontinuity the pressure norm exhibits
about first order convergence. This test shows that the surface tension is mod-
elled satisfactorily. At the interface in Figure 8.2 we see overshoots and under-
shoots which mainly contribute to the absolute and relative pressure measured.

If we consider the sequence in which the interface thickness is set to hw = 0.11,
0.11/2 and 0.11/4 we note that the pressure value p5 on the plateau is decaying
well. This, however comes at the cost of a diminished order of convergence for
the velocity and absolute pressure. We conclude that the interface thickness
can not be diminished indefinitely without affecting velocity and pressure. The
author is not aware of any rational to estimate the best interface thickness for
a given problem. It is noteworthy that the maximum and minimum pressure
which are a measure for the overshoot do decrease for the first set of the inter-
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face width.

The algorithm presented is, however, not as proficient as the results by Smolian-
ski [13]. This, however, is due to the fact that we take a holistic approach in the
sense that no special treatment such as subdivision of the elements containing
the free surface is needed. From this perspective our code is more general but
at a performance cost.

The experiment’s resultant velocity field should be zero everywhere. The mea-
sured off zero velocity are called spurious currents and are observed close to the
free surface interface as shown in Figure 8.3. The amplitude of the spurious
currents is proportional to σ/µ [13]. Currently at least two causes are identified
to account for the formation of spurious currents [14]: The smoothing of the
discontinuity (the surface tension) can be detrimental. The mass in a cell is
accelerated by the body force. In the transition region the body force and the
mass do not vary at the same rate. While the mass approaches a small value
at the interface the body force my still be relatively large. A second course for
spurious currents can be seen in the numerical imbalance between the surface
tension force and the associated pressure gradient.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 8.3: To treat the discontinuity between to fluids the interface region is
smoothed over. The smoothing of the discontinuity results in spurious currents
which can be seen at the interface in a static bubble simulation. The mesh con-
sisted of 2048 elements.

8.2.3 Rising bubble in tube - Buoyancy

In this experiment the free surface algorithm is employed to reproduce bubble
behaviour as it is observed by laboratory experiments. The behaviour of the
bubble is modified through the physical parameters of the fluids such as the
viscosity, density and the surface tension. Since we have examined the surface
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tension in a previous experiment, we now examine the code’s capability to han-
dle different density and viscosity values. To that end we examine the rising
of bubbles. The physical properties of the liquids and bubbles are adjusted in
such a manner that different physiological behaviours of the bubble motion can
be observed. In Figure 8.4 (reproduced with kind permission of Prof. Clift [2])
different Reynolds2 numbers and Eötvös3 numbers are depicted on the axes.
Depending on the constellation the rising bubble is more or less ellipsoidal or
skirted. Three tests have been conducted and the expected bubble behaviour
could be reproduced. An additional forth experiment was carried out which
shows good agreement with the results from another group [8].

Figure 8.4: To the left: Experimental data displaying different regimes of bubble
and droplet shapes plotted against Reynolds and Eötvös numbers. (The figure was
reproduced with kind permission of Prof. Clift [2]). To the right: The same figure
again, this time indicating four numerical experiments (Exp 1 to 4) conducted. We
found that the expected bubble shapes, depicted at the intersection of the horizontal
and vertical lines, attributed to the different Reynolds and Eötvös number could be
reproduced.

In the conducted experiments we set

ρ1 = 1000 kg/m3, ρ2 = 1 kg/m3

µ1 = 10−3 Pa s, µ2 = 10−5 Pa s

g = 9.8 m/s2.

2The Reynolds number is a dimensionless ratio of the inertial forces to the viscous forces in the
fluid. The ratio is given as Re = ρUL/µ. Here ρ is the fluid’s density in kg/m3 and µ is the fluid’s
dynamic viscosity in Pa s. U is a typical velocity ms and L is a typical length in m.

3The Eötvös number is a dimensionless ratio of body forces to surface tension. The ratio is given as
Eo = 4ρgL2/σ. Here 4ρ is the fluids’ density difference in kg/m3. g is the gravitational acceleration
in m/s2. L is a typical length in m and σ is the surface tension in N/m.
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Via the Reynolds number - which is given - we compute the typical length L and
set the initial radius r of the cylindrical bubble to it. The width of the simulation
domain is four times the typical radius. The height is eight times the typical
radius. Next, we set the surface tension. This is done by employing the Eötvös
number; which is again given. The interface width was set to hw = 0.1×4×r. The
computation was performed on a totally irregular triangle mesh with various
number of elements. The simulation time was from t0 = 0 seconds to te = 0.03
seconds in steps of 4t = 0.00025 seconds. We now consider the test cases in
more detail.

8.2.3.1 Cylindrical bubble

The first experiment is to reproduce a cylindrical bubble. In this case the shape
of the bubble does not change. The bubble is advected. In contrast to the
previous experiment, however, the coupling between the fluid flow and the free
surface is in both directions. To setup the experiment we set the following
parameters:

Re = 1 =
(2r)3/2√gρ1

µ1
→ r =

1
2

(
µ1Re√
gρ1

)2/3

= 0.000023365

Eo = 0.6 =
4ρ1gr

2

σ
→ σ =

4ρ1gr
2

Eo
= 0.00003567.

The mesh consists of 6335 elements which corresponds to 41906 degrees of free-
dom. Figure 8.5 shows the results and Figure 8.8 shows the interface length
and the amount of re-initialisation done during the simulation.

The circumference of the circle can be computed to be 2rπ = 0.000146807 meters.
In our measurement we find the circumference to be on average 0.0001468 me-
ters. Which is an absolute error of about 6.6 · 10−9 and a relative error of about
0.0045%. The amount of each re-initialisation is about d = ±2 · 10−8. Since the
implicit surface is a signed distance function we thus know that the radius of
the bubble varies by the amount the implicit surface is raised or lowered. The
exact area of the cylindrical bubble is πr2 = 1.71507 · 10−9. The variation in the
radius modifies the area by π(r + d)2. The relative variation in the bubble’s area
is then about 0.17%. We also find that the numerical result agrees well with the
findings of Clift [2].

8.2.3.2 Ellipsoidal bubble

In the second experiment we which to model a bubble in the ellipsoidal bubble
regime. To this end we set the bubbles radius r and the surface tension σ to the
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(a) t = 0.01 (b) t = 0.02 (c) t = 0.03

Figure 8.5: Experiment 1: The circular bubble in a tube is rising due to the buoy-
ancy force. The geometry and physical data have been set up to correspond to a
Reynolds number Re = 1 and an Eötvös number Eo = 0.6. In this flow regime no
change of the bubble shape is expected. We have a cylindrical bubble at the three
different times t = 0.01, 0.02, 0.03 seconds.

following parameters:

Re = 10 =
(2r)3/2√gρ1

µ1
→ r =

1
2

(
µ1Re√
gρ1

)2/3

= 0.00010845

Eo = 10 =
4ρ1gr

2

σ
→ σ =

4ρ1gr
2

Eo
= 4.61044 10−5

The mesh consists of 6749 elements which corresponds to 44590 degrees of free-
dom. Figure 8.6 shows the results and Figure 8.8 shows the interface length
and the amount of re-initialisation which are given for completeness. In this
case it is not possible to conduct an estimation of the relative error based on
the interface length and the amount of re-initialisation. We find that the numer-
ical result agrees well with the findings of Clift [2] as can be seen from Figure
8.4.

129



8 Application Examples

(a) t = 0.01 (b) t = 0.02 (c) t = 0.03

Figure 8.6: Experiment 2: A circular bubble in a tube is rising due to the buoyancy
force. The geometry and physical data have been set up to correspond to a Reynolds
number Re = 10 and an Eötvös number Eo = 10. In this flow regime a change of the
initially circular bubble shape to an ellipsoidal shape is expected. From left to right:
We show the ellipsoidal bubble shape at the three different times t = 0.01, 0.02, 0.03
measured in seconds.

8.2.3.3 Skirted bubble

To observe a truly skirted bubble we set the following parameters:

Re = 10 =
(2r)3/2√gρ1

µ1
→ r =

1
2

(
µ1Re√
gρ1

)2/3

= 0.00010845

Eo = 100 =
4ρ1gr

2

σ
→ σ =

4ρ1gr
2

Eo
= 4.61044 · 10−6

The mesh consists of 7254 element which corresponds to 47911 degrees of free-
dom. Figure 8.7 shows the results. We find a skirted bubble as it is in accor-
dance with the laboratory experiments in Figure 8.4. Figure 8.8 shows the in-
terface length and the amount of re-initialisation, which in this case are again
given for the sake of completeness. We find that the numerical result agrees
well with the findings of Clift [2]. As can be seen from Figure 8.4 for the settings
given above we are in between the dimpled ellipsoidal-cap regime and the highly
skirted bubble regime.
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(a) t = 0.01 (b) t = 0.02 (c) t = 0.03

Figure 8.7: Experiment 3: A circular bubble in a tube is rising due to the buoyancy
force. The geometry and physical data have been set up to correspond to a Reynolds
number Re = 10 and an Eötvös number Eo = 100. In this flow regime a change
of the initially circular bubble shape to a skirted shape is expected. From left to
right: We show the increasingly skirted bubble shape at the three different times
t = 0.01, 0.02, 0.03 measured in seconds.

8.2.3.4 Crosschecking with other numerical results

In the fourth experiment of this series we examine the accordance of our free
surface algorithm with that of another group’s [8]. In this experiment we base
our experiment on the physical parameters of water (index 1) and air (index 2).
We set the following parameters:

ρ1 = 1000 kg/m3, ρ2 = 1.226 kg/m3

µ1 = 0.35 Pa s, µ2 = 3.58 · 10−3 Pa s

r = 0.025 m, σ = 0.125 N/m, g = 10 m/s2.

Between the two phases we have a density ratio of approximately 1000 and the
viscosity ratio is about 100. The settings result in a Reynolds number of approx-
imately Re ≈ 100 and an Eötvös number of Eo = 200. The geometry of the tube
is 0.1m wide and 0.35m high. A constant pressure boundary condition is applied
at the outflow and a zero velocity was assigned at the bottom. The bubble then
starts from rest. The pictures in Figure 8.9 show snapshots of the solution at
time t = 0.05 s, t = 0.15 s and t = 0.3 s, respectively. The computation was per-
formed in time steps of size 4t = 0.001 s. The interface width was set to hw = 0.01
and the implicit function was fully re-initialised after each time step. The mesh
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(a) (b) (c)

(d) (e) (f)

Figure 8.8: Comparing the interface length and the amount of re-initialisation of the
level set function for three different bubble types. The first row depicts the interface
length. The second row shows the amount of re-initialisation. The columns are for
the bubbles were Re = 1 and Eo = 0.6, Re = 10 and Eo = 10 and Re = 10 and
Eo = 100, respectively. On the top left we have a bubble not changing it’s shape
significantly (experiment 1). The top middle bubble evolves from a circular bubble
to an ellipsoidal bubble. It can be seen that this process reaches an equilibrium.
The top right bubble shows the development of a skirted bubble. Here the interface
length is asymptotically increasing.

consisted of 5887 elements and 20887 degrees of freedom.

The bubble begins to rise due to the difference in density of the two fluids. The
rising induces a vortex. The flow field from the top of the bubble divides and
passes down again besides the bubble along the wall in negative y-direction.
Below the bubble we see a liquid jet pushing the centre of the bubble up. First
the bubble develops a skirted behaviour. With time, the down pull at the side
of the tube tears the bubble apart. The centre part of the bubble continuous
it’s upward movement. The left and right broken off satellite bubbles are pulled
in a downwards direction. In this setting the cap of the bubble is not pierced.
To completely resolve the shredded bubbles a very fine mesh is required. The
solutions found are in good agreement with Nagrath [8] and fit also well into
Figure 8.4.

8.2.4 Rising bubble bursting

In the following example we examine the rising of an oil bubble bursting through
a oil-water layer. This experiment examines the algorithm’s capability to handle
merging of liquids. The oil (index 2) bubble is situated in water (index 1) and
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(a) t = 0.05 (b) t = 0.15 (c) t = 0.3

Figure 8.9: Evolution of rising bubble at different times as presented in Nagrath
[8]. The bubble is teared apart by both the pull down at the side of the tube and
flow field in the middle part of the tube that pushes the centre part of the bubble in
an upward direction.

will burst through the surface and merge with another layer of oil. The physical
parameters are as follows:

ρ1 = 997 kg/m3, ρ2 = 880 kg/m3

µ1 = 1.04 · 10−3 Pa s, µ2 = 0.36 Pa s

σ = 0.073 N/m, g = 9.82 m/s2.

The computational domain Ω is a container and set to be [−0.005, 0.005]× [0, 0.015]
meters. The mesh consists of 2486 elements which corresponds to 16576 degrees
of freedom. The radius of the initial bubble was set to r = 0.002 m at (0, 0.05). So
that the initial implicit function φ is composed of the minimum of an implicit
function for a plane and an implicit function for a circle:

φ(x, y) = min(−(y − 0.01),
√
x2 − (y − 0.005)2 − 0.002).

We set the interface width hw = 0.001 and the re-initialisation is fully done in
every time step. The simulation was performed from t = 0 seconds to t = 0.5
seconds in steps of 4t = 0.0002 seconds.

The bottom of the container is a no-slip boundary condition. At the side we have
slip boundary conditions. At the top we have an outlet and specify the pressure
p = 0 Pa. The result at different times can be seen in Figure 8.10. Again, the
driving force for the bubble to rise is the difference in density between water
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and oil despite the counter action of gravity which was set to g = 9.82 m/s2.

(a) t = 0.15s (b) t = 0.175s (c) t = 0.185s (d) t = 0.19s

(e) t = 0.2s (f) t = 0.21s (g) t = 0.245s (h) t = 0.3s

Figure 8.10: The sequence of pictures shows a rising oil bubble in a water tank.
Initially the oil is rising without significantly changing it’s shape. Shortly under the
upper oil’s surface the water layer bursts and snaps back and the oil bubble merges
with the oil in the upper part of the tank.

As the bubble rises the bubble’s shape remains circular because of the surface
tension σ and the oil’s large viscosity. The bursting of the bubble occurs at
time t = 0.18 s and agrees very well with the results returned by other simu-
lation software [3]. In our case the static equilibrium is reached at time time
t = 0.3 s which is much earlier then in the reference simulation [3] where equi-
librium is reached at t = 0.5 s. In Figure 8.11 we see the monitoring quantities
of the simulation. The length of the interface, the amount the level set is cor-
rected and the area conservation in each time step. The total area occupied by
oil can be computed to be a=̂0.01 · (0.015 − 0.01) + π · 0.0022=̂0.0625664 · 10−3 m2.
This implies that the height of the water in steady state should be at h=̂0.015 −
(0.0625664 · 10−3)/0.01=̂0.00874336 m. The measured height is 0.00874907 m which
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corresponds to a 0.065% higher water line in steady state.

(a) Length of the interface (b) Level-set correction (c) Area conservation

Figure 8.11: Depicted are the length of the interface in meter, the level-set correc-
tion in meter and the area conservation in square meters for the rising oil bubble
in water. On the x-axis we show the simulation’s time steps. If we consider the
negative implicit function, which represents oil in this case, before merging, the de-
gree of convexity is higher than that of concavity. This results in a loss of mass (see
also Figures 6.8 and 6.9) which is counteracted by the positive level-set correction
until about simulation step 1000 which corresponds to t = 0.2 s. Once the degree of
concavity supersedes the degree of convexity the level-set correction is negative.

It is, however, noteworthy, that the length of the interface Γ decreases until the
merging with the top oil line. This implies that some material - even though the
total amount is preserved well - is shifted from the inside of the bubble to the
top.

8.3 The Ink-Jet Model

As a last model we present an ink-jet print head. We will model the ejection
of ink, the flight of the droplet as well as the impact of the droplet onto the
solid wall target. Accordingly the geometry of the ink-jet simulation domain is
made up of three parts. First we have a nozzle, second a flight chamber and
third the target area. Figure 8.12 shows the details of the geometry. For a
drop on demand ink-jet typical outlet diameters of a nozzle are in the range of
20− 70 · 10−6 m. The initial velocities are in a range of 1− 5 m/s[11, 16, 17].

For the ink-jet model we make the Navier-Stokes equation non dimensional
[17, 16]. The dimensionless Navier-Stokes equation is written as:

ρ
∂

∂t
u + ρ (u · ∇)u− 1

Re
∇µ∇u +∇p =

1
We

κ(φ)δ(φ)∇φ

∇ · u = 0.

Here Re is the Reynolds number and We is the Weber number defined as:

Re = ρ1UL
µ1

and We = ρ1U2L
σ

,

135



8 Application Examples
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Figure 8.12: The geometry of the ink-jet model. The model is made up of three
parts, the nozzle, the fight chamber and the target area and has a total length of
1.6 10−3 m. The nozzle n has a total length of 0.6 10−3 m. The length of the flight
chamber f measures 0.9 10−3 m. The rest of 0.1 10−3 m belongs to the target area.
The target area t has a width of 0.4 10−3 m and the nozzle w a is 0.2 10−3 m wide. The
nozzle itself consists of three parts. The ink chamber c which is 0.2 10−3 m long and
a cone e which has a length of 0.37 10−3 m. The cone narrows down to the opening
of the nozzle a which is 0.06 10−3 m wide. The aperture and third part of the nozzle
is the remaining 0.03 10−3 m long.

respectively. This allows us to set the following:

ρ(φ) =
{

1
ρ2/ρ1

if φ ≥ 0,
if φ < 0,

µ(φ) =
{

1
µ2/µ1

if φ ≥ 0,
if φ < 0.

The primary fluid (index 1) is a dye-based ink. The dye in the ink is completely
dissolved. Because of this dye-based inks flow better than for example pigment
based inks. The choice of a dye-based ink implies we are expecting Newtonian
fluid behaviour. The surrounding fluid is air (index 2). The chosen physical
parameters [3] are:

ρ1 = 1000 kg/m3, ρ2 = 1.225 kg/m3

µ1 = 1. · 10−2 Pa s, µ2 = 1.77894 · 10−5 Pa s

σ = 0.07 N/m, g = 0 m/s2.

We take the typical velocity to be U = 5 m/s and the typical length as L = 30 ·
10−6 m. This results in a Reynolds number Re = 15 and a Weber number We =
10.7143. The nozzle has no-slip boundary conditions set. The inflow profile is
parabolic with a maximum of umax = 1.25 m/s. This umax is smoothly ramped
up in 2µS, held for 10µS and them smoothly ramped down in 2µS. This input
velocity model results from a pressure peak at 0µS and a negative pressure peak
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at 10µS[12]. The target is modelled with slip boundary conditions. All other
boundaries are outlet boundaries. The interface thickness is set to hw = 1 and
full re-initialisation is done after each time step. The simulation was performed
from t0 = 0µS to te = 150µS in steps of 4t = 0.5µS. The mesh consisted of 5725
elements which corresponds to 38389 degrees of freedom. The result at various
steps in time can be seen in Figure 8.13.

(a) t = 10µS (b) t = 85µS

(c) t = 20µS (d) t = 95µS

(e) t = 25µS (f) t = 105µS

(g) t = 45µS (h) t = 115µS

(i) t = 75µS (j) t = 150µS

Figure 8.13: The figure shows an ink-jet ejection at various phases. In the first 2 µS
the inflow velocity is ramped up to it’s maximum of 1.25 m/s. The inflow profile is held
for another 10 µS after which it is ramped down in 2 µS. At t = 10 µS we observe an
ink column which is thins out after t = 12 µS. Pinch off is approximately at t = 25 µS.
The surface tension contracts the droplet’s tail and forms a sphere. The momentum
of the contraction creates an ellipsoidal droplet just before impact. Impact on the
target is at about t = 86 µS. After impact the droplet spreads out and contracts again
slightly.

After the inflow velocity’s ramp up phase is completed at time t = 2µS, the
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droplet ejects from the nozzle opening in straight column until the inflow velocity
is ramped down at t = 12µS. The ink column then begins thinning out and the
single droplet pinches off at approximately t = 25µS. In this configuration we
see that the tail of the droplet is sucked up into the main droplet. No satellite
droplet that later hits the leading droplet forms. After impact, which occurs at
time t = 86µS, we observe a spreading on the surface. The droplet develops a
doughnut form. Also, due to a lack of a contact angle model the meniscus at the
opening of the nozzle is outward formed. To some degree this could be overcome
by applying a backward pull on the inlet boundary condition. Nevertheless, this
does not circumvent the need for a contact angle model to accurately model the
ink at the out flow of the nozzle. It is remarkable that the droplet on the target
is so well formed even without a contact angle model.

8.4 Final Remarks

8.4.1 Conclusions

Unlike many existing highly specialised simulation software packages a unified
approach for the modelling based on ordinary and partial differential equations
has been presented. This unified approach is based on a simple operator con-
cept.

An outline of how to generally model lumped systems based on Lagrange’s
method and lumped operators has been given and adopted for computer use.
Electrical circuits have been used as exemplary lumped systems and the soft-
ware has been designed in a manner which allows for extending the modules to
other lumped system domains.

A general purpose non-linear coupled partial differential equation solving envi-
ronment has been presented. The environment includes techniques for gener-
ally linearising second order in space and time partial differential equations. We
linearised the Navier-Stokes equation and coupled the linearised equation to a
level-set method to model free surface flow.

The implemented partial differential equations operators are based on the finite
element method which has been derived in great detail. Based on this detailed
derivation we presented a set of general purpose partial differential operators.
The implemented operators can be used for numerical computations including
machine or arbitrary precision numbers, real, integer or imaginary complex
numbers. Additionally the operators can handle symbolic input which may be
used to derive symbolic finite elements.

We presented sophisticated algorithms for both, solving systems non-linear
equations via the affine invariant Newton method and differential algebraic
equations via the backward difference formulae. These algorithms have been
chosen for the wide range of applications they may be used in.
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Based on the above we have implemented a Navier-Stokes solver which is cou-
pled to a level-set method to model free surface flow. The algorithm is flexible
enough to solve a wide range of fluid flow and free surface problems. It allows
for flows with merging and breaking interfaces and handles discontinuities in
density and viscosity. The surface tension forces were also accounted for in the
simulations. Last, an ink-jet model has been presented.

8.4.2 Future work

From a general perspective the following topics could be addressed to further
generalise the present work:

1. Graphs containing graphs
The ability to allow a graph to contain a sub-graph would be helpful to
create libraries of e.g. lumped systems of high complexity and re-use them.

2. Proper Neumann handling boundary integrals
In the implementation of the partial differential equation operators based
on the finite element method a proper implementation of the boundary
part of the operator would allow for a more flexibility in the choice of the
Neumann boundary conditions.

3. Adaptive step size and automatic order selection for the backward differ-
ence formulae (BDF) time integrator
An extension in this direction would allow for a more autonomous algo-
rithm in the sense that the user must not care too much about selecting
an appropriate time step.

4. Access to the operator internal data
Each operator needs an input function to fully specify the operators be-
haviour. Sometimes it is necessary to, for example, model the derivative
of the unknown function. Currently, this has to be done by interpolating
the unknown function in the appropriate element and then constructing
the derivative of that interpolation and then feed the result back into the
operator. The operator has, however, internally available all information to
compute the derivative. It would advantageous if it were possible to tell the
operator to make use of derivative information and thus not need to con-
struct the derivative externally. This procedure would also be beneficial
for other mathematical constructs than the derivative.

To further refine the presented free surface model several directions are possi-
ble:

1. Modelling the contact angle
In this work no contact angle model has been applied. For a more realistic
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simulation an implementation of a suitable model is advisable. The impact
of not using a contact angle model is seen in the way the liquid behaves at
the nozzle after ejection and the droplet after impact.

2. Merging of the Navier-Stokes step with the advection of the implicit func-
tion and the re-initialisation.
In order to maintain quadratic convergence of the nonlinear solver the lin-
earisation of both the Navier-Stokes and level set equation have to be per-
formed adequately. For the Navier-Stokes equation this has been done in
the current work. The level-set equation and the re-initialisation, however,
are two separate equations. At least the level-set equation could, in its
current form, be directly coupled to the Navier-Stokes equation. This how-
ever, would reduce the quadratic convergence to a linear convergence. A
unification of the re-initialisation and the level-set method and a coupling
to the Navier-Stokes equation are necessary.

3. Avoid the dependence on the interface thickness hw

If the dependence on additional control parameters can not be avoided, at
least a good function for estimating a good hw were very useful.

4. Adaptive mesh refinement
Experiments in this direction have been conducted. The current structure
of coupling the Navier-Stokes equation and the level-set method is done
in successive steps. Even though each of these time integration steps is
performed implicitly, applying a h-adaptivity strategy makes the procedure
explicit. This assumption is supported by the observation that once an
adaptive strategy is applied the resulting velocity field is oscillating. Even
for very small time steps the oscillation can not be overcome and thus
making an adaptive strategy for this setup unprofitable. In future work the
first step could be to make the coupling and re-initialisation fully implicit
and then apply adaptivity.
Another possible way to increase the accuracy is to employ quadrilateral
elements in stead of the triangular elements.
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9.1 Quadratic Serendipity Shape Functions
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1
8
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“
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1
4

“
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”
(s + 1)(t + 1)

1
4 (1 − r)

“
1 − s2

”
(t + 1)

1
4

“
1 − r2

”
(1 − s)(t + 1)

1
4 (r + 1)

“
1 − s2

”
(t + 1)

1
4

“
1 − r2

”
(s + 1)(1 − t)

1
4 (1 − r)

“
1 − s2

”
(1 − t)

1
4

“
1 − r2

”
(1 − s)(1 − t)

1
4 (r + 1)

“
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”
(1 − t)

1
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“
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”
1
4 (1 − r)(s + 1)

“
1 − t2

”
1
4 (1 − r)(1 − s)

“
1 − t2

”
1
4 (r + 1)(1 − s)

“
1 − t2

”

9.2 Transient Mechanics

The equation to model transient stress and strain of solids is given by 4.8 with
τ2 = γ = 0.

Y uzz

2(ν+1) + Y uyy

2(ν+1)

+ Y (1−ν)uxx

(1−2ν)(ν+1)

Y vxy

2(ν+1) + Y νvxy

(1−2ν)(ν+1)
Y wxz

2(ν+1) + Y νwxz

(1−2ν)(ν+1)

Y uxy

2(ν+1) + Y νuxy

(1−2ν)(ν+1)

Y vzz

2(ν+1) + Y (1−ν)vyy

(1−2ν)(ν+1)

+ Y vxx

2(ν+1)

Y wyz

2(ν+1) + Y νwyz

(1−2ν)(ν+1)

Y uxz

2(ν+1) + Y νuxz

(1−2ν)(ν+1)
Y vyz

2(ν+1) + Y νvyz

(1−2ν)(ν+1)

Y (1−ν)wzz

(1−2ν)(ν+1) + Y wyy

2(ν+1)

+ Y wxx

2(ν+1)


We have sub matrices of size 3x3 (3 space dimensions) and there are 3x3 sub
matrices since we deal with 3 unknown functions (u,v and w) and we set a =

Y (1−ν)
(1−2ν)(ν+1) , b = Y ν

(1−2ν)(ν+1) and c = Y
2(ν+1) :
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 a 0 0
0 c 0
0 0 c

  0 b 0
c 0 0
0 0 0

  0 0 b

0 0 0
c 0 0


 0 c 0

b 0 0
0 0 0

  c 0 0
0 a 0
0 0 c

  0 0 0
0 0 b

0 c 0


 0 0 c

0 0 0
b 0 0

  0 0 0
0 0 c

0 b 0

  c 0 0
0 c 0
0 0 a
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