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Zusammenfassung

In der vorliegenden Dissertation werden wechselwirkende ultrakalte Bosonen in gekippten
optischen Gittern untersucht. Dabei handelt es sich um ein Paradigma komplexer Vielteil-
chen-Quantensysteme. Unsere Analyse basiert auf dem gekippten Bose-Hubbard Modell,
welches Tunnelübergänge zwischen benachbarten Gitterplätzen, Wechselwirkung zwischen
Teilchen sowie ein statisches Feld berücksichtigt. Das konkurrierende Verhalten dieser
Beiträge bedingt die Komplexität des Systems, welche sich auf spektraler Ebene in einer
chaotischen Statistik der Eigenwerte ausdrückt. Wir untersuchen sowohl, wie sich dieses
spektrale Chaos auf die Systemdynamik auswirkt, als auch welche Informationen wir aus
der Dynamik des Systems über sein Vielteilchenspektrum ableiten können.

Unter Verwendung von Methoden aus der Theorie der Zufallsmatrizen analysieren wir
zunächst den regulären und den chaotischen Spektralbereich des Hamiltonoperators und
bestimmen außerdem das Skalierungsverhalten der Bereichsgrenzen. Im Hauptteil der Ar-
beit gehen wir sodann der obigen Fragestellung aus drei verschiedenen Richtungen nach:
Erstens untersuchen wir wie die Statistik der Energieeigenwerte die Simulierbarkeit des
Systems beeinflusst, wobei wir einen Zusammenbruch der Simulationseffizienz beim Über-
gang vom regulären zum chaotischen Bereich beobachten. Zweitens analysieren wir die
Stabilität der Eigenzustände des Hamiltonoperators im chaotischen Spektralbereich und
identifizieren robuste Zustände, die gegenüber Störungen dynamisch stabil sind. Drittens
untersuchen wir den schnellen und irreversiblen Zerfall der Bloch-Oszillationen im chaoti-
schen Bereich. Dabei entwickeln wir eine Methode, die auf einer statistischen Analyse
des Geschwindigkeitsoperators beruht, und weisen einen charakteristischen Übergang im
Zerfallsverhalten der Bloch-Oszillationen nach, welcher wiederum an der Grenze zwischen
regulärer und chaotischer Eigenwertstatistik auftritt.
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Abstract

In this thesis, we study interacting ultracold bosons in tilted optical lattices, a paradigm for
complex many-body quantum systems. Our analysis is based on the tilted Bose-Hubbard
Hamiltonian which incorporates inter-site tunneling, inter-particle interaction, and a static
field. The competition between the three contributions induces the system’s complexity
which, on the spectral level, is reflected in chaotic level statistics. We address the question
how this spectral chaos influences the dynamical behavior of the system and, vice versa,
which information we can infer from the system’s dynamics on its many-body spectrum.

Employing methods from random matrix theory, we first perform a detailed analysis
of the Hamiltonian’s regular and chaotic spectral regimes and determine their borders by
means of a scaling analysis. In the main part of the thesis, we tackle the question raised
above from three different perspectives: Firstly, we investigate how the Hamiltonian’s level
statistics affects the simulability of the system and find a breakdown of the simulation ef-
ficiency at the crossover from the regular to the chaotic regime. Secondly, we analyze the
stability of the Hamiltonian’s eigenstates within the chaotic spectral regime and identify
robust states that are dynamically stable against perturbations. Thirdly, we study the fast
and irreversible decay of the Bloch oscillations in the chaotic regime. We develop an ap-
proach that is based on a statistical analysis of the velocity operator and find a characteristic
crossover in the Bloch oscillations’ decay, once again right at the transition from regular to
chaotic level statistics.
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1 Motivation and overview

The realization of Bose-Einstein condensation of interacting ultracold atoms in optical lat-
tices [4, 32, 138] was among the most fascinating experimental achievements of the last
years. These systems allow for a rapid and precise tuning of the dynamical control pa-
rameters, like the inter-atomic interaction, the inter-site tunneling coupling, and, if desired,
additional potential gradients or the degree of disorder [77, 125, 134]. At the same time,
an almost perfect screening from the environment leads to extremely long coherence times
[17]. This precise control has sparked the experimental investigation of a plethora of phys-
ical phenomena: On the one hand, it enabled the realization of well-known effects from
solid-state physics, like the superfluid to Mott-insulator transition [78, 167, 170], Anderson
localization [6, 15, 154], the Bose-glass phase [63], the Josephson effect [32], and Bloch
oscillations, that arise under the influence of a static tilt [4, 46, 133]. On the other hand,
ultracold atoms in optical lattices have also been used for the high-precision determination
of fundamental constants [37] as well as for technological applications, like, e.g., atomic
clocks [1, 173] and atom lasers [4, 7, 86, 132]. The latest experimental developments even
allow to monitor and manipulate single atoms in optical lattices [10, 11, 165, 200] and ren-
der the system a celebrated candidate for potential implementations in quantum computing
[17, 69, 136]. The rapid experimental advance is paralleled by thriving theoretical research
that combines ideas and techniques developed in areas as diverse as statistical, mathemat-
ical, atomic, and solid-state physics and has led to a profound theoretical understanding,
see, e.g., [26, 51, 99, 207].

The above examples demonstrate that ultracold bosons in optical lattices constitute a
paradigm of complex many-body quantum systems. The complexity, which emerges from
the inter-atomic interaction, can basically be controlled at will by properly adjusting the
control parameters [77, 78, 99, 100, 125, 134]. It is, among others, reflected in the appear-
ance of chaotic spectral structures [168] that can be characterized by universal distributions
[74]. The latter are found in various branches of physics, ranging from mesoscopics [104],
and photonics [169, 208] to nuclear [74] and atomic physics [128].

In the present thesis, we focus on the impact of many-body complexity, manifest in spec-
tral chaos [19, 28, 34, 47, 53, 92, 93, 110, 115, 116], on the behavior of ultracold bosons in
tilted optical lattices. Specifically, we investigate how the spectral structure of the underly-
ing Hamiltonian affects the possibility to accurately describe the system with manageable
numerical effort, the system’s stability under perturbations, and its dynamics. Our studies,
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in turn, provide means to infer spectral properties from the dynamics of the bosons.

The work is structured as follows:

In Chapter two, we introduce the fundamental concepts and basic physics of ultracold
bosons in optical lattices. We present the main aspects of Bose-Einstein condensation and
of the trapping of atoms in optical lattices, before turning to the mathematical description
of the system that relies on the many-body (tilted) Bose-Hubbard Hamiltonian.

In Chapter 3, we give a short introduction to universal spectral statistics. We identify
the borders of the chaotic regime of the Bose-Hubbard Hamiltonian and elaborate on their
dependence on the control parameters and particle number. This knowledge forms the basis
to study the impact of spectral chaos on the system’s dynamics, what is the topic of the
following chapters.

The rapid growth of the Hilbert-space dimension with the number of atoms renders effi-
cient simulation techniques quintessential in order to accurately describe the time evolution
of ultracold atoms in optical lattices. In Chapter four, we investigate the system’s simu-
lability in the different spectral regimes of the Hamiltonian, based on the time-dependent
density matrix renormalization group algorithm. The latter is a numerical method that is
widely spread in the field and we introduce it at the beginning of the chapter.

While, in general, the inter-atomic interaction induces complex behavior of the bosons
in the lattice, it can also lead to the appearance of robust structures that persist well in the
chaotic regime of the Bose-Hubbard Hamiltonian. In Chapter five, we identify and char-
acterize such robust structures and, in particular, discuss their stability under driving of the
tilted lattice.

In Chapter six, we study the influence of interactions on the experimentally well-studied
phenomenon of Bloch oscillations. Our key focus lies on the irreversible and fast decay
of the oscillations in the chaotic regime of the Bose-Hubbard Hamiltonian. We start with
a general introduction to the theory of Bloch oscillations and discuss different experimen-
tal realizations. In the main part, we pursue two different approaches to relate the spec-
tral properties of the many-body Hamiltonian to the decay of the oscillations: The first
one is well-known from the adiabatic theory of driven quantum systems, while the second
approach, which we develop in this thesis, relies on a statistical analysis of the velocity
operator.



2 Ultracold bosons in optical lattices

Ultracold atoms in optical lattices offer unique possibilities to investigate fundamental ques-
tions of quantum physics. In this chapter, we introduce the fundamental concepts and basic
physics of these systems what supplies us with the instruments necessary to obtain the re-
sults presented throughout this thesis. We will first revise the basic aspects of Bose-Einstein
condensation that occurs at temperatures close to the absolute zero. Next, the trapping of
atoms in optical lattices will be presented. This leads to the mathematical description of
ultracold bosons in (tilted) optical lattices, the Bose-Hubbard Hamiltonian.

2.1 Ultracold bosons
Bose-Einstein condensation was predicted by Einstein in 1924 [59, 60] for a gas of particles
obeying Bose statistics [22]. This phase transition can be understood from the fundamen-
tally distinct behavior of a dilute gas of identical bosonic atoms in different temperature
regimes, as depicted schematically in Fig. 2.1: Whereas, at high temperatures, the atoms
behave like “billiard balls”, i.e., classical particles, at low temperatures, the rules of quan-
tum mechanics come into play, and the atoms have to be described as wave packets. Their
extension is given by the thermal de Broglie wavelength

λdB =

√
2π h̄2

mkB T
, (2.1)

where m is the mass of the atoms, T is the temperature and kB is Boltzmann’s constant.
Lowering the temperature even further leads to a condensation of a macroscopic fraction
of the bosons into the lowest quantum state at a certain critical temperature Tc. At this
temperature, λdB is comparable to the mean interparticle distance d = ρ−1/3, where ρ is the
density of the gas, and the quantum mechanical wave packets that represent the individual
particles start to overlap. The system then undergoes a phase transition to a Bose-Einstein
condensate and can be described by a single macroscopic wave function ψ(x), also referred
to as order parameter. At zero temperature, the thermal cloud disappears: All particles
occupy the ground state and thereby form a “giant matter wave”.

The cooling of atoms to temperatures close to the absolute zero, in order to obtain the
necessary phase-space density, was the main challenge for an experimental realization of



4 2 Ultracold bosons in optical lattices

A B C D

Figure 2.1: Schematic sketch of a gas of identical bosons at different temperatures (adapted from
Ref. [103]). (A) At high temperatures, the atoms behave like “billiard balls”, i.e., classical particles.
(B) For sufficiently low temperatures, the atoms have to be described as wave packets obeying the
rules of quantum mechanics. (C) When the thermal de Broglie wavelength λdB is comparable to
the mean interparticle distance d, a phase transition to a BEC occurs. (D) At zero temperature, all
particles occupy the lowest quantum state and form a “giant matter wave”.

Bose-Einstein condensation [134]. This obstacle was partially overcome with the advent
of laser cooling, which was proposed in the 1980’s and resulted in a Nobel prize in 1997
[36, 43, 146]. The technique takes advantage of the Doppler effect in order to slow down the
atoms that are typically held in a magneto-optical trap. Laser cooling yields temperatures
of about a few hundred microkelvin which is, however, still too high for Bose-Einstein
condensation. Thus, the next step is to apply evaporative cooling, that relies on the escape
of the hottest, i.e., most energetic, atoms when slightly decreasing the potential barriers of
the trap. Then, at temperatures in the nanokelvin regime, a Bose-Einstein condensate is
created. For the first time, this was achieved in a cloud of alkali atoms in 1995 [5, 23, 52]
and shortly after led to the second Nobel price in the field of ultracold atoms within four
years: the Nobel prize for Bose-Einstein condensation in 2001 [44, 103].

In order to avoid the formation of a solid or a liquid during the generation of a Bose-
Einstein condensate, the gas must be sufficiently dilute [50]. Therefore, the particle density
is kept very low during the cooling process, at typically 1013−15cm−3 in experiments with
alkali atoms [144]. The interactions within the condensate are then dominated by elastic
binary collisions and can be treated by scattering theory. Due to the extremely low tem-
peratures, the only relevant contribution is s-wave scattering, that is solely characterized
by the s-wave scattering length as. It fulfills the dilute gas condition as � ρ−1/3 [122].
Whereas a Bose-Einstein condensate is stable for repulsive interactions (as > 0), the con-
densate becomes unstable for attractive interactions (as < 0) if the number of bosons n in
the condensate exceeds a critical value.

In the last decades, numerous fascinating experiments involving Bose-Einstein conden-
sates of various atomic species have been performed in laboratories all over the world [177].
Depending on the particular experiment, different trapping potentials are used to manipulate
the atoms before probing the properties of the condensate. In this respect, periodic poten-
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ωlωeg

kl

δ |e〉

|g〉

kl

Figure 2.2: Schematic diagram of a two-level atom that interacts with an optical standing wave
formed by two counter-propagating laser beams. The internal states of the atom |g〉 and |e〉 are
separated in energy by h̄ωeg and the lasers have frequency ωl and wave number kl . The (in this case
blue) detuning from resonance is given by δ = ωl−ωeg.

tials are exceptionally interesting since they enable us to investigate fundamental questions
of solid state physics and also mesoscopic phenomena. They are typically realized with the
help of optical lattices as will be explained in the following.

2.2 Optical lattices
The idea of trapping atoms with the help of a standing light wave dates back to 1986 [124]
and the first experimental realization was achieved in 1987 for a classical gas of Cesium
atoms [159]. The rich physics of such systems allows to mimic standard as well as ex-
otic solid-state Hamiltonians where the parameters defining the dynamics can, in principle,
be experimentally controlled at will, as we describe below [77, 125, 134]. The excellent
isolation from the environment, which offers the possibility of coherent dynamics on long
timescales, also renders the system a promising candidate for technological applications,
like, e.g., ever more accurate atomic clocks [1, 173] or potential implementations in quan-
tum computing [17, 69, 136].

2.2.1 Periodic potential
The interaction of a neutral atom with a light field can be split into a conservative and a
dissipative part. Whereas the former can be used for the creation of optical potentials like
optical lattices and other optical traps (dipole traps) [80], the latter leads to a scattering of
atoms by atom-photon interactions and is also used for laser cooling [146].

In order to illustrate the basic physics, we consider the interaction of a two-level atom
with classical, single-mode laser light of frequency ωl , as schematically shown in Fig. 2.2.
The atom is assumed to be initially in the electronic (ground) state |g〉 which is coupled
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by the laser to the (excited) state |e〉. The energy difference between the states is given by
h̄ωeg. We can apply this two-level approximation as long as the frequency ωl is sufficiently
far from frequencies required to couple |g〉 to other internal states. The oscillating electric
field E(x, t) then induces a dipole moment [42, 144]

D(x, t) = α(ωl)E(x, t), (2.2)

where α(ω) is the atomic polarizability that exhibits a resonance at ωeg. In the dipole ap-
proximation, the interaction of this induced dipole with the electric field leads to a complex
energy shift of the atomic level |g〉 by

∆Eg =−1
2

α(ωl)
〈
E(x, t)2〉

t

= Vg− ih̄Γsc/2,
(2.3)

where 〈·〉t denotes a time average. The real, i.e., conservative, part corresponds to the so-
called ac Stark shift

Vg =−1
2

Re(α(ωl))
〈
E(x, t)2〉

t ∝
I(x, t)

δ
, (2.4)

where δ = ωl −ωeg is the detuning and I(x, t) is the laser intensity. The imaginary, i.e.,
dissipative, part leads to a finite lifetime of the state |g〉 due to photon absorption and sub-
sequent emission with scattering rate

Γsc ∝
I(x, t)

δ2 . (2.5)

For red detuning δ < 0, the induced dipole D(x, t) is in phase with the electric field and the
atoms are attracted to regions of high intensity. On the contrary, for blue detuning δ > 0,
the atoms are attracted to the dark regions where the light intensity, and thus the loss rate,
is lowest. It is therefore favorable to work at the largest possible blue detuning to minimize
dissipative effects1 and to obtain a conservative potential for the atoms.

In order to create a one-dimensional (1D) optical lattice2 one can superimpose two identi-
cal, counter-propagating laser beams that will form a standing light wave. For wave number
kl = 2π/λl , this leads to a periodic potential

V (x) = V0 sin2 (klx) , (2.6)

with lattice spacing d = λl/2, amplitude V0 ∝ IP/δ, and IP the peak intensity of the laser.
In practice, optical lattices are realized by retro-reflecting a laser beam with a high-quality

1In principle, spontaneous emission leads to decoherence of many-body states due to heating of the bosonic
atoms, see for example Refs. [118, 147].

2From now on, we restrict the description to the 1D case since we only consider 1D lattices in this work.
The 3D case can, however, be described analogously, see for example Ref. [134].
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mirror and precisely controlling the beam intensity in order to tune the depth of the lat-
tice. Alternatively, one can use two counter-propagating phase-coherent laser beams. A
frequency shift ∆νl between the two laser beams, that can be introduced by using, e.g., an
acousto-optic modulator [134], causes the formerly stationary lattice to move at the velocity
vlat = d∆νl . If, in addition, ∆νl is varied in time, the lattice will be accelerated, resulting in
a force acting on the atoms in the rest frame of the lattice. For ∆νl ∝ t, the resulting force
has the form of a static field (see also Sec. 2.4), effects of which will be studied in detail in
Chapters 5 and 6.

2.2.2 Band structure
On timescales where spontaneous emission can be neglected (t� 1/Γsc), the dynamics of
a single atom in the optical lattice can be described by the Hamiltonian

Ĥ =
p̂2

2m
+V0 sin2(klx). (2.7)

The eigenstates |φ(η)
q 〉 of this periodic Hamiltonian in position representation, i.e., 〈x|φ(η)

q 〉=
φ

(η)
q (x), are Bloch waves and can be written as [9]

φ
(η)
q (x) = eiqxu(η)

q (x), (2.8)

where the functions u(η)
q (x) = u(η)

q (x + d) have the same periodicity as the lattice. The
eigenstates and the corresponding eigenenergies E(η)

q are labeled by the quasimomentum
q ∈ [−π/d,π/d] and the band index η.

Fig. 2.3 shows the band structure of a 1D optical lattice for different lattice depths V0.
For V0 = 0, the energy bands express the dispersion relation of a free particle (the energy-
momentum parabola) reduced to the first Brillouin zone. Increasing the lattice depth leads
to the appearance of energy gaps and a flattening of the bands, and also reduces the mobility
of the bosons on the lattice.

2.2.3 Wannier functions
So far, we have only considered the single-particle case. In the following, we will, however,
mainly be interested in many-body phenomena, taking into account short-range interactions
between the particles. For the description of such systems it is convenient to use Wannier
functions

wη(x− xl) =

√
d
2π

π/dZ
−π/d

dqu(η)
q (x)e−iqxl , (2.9)
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Figure 2.3: Band structure of a 1D optical lattice for different potential depths V0. Shown are the

band energies E(η)
q /ER as a function of the quasimomentum q within the first Brillouin zone for (a)

V0/ER = 0, (b) 2, and (c) 6. Here, ER = h̄2k2
l /(2m) is the photon recoil energy.

which are localized on a particular lattice site xl . When interpreting u(η)
q as a function of

the quasimomentum q, the Wannier function wη(x−xl) is thus the Fourier transform of u(η)
q

evaluated at the point xl . Accordingly, the Bloch functions in the ηth band can be expressed
as a Fourier series of Wannier functions

u(η)
q (x) =

√
d
2π

∑
xl

wη(x− xl)eiqxl . (2.10)

2.3 Microscopic description: Bose-Hubbard
Hamiltonian

A mathematical description of interacting ultracold bosons in optical lattices is given by
the Bose-Hubbard Hamiltonian [99]. This Hamiltonian is well-known in solid state physics
and is valid for deep lattices since it relies on the restriction of the dynamics to the lowest
band of the underlying optical lattice. The Bose-Hubbard Hamiltonian provides the sim-
plest nontrivial model describing a bosonic many-body system that cannot be mapped to a
single-body problem. It is of major importance in situations where quantum fluctuations
are crucial, i.e., when the number of atoms per lattice site is small and particle correla-
tions have to be taken into account. In the following, we will show how the Bose-Hubbard
Hamiltonian can be derived in second quantization and discuss its validity and properties.
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2.3.1 Derivation of the Bose-Hubbard Hamiltonian
In second quantization, the many-body Hamiltonian describing interacting bosonic particles
in an external potential V (x) is given by [50, 99]

Ĥ =
Z

dx ψ̂
†(x)

(
− h̄2

2m
∇

2 +V (x)+Vadd(x)
)

ψ̂(x)

+
1
2

Z Z
dxdx ′ψ̂†(x)ψ̂†(x′)U(x− x′)ψ̂(x′)ψ̂(x),

(2.11)

where ψ̂(x)(†) are the bosonic field operators that annihilate (create) a particle at the position
x, and Vadd(x) accounts for a possibly present additional potential that is slowly varying
along the lattice. The latter condition guarantees that the lattice, which is described by V (x),
is not considerably modified and different sites can be treated analogously. Whereas the first
three terms in the Hamiltonian are single-particle contributions, the last term describes the
binary inter-atomic interaction and thus accounts for the many-body properties. Assuming
that the latter results only from s-wave scattering [122] we can apply a contact-interaction
pseudopotential approximation,

U(x− x′) =
4πash̄2

m
δ(x− x′), (2.12)

with the s-wave scattering length as. This assumption is fulfilled for very low particle
densities and temperatures, both of which is the case in ultracold atom experiments, as
discussed in Sec. 2.1. The Hamiltonian then reads

Ĥ =
Z

dx ψ̂
†(x)

(
− h̄2

2m
∇

2 +V (x)+Vadd(x)
)

ψ̂(x)

+
1
2

4πash̄2

m

Z
dx ψ̂

†(x)ψ̂†(x)ψ̂(x)ψ̂(x).

(2.13)

For sufficiently deep lattices, as considered throughout this thesis, the bosonic operators
ψ̂(x) can be expanded in the basis of Wannier functions w0(x−xl) of the lowest band (tight-
binding approximation)

ψ̂(x) = ∑
l

âlw0(x− xl), (2.14)

where âl annihilates a particle in the Wannier function w0(x−xl), localized at the lth lattice
site. Here, sufficiently deep means that all the energies involved in the system dynamics are
small compared to excitation energies to the second band. The many-body Hamiltonian Ĥ,
Eq. (2.13), then reduces to the Bose-Hubbard Hamiltonian

Ĥ =−J
2 ∑

l
(â†

l+1âl +h.c.)+
U
2 ∑

l
n̂l(n̂l−1)+∑

l
εl n̂l. (2.15)
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The bosonic annihilation and creation operators âl and â†
l fulfill the canonical commutation

relation
[âl, â

†
j ] = δl, j, (2.16)

and the operator n̂l , that counts the number of atoms at lattice site l, is defined as

n̂l = â†
l âl. (2.17)

The parameters J, U , and εl correspond to the tunneling coupling (hopping) between neigh-
boring sites3, the onsite interaction strength, and a local energy offset at each site, respec-
tively, and are given by

J = −2
Z

dxw0(x)
(
− h̄2

2m
∇

2 +V (x)
)

w0(x−d), (2.18)

U =
4πash̄2

m

Z
dx |w0(x)|4, (2.19)

εl =
Z

dxVadd(x)|w0(x)|2. (2.20)

Numerical calculations show that both, next-nearest neighbor coupling and nearest-neighbor
interaction are typically two orders of magnitude smaller than J and U and can thus be ne-
glected [99].

Qualitative insight into the dependence of the parameters on the lattice geometry is ob-
tained via a harmonic approximation around the minima of the potential wells:

Vho(x) =
1
2

mω
2
T x2. (2.21)

Here, ωT = 2
√

V0ER/h̄ is the trapping frequency and ER = h̄2k2
l /(2m) is the photon recoil

energy. The spacing between the lowest and the first excited Bloch band is then given by
∆E = h̄ωT . The oscillator ground state wave function of a single atom trapped in one of the
minima of the potential has a Gaussian profile with width aG =

√
h̄/(mωT ). Consistency

of the Bose-Hubbard model then requires as� aG� d and U · nl(nl− 1)/2� ∆E for all
lattice sites l. Whereas the former follows from the contact-interaction pseudopotential
approximation and the requirement of a large energy separation from the second band,
the latter expresses the requirement that the onsite interaction must be much smaller than
the excitation energy to the next band. Moreover, the interaction energies have to be small
compared to the single-particle ground state energy since otherwise the single-particle wave
function would have to be adjusted to account for the (mean-field) interaction [126]. All
requirements are readily satisfied in the experiment [48, 99].

3Note that in the original definition [99], the tunneling coupling is given by J instead of J/2.
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As mentioned above, when realized within an optical lattice, the parameters of the Bose-
Hubbard Hamiltonian can, in principle, be experimentally controlled at will [134]: Both
tunneling coupling and onsite interaction can be varied by adjusting the depth of the lattice,
i.e., the intensity of the lasers. Whereas in a deep lattice [207] the hopping strength is given
by J = ∆0/2, where ∆0 is the width of the lowest band, and decreases exponentially with
V0, J ∝ exp

(
−2
√

V0/ER

)
, the interaction increases algebraically4 like U ∝ (V0/ER)1/4.

In addition, external magnetic fields can be used to independently adjust the value of U
by changig the s-wave scattering length as via Feshbach resonances [96, 122]. It is thus
possible to enter the strong coupling regime, where the interaction energy is of the order of
the kinetic energy, and simulate otherwise intractable systems in condensed matter physics,
what provides us with new insight in the physics of many-body systems [100, 134].

In the following, we will consider the Bose-Hubbard Hamiltonian (2.15) to be dimen-
sionless, i.e., the parameters J and U , and the energy are always given in units of the photon
recoil energy ER. Likewise, actions are measured in units of h̄ (i.e., h̄≡ 1). In order to see
how this translates to laboratory units, we consider the experimental parameters of Ref. [83]
where the authors investigate the dynamics of a Bose-Einstein condensate of Cesium atoms
in a vertically oriented optical lattice. The laser used for the generation of the lattice has a
wavelength of λ = 1064nm, what results in a photon recoil energy of ER = kB ·64nK, and the
lattice depth is V0 = 7.9ER. Consequently, the tunneling amounts to J = 0.0385ER, while
the onsite interaction can be tuned with the help of a Feshbach resonance from as = −2a0

to as = 300a0, where a0 is the Bohr radius. For example, for as = 25a0 and as = 100a0, this
results in U = 0.114ER and U = 0.458ER, respectively.5

2.3.2 Properties of the Bose-Hubbard Hamiltonian
The physics of the Bose-Hubbard Hamiltonian is characterized by the interplay of tunneling
and onsite interaction. On the one hand, the tunneling coupling J tends to distribute the
atoms over the lattice. As a consequence, for dominant tunneling, U� J, the eigenstates are
Bloch states that are completely delocalized on the lattice. On the other hand, the repulsive
inter-atomic interaction U localizes the single atoms on individual sites of the lattice. For
strong onsite interaction, U� J, the eigenstates of the Bose-Hubbard Hamiltonian are thus
given by Wannier states with a well-defined particle number on every lattice site. That is,
they are (Wannier-) Fock states of the form

|n〉= |n1〉⊗ |n2〉⊗ · · ·⊗ |nL〉 ≡ |n1,n2, ...,nL〉, (2.22)

4In general, one finds U ∝ (V0/ER)D/4, where D is the dimensionality of the lattice [153].
5Note that the values for J and U are obtained from the equations for a deep lattice [207] and thus have to

be treated with care. In order to obtain the exact numbers, one would have to directly evaluate Eqs. (2.18)
and (2.19).
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where nl is the number of particles on the lth site, L is the number of lattice sites, and
n = ∑

L
l=1 nl is the total number of bosons in the system. However, when the tunneling and

the onsite interaction terms have comparable magnitude, there exists no natural basis and
thus the system shows features of quantum chaos [19, 34, 47, 53, 92, 93, 110, 116], as will
be discussed thoroughly in Sec. 3.2.1.

Whilst we are mainly interested in the impact of chaos in the excitation spectrum of the
Bose-Hubbard Hamiltonian, the properties of the ground state have been studied in detail
in the last decades, see for example [207]. Under this perspective, the system undergoes
a quantum phase transition between a superfluid and a Mott insulating state, controlled by
the relative strength of onsite interaction and tunneling strength U/J [71]. In contrast to the
classical analog, quantum phase transitions are driven by quantum (not thermal) fluctuations
[157] and thus occur at zero-temperature. In the limit (U/J)→ 0, the Bose-Hubbard ground
state is superfluid and can be written as

|ΨSF〉=
(

1√
L

L

∑
l=1

â†
l

)n

|0〉 , (2.23)

where |0〉= |0, . . . ,0〉 is a Fock state that contains zero particles. For n,L→∞ and constant
filling factor n/L, this tends to a locally coherent state, i.e., a coherent state at each lattice
site l,

|ΨSF〉=
LO

l=1

[
exp
(√

n
L

â†
l

)
|0〉l
]
, (2.24)

with Poissonian number statistics [207]. Here |0〉l is a local Fock state on site l that contains
zero particles. The state |ΨSF〉, Eq. (2.24), represents an ideal Bose-Einstein condensate
where all particles are in the Bloch state |φ(η=0)

q=0 〉.
Increasing the ratio U/J makes it less favorable for the atoms to tunnel between neigh-

boring sites and for (U/J)→ ∞ the fluctuations of the particle number on a particular site
are completely suppressed. For integer filling n/L ∈ N, this leads to the Mott insulating
state

|ΨMI〉=
LO

l=1

[(
â†

l

)n/L |0〉l
]
, (2.25)

which is a product of local Fock states with particle number nl = n/L at each site. In 1D, the
quantum phase transition occurs at the critical value6 [207] (U/J)c = 7.68, for n/L = 1, and
at (U/J)c = 4.4 ·n/L, for n/L > 1. It was first observed, in 3D, in 2002 [78], subsequently,
in 1D, in 2004 [170], and in 2D in 2007 [167].

6Note that due to the the choice of the tunneling coupling as J/2 instead of J, the shown values deviate from
the ones given in Ref. [207] by exactly the factor of 2.
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J
U

F

Figure 2.4: Schematic diagram of ultracold bosons in the lowest band of a tilted optical lattice
described by the tilted Bose-Hubbard Hamiltonian Ĥ, Eq. (2.26). The parameters J, U , and F
denote the strength of tunneling coupling, onsite interaction, and tilt, respectively.

2.4 The tilted Bose-Hubbard Hamiltonian
Similar to solid state systems, where an electric field induces a potential gradient along a
crystal [9], we can apply an additional static field to the optical lattice, as schematically
depicted in Fig. 2.4. Experimentally, a global tilt can be realized by introducing a time-
dependent frequency shift between the lasers used for the generation of the lattice potential
[12, 133], or by tilting the lattice into the direction of the gravitational field [65, 83].

Mathematically, this amounts to choosing εl = Fl̃ in the Bose-Hubbard Hamiltonian,
Eq. (2.15), which then reads

Ĥ =−J
2

L−1

∑
l=1

(â†
l+1âl +h.c.)︸ ︷︷ ︸
ĤJ

+
U
2

L

∑
l=1

n̂l(n̂l−1)︸ ︷︷ ︸
ĤU

+F
L

∑
l=1

l̃n̂l︸ ︷︷ ︸
ĤF

. (2.26)

Here, L is the finite number of lattice sites and we chose l̃ =−L/2−1+ l, for even L, and
l̃ =−(L+1)/2+ l, for odd L, what corresponds to tilting around the central lattice site but
has no further physical implications. The tilting strength F includes the lattice spacing via
F = f d, where f is the static field, and, without loss of generality, we assume F ≥ 0 in the
following.
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The tilting of the lattice introduces a new energy scale to the system and can induce ex-
citations to higher Bloch bands, via Landau-Zener tunneling [121, 203], with the transition
probability [94]

|T |2 = exp
(
−π2

8
∆E2

F

)
. (2.27)

This effect has been studied both theoretically and experimentally in much detail, see for
example [46, 94, 102, 137, 174] and references therein. However, in order to guarantee
the validity of the single-band approximation that was employed in the derivation of the
Bose-Hubbard Hamiltonian, see Sec. 2.3.1, such transitions have to be negligible. We thus
find that for V0 = 10 the field strength has to be restricted to F < 30 [75, 112]. In the
experiment, lattice depths of V0 > 20 can easily be realized [78], what allows for even
stronger tilts without compromising the single-band approximation.

The global tilt is at the heart of this thesis and leads to interesting physical phenomena,
like the appearance of Bloch oscillations (for further details see Chapter 6). It also strongly
influences the spectral statistics, as we discuss in Chapter 3.

Note that the static field term induces a constant offset between the potential at adjacent
lattice sites and thus breaks the translational invariance of the Bose-Hubbard Hamiltonian,
which holds for εl = 0 in Eq. (2.15). In the Hamiltonian (2.26), it is therefore not possible to
apply periodic boundary conditions, that are frequently used in solid state physics, in order
to avoid finite size, i.e., boundary effects [9]. We rather have to require Dirichlet boundary
conditions such that the state vector vanishes on the boundaries of the finite lattice. A
possibility to adjust the Hamiltonian such that periodic boundary conditions can be applied,
will be discussed in the following section.

2.4.1 Time-dependent Bose-Hubbard Hamiltonian and periodic
boundary conditions

The dynamics of a quantum system is dictated by the Schrödinger equation

i∂t |ψ(t)〉= Ĥ|ψ(t)〉 , (2.28)

where |ψ(t)〉 is the state vector of the system and Ĥ is the Hamiltonian, in our case given by
the tilted Bose-Hubbard Hamiltonian Ĥ = ĤJ + ĤU + ĤF , Eq. (2.26). In order to transform
to the interaction representation with respect to the static field term ĤF , we apply the gauge
transformation [75, 114]

|ψ(t)〉= e−iĤF t |ψ̃(t)〉. (2.29)

This results in
i∂t |ψ̃(t)〉= ˆ̃H(t)|ψ̃(t)〉 (2.30)



2.4 The tilted Bose-Hubbard Hamiltonian 15

and
ˆ̃H(t) = eiĤF t(ĤJ + ĤU)e−iĤF t = eiĤF tĤJe−iĤF t + ĤU . (2.31)

The transformed Hamiltonian

ˆ̃H(t) =−J
2

L−1

∑
l=1

(â†
l+1âl eiFt +h.c.)+

U
2

L

∑
l=1

n̂l(n̂l−1) (2.32)

is now periodically time-dependent, with the Bloch period7

TB =
2π

F
, (2.33)

and reminiscent of the Hamiltonian of periodically driven systems.
The gauge transformation applied above does not yet affect the boundary conditions.

However, the transformed Hamiltonian ˆ̃H(t) no longer contains a constant potential offset,
but a time-dependent phase factor between adjacent lattice sites, that is independent of the
considered sites. The translational invariance, previously broken by the additional static
field, is thus recovered in the new representation. Consequently, we can enforce periodic
boundary conditions by adding the coupling term −J/2(â†

1âL eiFt + h.c.) between lattice
sites L and 1. This amounts to

ˆ̃Hp(t) =−J
2

L

∑
l=1

(â†
l+1âl eiFt +h.c.)+

U
2

L

∑
l=1

n̂l(n̂l−1), (2.34)

where we identify â(†)
L+1 = â(†)

1 . Note that, compared to (2.32), the sum in the tunneling term
now runs up to L, instead of L−1.

One ought to keep in mind, however, that this transformed system with periodic bound-
ary conditions is no longer simply the interaction representation of the initial Hamiltonian
with respect to the static field. This is immediately evident when back-transforming the
Hamiltonian ˆ̃Hp(t) via e−iĤF t ˆ̃Hp(t)eiĤF t what results in

Ĥp(t) = ĤJ− J
2
(â†

1âLeitFL +h.c.)+ ĤU + ĤF , (2.35)

and we find that the Hamiltonian is time dependent even in the rest frame of the lattice.
The transformed Hamiltonian with periodic boundary conditions ˆ̃Hp(t), Eq. (2.34), and,
accordingly, the back-transformed Hamiltonian Ĥp(t), Eq. (2.35), thus describe a different
physical system, e.g., bosonic particles trapped on an accelerated ring structure [3].

Periodic (Born-von Karman) boundary conditions are frequently used on grounds of
mathematical convenience in solid state physics [9]. This choice is justified in cases where

7The Bloch period TB fixes the periodicity of the Bloch oscillations which will be discussed in detail in
Chapter 6.
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the system under consideration is large and boundary effects are irrelevant, since the finite-
ness of the lattice would be manifest only on very large timescales. More precisely, peri-
odic boundary conditions mimic a periodic, infinite system where the primitive cell is given
by the original system. Furthermore, it can be numerically advantageous to use periodic
boundary conditions as will be discussed below.

We thus have to address the question under which circumstances the different systems,
that correspond to the different choices of boundary conditions described by the Hamiltoni-
ans (2.26) and (2.34), coincide. Or, in other words, when do the boundaries actually affect
the quantities under consideration, e.g., when are the boundaries probed by the dynamics?
Obviously, this strongly depends both, on the particular realization of the system and on
the quantities of interest. For example, in the limit of very small tunneling strength J�U ,
the exact form of the boundary conditions is essentially irrelevant, since the particles barely
move and thus hardly ever reach the boundaries of the lattice. Consequently, if we study
dynamical quantities, like, e.g., the velocity or the center of mass of the bosons on the lat-
tice, the influence of the boundary conditions will depend on the initial state and on the
values of the parameters J, U and F : The amplitude of the Bloch oscillations, for example,
is proportional to 1/F . This leads to a high sensitivity on the choice of boundary conditions
for small values of the tilting strength, where the bosons actually hit the edges of the lattice
and reflections can occur (see Chapter 6 for more details). For large values of the tilt F and
an initial wave packet that is localized in the middle of the lattice, the boundary conditions
though do not matter significantly. Whether or not results obtained either from Hamilto-
nian Ĥ, Eq. (2.26), or from Hamiltonian ˆ̃Hp(t), Eq. (2.34), can be carried over to the other
system therefore has to be checked depending on the specific problem at hand.

2.4.1.1 Quasimomentum basis

The translational invariance of ˆ̃Hp(t), Eq. (2.34), leads to the appearance of a new quantum
number, the quasimomentum κ, which can be used to construct a new set of basis vectors
that reveals the symmetry of the Hamiltonian, as we will see in the following. Note that, as
opposed to Secs. 2.2.2 and 2.2.3, where we referred to the continuous quasimomentum as
q, here we choose κ instead, in order to stress that in a finite lattice it can only take a finite
number of discrete values.

Starting from an arbitrary Fock state |s〉 of the form (2.22), the shift operator Ŝ, defined
via

Ŝ|n1,n2, ...,nL〉= |nL,n1,n2, ...,nL−1〉 , (2.36)

can generate at most L distinct Fock states. Using those states |s〉 which cannot be trans-
formed into each other with the help of Ŝ and are referred to as seed states, a new set of
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basis vectors [114]

|s,κ〉= 1√
M(s)

M(s)

∑
l=1

eiκl Ŝl|s〉 , (2.37)

can be constructed. Here, the cyclicity M(s) is the number of different Fock states that can
be generated from |s〉 under the action of the shift operator Ŝ, and the quasimomentum takes
the values κ = 2π · ( j−1)/M(s) with j = 1, . . . ,M(s).

By construction, each basis state |s,κ〉 is completely delocalized over the lattice. As a
consequence, any localized state is a superposition of different states |s,κ〉. For example,
a Fock state |n〉= | . . . ,0,n,0, . . .〉 with all particles on one particular site of the lattice is a
superposition of different states |s,κ〉 with distinct values of quasimomentum κ, where |s〉
is the seed state from which |n〉 can be constructed.

With the help of this new set of basis vectors, the Hamiltonian ˆ̃Hp(t), Eq. (2.34), becomes
block diagonal and decomposes into the direct sum

ˆ̃Hp(t) =⊕L
j=1

ˆ̃H(κ j)
p (t), (2.38)

where each operator ˆ̃H(κ j)
p (t) corresponds to one possible value of quasimomentum κ, given

by κ j = 2π · ( j−1)/L with j = 1, ...,L. Note that, in general, the blocks have different size,
since not every seed state contributes to every block of quasimomentum.

The decomposition (2.38) is important for the spectral analysis of the system, as will
become clear in Sec. 3.1. Moreover, since the dimension8

N =
(n+L−1)!
n!(L−1)!

(2.39)

of the Bose-Hubbard Hamiltonian’s Hilbert space grows exponentially, both with the boson
number n and the number L of lattice sites, this decomposition can lead to an enormous nu-
merical advantage in the simulation of the system dynamics: Each of the sub-Hamiltonians
ˆ̃H(κ j)

p (t) acts on a Hilbert space of dimension Nκ j ≈N /L.

2.4.2 Floquet operator
The time-evolution operator generated by the time-dependent Hamiltonian ˆ̃Hp(t) is given
by [79]

Û(t) = T exp

−i
tZ

0

ˆ̃Hp(t)dt

 , (2.40)

8The dimension of the Hilbert space that corresponds to the Bose-Hubbard Hamiltonian arises from combi-
natorics by placing L−1 boundaries (between the lattice sites) between n particles where both boundaries
and particles are indistinguishable.
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where T denotes time ordering. It is the formal solution of the Schrödinger equation for a
time-dependent Hamiltonian and maps the state of a quantum system at time 0 to its state
at time t, i.e., |ψ(t)〉= Û(t)|ψ(0)〉.

Since the Hamiltonian is itself periodic, the Bloch period TB defines the natural timescale
for the system dynamics. For such periodic boundary conditions in time we can write [160]

Û(t +TB) = Û(t)Û(TB) (2.41)

where the Floquet operator

Û(TB) = T exp

−i
TBZ

0

ˆ̃Hp(t)dt

 (2.42)

propagates the system over one period TB of the Hamiltonian. Eq. (2.41) implies Û(nTB) =
Û(TB)n, and thus knowledge of Û(TB) is sufficient if we are not interested in fine-grained
details of the time-evolution but rather in the general or long-time behavior of the system.

In the quasimomentum basis (2.37) also the Floquet operator has block diagonal form,

Û(TB) =⊕L
j=1Û (κ j)(TB), (2.43)

where some pairs of blocks are related to each other by time-reversal symmetry [114].

2.5 Mean-field description: Discrete Gross-Pitaevskii
equation

An alternative approach to describe ultracold bosons in optical lattices can be formulated
for large filling factors n/L� 1. In this regime, atom number fluctuations are negligible,
and a mean-field approach, as first developed by Bogoliubov for the homogeneous case
of a Bose-Einstein condensate in a single trap [20], is applicable. Since, in the present
work, we focus on the regime where the number of atoms per lattice site is small, n/L≈ 1,
we only give a short recollection here. For a thorough discussion see for example Refs.
[50, 122, 134].

In the ideal case of a noninteracting gas of bosons at temperature T = 0, all n particles
are described by identical single-particle wave functions φ(x). The wave function of the
condensate is then given by ψ(x) =

√
nφ(x), which can be related to the superfluid state

|ΨSF〉, Eq. (2.24), where all particles are in the Bloch state |φ(η=0)
q=0 〉. Including nonuni-

form and time-dependent configurations, one can generalize Bogoliubov’s original theory
by rewriting the bosonic field operators as [122]

ψ̂(x, t) = ψ(x, t)+δψ̂(x, t), (2.44)
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where ψ(x, t) = 〈ψ̂(x, t)〉 is a classical field, also referred to as macroscopic wave function
or order parameter. The atom density is ρ(x, t) = |ψ(x, t)|2, and the wave function is nor-
malized such that

R
dxρ(x, t) = n. The quantum fluctuations are given by δψ̂(x, t) and lead

to a depletion of the condensate mode by population of excited modes.
For a dilute, weakly-interacting gas with ρa3

s � 1, and upon neglect of the fluctuations,
the above ansatz together with Eq. (2.13) leads to the well-known Gross-Pitaevskii equation
[81, 82, 149]

ih̄∂tψ(x, t) =
[
− h̄2

2m
∇

2 +V (x)+Vadd(x)+
4πash̄2

m
|ψ(x, t)|2

]
ψ(x, t) . (2.45)

It has proven useful for the description of certain condensate properties,9 like, e.g., the
interference between condensates [7], but cannot explain quantum features, like, e.g., the
superfluid to Mott insulator transition [71, 78].

For sufficiently deep lattices, again, a tight-binding approximation can be applied. Analo-
gously to the quantum description, see Sec. 2.3.1, the condensate wave function is expanded
in the basis of Wannier functions of the lowest band:

ψ(x, t) =
√

n ∑
l

Al(t)w0(x− xl). (2.46)

Taking into account only onsite interaction and nearest-neighbor coupling, one obtains the
discrete Gross-Pitaevskii equation [134]

i∂tAl(t) =−J
2

(Al+1(t)+Al−1(t))+Un |Al(t)|2 Al(t)+ εlAl(t), (2.47)

for the complex amplitudes Al(t), where the parameters J, U , and εl are given by Eqs. (2.18)
to (2.20). This equation is also referred to as discrete nonlinear Schrödinger equation
[166, 175]. Furthermore, (2.47) is a special form of the discrete self-trapping equation
[58], which is not restricted to nearest-neighbor coupling and is frequently used in quantum
chemistry to describe bond excitations of small molecules.

Alternatively, Eq. (2.47) can be derived as the semiclassical limit (see for example [90])
of the Bose-Hubbard Hamiltonian (2.15), by assuming Un = const. and n→ ∞. In this
approach, the annihilation (creation) operators â(†)

l are replaced by the scaled operators

ĉ(†)
l = â(†)

l /
√

n, in order to scale out the global dependence of the energy on the particle

number n. For n� 1, the commutators [ĉl, ĉ
†
j ] = δl, j/n vanish and the ĉ(†)

l can be substituted
by c-numbers, what corresponds to neglecting the quantum fluctuations and leads to the
equations of motion (2.47).

9 The Gross-Pitaevskii equation (2.45) is also used in nonlinear optics to describe wave-propagation through
single-mode Kerr fibers [13, 70].



20 2 Ultracold bosons in optical lattices

Eq. (2.47) can be regarded as a set of L nonlinear oscillators that are linearly coupled.
Consequently, the system has L degrees of freedom. Alike the Bose-Hubbard Hamiltonian,
it has two constants of motion, namely the energy E and the total number of atoms, where
the latter condition translates into ∑l |Al|2 = 1. Hence, for L > 2 lattice sites and appropriate
values of the control parameters, the dynamics can become chaotic [90].

The different dynamical regimes of (2.47) have been thoroughly studied in various bran-
ches of physics, ranging from nonlinear optics to microcantilever arrays and Bose-Einstein
condensates in optical lattices. For a review see [57].
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The key target of the present thesis is to determine the impact of spectral chaos on the
dynamical behavior of ultracold bosons in tilted optical lattices. More precisely, we want to
understand how simulability, stability under perturbations, and dynamics of such systems
depend on the spectral structure of the underlying Hamiltonian. We thus need adequate
tools to differentiate chaotic and regular spectral regimes.

Classically, chaotic systems are distinguished by the fact that small deviations in the ini-
tial conditions grow exponentially as time elapses [127, 139]. As opposed to the regular
(or integrable) case, such systems have less constants of motion than degrees of freedom.
In quantum mechanics, chaos can either be characterized by semiclassics (periodic orbit
theory) [85, 168], or by random matrix theory [130]. The latter is a statistical approach
that covers universal features of the system under consideration, i.e., characteristics that are
independent of the specific Hamiltonian at hand, but rather result from global symmetry
properties [74, 85, 139, 168]. In the following, we will give a short introduction to uni-
versal spectral statistics. Thereafter, we will apply the theory to the (tilted) Bose-Hubbard
Hamiltonian in order to identify its chaotic parameter regime.

3.1 Introduction to universal spectral statistics
It was Wigner who first introduced the idea that the energy level spectra of complicated
systems could be treated statistically [196, 197] and that they should have similar properties
as the spectra of ensembles of random matrices [130]. Originally, the theory was developed
to understand complex nuclei. However, the “universality of the laws of level fluctuations”
has been conjectured to be applicable to the spectra of classically chaotic dynamical systems
by Bohigas, Giannoni, and Schmidt in 1984 [21]. Since the energy spectrum is one of
the best accessible quantities of a quantum system, random matrix theory is by now well
established in nuclear [74] and atomic physics [128], mesoscopics [104], and photonics
[169, 208].

Without any detailed knowledge on the system, random matrix theory predicts statistical
properties, such as, e.g., the distribution P(s) of the normalized level spacings

si =
Ei+1−Ei

∆(E)
(3.1)
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between neighboring energy levels Ei of a system. Here the Ei are sorted in ascending order
and ∆(E) is the local mean level spacing obtained from averaging over a few spacings
in the vicinity of Ei. The division by ∆(E) is also called unfolding of the spectrum and
serves to eliminate system specific properties.1 As evident from Fig. 3.1, the level-spacing
distribution P(s) is identical for a large variety of classically chaotic systems with a discrete
excitation spectrum, and follows the random matrix theory prediction (solid line). Whereas
Sinai’s billiard (a), a hydrogen atom in a strong magnetic field (b), and an excited NO2

molecule (c) represent quantum systems, the acoustic resonance spectrum of a Sinai-shaped
quartz block (d), the microwave spectrum of a 3D chaotic cavity (e), and the vibration
spectrum of a quarter-stadium shaped plate (f) have classical origin. All these systems are
described by some sort of wave equation with a discrete spectral component. This means
that the precise characteristics of a chaotic system are not relevant for the statistical features
of the spectrum. Instead, it suffices to consider global symmetry properties, like, e.g., time-
reversal invariance, and one can treat the matrix elements of the Hamiltonian as independent
random variables, i.e., relate the spectra to ensembles of random matrices [130]. Thus, the
level-spacing distribution P(s) is a universal feature that can be used to classify a system.

3.1.1 Chaotic Wigner-Dyson statistics

In order to specify random matrix ensembles, the invariance of physical predictions un-
der changes of the set of basis functions, and the independence of the individual matrix
elements has to be required [139, 168]. This can be shown to enforce Gaussian distribu-
tions of the entries of the Hamiltonian. Depending on the behavior under time-reversal, we
can distinguish three different universality classes,2 each with a distinct, universal level-
spacing distribution. Those are the Gaussian orthogonal ensemble (GOE) for systems with
time-reversal symmetry, the Gaussian unitary ensemble (GUE) for systems with broken
time-reversal symmetry, and the Gaussian symplectic ensemble (GSE) for systems with
time-reversal symmetry and spin-1/2 interactions, see for example [168].

Since the Bose-Hubbard Hamiltonian is invariant under time-reversal and does not con-
tain spin-1/2 interactions, we concentrate on the GOE ensemble in the following. In order
to derive the corresponding nearest-neighbor level-spacing distribution P(s), we here recall
Wigner’s surmise, that reproduces the exact distribution with less than two percent error
although being based only on 2× 2-matrices.3 In this case, the Hamiltonian Ĥ is repre-
sented by a real symmetric matrix H, a property that is preserved under the orthogonal

1For a more detailed discussion of the unfolding procedure see Appendix A.
2Altogether, there exist ten known universality classes [61, 88, 206].
3The exact distribution corresponds to the limit N→∞, where N is the dimension of the matrix (see Sec. 4.4

of Ref. [85]).
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Figure 3.1: Nearest-neighbor level-spacing distribution P(s) for different physical systems, taken
from [168]. Shown is the distribution for a Sinai billiard (a), a hydrogen atom in a strong magnetic
field (b), the excitation spectrum of an excited NO2 molecule (c), the acoustic resonance spectrum of
a Sinai-shaped quartz block (d), the microwave spectrum of a 3D chaotic cavity (e), and the vibration
spectrum of a quarter-stadium shaped thin plate (f). Only the first three cases belong to quantum
systems, however, in all cases a Wigner-Dyson distribution (solid lines) is found (all systems are
described by some sort of wave equation [168]). The dashed lines in panels (a) - (d) correspond to
the Poissonian distribution (3.11) of regular systems, compare Sec. 3.1.2.
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transformation H ′ = OHOT , where the orthogonal matrix fulfills OOT = 1. We thus write

H =
(

H11 H12

H21 H22

)
=
(

a+b c
c a−b

)
, with a,b,c ∈ R. (3.2)

This matrix has two eigenvalues, and their level spacing is

s = 2
√

b2 + c2 . (3.3)

Assuming a Gaussian distribution Wσ(b,c) with width σ for both, b and c, we obtain

PGOE(s) =
∞Z
−∞

∞Z
−∞

dbdc Wσ(b,c)δ

(
s−2

√
b2 + c2

)

= 2π

∞Z
0

dr r
1√
2πσ

exp
(
− r2

2σ2

)
δ(s−2r)

=
√

2π

2σ
s exp

(
− s2

8σ2

)
.

(3.4)

Normalization then results in the level-spacing distribution

PGOE(s) =
π

2
s exp

(
−π

4
s2
)

(3.5)

of the Gaussian orthogonal ensemble [130].
In particular, the GOE distribution implies that the distance between neighboring lev-

els never vanishes, since P(s)→ 0 for s→ 0, as already observed in Fig. 3.1. Thus, in
the chaotic regime, no crossings between energy levels occur under changes of a system
parameter. Instead, the levels always couple and therefore repel each other as depicted
schematically in Fig. 3.2 (b). In a large system with a high spectral density, this leads to
various overlapping avoided crossings of different size what is a clear indication of quantum
chaos. As opposed to that, in a regular system, typically true crossings between neighboring
levels occur, see Fig. 3.2 (a). In other words, in the integrable case, the levels can be labeled
by good quantum numbers and the character of the corresponding eigenstates is not affected
by changes of the control parameter. In the nonintegrable case, however, the inter-state cou-
pling destroys those good quantum numbers. This leads to a mixing of their properties in
the interaction region and is reflected in the statistical properties of the distribution P(s).

Since the distribution P(s) is to some extent sensitive to the specific binning that underlies
the histogram, it can be advantageous to consider the integrated level-spacing distribution
I(s) that counts the number of spacings smaller than s, and is obtained from P(s) via

I(s) =
sZ

0

P(s′)ds′. (3.6)
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Figure 3.2: Schematic sketch of the typical behavior of two adjacent energy levels of a large system
with a high spectral density, under variation of a suitable system parameter. (a) corresponds to a
regular or integrable system, and (b) to a nonintegrable or chaotic system. Whereas, in the former
case, the levels are completely uncorrelated and undergo a crossing, in the latter case, an avoided
crossing emerges.

For the GOE it reads

IGOE(s) = 1− exp
(
−πs2

4

)
. (3.7)

3.1.1.1 Circular ensembles

In the case of time-periodic systems, one can analyze the level-spacing distribution of the
eigenphases of the Floquet operator (see Sec. 2.4.2), in order to distinguish regular from
chaotic dynamics. In contrast to the Gaussian ensembles, here the eigenvalues are homoge-
neously distributed on the unit circle and thus the corresponding ensembles, that were first
introduced by Dyson [56], are called circular. As in the case of the Gaussian ensembles,
in order to define the circular unitary ensemble (CUE), the circular orthogonal ensemble
(COE) and the circular symplectic ensemble (CSE), the invariance of physical predictions
under changes of the set of basis functions has to be required. It is, however, not necessary
to impose the statistical independence of the matrix elements as an additional condition
(see Sec. 4.1.2 of Ref. [168]). Yet, the according level-spacing distributions are known to
be identical to the ones of the Gaussian ensembles [85, 130], and, in particular, PCOE(s) is
given by Eq. (3.5).

3.1.1.2 Symmetries

In our above reasoning, we assumed that the system under consideration is sufficiently
complex, i.e., it has less integrals of motion than degrees of freedom. However, any discrete
symmetry, as for example translational invariance, gives rise to a new quantum number and
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thus reduces the complexity of the system [168]. Mathematically, this can be expressed in
the following way: If Ĥ is invariant with respect to a symmetry relation, then there is an
associated operator R̂ that fulfills [

Ĥ, R̂
]
= 0. (3.8)

Since commuting operators can be diagonalized simultaneously, the matrix representation
of Ĥ can be considerably simplified when expressed in the eigenbasis of R̂. The Hamilto-
nian is then block diagonal,

H =

H(1) 0 · · ·
0 H(2) · · ·
...

... . . .

 , (3.9)

where each bloch H(i) corresponds to one eigenvalue of R̂, i.e., one good quantum number.
This procedure can be repeated for any symmetry, until we obtain a matrix representation
of Ĥ that cannot be further reduced. Each irreducible block then corresponds to one set of
conserved quantum numbers and thus the spectrum of the Hamiltonian Ĥ (and, if periodic,
of its Floquet operator) decomposes into completely uncorrelated sub-spectra.

In order to obtain meaningful results, any analysis of the spectral statistics thus has to be
restricted to one of the sub-Hamiltonians. For example, the translational invariance of the
time-dependent tilted Bose-Hubbard Hamiltonian with periodic boundary conditions leads
to a decomposition of ˆ̃Hp(t), Eq. (2.38), (and likewise of Û(TB), Eq. (2.43)) in blocks with
distinct quasimomentum κ j, see Secs. 2.4.1, and 2.4.2. The statistical analysis therefore
requires a diagonalization at fixed κ j.

3.1.2 Regular statistics

In the case of a completely integrable system which has as many constants of motion, i.e.,
good quantum numbers, as degrees of freedom, any eigenvalue makes up a symmetry class
of its own. The energy levels can then be assumed to be completely uncorrelated and the
nearest-neighbor level-spacing distribution is easily calculated [168]: The probability to
find an eigenvalue at a distance between s and s+ds from a given eigenvalue, but no other
eigenvalue in between, is P(s)ds. In order to calculate the distribution P(s), we divide the
interval [0,s] in N equal subintervals of length s/N. The probability to find no eigenvalue
in any of the subintervals then reads limN→∞(1− s/N)N , whereas the probability to find an
eigenvalue in the interval [s,s+ds] is given by ds. Combination of both leads to

PP(s)ds = lim
N→∞

(
1− s

N

)N
ds, (3.10)
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Figure 3.3: Level spacing distribution
for the first 100,000 levels of a rectan-
gular billiard, taken from [30]. The
dashed line corresponds to a Poisso-
nian distribution, Eq. (3.11).

what, after performing the limit, results in the Poissonian distribution,

PP(s) = exp(−s) (3.11)

for the normalized nearest-neighbor level-spacing distribution of regular systems [14]. It
has its maximum at s = 0 and thus clustering, as opposed to repulsion in chaotic systems,
is an important signature of integrability [85]. Poissonian statistics PP(s) have been ob-
served in a variety of regular systems, like, e.g., rectangular billiards [30], see Fig. 3.3. As
depicted schematically in Fig. 3.2 (a), neighboring levels in such systems typically cross
under changes of a suitable system parameter. The integrated level-spacing distribution, as
defined in Eq. (3.6), is then given by

IP(s) = 1− exp(−s) . (3.12)

Although Poissonian statistics is the generic case for integrable systems [14], the number
of exceptions to the expected behavior is rather large [168]. For example, the eigenvalues of
the harmonic oscillator form an equidistant sequence and thus the level-spacing distribution
is obviously not Poissonian. Furthermore, most physical systems are neither integrable in
a strict sense nor completely chaotic. The associated classical phase space is rather mixed
regular and chaotic and the nearest-neighbor level-spacing distribution interpolates between
Poissonian and Wigner-Dyson statistics. Different approaches to treat such situations have
been established, see for example [24, 25, 97, 98].
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3.2 Spectral statistics of the Bose-Hubbard system
We now investigate the spectral properties of the Bose-Hubbard Hamiltonian in the different
parameter regimes determined by J, U , and F , and in the following chapters relate them to
the simulability, stability, and dynamics of ultracold bosons in tilted optical lattices. We
shortly discuss the untilted lattice (F = 0) and then turn to the influence of the tilt F , which
defines our main interest. The tilted system will be analyzed for both Dirichlet and periodic
boundary conditions, and also its Floquet spectrum will be discussed.

In all following subsections, the mean level spacing ∆(E) – used to unfold4 the spectra
(see Eq. (3.1)) – is obtained from averaging the energy differences with a Gaussian weight.
The width of the latter is chosen such that the average density of states d̄(E), Eq. (A.2), is
sufficiently smooth. In order to obtain reliable statistics, we choose systems with a suffi-
ciently large Hilbert space dimension N (n ≈ L ' 7, N ' 1700). For the sake of a clear
presentation of crucial qualitative features, i.e., in order to be able to resolve the individ-
ual levels, we, however, plot spectra of relatively small systems (n ≈ L ≈ 4, N ≈ 35).
Moreover, since we are interested in the properties of the bulk of the spectrum (as will be
explained in the following subsection), we neglect the states at the edges of the spectrum in
our statistical analysis.

3.2.1 Spectrum of the Bose-Hubbard Hamiltonian
The spectrum of the Bose-Hubbard Hamiltonian for F = 0 was studied by various authors
[19, 34, 47, 53, 92, 93, 110, 116]. Here, we follow the analysis presented in Ref. [116],
for periodic boundary conditions. The latter renders the system translationally invariant
and the Hamiltonian decomposes into a direct sum of sub-Hamiltonians with uncorrelated
spectra, each belonging to one possible value of quasimomentum (see Secs. 2.4.1.1 and
3.1.1.2). Fig. 3.4 shows the entire spectrum of Ĥ, Eq. (2.15), in panel (a), as well as the sub-
block with fixed quasimomentum κ = 2π/5, panel (b), for n = 4 and L = 5, as a function
of U = 1− J, where U,J ∈ [0,1]. For both limiting cases of noninteracting (U = 0) and
immobile particles (U = 1), the Hamiltonian has a natural basis, as discussed in Sec. 2.3.2.
Those two sets of basis states are mutually orthogonal and are given by the Bloch states
(U = 0) and the Wannier states (J = 0), respectively. The regularity is reflected in the
appearance of degeneracies for U = 0 and U = 1, even when considering only a single
symmetry class, i.e., one value of κ, as in Fig. 3.4 (b). Note that in the case of dominant
interaction U ≈ 1, the individual lattice sites decouple. As a consequence, different seed
states |s〉, that are related to each other by anti-cyclic permutations of the lattice sites, are
degenerate and only few individual levels remain.

4The unfolding procedure is discussed in Appendix A.
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Figure 3.4: Energy spectrum of the Bose-Hubbard Hamiltonian Ĥ, Eq. (2.15), with periodic bound-
ary conditions as a function of U = 1− J, where U,J ∈ [0,1], for n = 4 and L = 5. Due to the
translational invariance, the Hamiltonian decomposes into a direct sum of sub-Hamiltonians with
completely uncorrelated spectra. Shown is both, (a) the entire spectrum and (b) the sub-block with
κ = 2π/5.

In contrast, whereas for U ≈ J there are many crossings between energy levels belonging
to different values of the quasimomentum (Fig. 3.4, (a)), no degeneracies are left when
considering only one value of κ (Fig. 3.4, (b)), what reduces the number of levels to Nκ j ≈
N /L, see Sec. 2.4.1.1. In this intermediate parameter regime, the energy levels depend
sensitively on the parameter U and repel each other. The Hamiltonian thus does not have a
natural basis, what is a prerequisite for quantum chaos. This leads to chaotic level statistics
[110, 116], as depicted in Fig. 3.5, which shows the numerically obtained, integrated level-
spacing distributions I(s) of the κ = 2π/7 block of a larger system with n = 6, L = 7, for
different interaction strengths U . That is, the distributions for U = 0.35 and 0.5 faithfully
follow the GOE distribution. On the contrary, for U = 0.1 and 0.9, the level statistics
exhibit level clustering what is an important signature of integrability as pointed out in
Sec. 3.1.2. For U ≈ 1, degeneracies between the energy levels predominate as discussed in
the preceding paragraph (see also Fig. 3.4). Thus, the system does not represent a generic
regular system and in Fig. 3.5, the numerically obtained distribution I(s) lies even above
the Poissonian distribution for U = 0.9. Moreover, we note that also for U = 0.1, it deviates
considerably from Poissonian statistics.
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Figure 3.5: Integrated nearest-neighbor level-spacing distribution I(s) of the Bose-Hubbard Hamil-
tonian Ĥ, Eq. (2.15), with periodic boundary conditions, for n = 6, L = 7, and U = 0.1 (green
diamonds), 0.35 (red circles), 0.5 (blue squares), and 0.9 (orange triangles), with U + J = 1. The
spectral analysis is restricted to the sub-block of the Hamiltonian with κ = 2π/7, i.e., Nκ≈ 1700. For
comparison, the GOE (solid line), Eq. (3.7), and Poissonian (dashed line), Eq. (3.12), distributions
are also shown.

Note that for U ≈ J, the sensitive dependence on the parameter U predominates for levels
with intermediate energies (see Fig. 3.4 (b)), whereas the states at the edges of the spectrum
do not show the same behavior. This arises from the fact that the states with the lowest en-
ergies have a large contribution from the tunneling coupling,

〈
ĤJ
〉� 〈ĤU

〉
, and are rather

delocalized on the lattice, while the states with the highest energies have large contributions
from the onsite interaction,

〈
ĤU
〉� 〈ĤJ

〉
, and correspond to localized states. Here, 〈·〉 de-

notes the expectation value with respect to a typical eigenstate from the corresponding part
of the spectrum. As a consequence, chaos is primarily developed in the spectrum’s bulk.
When evaluating the level statistics, we thus always neglect a few states at the edges of the
spectrum, while retaining at least 90% of the spectrum. Furthermore, we numerically con-
firmed that the level statistics do not depend on the particular choice of the quasimomentum
value κ.

From the above analysis, we infer that the untilted Bose-Hubbard Hamiltonian is chaotic
in a regime where onsite interaction and tunneling coupling are comparable. In the follow-
ing subsections, we investigate the influence of an additional tilt on the system’s spectral
properties.
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3.2.2 Spectrum of the tilted Bose-Hubbard Hamiltonian

We now analyze the spectrum of the Bose-Hubbard Hamiltonian Ĥ, Eq. (2.26), with an
additional static field term. Here, the translational invariance of the system is broken and
periodic boundary conditions are not applicable. In the spectral analysis, we thus have to
consider the entire spectrum since the Hamiltonian does not decompose into uncorrelated
sub-blocks.

Fig. 3.6 shows the evolution of the energy levels of the tilted Bose-Hubbard Hamiltonian
under changes of the static field strength F , which is also termed parametric level evolution.
The individual panels belong to different values of the onsite interaction U and the tunneling
coupling J, with fixed number of bosons n = 4 and lattice sites L = 5.

For (a) vanishing tunneling coupling J = 0, the tilted Bose-Hubbard Hamiltonian com-
mutes with the center-of-mass operator ∑

L
l=1 l̃n̂l , and the eigenstates do thus not change

their characteristic properties under variations of the tilt F . They are given by Wannier-
Fock states, with a well-defined number of particles on each site. Thus, the eigenenergies
depend linearly on the tilting strength, and the slope of the levels is given by the center of
mass of the corresponding eigenstate. As a consequence, the parametric spectrum consists
of intersecting straight lines featuring numerous degeneracies. Furthermore, the spectrum
can be split in five manifolds, each belonging to a specific class of Fock states on the lat-
tice: The uppermost manifold corresponds to states where all n particles are located on one
lattice site, i.e., states of the type | . . . ,n, . . .〉, where dots denote empty lattice sites. The
second manifold represents states where n−1 particles are located on one lattice site, i.e.,
states of the type | . . . ,1, . . . ,n−1, . . .〉, and so on for the other spectral manifolds. The total
number of manifolds that appear in the spectrum is determined by the number of distinct
values of the Fock states’ interaction energy, represented by the quantity

α =
1
2

L

∑
l=1

nl(nl−1) . (3.13)

Each manifold can thus be labeled by one particular value of α, which can also be consid-
ered a good quantum number in this regime. The different levels within one manifold arise
from different realizations of positions of the bosons on the L different lattice sites, while
keeping the interaction energy unchanged. For example, whereas the uppermost level cor-
responds to placing all bosons in the uppermost site of the lattice, the horizontal level of the
energetically highest manifold corresponds to placing all bosons in the site located in the
middle of the lattice. This decomposition of the spectrum implies that within one manifold
all levels are degenerate for F = 0. Since hopping between lattice sites is forbidden for
J = 0, no coupling between any two eigenstates occurs, and the levels perfectly cross under
changes of the parameter F .
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Figure 3.6: Spectrum of the tilted Bose-Hubbard Hamiltonian Ĥ, Eq. (2.26), as a function of the
static field strength F , for n = 4 and L = 5. The onsite interaction and the tunneling coupling are set
to (a) U = 1, J = 0, (b) U = 1, J = 0.1, (c) U = 1, J = 1, and (d) U = 0, J = 1.

For small small tunneling coupling J = 0.1 (Fig. 3.6 (b)), the eigenstates are not Wannier-
Fock states anymore, and the degeneracies start to get lifted, which is in particular visible
for F = 0, where the J = 0 manifolds are broadened (see inset of Fig. 3.6 (b)). However, the
regular behavior of the energy levels is still largely conserved, since there is little coupling
between eigenstates, what leads to only small avoided crossings between levels of different
manifolds.

For the case of comparable interaction and tunneling strengths U = J = 1 (Figs. 3.6 (c)
and 3.7), the manifold structure is basically destroyed, and α is no longer a good quantum
number:5 As particularly evident from Fig. 3.7 (c), the previously separated groups of
eigenstates overlap and couple strongly, what is reflected in numerous avoided crossings of
different size between the levels.

For vanishing onsite interaction U = 0, J = 1 (Fig. 3.6 (d)), the Hamiltonian’s eigenstates
are Bloch states and the system is again regular. This is reflected in the behavior of the
energy levels which exhibit many degeneracies and form basically equidistant groups.

5Note, however, the almost straight lines traversing the chaotic bulk in Fig. 3.6 (c) and Fig. 3.7 (b), respec-
tively. The corresponding eigenstates are referred to as solitonic eigenstates and will be the subject-matter
of Chapter 5.
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Figure 3.7: Spectrum of the tilted Bose-Hubbard Hamiltonian Ĥ, Eq. (2.26), as a function of the
static field strength F , for n = 4, L = 5, and U = J = 1 (compare Fig. 3.6, (c)). Different parts of the
spectrum are shown, in order to highlight the behavior of the levels at different tilting strengths.

So far, we have only discussed the parametric level evolution for 0≤ F ≤ 1, see Fig. 3.6.
However, for large values of F , the so-called Wannier-Stark ladder [75] emerges and the
system becomes regular, irrespective of U and J, see Fig. 3.7 (a). In this regime, the in-
dividual sites essentially decouple since the energy offset between neighboring sites is too
large to allow for tunneling, and the eigenstates are again given by Wannier-Fock states.
This suggests that, for U = J, the static field strength F can be used to tune between regular
and chaotic level statistics. This assumption is supported by Fig. 3.8, which shows the nu-
merically obtained nearest-neighbor level-spacing distributions for n = 6, L = 7, U = J = 1,
and different values of F : For small and intermediate tilts, F = 0.1 (orange diamonds) and
F = 1 (blue squares) (compare Fig. 3.7 (b) and (c)), the distributions closely follow the
expected GOE behavior. For a large tilt F = 3 (red circles), however, the integrated level-
spacing distribution is well approximated by Poissonian statistics, i.e., the systems turns
regular in the Wannier-Stark limit.

We note that we do not find GOE behavior for F = 0 (green triangles). The corresponding
distribution rather lies between the GOE and the Poissonian distribution, what seems to
contradict the observations for periodic boundary conditions, see Fig. 3.5. The reason for
this mismatch is that in the limit F → 0, the system is symmetric under reflections around
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Figure 3.8: Integrated nearest-neighbor level-spacing distribution of the spectrum of the tilted Bose-
Hubbard Hamiltonian Ĥ, Eq. (2.26), for n = 6, L = 7, U = J = 1 and F = 0 (green triangles), 0.1
(orange diamonds), 1 (blue squares), 3 (red circles). For comparison, the GOE (solid line), Eq. (3.7),
and Poissonian (dashed line), Eq. (3.12), distributions are also shown.

the central lattice site, a symmetry that was not taken into account in the statistical data
analysis presented here (see also Sec. 3.1.1.2).

3.2.3 Adiabatic spectrum of the time-dependent Hamiltonian

The transformation of the Bose-Hubbard Hamiltonian to the interaction representation with
respect to the static field term ĤF renders the Hamiltonian ˆ̃Hp(t) time dependent and allows
us to use periodic boundary conditions, see Eq. (2.34). As elaborated in Sec. 2.4.1.1, due
to the translational invariance, the Hamiltonian matrix then decomposes into uncorrelated
blocks of fixed quasimomentum κ, which can be diagonalized separately. Without loss of
generality, we focus on the κ = 0 block in the following discussion.

The eigenenergies of the Hamiltonian ˆ̃Hp(t), at fixed t, form the so-called adiabatic
spectrum, expressing the fact that they are time dependent and follow the temporal evolution
of the Hamiltonian. The corresponding eigenstates are termed adiabatic or instantaneous
eigenstates. In Fig. 3.9, the spectrum is shown as a function of the Hamiltonian’s phase
φ(t) = Ft = t/TB, for n = 4, L = 5, and for different values of the onsite interaction U . For
U = 0, the corresponding eigenstates are Bloch states, since in this case the Hamiltonian
solely consists of the tunneling term, ˆ̃Hp(t) = − J

2 ∑
L
l=1(â

†
l+1âl eiFt + h.c.). This leads to
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Figure 3.9: Adiabatic spectrum of the transformed, time-dependent Hamiltonian ˆ̃Hp(t), Eq. (2.34),
for n = 4 and L = 5, as a function of time, in units of the Bloch period TB which fixes the periodicity
of the Hamiltonian. Shown are the levels with quasimomentum κ = 0, for tunneling coupling J = 1
and onsite interactions (a) U = 0, (b) 0.1, and (c) 1.

the perfect cosine-like behavior of the individual energy levels in Fig. 3.9 (a) with perfect
crossings between them. Note that all levels have the same periodicity and differ only in
amplitude and phase shift. Moreover, due to the temporal symmetry of ˆ̃Hp(t), the spectrum
as a whole is symmetric around t/TB = 0.5. For an integer ratio n/L, the Hamiltonian is
periodic in time with the period TB/L, leading to additional symmetries in the spectrum, see
Ref. [114].

In the case of non-zero interaction strength U 6= 0, the nonlinearity induces couplings
between the Bloch states what leads to avoided crossings as time elapses. For small U = 0.1
(Fig. 3.9 (b)), the levels thus start to repel each other and small avoided crossings open up.

Further increase of the interaction strength to U = 1 results in even stronger coupling of
the eigenstates, and the formerly perfect cosine-like behavior of the time-dependent levels is
destroyed, as evident from Fig. 3.9 (c). In this regime, the energy levels undergo numerous
avoided crossings, what is a clear indication for quantum chaos as discussed in Sec. 3.1.1.
Nevertheless, the symmetry of the spectrum around t/TB = 0.5 is not affected, since the
Hamiltonian’s temporal symmetry is conserved.

Note that the adiabatic spectrum does not depend on the strength of the static field, since
F merely enters in ˆ̃Hp(t) via a time-dependent phase factor and the time-axis has been
scaled with the Bloch period TB = 2π/F . However, when considering the system’s dynam-
ics, the static field strength F determines the velocity with which the adiabatic spectrum
is traversed. In order to study the influence of the parameter F on the level statistics of
the transformed, time-dependent system, one thus has to investigate the Floquet operator
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Û(TB), Eq. (2.42), as will be done in the following subsection.
The set of eigenvalues and corresponding eigenvectors that form the adiabatic spectrum

can be interpreted as belonging to a set of fictitious classical particles moving in one di-
mension as time elapses [85, 135, 141]. Thus, the parametric level evolution is sometimes
also referred to as level dynamics. An initial excitation of one eigenstate, i.e., in a particular
level, will then spread through the system as a function of time. This spreading depends
on the interaction between the fictitious particles, i.e., the coupling between the energy lev-
els, and the strength of some external driving. Whereas in the noninteracting case U = 0,
Fig. 3.9 (a), the excitation will stay localized due to the perfect crossings, for nonzero inter-
action U 6= 0, Fig. 3.9 (b), (c), it will, in general, be distributed amongst the levels. For very
slow driving rates, this concept can also be applied to explain energy diffusion in a system
where, in the present case, the driving is given by the static field F . This approach will be
discussed in Sec. 6.3.

3.2.4 Floquet spectrum
We now turn to the Floquet operator Û(TB), Eq. (2.42). In the case of dominant interaction
U � J, which implies regular level statistics of the Hamiltonian (see Sec. 3.2.2), we can
neglect the tunneling coupling and approximate the Floquet operator by

Û(TB)≈ T exp

−i
TBZ

0

ĤU dt

 . (3.14)

Since the interaction part ĤU of the Hamiltonian is time independent, the operator’s eigen-
values are [114]

exp(−iETB) = exp(−iαUTB) = exp
(
−iαU

2π

F

)
, (3.15)

where the factor α, Eq. (3.13), is determined by the interaction energy of the basis states. In
the regime of dominant interaction, we thus expect the eigenphases to be linear functions
of 1/F , with slope proportional to α, which, in this regime, can also be regarded as a
good quantum number. In the following, we will investigate the eigenphases’ parametric
evolution as a function of 1/F . Due to the translational invariance of ˆ̃Hp(t), the statistical
analysis again requires a diagonalization at fixed quasimomentum, and, without loss of
generality, we choose κ = 0 here.

Fig. 3.10 shows the eigenphases of the Floquet operator for n = 3, L = 4 with fixed
onsite interaction U = 1, and different values of the tunneling coupling J, in units of π,
i.e., ETB/π = 2E/F , as a function of 1/F . Since we consider three particles on a lattice
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Figure 3.10: Spectrum of the κ = 0 block of the Floquet operator Û(TB), Eq. (2.42), for n = 3 and
L = 4 plotted in units of π versus 1/F . The onsite interaction is set to U = 1 and the tunneling
coupling is (a) J = 0.01, (b) 0.1, and (c) 1.

of four sites, the factor α can take three different values α = 0,1,3. For J = 0.01 (a), the
spectrum consists of three sets of basically perfectly crossing straight lines. Increasing the
tunneling strength to J = 0.1 (b) leads to avoided crossings between levels with distinct
slope and lifts the degeneracies between levels with identical slope in the small-J limit.
For comparable tunneling coupling and interaction strength J = U = 1 (c), the spectrum
features various avoided crossings of different size. This is a clear indication for quantum
chaos [114, 115] as we will confirm by an analysis of the spectral statistics: Fig. 3.11 shows
the nearest-neighbor level-spacing distribution of the Floquet operator’s eigenphases for the
κ = 0 bloch of a larger system with n = 8, L = 9, i.e., Hilbert-space dimension Nκ0 = 1430,
and U = J = 1. Here, the appropriate random matrix ensemble is the COE. As pointed
out in Sec. 3.1.1, the corresponding level-spacing distribution is identical to the one of the
GOE. In agreement with the analysis of the time-independent Bose-Hubbard Hamiltonian
in Sec. 3.2.2, the tilt F can induce a transition from the chaotic to the regular regime.

To illustrate the influence of the Hilbert-space dimension on the numerically obtained
statistics, in Fig. 3.11 we also plot the level-spacing distribution for the κ = 0 block of a
smaller system with n = 6 and L = 7, i.e., Nκ0 = 133. While the system is still chaotic, the
smaller Hilbert-space dimension induces deviations from the expected behavior which are
manifest in fluctuations around the universal distributions.
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Figure 3.11: Integrated nearest-neighbor level-spacing distribution I(s) of the Floquet operator’s
eigenphases of the κ = 0 block with n = 8, L = 9, U = J = 1, and F = 1 (blue squares) and 3
(red circles). The corresponding Hilbert-space dimension is given by Nκ0 = 1430. In order to
illustrate the influence of the Hilbert-space dimension on the numerically obtained statistics, the
distribution of a smaller system with n = 6, L = 7, Nκ0 = 133, and again F = 1 (green triangles) and
3 (orange diamonds) is also shown. For comparison, we also plot the GOE (solid line), Eq. (3.7),
and Poissonian (dashed line), Eq. (3.12), distributions.

3.3 The chaotic regime of the tilted Bose-Hubbard
Hamiltonian

The preceding analysis has demonstrated that the tilted Bose-Hubbard Hamiltonian Ĥ =
ĤJ + ĤU + ĤF , Eq. (2.26), exhibits chaotic spectral statistics, whenever the contribution
from onsite interaction and tunneling coupling are comparable in magnitude, i.e.,〈

ĤJ
〉≈ 〈ĤU

〉
, (3.16)

where 〈·〉 is the expectation value with respect to a typical state from the bulk of the spec-
trum. Moreover, we have seen that a tilting of the lattice can induce regular spectral statis-
tics (see Figs. 3.7 and 3.8) and, consequently, we have to require that the contribution from
the tilt

〈
ĤF
〉

does not dominate the system. In the following, we map out the chaotic regime
by the dependence of the spectral structure on the parameters J, U , F , n, and L.

We hitherto merely considered systems with approximately one atom per site, i.e., with
filling factors n/L≈ 1. Since the three terms in Eq. (2.26) depend differently on the boson
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number n and on the lattice size L, we perform a scaling analysis with respect to those two
parameters. Under the assumption that 〈n̂l〉 ≈ n/L, we find that〈

ĤJ
〉

∝ J ·n/L , (3.17a)〈
ĤU
〉

∝ U · (n/L)2 , (3.17b)〈
ĤF
〉

∝ F ·L · (n/L) . (3.17c)

Together with condition (3.16), this suggests that the system should be chaotic for

J ≈U ·n/L , (3.18)

as long as F ·L is smaller than some critical value that remains to be determined.
In order to facilitate the differentiation between regular and chaotic spectral regimes, we

use the normalized mean square deviation

∆
2 =

1
N

∞Z
0

ds( f (s)− I(s))2 , (3.19)

which quantifies the difference between the numerically obtained distributions I(s) and the
universal distributions f (s) as introduced in Sec. 3.1. The normalization factor N is chosen
such that the deviation between chaotic Wigner-Dyson and regular Poissonian universal
statistics equals unity. In the following, we consider the deviation of I(s) from Wigner-
Dyson, f (s) = IW (s), Eq. (3.7), and Poissonian, f (s) = IP(s), Eq. (3.12), statistics as a
function of the static field strength F and of the scaled static field strength F · L, respec-
tively. Pragmatically, we consider the point of transition from chaotic to regular spectral
statistics to be that value Ftr, or equivalently (F ·L)tr, where the two lines that correspond
to the deviation from GOE and Poissonian statistics intersect. We then regard all systems
to be chaotic for F < Ftr (or equivalently F ·L < (F ·L)tr), and as regular for F > Ftr (or
equivalently F ·L > (F ·L)tr).

Fig. 3.12 shows representative plots of ∆2 as a function of the static field strength F for
different values of the filling factor n/L and of the interaction strength U , at fixed tunneling
coupling J = 1. We consider filling factors n/L = 0.5, 1, and 2, with n = L = 5 (black solid
lines), n = 5, L = 10 (red dotted lines), and n = 10, L = 5 (blue dashed lines), respectively.
We start our analysis with U = 1, where the transition from chaotic to regular level statistics
was found in the interval 1 < Ftr < 3, for six bosons in seven lattice sites, i.e., n/L ≈ 1
(compare Fig. 3.8). This is consistent with the behavior for n/L = 1 (see black solid lines
in Fig. 3.12 (a)), where the transitions occurs at Ftr ≈ 1.7. The transition points of the three
individual systems considered here, however, differ strongly. In contrast, when scaling
the interaction strength such that U · n/L = 1 without changing the other parameters (see
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Figure 3.12: Mean square deviation ∆2, Eq. (3.19), of the numerically obtained nearest-neighbor
level-spacing distributions from GOE (thick lines) and Poissonian statistics (thin lines), as a function
of the static field F . The system size is given by n = L = 5 (black solid lines), n = 5, L = 10 (red
dotted lines), and n = 10, L = 5 (blue dashed lines), and the tunneling coupling is J = 1. Whereas
in (a) the interaction strength is U = 1, in (b) we fix U ·n/L = 1.

Fig. 3.12 (b)), we find that, for the two systems with L = 5, chaotic level statistics emerge
for practically the same values of F . Though, the chaotic regime of the system with L = 10
is restricted to smaller values of the static field F . Additional scaling of the abscissa with
the size of the lattice L, as suggested by Eq. (3.17c), renders all three considered systems
chaotic in the same range of F ·L, as spelled out by Fig. 3.13.

In order to determine whether this scaling holds in general, we now investigate the tran-
sition point from chaotic to regular spectral statistics in more detail. We plot (F ·L)tr versus
the Hilbert-space dimension N , Eq. (2.39), for several systems with U = 1 in Fig. 3.14 (a),
and with U ·n/L = 1 in Fig. 3.14 (b). We find that the regime of chaotic spectral statistics
slightly grows with N , in both cases. Overall, for U = 1, the chaotic regime is smallest for
n/L < 1 (blue circles) and largest for n/L > 1 (red triangles) while systems with n/L = 1
(black squares) lie in between. As predicted by the scaling argument (3.17a) - (3.17c), the
data scatters less for U ·n/L = 1, rendering systems with comparable Hilbert space dimen-
sion chaotic within the same parameter regime.

A few data points, however, do not follow the expected scaling: In Fig. 3.14 (a) we find
three systems with n/L > 1 that do not have a chaotic regime at all. This is indicated by the
transition point (F ·L)tr = 0 which here denotes that the systems are regular independent of
the static field strength F , including F = 0. In Fig. 3.14 (b), we can identify four systems
with n/L < 1 which also exhibit a significantly restricted range of chaotic spectral statis-
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Figure 3.13: Same as Fig. 3.12 (b), but here ∆2, Eq. (3.19), is plotted against the scaled static field
F ·L.

tics. In order to understand the origin of these deviations, we plot in Fig. 3.14 (c) the filling
factor n/L for all systems displayed in (a) and (b). In doing so, we find that the exceptions
correspond to those systems with the largest and smallest filling factors, respectively. The
first case, n/L & 4 and fixed U = 1, corresponds to the strongly interacting regime, where
the eigenstates are Wannier states and the spectrum is regular. Accordingly, if we choose
U . 0.25 such that U · n/L = 1, all three systems have the expected chaotic regime as ev-
ident from Fig. 3.14 (b). In the second case, the small filling factor n/L . 0.4, requires
U & 2.5 in order to achieve U · n/L = 1. Such large values of the onsite interaction, how-
ever, lead to a suppression of the mobility of the bosons since the tunneling coupling J is
effectively reduced. That is, the particles hardly move on the lattice what again induces
regular spectral statistics for relatively small values of F ·L already.

We thus confirm the predicted scaling behavior, i.e., that fixed values of J, U · n/L and
F ·L render different systems equivalent with respect to their spectral structure. More pre-
cisely, in order to obtain chaotic spectral statistics, we have to require J ≈ U · n/L and
F ·L < (F ·L)tr. This observation holds as long as the filling factor is not too small, i.e.,
n/L & 0.4. Moreover, the size of the chaotic regime also (weakly) depends on the Hilbert-
space dimension N , and large systems have slightly larger chaotic regions, i.e., the transi-
tion point (F ·L)tr is shifted to larger values when N increases.

The transition from chaotic to regular spectral statistics with increasing tilt F has also
been found in the analysis of the Floquet operator Û(TB), Eq. (2.42), with periodic boundary
conditions, see Fig. 3.11. In this case, F enters the operator in the form of a time-dependent
phase factor between neighboring lattice sites, that is identical for all pairs of adjacent sites.
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Figure 3.14: (a), (b) Point of transition (F ·L)tr from chaotic to regular spectral statistics, and (c)
filling factor n/L, as a function of the Hilbert-space dimension N , Eq. (2.39), for various systems.
In panel (a) we set U = 1 and in panel (b) we chose U · n/L = 1. The black squares correspond
to systems with filling factor n/L = 1, blue circles to systems with n/L < 1, and red triangles to
systems with n/L > 1.
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A scaling with the number of sites L of the form F ·L can thus not be expected. We rather
find that, whereas the condition J ≈ U · n/L still has to be satisfied, the transition from
chaotic to regular statistics occurs at a point Ftr that is independent of L.6 A descriptive
explanation for this observation is based on the adiabatic spectrum of the transformed, time-
dependent Hamiltonian: As explained in Sec. 3.2.3, here the tilt F represents the velocity
with which the adiabatic spectrum is traversed as time elapses. If F is large, the chaotic
structure of the spectrum as in Fig. 3.9 (c) is not resolved during time evolution. This
results in perfectly regular level statistics of the Floquet operator (see Fig. 3.11). On the
contrary, if F is sufficiently small, the irregular behavior of the energy levels is reflected in
chaotic level statistics of the Floquet operator.

6The mean-square deviations ∆2 from chaotic and regular universal statistics are shown for an exemplary
system consisting of eight bosons in nine sites in Fig. 4.9 (a).
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4 Simulability and complexity

The rapid growth of the Hilbert-space dimension N with the number of constituents is
a generic feature of many-body quantum systems. For example, in a seemingly “small”
Bose-Hubbard system of twelve bosons in a lattice of twelve sites we already have N =
1,352,078, see Eq. (2.39). Consequently, an exact solution can in general not be found and
efficient simulation techniques are needed in order to describe the resulting time evolution
accurately. One such method is the time-dependent density matrix renormalisation group
(t-DMRG) algorithm [163, 193, 194], that we discuss below and which is frequently used
for the description of ultracold bosons in optical lattices.

The possibility to describe a system accurately with manageable numerical effort is
termed simulability. Its natural opponent is complexity which is formally measured by
the shortest possible length of an algorithm designed to simulate the system at hand [111].
One can also define complexity in terms of spectral quantities like the level-spacing distri-
bution as discussed in Chapter 3. Here, we investigate how the complexity of a quantum
system affects its simulability [152, 179]. We perform our analysis based on the Bose-
Hubbard Hamiltonian with an additional static tilt, which serves as a paradigmatic example
of a many-body quantum system where the complexity can be adjusted at will via the ex-
perimental control of the Hamiltonian.

In the following, we first introduce the basic features of the adaptive t-DMRG algorithm
and then discuss the simulation of the dynamics in the different spectral regimes of the
Bose-Hubbard-Hamiltonan.

4.1 The adaptive time-dependent DMRG algorithm
DMRG methods were first developed by White in 1992 [193] to determine the ground
states of large 1D systems and have since then aided efficient simulation considerably. The
basic idea lies in the representation of the system state in terms of significantly fewer basis
states than the total dimension of the Hilbert space. In particular in perturbative regimes,
where a system has a natural basis, such techniques work very successfully, and the ground
states of 1D systems with Hamiltonians that incorporate only nearest-neighbor coupling
are typically well represented in this form [184, 186]. DMRG techniques have also been
implemented to tackle dynamics and have proven to work well for low-energy initial states
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[2, 49, 186, 195]. For a generic initial state, however, they may perform well only for short
times [164].

The method we apply here is based on Vidal’s algorithm [186, 187], the relation of which
to standard DMRG techniques was first brought forward in 2004 in Refs. [49, 195]. It can
be used to integrate the many-body Schrödinger equation on an adaptively truncated Hilbert
space for Hamiltonians that couple at most neighbouring sites, as will be detailed below.
The algorithm is applicable only for Dirichlet boundary conditions in 1D. Other algorithms
that can be generalized for periodic boundary conditions and 2D systems have also been
developed [183, 185].

In this section, the main features of the adaptive t-DMRG algorithm that are necessary to
understand the results presented in Sec. 4.2, will be discussed: We first introduce the spe-
cific state representation, which is based on the Schmidt decomposition and matrix product
states, and discuss the von Neumann entropy as a measure for the correlations in the system.
Then we explain how the simulation of the dynamics is performed. For further details on
the algorithm, see for example [48, 49, 195] and references therein.

4.1.1 State representation
In order to apply DMRG methods, the Hilbert space of the system at hand must be expressed
as the tensor product of local Hilbert spaces,

|ψ〉=
M

∑
i1,i2,...,iL=1

ci1i2...iL |i1〉⊗ |i2〉⊗ ...⊗|iL〉. (4.1)

Here the |il〉 are basis states in the local Hilbert spaces at the sites l which are assumed to be
ordered in a chain-like structure. For simplicity, we also assume that the dimension M of the
local Hilbert spaces is the same at all sites. In the case of the Bose-Hubbard Hamiltonian,
describing n particles on a lattice of L sites, this is easily achieved if we consider as local
Hilbert spaces the ones that correspond to the sites of the optical lattice, each of which has
dimension M = n+1, with the local basis given by the Fock basis states |0〉, |1〉, ..., |n〉, see
Fig. 4.1.

4.1.1.1 Schmidt decomposition

The actual state representation is then defined in terms of the Schmidt decomposition [162]
which can be derived from the singular value decomposition of matrices [136]. It defines
a particular, unique representation of a state |ψ〉 of any bipartite system, i.e., a system that
consists of two subsystems A and B. For the Bose-Hubbard Hamiltonian, such a bipartite
splitting corresponds to a separation of the lattice into two sublattices A and B between any
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Figure 4.1: Schematic diagram of a system described by the Bose-Hubbard Hamiltonian. Each site
of the lattice can be interpreted as a local Hilbert space with dimension n+1, where n is the number
of atoms on the lattice. A bipartite splitting corresponds to a separation in the two parts left and
right of the splitting between lattice sites l and l + 1, with Schmidt eigenvectors |φ[1...l]

αl 〉, Eq. (4.9),
and |φ[l+1...L]

αl 〉, Eq. (4.10), respectively.

two lattice sites l and l +1, see Fig. 4.1. The state decomposition then reads

|ψ〉=
χAB

∑
α=1

λα|φ[A]
α 〉⊗ |φ[B]

α 〉, (4.2)

where {|φ[A]
α 〉} and accordingly {|φ[B]

α 〉} form an orthonormal basis of Schmidt eigenvectors
for the two subsystems and

〈φ[A]
α |ψ〉= λα|φ[B]

α 〉. (4.3)

The Schmidt rank χAB counts the number of non-zero Schmidt coefficients λα and can be
used as a measure of entanglement [136]. For example, χAB = 1 implies that the state
|ψ〉 = |φ[A]〉⊗ |φ[B]〉 is a product state, what is tantamount to being separable. If χAB > 1,
the state |ψ〉 cannot be written as a product state and thus the two subsystems are entangled.
Consequently, the Schmidt coefficients λα describe the quantum correlations between A and
B. They fulfill the normalization condition ∑α λα

2 = 1 and determine the eigenvalues of the
reduced density matrices ρA = TrB(|ψ〉〈ψ|) and ρB = TrA(|ψ〉〈ψ|) of the two subsystems.
Here TrA,B denotes the partial trace over subsystems A, B, and we have

ρA|φ[A]
α 〉= λ

2
α |φ[A]

α 〉 (4.4)

and
ρB|φ[B]

α 〉= λ
2
α |φ[B]

α 〉 . (4.5)

The simulation of the time evolution with t-DMRG techniques relies on an approximation
of the quantum state |ψ〉 by effectively decimating the system’s Hilbert space. This is
realized by setting an upper bound χ on χAB and thus retaining only those eigenstates with
the largest Schmidt coefficients λα. The error in the final state is then proportional to the
sum of the squares of the discarded eigenvalues ∑

χAB
α=χ+1 λ2

α.
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Figure 4.2: Two different distribu-
tions of Schmidt coefficients λα with
identical von Neumann entropy S =
5.39, as defined by Eq. (4.6).

4.1.1.2 Von Neumann entropy

Both the entanglement between two subsystems A and B and the amount of information in
one of the subsystems can be quantified with the help of the von Neumann entropy [136]

S =−Tr [ρA log2ρA] =−Tr [ρB log2ρB] =−
χAB

∑
α=1

λα
2 log2 λα

2 . (4.6)

It provides a lower bound χ for the number of Schmidt coefficients λα that are required
for a representation of the state under consideration via χ ≥ 2S. Note, however, that fun-
damentally different distributions of Schmidt coefficients can have identical von Neumann
entropy, as depicted in Fig. 4.2 where S = 5.39 for both distributions. In the case of the
blue dashed distribution, taking into account 2S = 42 basis states, as suggested by the von
Neumann entropy, describes the system’s state accurately. On the contrary, in the case of
the black solid distribution, this truncation implies ∑

100
α=43 λ2

α ≈ 0.3 and thus appreciable
errors will be induced. Consequently, the von Neumann entropy only gives a first, rough
estimate for the appropriateness of a basis truncation. In order to determine whether or not
a truncation at a given value χ will describe the state accurately, we also have to consider
the distribution of Schmidt coefficients.

As mentioned above, the von Neumann entropy (4.6) also quantifies the entanglement
between the two subsystems A and B: For a separable state, we have Smin = 0 while for a
maximally entangled state it takes its maximum value Smax = log2 Nmin, where Nmin is the
Hilbert-space dimension of the smaller of the two subsystems A and B.



4.1 The adaptive time-dependent DMRG algorithm 49

4.1.1.3 Matrix product states

The key ingredient of the t-DMRG simulation protocol is the decomposition of the coeffi-
cients ci1i2...iL in Eq. (4.1) into a series of tensors [186],

ci1i2...iL =
χ1,...,χL−1

∑
α1,...,αL−1=1

Γ
[1]i1
α1 λ

[1]
α1 Γ

[2]i2
α1α2λ

[2]
α2 Γ

[3]i3
α2α3 ...Γ

[L]iL
αL−1 . (4.7)

The corresponding states are known as matrix product states [49, 163, 195] or finitely-
correlated states [64, 107]. Here, the Schmidt rank χl in general depends on the position l
in the chain, which is why the sum in Eq. (4.7) runs up to different values χl for each αl . The
λ[l] are first-order tensors, while the Γ[l] are either of third order, for l 6= 1,L, i.e., within the
chain of local Hilbert spaces, or of second order, for l = 1,L, i.e., at the edges of the chain.
This stems from the application of Dirichlet boundary conditions, which we have to enforce
in order to render the algorithm applicable. The strength of the state decomposition (4.7) is
that the Γ[l] and λ[l] can be efficiently updated during time evolution, as will be elucidated
in Sec. 4.1.2. Note that so far the representation of the state is exact and the tensors Γ[l] and
λ[l] replace the ML coefficients ci1i2...iL by approximately (M ·χ2

rep + χrep) ·L coefficients,
where χrep is a representative Schmidt rank for the system at hand. Whether or not this new
decomposition is advantageous, depends on the scaling of χrep with the system size. More
precisely, if χrep ∝ eL, which is the generic case for a quantum state, we have neither gained
nor lost anything. However, if χrep grows algebraically with the system size L, the state can
be represented efficiently in this new form. Especially the low-energy states of 1D lattice
and spin models have been found to be described efficiently in this form [163].

The tensors Γ[l] and λ[l] are constructed such that a bipartite splitting between any two
local Hilbert spaces in the chain (e.g., between site l and site l + 1 as in Fig. 4.1) leads to
the Schmidt decomposition

|ψ〉=
χl

∑
αl=1

λ
[l]
αl |φ[1...l]

αl 〉⊗ |φ[l+1...L]
αl 〉, (4.8)

with Schmidt coefficients λ
[l]
αl and Schmidt eigenvectors [49]

|φ[1...l]
αl 〉=

χ1,...,χl−1

∑
α1,...,αl−1=1

M

∑
i1,...,il=1

Γ
[1]i1
α1 λ

[1]
α1 Γ

[2]i2
α1α2λ

[2]
α2 Γ

[3]i3
α2α3...Γ

[l]il
αl−1αl |i1〉⊗ ...⊗|il〉 (4.9)

and

|φ[l+1...L]
αl 〉=

χl+1,...,χL−1

∑
αl+1,...,αL−1=1

M

∑
il+1,...,iL=1

Γ
[l+1]il+1
αlαl+1 λ

[l+1]
αl+1 Γ

[l+2]il+2
αl+1αl+2...Γ

[L]iL
αL−1|il+1〉⊗ ...⊗|iL〉.

(4.10)
Here {|φ[1...l]

αl 〉} and {|φ[l+1...L]
αl 〉} again form an orthonormal basis for the subsystems which

are now given by all the sites left and all the sites right of the splitting, respectively.
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4.1.2 Time evolution
In the following, we discuss how, based on the state representation introduced above, the
many-body Schrödinger equation can be integrated. Since we consider Hamiltonians that
exhibit at most nearest-neighbor coupling, only operations that act either on a single local
Hilbert space or on the local Hilbert spaces of two neighboring sites need to be considered.
In this context, it is convenient to express the Hamiltonian as

Ĥ = ∑
l even

F̂l,l+1 + ∑
l odd

Ĝl,l+1, (4.11)

where F̂l,l+1 (Ĝl,l+1) is the Hamiltonian that links sites l and l + 1 for even (odd) l. Con-
sequently, [F̂l,l+1, F̂j, j+1] = [Ĝl,l+1, Ĝ j, j+1] = 0 ∀l, j, while F̂l,l+1 and Ĝ j, j+1 only commute
if they do not share a site. For small time steps δt, the time-evolution operator can then be
expressed as

Û(δt) = e−iĤδt = ∏
l even

e−iF̂l,l+1δt
∏
l odd

e−iĜl,l+1δt +O(δt2) , (4.12)

which allows us to compute the time evolution of a state by repeated application of the two-
site time-evolution operators e−iF̂l,l+1δt and e−iĜl,l+1δt . Here, the error stems from neglecting
the commutator [F̂l,l+1, Ĝ j, j+1], when F̂l,l+1 and Ĝ j, j+1 share a site. It can be reduced by
applying higher order expansions [171, 172]. For longer times t = n · δt we then have
|ψ(t = n ·δt)〉= Û(δt)n|ψ0〉.

4.1.2.1 Single-site and two-site operations

The Hamiltonian F̂l,l+1 (Ĝl,l+1) incorporates both, single-site operations Ul and two-site op-
erations Vl,l+1, which will be discussed in the following. In the case of the Bose-Hubbard
Hamiltonian, they correspond to the onsite interaction and to the tunneling coupling, re-
spectively.

A single-site operation acts only on the local Hilbert space of one particular site l, and
has the form

Ul =
M

∑
i, j=1

U i
j|il〉〈 jl|. (4.13)

Since it generates a local, unitary time evolution that does not affect the correlations be-
tween any two subsystems, it does not have an impact on the Schmidt decompositions.
Consequently, in the state decomposition (4.7) only the tensor Γ[l] has to be updated.

On the contrary, two-site operations

Vl,l+1 =
M

∑
k,n,i, j=1

V i j
kn|il jl+1〉〈klnl+1| , (4.14)
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Figure 4.3: Sketch of a system described by the Bose-Hubbard Hamiltonian as in Fig. 4.1. By re-
peated Schmidt decompositions between sites l−1 and l, l and l +1, and l +1 and l +2, respectively,
the state of the system |ψ〉 can be expressed such that an operation that acts on the two neighboring
sites l and l +1 can be efficiently implemented as described in Sec. 4.1.2.1.

act simultaneously on the local Hilbert spaces of two neighboring sites l and l + 1.1 In
order to identify the tensors Γ and λ that are affected under action of the operator Vl,l+1, we
express the state |ψ〉 such that the two lattice sites under consideration are separated from
the rest of the system. To this end, we apply three Schmidt decompositions, i.e., we spilt
the lattice between sites l−1 and l, l and l +1, and l +1 and l +2, respectively, as depicted
in Fig. 4.3. This leaves us with the representation

|ψ〉=
χl−1,χl ,χl+1

∑
αl−1,αl ,αl+1=1

M

∑
i, j=1

λ
[l−1]
αl−1 Γ

[l]i
αl−1αl λ

[l]
αl Γ

[l+1] j
αlαl+1λ

[l+1]
αl+1 |φ[1...l−1]

αl−1 〉⊗ |il〉⊗ | jl+1〉⊗ |φ[l+2...L]
αl+1 〉 .

(4.15)
Application of the operator Vl,l+1 then leads to

|ψ′〉=
χl−1,χl+1

∑
αl−1,αl+1=1

M

∑
i, j=1

Θ
i j
αl−1αl+1|φ[1...l−1]

αl−1 〉⊗ |il〉⊗ | jl+1〉⊗ |φ[l+2...L]
αl+1 〉, (4.16)

where

Θ
i j
αl−1αl+1 =

χl

∑
αl=1

M

∑
k,n=1

V i j
knλ

[l−1]
αl−1 Γ

[l]k
αl−1αl λ

[l]
αl Γ

[l+1]n
αlαl+1λ

[l+1]
αl+1 . (4.17)

We thus find that the two-site operation Vl,l+1 only requires updating the tensors Γ[l], Γ[l+1],
and λ[l], and therefore can be efficiently implemented. Note that as opposed to the case of
single-site operations, here also the Schmidt coefficients λ

[l]
αl which describe the correlations

between the two subsystems are affected.

1Note that we focus on operations that do not affect the two sites at the edges of the chain, i.e., we consider
l ∈ [2,L−2]. The expressions for l = 1,L−1 are, however, analogous to the ones discussed here.
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4.1.2.2 Simulation of the time evolution

As explained in Sec. 4.1.1.1, in the simulation of a quantum system’s time evolution with
t-DMRG techniques, the Hilbert space is truncated by setting an upper bound χ on the χl

in representation (4.7). In standard t-DMRG techniques, the basis states are chosen at the
beginning of the simulation and are kept fixed during time evolution.

On the contrary, in the adaptive t-DMRG algorithm, the considered Hilbert space is dy-
namically adapted in the course of the propagation2 by choosing the basis states |φα〉 ac-
cordingly. To this end, after application of a two-site time evolution operator e−iF̂l,l+1δt (or
e−iĜl,l+1δt), a new Schmidt decomposition is performed. This results in

|ψ̃〉= e−iF̂l,l+1δt |ψ〉=
χ·M
∑

αl=1
λ̃

[l]
αl |φ̃[1...l]

αl 〉⊗ |φ̃[l+1...L]
αl 〉 , (4.18)

where the tilde indicates that in general both basis states and coefficients will have changed
due to the operation. Note that the formerly χ Schmidt coefficients λ

[l]
αl have been replaced

by χ ·M Schmidt coefficients λ̃
[l]
αl . Subsequently, always those χ eigenstates with the largest

weight in the decomposition are retained and the remainder is discarded [49, 195].
The above approximation is good if, at each instance of time, the decreasingly ordered λ

[l]
αl

decay rapidly as a function of their index αl , for every possible bipartition. It thus implicitly
relies on the assumption that the entanglement between any two parts of the system is never
too large. Or, in other words, if the entanglement grows rapidly with time, a simulation of
the system will be difficult, whereas if it is bounded during the dynamics, we can compute
the dynamics over long time periods without accumulating appreciable errors.

4.2 Simulation of the many-body dynamics
In what follows, we analyze the efficiency of the adaptive t-DMRG algorithm to simulate
the dynamics in the different spectral regimes of the tilted Bose-Hubbard Hamiltonian iden-
tified in Sec. 3.2. To this end, we monitor both the dynamically generated many-particle en-
tanglement, given by the von Neumann entropy S, Eq. (4.6), and the distribution of Schmidt
coefficients λα. We stress that the Bose-Hubbard system serves as a paradigmatic physi-
cal model to relate the simulability of a system to its complexity expressed by regular or
chaotic universal level statistics of the underlying Hamiltonian. Since universality means
that the specific form of the Hamiltonian is irrelevant and only global symmetry properties
have to be considered [74, 85, 168] (see also Sec. 3.1), the results presented here directly
carry over to other generic many-body quantum systems.

2Furthermore, going beyond Refs. [186, 187], conserved quantities, such as the total particle number n in
the Bose-Hubbard Hamiltonian, are taken into account in order to minimize numerical noise [48, 49].
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4.2.1 Creation of many-particle entanglement

For comparable contributions of onsite interaction and tunneling coupling, the Bose-Hubbard
system exhibits a transition from chaotic to regular spectral statistics when the strength of
the static tilt is varied. For a filling factor n/L ≈ 1, this translates into J ≈U , see Sec. 3.3.
In order to analyze the applicability of the t-DMRG algorithm in the different spectral
regimes, we thus simulate the dynamics for U = J = 1 while varying F . As a reference,
we also consider dominant interaction, U = 10 and J = 1, since in this case the system is
regular, irrespective of the static field strength.

The numerical data presented in the following are generated for a system that consists
of n = 8 bosons initially placed in m = 8 neighboring sites, in the center of a lattice with
L = 64 sites, and Dirichlet boundary conditions.3 The initial states are of the form

|ψ0〉= |n1,n2, . . . ,n8〉, (4.19)

i.e., they are Wannier-Fock states as given by Eq. (2.22). We consider random realizations
of occupation numbers nl on the single sites, while limiting the maximal number of bosons
on one individual lattice site to two, with ∑l nl = 8. This choice guarantees that all initial
states have comparable energies that lie within the bulk of the tilted Hamiltonian’s spectrum.
We can thus average the dynamical data over different initial configurations. Note that for
the states considered here, at t = 0 there is no entanglement between any two subsystems
and therefore the von Neumann entropy S, Eq. (4.6), vanishes for all bipartite splittings,
as can be observed in Fig. 4.4. In particular, this means that all correlations, reflected by
S > 0, are generated during the dynamics. In the simulation, the number of retained Schmidt
coefficients is set to χ = 100, what results in a maximal possible entropy Smax = 6.64.

The dynamically generated many-particle entanglement, measured by the average von
Neumann entropy S, is plotted as a function of the static field strength F and time, in units
of the Bloch period t/TB, in Fig. 4.4. Red regions correspond to large and blue regions to
small values of the entropy. We can distinguish fundamentally different regimes of entan-
glement growth, depending on the relative strength of the system’s control parameters: On
the one hand, for dominant onsite interaction, U = 10 (Fig. 4.4 (a)), the entanglement grows
only slightly for all values of F . On the other hand, when onsite interaction and tunneling
coupling are comparable, U = 1 (Fig. 4.4 (b)), there is a clear transition from slow to rapid
entanglement growth when the strength of the static field is decreased. This means that in
the former case, we expect the system to be simulable for long time periods, whereas in the
latter case a simulation of the system will be difficult for small values of the tilt.

3The numerical data obtained from t-DMRG simulations was provided by Andrew Daley in the context of a
collaboration, see also Ref. [179].
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Figure 4.4: Dynamically generated many-particle entanglement measured by the average von Neu-
mann entropy S, Eq. (4.6), as a function of F and t/TB for J = 1 and (a) U = 10, (b) U = 1. Red
regions correspond to large and blue regions to small values of S. The data is extracted from t-DMRG
simulations of eight particles initially localized in eight neighboring lattice sites which are placed in
the middle of a lattice consisting of 64 sites. The average is taken over ten different separable initial
states.

For the average data shown in Fig. 4.4, we always consider that particular bipartite split-
ting that results in the largest entanglement entropy, as this eventually limits the efficiency
of the algorithm, as discussed in Sec. 4.1. However, as evident from Fig. 4.5, other bipar-
titions also yield comparable results. Given that the initial states are located on lattice sites
28 through 35, we find that any splitting in the middle of the initially occupied part of the
lattice yields almost the same von Neumann entropy.

In order to facilitate the identification of the entropy’s asymptotic behavior, Fig. 4.6 (a)
shows the von Neumann entropy S as a function of time for different values of the static
field strength F . We find that for small times t/TB < 0.25, S grows rapidly for all parameter
sets. This behavior can be attributed to the initial states (4.19) considered here: They are
not eigenstates of the Hamiltonian and thus the bosons first adapt to the particular physical
situation that is determined by the values of the parameters J, U , and F . Indeed, when
considering as initial state the ground state of the untilted lattice, the rapid growth of the
entropy for short times does not occur. Subsequently, for dominant onsite interaction U =
10, the von Neumann entropy grows only little and, independently of the tilt, stays well
below the maximal value Smax = 6.64 during the simulation. For U = 1, on the other hand,
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Figure 4.5: Example of the von Neumann entropy S, Eq. (4.6), for a single initial state |ψ0〉 =
|1,1,0,2,0,1,1,2〉, at t/TB = 4.8, when the state evolution has reached its asymptotic behavior
(compare Fig. 4.6 (a) and the corresponding discussion in the text). S is plotted as a function of
the position l of the bipartite splitting, i.e., the splitting is taken between sites l and l + 1. The
interaction strength is U = 1 (blue thick line), 10 (black line) and the static field is set to F = 1.5.

the behavior strongly depends on the strength of the static field: For a moderate value
F = 2.0, there is only little growth, which increases for F = 1.5, and is largest for a small
tilt F = 1. In all those cases where the entanglement stays small (say S . 3) during the
simulation, the state evolution quickly reaches its asymptotic behavior, a basically constant
and small slope of S(t) that allows a simulation over long times. Note that for U = F = 1,
the saturation-like behavior of S is a numerical artifact of the truncation at χ = 100. In this
case, the simulation only approximates the real values of S from below, i.e., at a given time
t/TB & 1.5, S grows when increasing χ, as we numerically confirmed by varying χ.

In Fig. 4.6 (b), we show the von Neumann entropy as a function of F at a fixed time
t/TB = 4.8, where the state evolution has reached its asymptotic behavior. This supports the
conjecture that for dominant interaction U = 10, the system can be effectively represented in
terms of matrix product states, independent of the static field strength. Note that the increase
of S for small values of F corresponds to a regime where the von Neumann entropy has
reached its asymptotic behavior, as evident from Fig. 4.6 (a), and thus efficient simulation
is not hindered by this behavior. The situation would be different if we considered even
smaller values of the tilt: As mentioned already in Sec. 2.4.1, then the spatial extent of the
atoms’ motion is larger and they travel into initially unoccupied regions. Consequently, for
very small static fields, we expect simulations to be hard irrespective of U . As opposed
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Figure 4.6: Average von Neumann entropy S, Eq. (4.6), (a) as a function of time, in units of the
Bloch period t/TB, and (b) as a function of the static field strength F . The system is chosen as in
Fig. 4.4, with interaction strength U = 1 (blue thick lines) and 10 (black lines). In panel (a), the
time evolution of S is plotted for different values of the static field, namely F = 1.0 (solid), 1.5
(dotted), 2.0 (dashed), respectively. Panel (b) shows S at time t/TB = 4.8, when the state evolution
has reached its asymptotic behavior for the given basis size.

to the strongly interacting case U = 10, for comparable strength of onsite interaction and
tunneling coupling, U = J = 1, an accurate description of the system with t-DMRG will
only be feasible4 for F & 1.3.

As detailed in Sec. 4.1.1.2, the von Neumann entropy only yields a first estimate on the
simulation efficiency. A more precise measure is provided by the distribution of average
Schmidt coefficients λα. Since we choose separable initial states |ψ0〉, Eq. (4.19), at t = 0
only one Schmidt coefficient contributes. We are thus interested in the dynamically gener-
ated distributions as depicted on a semi-logarithmic scale for t/TB = 4.8 in Fig. 4.7. Shown
are the average values λ2

α as a function of their index α, sorted in descending order. They
can be divided into two fundamentally different categories: For strong interaction U = 10,
only few comparably large coefficients dominate the distribution, which shows a rapidly
diminishing tail. As in the case of the von Neumann entropy, this observation is indepen-
dent of the static field strength F . We can observe the same kind of peaked distribution
for weak interaction U = 1 and medium static field strength F = 2. However, for F = 1.5,
there is a transition to a broader distribution that exhibits a slowly decaying tail with many

4Note that for U = 1 and F . 1.0, the saturation in Fig. 4.6 (b) is again caused by the choice of finite χ = 100
in the simulation.
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Figure 4.7: Distribution of average Schmidt coefficients λα as a funtion of their index α on a semi-
logarithmic scale. Shown are the squares λ2

α of the χ = 100 largest average Schmidt coefficients,
sorted in descending order. The system parameters are those of Fig. 4.4, with U = 1 (blue thick
lines) and U = 10 (black lines), and different values of the static tilt F = 1 (solid), 1.5 (dotted), 2
(dashed), at t/TB = 4.8.

non-negligible coefficients. For even weaker static field F = 1, the distribution has changed
its character completely and basically all Schmidt coefficients have the same magnitude.
Analogously to the saturation of the von Neumann entropy in Figs. 4.6 (a) and (b), the
rapid decrease of the Schmidt coefficients beyond χ = 80 for F = 1 is a numerical artifact
caused by the basis truncation at χ = 100.

What are the implications of two such distributions on the possibility to truncate the ba-
sis? Obviously, a narrow distribution allows us to effectively reduce the Hilbert space by
dropping the major portion of Schmidt basis states, and a reliable simulation by t-DMRG
is feasible. On the other hand, if the distribution is broad, basically all Schmidt coeffi-
cients have to be taken into account. Dropping even a few basis states will already induce
considerable errors in the simulation, and the t-DMRG algorithm will not be efficient.

4.2.2 Breakdown of simulability in the chaotic regime
The above analysis gives evidence that the efficiency of the t-DMRG method strongly
depends on the control parameters of the system. In the following, we will investigate
whether this behavior is reflected in the spectral properties of the underlying Hamiltonian,
i.e., whether the simulability of the system can be related to parameter regimes of regular
and chaotic universal level statistics.

Here, we present t-DMRG simulations of eight bosons initially placed in eight neigh-
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Figure 4.8: Example of the single lattice sites’ populations after a simulation time t/TB = 4.8, for
different parameter choices. The interaction strength is U = 1 (blue symbols), 10 (black symbols)
and the static tilt is set to F = 1.0 (circles), 1.5 (triangles), 2.0 (squares). The initial state |ψ0〉 is
chosen as in Fig. 4.5, and the associated site population (for t = 0) is depicted by red stars.

boring sites in the center of a lattice of length 64 with Dirichlet boundary conditions. One
would be tempted to compare the efficiency of the dynamical simulations to the spectral
properties of that very system. Instead, we investigate the spectrum of the Floquet oper-
ator5 Û(TB), Eq. (2.42), of eight particles in nine lattice sites. Why is this comparison
reasonable? First of all, we note that due to the large size of the lattice as compared to the
extent of the initial states, the boundaries are not probed during the dynamics. The system
is effectively infinite and thus can be mimicked by a smaller lattice with periodic boundary
conditions (see discussion in Sec. 2.4.1). What is now the adequate extent of this smaller
lattice such that it reflects the features of the large system faithfully? In order to answer
this question, we note that for F & 1, the particles hardly spread on the lattice during the
considered timescale. This is evident from Fig. 4.8, where we depict the population on the
single sites at t/TB = 4.8 for U = 1,10 and F = 1.0,1.5,2.0, for the same single initial state
as in Fig. 4.5. In particular, the slight spreading is basically independent of both static field6

F and interaction strength U . Thus, a restriction to nine lattice sites in the spectral analysis
is justified in the entire parameter regime considered here.

Moreover, although the spectral statistics for a fixed set of parameters J, U , and F in

5For further details on the Floquet operator’s spectrum and its spectral statistics see Sec. 3.2.4.
6As discussed above, this would be different if we considered also smaller values of the tilt. The resulting

difficulty of efficient simulations is indicated also in Fig. 4.7, where the distribution of Schmidt coefficients
gets slightly broader for F = 1, even when U = 10.
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principle depend on the bosons number n and the lattice size L (see Sec. 3.3), it changes
marginally for n = 8 and L = 9±1, since the filling factor n/L is only shifted by about 10%.

We now evaluate the integrated nearest-neighbor level-spacing distribution I(s) (as intro-
duced in Eq. (3.6) of Sec. 3.1) of the Floquet operator’s eigenphases for U = 1 and 10, and
fixed quasimomentum κ = 0. To this end, Fig. 4.9 (a) shows the mean square deviation ∆2,
Eq. (3.19), of the numerically obtained distributions from (chaotic) Wigner-Dyson, IW (s),
Eq. (3.7), and (regular) Poissonian statistics, IP(s), Eq. (3.12), as a function of the static
field strength F . For U = 10, the system is regular as it obeys Poissonian statistics, irre-
spective of the static field strength F . In agreement with the analysis of Sec. 3.3, for U = 1,
a sudden and pronounced transition in the level statistics occurs: Whereas for F . 1.3,
the deviation from Wigner-Dyson statistics is negligible, the spectrum turns Poissonian for
F & 2. In between, there is a transition region for 1.3 . F . 2, where the level-spacing
distribution changes its character.

The observed sharp transition between chaotic and regular level statistics is directly re-
flected in the applicability of a basis truncation, expressed by the von Neumann entropy
S, Eq. (4.6), which is depicted in Fig. 4.6 (b). However, as discussed in Sec. 4.1.1.2, S
only serves as a first estimate for simulabilty and we thus also consider the number of
Schmidt coefficients N(ε) larger than a given threshold ε, which is depicted for ε = 0.01 in
Fig. 4.9 (b). In the regular regime (U = 10, and U = 1 with F & 2) typically less than 20%
of the coefficients exceed the threshold ε, whereas in the chaotic regime (U = 1, F . 1.3)
essentially all of them contribute. That is, whereas the dynamics can be efficiently simu-
lated in the regular regime, simulability breaks down in the chaotic regime since any basis
truncation will rapidly lead to substantial errors in the time evolution as reflected in the sat-
uration of N(ε) for F . 1.3. An accurate description of the system’s dynamics then requires
large numerical efforts that scale exponentially, much as the system size itself.

4.3 Conclusion

The above observations have also been verified for a larger system with 20 particles initially
placed in 20 lattice sites, where an exact treatment of the dynamics becomes impractica-
ble. Moreover, also simulations with initial states that bear a finite amount of quantum
correlations,7 expressed by a non-vanishing von Neumann entropy, affirm the intricacy of
simulations in the chaotic regime. An example for such states is provided by the untilted
Hamiltonian’s ground state. Thus, the breakdown of simulability with t-DMRG, i.e., a

7Highly correlated initial states will be hard to simulate even when the Hamiltonian that generates the dy-
namics is regular, since right at the start of the simulation they prevent an efficient basis truncation. Ex-
amples of such states are eigenstates of the Bose-Hubbard Hamiltonian in its chaotic parameter regime.
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Figure 4.9: (a) Mean square deviation ∆2, Eq. (3.19), of the distribution of spacings between neigh-
boring eigenphases of the Floquet operator, and (b) average number of Schmidt coefficients larger
than the threshold value ε = 0.01. Both quantities are plotted versus the static field strength F . In
panel (a), the Floquet operator Û(TB), Eq. (2.42), has fixed quasimomentum κ = 0 and corresponds
to eight particles on nine lattice sites with periodic boundary conditions. Depicted are the deviation
from regular Poissonian (dashed lines) and chaotic Wigner-Dyson statistics (solid lines), for U = 1
(blue thick lines) and 10 (black lines). The data shown in panel (b) again corresponds to a simula-
tion time t/TB = 4.8. The system is chosen as in Fig. 4.4, with interaction strengths U = 1 and 10,
respectively.
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broad distribution of dynamically generated Schmidt coefficients, is an unambiguous indi-
cator of the underlying complexity of the many-particle spectrum [179], reflected by the
chaotic universal spectral statistical as shown in Fig. 4.9 (a).

That is, while t-DMRG is a powerful tool to simulate, e.g., the dynamics of quantum sys-
tems in the regime of regular spectral structure, there can be parameter regimes where the
spectrum of exactly the same system follows chaotic statistics and a faithful representation
of the system state spans essentially the entire Hilbert space. Numerical simulations are
then plagued by highly unfavorable scaling. More precisely, we conjecture that the distri-
bution of dynamically generated Schmidt coefficients of typical states in spectrally regular
and chaotic systems exhibits universal features8, in close analogy to the energy level distri-
butions of regular and chaotic quantum systems.

Furthermore, it is known that universal spectral statistics in turn imply universal proper-
ties of the associated eigenstates of generic quantum systems [85]: In the chaotic regime,
they are delocalized in any generic basis and, vice versa, any generic basis state is de-
localized in the eigenbasis of the Hamiltonian. This implies that generic initial states evolve
to states broadly distributed in any basis, under the time evolution induced by a quantum
chaotic Hamiltonian. Thus, the breakdown of simulability in the chaotic regime, which we
have demonstrated for the t-DMRG algorithm, holds in general for renormalization algo-
rithms also in higher dimensions [183].

As universality means that the specific form of the Hamiltonian is not relevant but only its
global symmetry properties matter, we stress again that our results obtained via the Bose-
Hubbard system can be directly carried over to generic many-body quantum systems even
in more than one dimension [74, 128]. Another example from atomic physics is provided by
the three body Coulomb problem of the helium atom. The accurate dynamical simulation
of the latter remains a challenge even for modern computational physics [128], for the very
same spectral reasons as identified here.

8An exact formula for the distribution of Schmidt eigenvalues for the so-called fixed-trace ensemble, a
random matrix theory model for compound quantum systems, has been derived in Ref. [120].



62 4 Simulability and complexity



5 Robust states in the chaotic regime

In the preceding chapters we repeatedly witnessed that the inter-atomic interaction can in-
duce complex behavior in the Bose-Hubbard system, reflected in chaotic level dynamics.
One important consequence for the experiment is that the resulting, sensitive dependence
of the system on its control parameters renders the quantum dynamics essentially uncon-
trollable. However, it is also known that, in a regime of globally chaotic level dynamics,
quantum mechanical systems can feature robust structures, opening new perspectives for
robust control [27, 35].

Here we will identify such robust structures that persist in the chaotic regime of the tilted
Bose-Hubbard Hamiltonian and find that their robustness is induced by the nonlinearity.
The associated eigenstates exhibit strong localization properties on the lattice [182] and are
dynamically stable against external perturbations [181].

5.1 Identification of robust structures
We now detect these robust structures by direct investigation of the parametric level evolu-
tion of the Bose-Hubbard Hamiltonian under changes of the applied tilt. Subsequently, we
discuss their characteristic properties and explain the underlying mechanism responsible
for their generation [182].

5.1.1 Parametric level evolution

In Chapter 3 we have found that the parametric level evolution of the tilted Bose-Hubbard
Hamiltonian Ĥ, Eq. (2.26), sensitively depends on the system parameters. Specifically,
for comparable onsite interaction and tunneling coupling, U = J, the energy levels undergo
numerous avoided crossing of different size under variation of the static field. This behavior
can nicely be seen in Fig. 5.1, where we consider a system that consists of three bosons in
eleven lattice sites. As already observed in Sec. 3.2.2, there are several regular structures
in the spectrum, represented by almost perfect straight lines that traverse the irregular bulk.
As opposed to the majority of levels from the bulk, which couple strongly, these regular
structures undergo only very tiny avoided crossings and in particular do not change their
slope under variations of the tilt F . In analogy to solitonic water waves that keep their
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Figure 5.1: Parametric level evolution of the tilted Bose-Hubbard Hamiltonian Ĥ, Eq. (2.26).
Shown is the energy spectrum as a function of the tilt F for n = 3 bosons on L = 11 lattice sites
for fixed onsite interaction and tunneling coupling U = J = 1. In (b) a magnification of the region
that is marked in (a) is shown. The red circle and the black square depict the single solitonic and the
single irregular state which are investigated in more detail in Fig. 5.3.

shape when running through other waves [156], we call the states corresponding to the
regular structures solitonic states. They should however not be considered as propagating
in real space, they rather propagate through the chaotic bulk of the spectrum evolving with
a fictitious time given by the tilting strength F [202].

Since the system under consideration has a relatively small filling factor n/L = 3/11
which was not studied in detail in Sec. 3.3, we verify that it exhibits a parameter range of
chaotic level structure in Fig. 5.2. We find that for F . 0.6, the spectrum features universal
Wigner-Dyson statistics1, i.e., the solitonic states indeed emerge within the Hamiltonian’s
chaotic regime.

1For F → 0 the system is symmetric under reflections around the central lattice site, and thus its nearest-
neighbor level-spacing distribution is not given by GOE statistics in this limit, see also discussion at the
end of Sec. 3.2.2.
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from GOE and Poissonian statistics,
as a function of the static field strength
F . The system is chosen as in Fig. 5.1.

5.1.2 Characteristics of the solitonic eigenstates
Similar to the behavior of all energy levels in the case of vanishing coupling J = 0, see
Fig. 3.6 (a), the energies of the solitonic states have a constant slope over a wide range of
the tilt. This, according to the Hellmann-Feynman theorem [68]

∂E
∂F

=
〈

∂Ĥ
∂F

〉
=

〈
L

∑
l=1

l̃n̂l

〉
, (5.1)

defines a constant center of mass of the many-particle wave function. Here 〈·〉 represents
the expectation value with respect to a single solitonic state. Consequently, we expect these
states to show characteristic localization properties of the particles on the lattice, that are
invariant under changes of the tilt, as we elaborate in the following.

Since the behavior of the solitonic states resembles the Hamiltonian’s eigenstates for
J = 0, we now consider the representation of the solitonic states in the Wannier-Fock basis.
The modulus squared |ci|2 of the associated expansion coefficients of one such state (red),
and of a typical chaotic state (black) is shown in Fig. 5.3 (a) for the same system parameters
as before, and for an exemplary value of the tilt, F ≈ 0.145. Both states are also highlighted
in the spectrum in Fig. 5.1 (b). The dimension of the Hilbert space is N = 286, and while in
the chaotic case many Fock basis states contribute, in the solitonic case only few coefficients
are nonzero. Here the maximal weight is given by |ci|2 ≈ 0.6. It corresponds to the state
where all particles are located on the single lattice site l = 2, i.e., the Fock state |0,3,0, ...〉.
The next two coefficients, that are already significantly smaller and have the values |ci|2 ≈
0.1 and |ci|2 ≈ 0.075, belong to the states |1,2,0, ...〉 and |0,2,1,0, ...〉, respectively. That
is, the other non-vanishing coefficients belong to Fock states with a similar center of mass,
while Fock states with a markedly different center of mass are not occupied. Given the
above, we conjecture the solitonic states to be highly localized, both in the Fock basis and
on the lattice itself. In particular, we also expect to find as many solitonic states as lattice
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Figure 5.3: Weights |ci|2 of two eigenstates of the Hamiltonian Ĥ, Eq. (2.26), in the Fock basis, at
F ≈ 0.145, for the same system parameters as in Fig. 5.1, and Hilbert-space dimension N = 286.
Shown are a solitonic state (red) and a nearby state from the chaotic bulk of the spectrum (black).
Both states are also marked in the spectrum in Fig. 5.1 (b).

sites L, i.e., eleven solitons in the present system.
The localization of a state |ψ〉 in a given basis {|b j〉} can be measured by the inverse

participation ratio (IPR), see, e.g., Ref. [85],

IPR(|ψ〉) =
N

∑
j=1
|c j|4 , (5.2)

where N is again the Hilbert-space dimension and the c j are the expansion coefficients of
the state, such that |ψ〉= ∑

N
j=1 c j|b j〉. The IPR represents the inverse number of basis states

occupied by the state |ψ〉 and thus takes the limiting values one, for a basis state, and 1/N ,
for superpositions of all basis states with equal weight. From Fig. 5.4, where the L = 11
states with the largest individual IPR in the Wannier-Fock basis are plotted in red, on top of
the energy spectrum, we find that the solitonic states are indeed localized in the Fock basis.

For a quantitative comparison, the average IPRs of all solitonic and of the remaining
non-solitonic states are shown in Fig. 5.5. The latter changes only little with the static field
strength and features a slight increase with growing F . This is due to the onset of Stark
localization, where the eigenstates are given by Fock basis states and which is expected
for large tilts [28, 75]. In the case of the solitonic states, the behavior is dramatically
different: For F . 0.12, there is an increase of the average IPR, followed by a plateau
for 0.12 . F . 0.27, and a subsequent decrease for F & 0.27. Comparison with Fig. 5.4
reveals that the plateau region is identical to the region where the straight lines exist within
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Figure 5.4: Spectrum of the Hamiltonian Ĥ, Eq. (2.26), as a function of F , for the same system
parameters as in Fig. 5.1 (b). The L = 11 eigenstates with the largest IPR, Eq. (5.2), in the Wannier-
Fock basis are plotted in red.

the irregular bulk. For F . 0.12, their energies lie above the energies of the remaining
states, and for F & 0.27 they start to dissolve again. For an even stronger tilt F & 0.45, the
average IPR features a slight increase with growing F . Whereas this latter behavior is again
compatible with Stark localization, the behavior for F . 0.45 can not be explained with the
expected formation of well-localized Wannier-Stark states for growing F . As compared to
the non-solitonic states, the average IPR is enhanced by about an order of magnitude, and
thus manifests the pronounced localization of the solitons in the Fock basis.

Note that the fluctuations of the average IPR of the solitonic states in Fig. 5.5 can be
attributed to the influence of the (small) avoided crossings that locally affect the levels. Due
to the limited number L = 11 of solitonic levels, they are not washed out by the averaging.
In the case of the non-solitonic states the average is taken over significantly more states,
and the IPR is therefore a smooth function of F .

For a quantification of the localization of the states on the lattice, we use the average
maximal population (AMP) on a single site:

AMP =
〈

maxl〈ψ|n̂l|ψ〉
n

〉
. (5.3)

Here, |ψ〉 is an eigenstate of the Hamiltonian Ĥ, Eq. (2.26), and the average 〈·〉 is again
taken over all the solitonic and the remaining non-solitonic states, respectively. The max-
imum of the populations on the L individual sites of the lattice, for each basis state, is
denoted by maxl〈ψ|n̂l|ψ〉. If all particles are located on one and the same lattice site, the
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Figure 5.5: Averaged IPR in the Fock basis (black), Eq. (5.2), and AMP (red), Eq. (5.3), of the
eigenstates of the Bose-Hubbard Hamiltonian Ĥ, Eq. (2.26), as a function of the tilt F . Shown are
the data for the L = 11 eigenstates with the largest individual IPR (solid lines), as well as the average
over all other eigenstates (dashed lines). The system parameters are chosen as in Fig. 5.1 (b).

AMP takes its maximal value one, since we normalize with respect to the boson number n.
In contrast, if the bosons are equally distributed on the lattice, the AMP is given by 1/L,
which, for the system considered here, equals approximately 0.09.

As evident from Fig. 5.5, which shows the AMP for both sets of states, in the case of the
solitonic states, typically more than 60% of the atoms are located on a single lattice site.2

Moreover, the regime where the solitonic states show an enhanced AMP exactly coincides
with the regime of an enhanced average IPR. This behavior renders them very different
from the non-solitonic states which do not feature the same particle clustering. Here, the
particles are distributed over the lattice, and for F → 0 the AMP is close to its minimum
value. Note that the onset of Stark localization is again reflected in a slight increase of the
curve for increasing F .

In conclusion, we find that the L = 11 solitonic states are indeed highly localized, both,
in the Fock basis and on the lattice itself. Whereas the localization in the Fock basis alone
does not allow for an immediate physical interpretation, the localization on the lattice has
a clear physical meaning: The solitonic states are well localized on a specific site of the
lattice, and hardly change their location under variations of the tilt. This defines a clear

2The fluctuations of the AMP of the solitonic states are again due to the small sample of states averaged
over.
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The energy levels belonging to the solitonic and
irregular initial states |ψ0〉, that are considered
in the dynamics, are marked with red lines and
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experimental signature and also helps to understand the underlying physical mechanism for
their existence and robustness [182] which will be discussed Sec. 5.3.

5.2 Dynamical stability under driving
The small coupling between solitonic and irregular states, reflected by solely tiny avoided
crossings between them, induces an enhanced stability under perturbations, as we will now
evidence by exposing the system to a time-dependent tilt [181]. More precisely, we consider
linear driving of the form

F(t) = Fi +Rt (5.4)

from an initial value F(0) = Fi of the tilt to a final value F(∆t) = Ff , with variable rates

R =
Ff −Fi

∆t
. (5.5)

We consider the dynamics of both, a set of solitonic and irregular initial states |ψ0〉, that lie
in the same energy range within the bulk of the spectrum, as shown in Fig. 5.6. The stability
of the two kinds of states is then characterized in terms of the average IPR, Eq. (5.2), in two
different bases. That is, we consider the initial (fixed) eigenbasis, see Figs. 5.7 (a) and (c),
and the instantaneous eigenbasis, i.e., the Hamiltonian’s time-dependent eigenbasis that
follows the evolution of the static field F(t), see Fig. 5.7 (b). For the initial and final values
of the tilt we chose Fi = 0.1 and Ff = 0.4, thus not driving the system beyond the interval
where the solitonic states exist.
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When considering the IPR in the fixed eigenbasis at Fi, see Fig. 5.7 (a), we find that a
large rate R = 1 basically corresponds to the diabatic regime, where the system cannot adapt
to the modified conditions, on the timescale of the driving. Hence, the IPR does almost not
change, and remains close to unity. Consequently, also a difference between solitonic and
irregular initial states can hardly be observed. For smaller rates R = 0.1 and 0.01, the
average IPR decreases for both sets of initial states. However, in the case of the solitonic
states, the drop is one order of magnitude less than in the case of the irregular states. Since
the IPR in the initial (fixed) basis gives a measure of how far a given state is driven away
from its initial form, we find that the solitonic states are much more stable under dynamical
changes of the static field.

A complementary information can be obtained from the IPR in the instantaneous ba-
sis, which measures how close, at each instance of time, the time-evolved state |ψ(t)〉 =
Û(t)|ψ0〉 is to a system eigenstate. Here, Û(t) is the time-evolution operator. That is, if
there was no coupling, i.e., no avoided crossings, between the system eigenstates under
changes of the parameter F (as fulfilled for J = 0, see Fig. 3.6 (a)), the IPR would exhibit
the constant value unity. Since this is not the case here, for both kinds of states a broad-
ening of the initial preparation due to transitions to other states occurs, as can be seen in
Fig. 5.7 (b). Nevertheless, there is again a striking difference between the two sets of initial
states: The IPR of the irregular states decays rapidly, reflecting the sensitive dependence of
the system eigenstates on any parameter, in this case the tilt F , in the chaotic regime. In
contrast, the solitonic states’ IPR is significantly more stable, since the levels undergo only
tiny avoided crossings with other states.3 Moreover, we find that the decay of the IPR in
the instantaneous eigenbasis, as opposed to the decay of the IPR in the initial eigenbasis, is
essentially independent of the rate R.

It is possible to find such scaling also in the case of the fixed basis at Fi. For short times,
the inverse participation ratio

IPR(|ψ(t)〉) =
N

∑
j=1
|〈ψ j|Û(t)|ψ0〉|4 , (5.6)

is essentially determined by the survival probability

P(t) = |〈ψ0|Û(t)|ψ0〉|2 , (5.7)

since, for j 6= 0, we have |〈ψ j|Û(t)|ψ0〉|2' 0. According to quantum linear response theory

3Note that whereas the IPR in the initial basis, Fig. 5.7 (a), (c), is a smooth function of F , the IPR in the
instantaneous basis, Fig. 5.7 (b), fluctuates rather strongly. This can be attributed to the fact that while
the former corresponds to a fixed basis, the latter is evaluated in a basis that depends sensitively on the
parameter F .
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Figure 5.7: Dynamical evolution of the average IPR, Eq. (5.2), as a function of the tilt F , for
various rates R, Eq. (5.5). The initial and final values of the tilt are given by Fi = 0.1 and Ff = 0.4,
respectively. The average is taken over a set of solitonic (solid lines) and irregular initial states
(dashed lines) that are marked in the spectrum in Fig. 5.6. We monitor the IPR in both, (a) the initial
(fixed) eigenbasis and (b) the instantaneous eigenbasis. In the case of the fixed eigenbasis, also
1− IPR(t) is plotted, versus the scaled time tsc = t

√
R in panel (c). The dash-dotted line has slope

four, and is drawn to guide the eye.
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[40], we expect a super-Gaussian decay

P(t)∼ exp[−R2t4] (5.8)

for linearly driven chaotic systems. This suggests a scale invariance of P(t) and therefore
of the IPR with respect to the scaled time tsc = t

√
R. This can indeed be observed in

Fig. 5.7 (c), where the same behavior is found for both sets of initial states. However, the
absolute decay is again much smaller for the solitonic states. Furthermore, for a very small
driving rate R = 0.01, the IPR exhibits oscillations around tsc = 1, as also observable in
Fig. 5.7 (a). These oscillations are likely to result from the regularity of the integrable part
of the spectrum.

5.3 Generating mechanism
In the previous subsection, we numerically confirmed the dynamical stability of the soli-
tonic states, as suggested by their parametric level evolution. In the following, we identify
the mechanism responsible for their stability and, furthermore, we discuss the reason for
their destruction for increasing values of the tilt F .

In order to understand why the solitonic states, distinguished by the fact that the majority
of atoms are located on one lattice site, are eigenstates of the system in the chaotic regime
at all, remember the evolution of the parametric level dynamics with increasing tunneling
coupling J (Fig. 3.6 of Sec. 3.2.2): For J = 0, the system’s eigenstates are Wannier-Fock
states and there is no coupling between any two levels, as obvious from Figs. 3.6 (a). In-
creasing J then couples individual levels, leading to avoided crossings between them, see
Figs. 3.6 (b), (c) and 5.1. However, the stronger a state is localized on the lattice, the less
it is affected by the tunneling term, since its energy is dominated by the contribution from
the onsite interaction. In particular, this implies that states where all particles are located on
a single lattice site remain basically unaffected for values of J where less localized states
are already modified considerably, and thus they remain approximate eigenstates of the
Hamiltonian.

The existence of eigenstates of a many-body quantum system with all particles localized
close to each other, despite the presence of repulsive interactions U , was experimentally
first demonstrated for pairs of atoms [200]. Beyond that, theoretical investigations [101,
148, 192] also revealed the existence of three-body bound states [145, 178, 189]. Such
repulsively-bound many-particle states are formed as a consequence of the energy mismatch
between onsite interaction and maximal kinetic energy that can be realized in the lowest
energy band of the lattice. That is, due to the (strongly) repulsive onsite interaction, the
energy of the bound states lies above the rest of the spectrum, i.e., they are energetically
isolated.



5.3 Generating mechanism 73

In contrast, a striking feature of the solitonic states is their appearance in the chaotic
regime of the Hamiltonian and the fact that they run through the irregular bulk of the spec-
trum. That is, their energies lie in the same interval as the energies of the chaotic eigenstates,
and energetic isolation can be ruled out as a possible generating mechanism. In fact, we do
observe that energetically allowed transitions between solitonic eigenstates and states from
the chaotic bulk are strongly suppressed. In order to understand this, consider the following:
A change of the static field F induces transitions between the eigenstates of the system. The
time-independent part of the transition amplitude Tf i from some initial state |ψi〉 to some
final state |ψ f 〉, is given by the corresponding matrix element of the center-of-mass operator
∑

L
l=1 l̃n̂l , which is proportional to the static term in the Hamiltonian (2.26),

Tf i = 〈ψ f |
L

∑
l=1

l̃n̂l|ψi〉 . (5.9)

As shown above, in the case of an irregular eigenstate, the atoms are basically distributed
over the entire lattice, whereas a special characteristic of the solitonic states is the localiza-
tion of the majority of particles on one particular lattice site. Thus, the solitonic eigenstates
are “close” to eigenstates of the center-of-mass operator. That is, for |ψi〉 being a solitonic
state, we can approximately write ∑

L
l=1 l̃n̂l|ψi〉 ∝ |ψi〉, while for non-solitonic states this is

not the case. As a result, the transition amplitude Tf i between a solitonic state and a chaotic
state becomes very small since both are system eigenstates. Physically, the transition from
a solitonic to an irregular state requires the relocation of essentially all atoms on the lattice.
However, both, simultaneous tunneling of several atoms and the movement of a single atom
over more than one lattice site, correspond to higher-order-processes in the Bose-Hubbard
Hamiltonian and are therefore suppressed for typical lattice configurations. The observed
localization of the bosons on individual lattice sites in a solitonic state hence induces a sup-
pression of energetically allowed transitions, leading to solely tiny avoided crossings with
states from the chaotic bulk, that leave the solitons’ slope essentially unaffected.

Our above discussion illustrates the mechanism responsible for the appearance and ro-
bustness of the solitonic states. Let us now discuss the major reason for their destruction
with increasing tilt (see Fig. 5.4). Under the assumption that a given solitonic state can
be approximated by a Fock state of the form | . . . ,0,n,0, . . .〉, it follows that a first-order
tunneling process only couples it to the state | . . . ,0,n− 1,1,0, . . .〉. Quite generally we
find that such states are also (to a good approximation) system eigenstates and, since they
show similar features as the solitonic states, we refer to them as solitonic states of second
order. For the case of three particles, such states have also been analyzed in the literature
[178]. In the simplest approximation, one can treat the interplay between a solitonic state
of first and second order as a two-level system of Fock states. In this approach, the ir-
regular bulk is completely neglected, since transitions are strongly suppressed as explained
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Figure 5.8: Schematic diagram of the avoided crossing between the states | . . . ,0,n,0, . . .〉 and
| . . . ,0,n−1,1,0, . . .〉. For vanishing tunneling coupling J = 0, the energies would coincide at F =
U(n−1). For non-vanishing tunneling coupling, an avoided crossing of width ∆F = 2J

√
n emerges.

above. For vanishing tunneling coupling J = 0, the energies of the states | . . . ,0,n,0, . . .〉 and
| . . . ,0,n−1,1,0, . . .〉would coincide only at F =U(n−1).4 This is however far outside the
parameter regime where the solitonic states exist, see Fig. 5.4 and Fig. 5.5. When we take
into account the tunneling coupling, an avoided crossing emerges, as depicted schematically
in Fig. 5.8. The energy difference between the two states is then

∆E =
√

(U(n−1)−F)2 +(J
√

n)2 , (5.10)

and, consequently, the avoided crossing has a width ∆F = 2J
√

n. This affects the stability
of the solitonic states for tilts larger than a critical value

Fc 'U(n−1)− J
√

n , (5.11)

what, for the parameter values used here, corresponds to Fc ' 0.27. From Fig. 5.4 and
Fig. 5.5 we see that this is indeed where the solitonic states start to dissolve. We thus
conclude that the coupling to solitonic states of second order is the dominant mechanism
for the destruction with increasing tilt.

We have verified the existence of solitonic states also for larger particle numbers (see,
e.g., Fig. 3.6 (c) and Fig. 3.7 (b) that show the spectrum for n = 4 bosons in a lattice of
L = 5 sites) and even for filling factors n/L > 1. Note that the difference in the interaction

4Note that first-order tunneling in principle also couples the state | . . . ,0,n,0, . . .〉 to the state | . . . ,0,1,n−
1,0, . . .〉, where the energies coincide at F =−U(n−1). However, since we consider a tilting of the lattice
around the central lattice site, the spectrum is symmetric and we restrict our analysis to positive values of
F .
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energy U(n−1) between two solitons of first and second order increases linearly with the
total number of bosons and, moreover, also transitions to chaotic states are increasingly
suppressed since more and more particles have to undergo tunneling processes in order to
transform a solitonic to a chaotic state. Thus, the stability of the solitonic states is expected
to be enhanced with increasing particle number. Furthermore, for large boson numbers,
one can construct a mean-field phase space for the Bose-Hubbard Hamiltonian, assuming
Un = const. (see, e.g., [58, 73, 92, 93]). In this context, the solitonic states should be
identifiable with regular islands in the mixed phase space. Semiclassical arguments then
guarantee the existence of quantum mechanical eigenstates which are localized within these
islands, and which are only weakly coupled to the states living in the chaotic sea [27].

However, three-body interactions, that are not described by the Bose-Hubbard Hamil-
tonian, can become a non-negligible effect when more and more particles are located on
one and the same lattice site. Such three-body collisions may result in the formation of un-
trapped molecules leading to additional decay channels [50, 122] for solitonic states, which
eventually can limit the maximum number of atoms participating in such a state. However,
if the effective interaction is kept constant in an experiment, i.e., Un/(JL) = const., this
problem can be avoided. Current experiments with n = 500 atoms in a double well poten-
tial [205] reach effective interactions of Un/(JL)≈ 3, which is about an order of magnitude
larger than the values we considered above. Thus, the robust structures identified here pro-
vide an appealing approach for the experimental preparation of stable quantum many-body
states, which typically becomes increasingly challenging with growing particle number.

5.4 Conclusion

In summary, we have identified regular structures within the chaotic regime of the tilted
Bose-Hubbard Hamiltonian [181, 182]. Those are characterized by energy levels that fea-
ture a simple linear dependence on a system parameter, namely the strength of the tilt, over a
sizable interval. The associated eigenstates are termed solitonic states and keep their shape
under changes of the tilt. They are strongly localized on the lattice and couple only weakly
to states from the chaotic bulk. We have found that the stability of the solitonic eigenstates
becomes particularly manifest in a dynamical evolution where the lattice is driven non-
adiabatically by linearly sweeping the tilt. That is, solitonic eigenstates exhibit very robust
localization properties over a wide range of the driving rate and of the tilt. Furthermore, we
have shown that neither Stark localization nor energetic isolation [200] can explain the ro-
bustness of these states, which is rather due to a subtle interplay of interaction and tunneling
dynamics.

The localization on the lattice represents an appealing signature for the soliton’s experi-
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mental detection in terms of modern microscopy techniques in optical lattices [10]. Thus,
the solitonic states are excellent candidates for coherent control, since – in contrast to basi-
cally all the non-solitonic states – they are robust under changes of external conditions.



6 Irreversible decay of Bloch oscillations

In Chapter 4 we demonstrated that a chaotic many-particle spectrum implies inefficient
numerical simulations of many-body quantum systems. In the present chapter, we focus on
the many-particle dynamics itself, instead of its simulability. The experimentally studied
phenomena of ultracold atoms in optical lattices include Landau-Zener tunneling between
different bands of the periodic potential [46, 94, 102, 106, 137, 174, 204], macroscopic self-
trapping of the Bose-Einstein condensate on a single site due to interatomic interactions
[8], quench dynamics, where one system parameter, like, e.g., the interaction strength, is
suddenly changed [33, 109, 155], and Bloch oscillations [4, 12, 65, 83, 133], which arise
under the influence of a static tilt. We choose this latter example (which has been studied
in great detail) to investigate how the spectral properties of the system influence the Bloch
oscillations and, in turn, what we can infer about the system from the characteristics of the
oscillations. More precisely, we want to establish a relation between the spectral statistics
of the interacting many-particle system and the decay of the Bloch oscillations.

In the following, we give an introduction to the theory of Bloch oscillations and discuss
their experimental realization. Thereafter, the different regimes of oscillations will be in-
vestigated in the framework of the tilted Bose-Hubbard Hamiltonian. In Secs. 6.3 and 6.4,
we focus on the fast and irreversible decay of the oscillations in the chaotic regime which
we will directly relate to the spectral properties of the many-body Hamiltonian.

6.1 Introduction to Bloch oscillations
Bloch oscillations are a genuine quantum phenomenon, that relies on the wave nature of
particles. They result from the interplay of a periodic potential and an external static field,
and were first described for single particles, in the quantum theory of electrical conductivity
in crystal lattices, by Bloch and Zener [16, 203]. In order to appreciate the counter intuitive
quantum dynamics of a single particle in a periodic potential, imagine for a moment a
classical particle in such a setup, e.g., a table tennis ball in one of the wells of an egg carton
[180]. This system constitutes a classical analog to the quantum system we consider in the
following. If the device is tilted under the influence of gravitation, the particle will remain
in its initial position until a certain critical angle is reached. Thereupon, it will fall out of its
well and slide down the potential since it is subject to a constant acceleration due to gravity.
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Figure 6.1: Band energies E(η)
q /ER of a 1D periodic potential V (x) = V0 sin2 (klx) (compare

Fig. 2.3), in units of the photopn recoil energy ER (black lines), and mean velocity v0, Eq. (6.2),
in the fundamental band (thick red lines). Shown is (a) the free particle case V0 = 0, (b) the case of
a shallow potential V0/ER = 2, and (c) the case of a deep potential with V0/ER = 10.

In the quantum case, the situation is dramatically different: As explained in Sec. 2.2.2,
the energy of a single quantum particle that is confined in an (optical) periodic potential
of the form V (x) = V0 sin2 (klx), Eq. (2.6), is determined by the band structure, depicted in
Fig. 6.1. In such a setting, both the energies E(η)

q and the eigenstates |φ(η)
q 〉 are labeled by

the discrete band index η and the continuos quasimomentum q ∈ [−π/d,π/d], where d is
the spacing between neighboring sites of the lattice. Due to the periodicity of the spectrum,
q can be confined to the first Brillouin zone, and we restrict our analysis to 1D lattices.

Under application of a constant external force f ≥ 0, a given Bloch state |φ(η)
q(t=0)〉 evolves

in time (up to a phase factor) to the state |φ(η)
q(t)〉, where

q(t) = q(0)+ f t. (6.1)

The mean velocity associated with the state |φ(η)
q 〉, is given by [9]

vη(q) =
dE(η)

q

dq
. (6.2)

Hence, for a nonvanishing potential depth V0 6= 0, the velocity of a particle that is initially
prepared in the state |φ(η)

q(0)〉, oscillates in time, with zero mean1 (see Fig. 6.1 (b) and (c)).

1This is only true if the external force f is weak enough not to induce transition to other bands. The
corresponding conditions on the system parameters have been discussed in Sec. 2.4, and can readily be
satisfied in experiments with ultracold atoms in optical lattices.
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This is in striking contrast to the free particle case V0 = 0, where the force induces a constant
acceleration and the velocity is a linear function of time, as we illustrate in Fig. 6.1 (a).2

As pointed out above, the spectrum is periodic and thus it is sufficient to consider the
quasimomentum within the first Brillouin zone. Consequently, it flips from q = π/d to
q = −π/d when the right zone edge is reached and the dynamics induced by an external
force F is periodic in time, where the periodicity is given by the Bloch period3

TB =
2π

F
. (6.3)

Here we again set F = f d (compare Sec. 2.4). As a consequence of the velocity’s os-
cillatory behavior around zero mean, also oscillations in real space occur. Hence, in the
single-particle case, which we consider in this introductory section, not net current along a
perfect lattice can be induced by applying a static field. The extent of the oscillations on
the lattice is given by ∆η/F , where ∆η is the energy width of the band under consideration,
i.e., the stronger the static field, the smaller the oscillations in real space [87]. At first sight
surprising, this behavior can qualitatively be understood from the fact that the time spent
to traverse the first Brillouin zone is given by the Bloch period TB. As a consequence, for
strong fields, the particle has less time to travel along the lattice in one direction before the
velocity changes its sign and the particle returns. Thus, the amplitude of the oscillations in
real space is reduced.

Bloch oscillations are a single-particle interference phenomenon that relies on the co-
herence of the wave function. Therefore, scattering between particles or deviations from
the potential’s perfect periodicity due to impurities can change the situation dramatically:
They induce a decoherence in the time-evolution of the wave function, which, in turn, leads
to a dephasing of the oscillations. In the present work, we do not treat impurities (disor-
dered systems) but restrict ourselves to the description of interactions between the particles,
which already lead to a plethora of different dynamical regimes as we will see in Sec. 6.2.

In principle, the easiest way to realize a periodic potential plus an additional static field
in a quantum system, is to apply an electric field gradient along a crystal. However, since
in such systems the typical electron-phonon scattering time is much shorter than the Bloch
period, Bloch oscillations could never be observed in natural crystals. Due to the rapid
decoherence of the wave function, in such systems, the static field rather induces a directed

2Note that for V0 = 0, the energy of the particle is given by the energy-momentum parabola of the free
particle and no periodic band structure emerges. Consequently, the (real) momentum cannot be restricted
to the first Brillouin zone. In Fig. 6.1 (a) we, however, choose this depiction in order to highlight the
difference to the case of a particle trapped inside a periodic potential with V0 6= 0.

3The Bloch period has already been introduced in Sec. 2.4.1 where we found that it describes the periodicity
of the transformed, time-dependent Bose-Hubbard Hamiltonian with periodic boundary conditions ˆ̃Hp(t),
Eq. (2.34).
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current along the lattice [9], as used habitually in everyday life when the application of a
voltage to a metal leads to an electric current. Nevertheless, Bloch oscillations were by now
observed in a variety of systems, ranging from semiconductor superlattices [123, 131, 188,
190], where the larger spatial period leads to much shorter Bloch periods (see Eq. (6.3)),
to Bloch oscillations of photons in temperature-tuned waveguide arrays [55, 142, 143, 176]
and acoustic waves in layered and elastic structures [84, 161].

Another possibility to experimentally realize Bloch oscillations are engineered, clean
systems like ultracold bosons in tilted optical lattices. Here, deviations from the perfect
periodicity are virtually negligible and various experiments were performed, see for ex-
ample [4, 12, 46, 133, 137]. Since in such systems all the parameters can be tuned very
sensitively4 (see Sec. 2.3.1), also the role of interactions was investigated, see for example
[65, 67, 83]. Moreover, also Bloch oscillations of ultracold fermions in optical lattices,
where an admixture of bosons causes a decay of the formerly perfect oscillations, and leads
to directed transport along the lattice, were studied [140]. In such systems, the separation
of timescales between the bosonic and the fermionic degrees of freedom allows to treat the
bosons as a bath and, consequently, a master equation for the fermionic density matrix can
be derived [151].

6.1.1 Experimental realization with ultracold bosons in optical
lattices

A detailed experimental investigation of Bloch oscillations of ultracold bosons in optical
lattices was performed by Gustavsson et al. in 2008 [65, 83]. In this work, a Bose-Einstein
condensate of Cesium atoms was adiabatically loaded in the lowest band of a vertical op-
tical lattice, where a vertical magnetic field gradient that causes an upward force, so-called
magnetic levitation [191], was used to support the condensate against gravity. In addition,
a bias magnetic field could be tuned in order to control the interaction strength between
the atoms by means of a Feshbach resonance [96, 122]. After switching off the magnetic
levitation field, the atoms were let to evolve in the lattice under the influence of gravitation,
for variable holding times. Finally, the confinement was turned off, in order to determine
the momentum distribution by a time-of-flight measurement, see for example Ref. [18].

Fig. 6.2 shows the measured momentum distribution of the condensate within different
Bloch cycles, for minimal interactions between the atoms. In each panel (a)-(d), the dis-
tribution traverses the first Brillouin zone once. Initially, it features narrow peaks (a), that
get broadened as time elapses, (b)-(d). However, the precise control of the interatomic in-
teractions allowed to realize U ≈ 0 and, consequently, the dephasing of the oscillations,

4This also includes the degree of disorder in the system, which we do not consider in the present work.
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Figure 6.2: Bloch oscillations of a Bose-Einstein condensate of Cesium atoms with minimal inter-
actions, in a vertical optical lattice under the influence of gravitation, taken from [83]. Each panel
shows the time evolution of the condensate’s momentum distribution within one Bloch cycle, where
the different columns within the panels correspond to pictures taken after different holding times.
Displayed are (a) the first, (b) the 1000th, (c) the 10 000th, and (d) the 20 000th Bloch cycle.

measured by the width of the momentum distribution ∆p, was strongly suppressed. This
allowed to follow more than 20000 cycles.

In a second step, the influence of the interaction strength on the dephasing of the oscil-
lations was investigated. Fig. 6.3 (a) shows ∆p as a function of the number of completed
Bloch oscillations, for different values of the interaction strength, controlled by the scatter-
ing length as, while Fig. 6.3 (b) depicts ∆p versus as for different evolution times. Both
figures immediately reveal that the strength of the interactions is directly reflected in the
broadening of the momentum distribution, i.e., stronger interactions lead to more rapid de-
phasing.

In the experiment discussed above, a condensate of about n≈ 5×104 atoms was loaded
into L = 40 to 65 lattice sites, depending on the initial vertical extent of the atomic cloud.
Thus, the average filling factor was of the order n/L≈ 103. For such high values of n/L, one
can expect mean-field5 calculations to reproduce the experimental observations. Indeed, nu-
merical calculations solving the one-dimensional Gross-Pitaevskii equation in the presence
of an optical lattice [166], that are depicted by solid lines in Fig. 6.3, show nice agreement
with the experimental data. In our study, we are interested in the quantum regime, i.e.,
systems with few bosons and filling factors of approximately one, where few-particle ef-
fects are important. Consequently, the experimental findings of Ref. [83] can only provide
a first impression of the different regimes of Bloch oscillations of ultracold atoms in optical

5For a short introduction to the mean-field approach see Sec. 2.5.
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seen for a ! 25 a0, and the rate of broadening then in-
creases with increasing interaction strength. For a "
50 a0, the width !p saturates within the chosen observa-
tion time to a value of about 1:3@k as the momentum
distribution completely fills the first Brillouin zone [18].
To a good approximation, we find that !p initially in-
creases linearly with time. In Fig. 3(b), we plot !p as a
function of interaction strength for various fixed numbers
of Bloch cycles. !p appears to scale with the square root of
the interaction strength. Both observations agree well with
a simple model for the dephasing of Bloch oscillations,
which predicts !p / !!!

a
p

T [19] for sufficiently short times
T. In order to verify this model, we have performed nu-
merical calculations solving the one-dimensional Gross-
Pitaevskii equation in the presence of an optical lattice
under the influence of gravity for the typical parameters
of our experiment according to the method detailed in
Ref. [20]. Via Fourier transform of the spatial wave func-
tion, we determine the momentum distribution and its
width. As shown in Fig. 3 (solid lines), we find very
good agreement with our measurements with no adjustable
parameters when we add a constant offset of 0:1@k to all

the numerical curves. This offset takes into account resid-
ual interactions during release from the lattice as a result of
the finite magnetic switching speed, which leads to some
artificial broadening of the distribution. We attribute the
systematic discrepancy for the N ! 50 data in Fig. 3(b) to
the horizontal motion which leads to modulations in the
density that adds a modulation onto !p also seen in
Fig. 3(a).

To find the value for the magnetic field that gives mini-
mal broadening, we measure !p after 6951 cycles in the
vicinity of the crossing. Figure 4 plots !p as a function of
magnetic field. It shows a clear minimum, which we expect
to correspond to the zero crossing for the scattering length.
From a Gaussian fit, we determine the center position of
the minimum to be at 17.119(2) G. The one-sigma error
takes into account our statistical error in magnetic field
calibration. To our knowledge, this is the most precise
determination of a minimum for the elastic cross section
in ultracold atom scattering. We believe that our measure-
ments are limited by the ambient magnetic field noise,
leading to a finite width for the distribution of the scattering
length. In fact, a reduction of the atomic density gives
longer decay times for the Bloch oscillations. Note that
in the scattering length regime considered here, the effect
of the (magnetic) dipole-dipole interaction [21] should
start to play a role.

Our capability to observe Bloch oscillations on extended
time scales without interaction-induced dephasing allows
us to study the effect of deliberately imposed dephasing.
For this, we apply a linear force gradient rF correspond-
ing to harmonic trapping at ! ! 40#1$ Hz along the verti-
cal direction by turning on laser beam L2 during the hold
time. Figure 5 shows the widths !p for two cycle phases
separated by " as a function of the number N of Bloch
cycles. The two phases correspond to the single- resp.
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FIG. 4. Broadening of the momentum distribution as a result of
6951 Bloch oscillations near the zero crossing for the scattering
length. The width !p is plotted as a function of magnetic field
(dots). The solid line is a Gaussian fit with a rms-width of
4.5 mG. The fit is centered at 17.119(2) G. The zero for the
scattering length scale on top was chosen to agree with this
value.
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FIG. 3 (color online). Width !p of the momentum distribution
for different interaction strengths. (a) Evolution of !p as a
function of the number N of Bloch cycles for different values
of the scattering length (a ! 0, 25, 50, 100, and 300a0 from
bottom (full circles) to top (open squares). The solid curves are
derived from a numerical model calculation, see text. (b) Width
!p for a fixed number of cycles N ! 1 (full circles), 25 (full
squares), 50 (full diamonds), 100 (open circles), 150 (open
squares), and 200 (open diamonds) as a function of scattering
length. The solid line represents the model calculation. All error
bars correspond to % 1 standard deviation resulting from 7
measurements. The data and the simulations correspond to the
following parameters: lattice depth: 7:9ER, scattering length
during lattice loading: 210 a0, trapping frequencies in L1 and
L2: 10 and 8 Hz, atom number in the BEC: 5& 104.
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Figure 6.3: Dephasing of the Bloch oscillations of a Bose-Einstein condensate of Cesium atoms
(compare Fig. 6.2), measured by the width of the momentum distribution ∆p, taken from [83]. In
panel (a), ∆p is plotted against the number N of Bloch cycles, for different interaction strengths,
given by the scattering length as, in units of the Bohr radius a0 (as/a0 = 0,25,50,100 and 300 from
bottom to top). Panel (b) shows ∆p as a function of the scattering length as, in units of a0, for a fixed
number of Bloch cycles (N = 1,25,50,100,150 and 200 from bottom to top). Solid lines represent
mean-field calculations obtained from the discrete Gross-Pitaevskii equation.

lattices. In general, however, we cannot expect them to agree with results within the Bose-
Hubbard model, which we want to use to infer knowledge on the statistical properties of
the spectrum.

6.2 Regimes of Bloch oscillations in the tilted
Bose-Hubbard Hamiltonian

In order to characterize Bloch oscillations in the tilted Bose-Hubbard Hamiltonian, we have
to utilize suitable observables in real space and in momentum space. In analogy with the
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experiment, we analyze, on the one hand, the center of mass of the bosons on the lattice

x(t) =
1
n
〈ψ(t)|

L

∑
l=1

l̃ n̂l |ψ(t)〉 , (6.4)

which, according to the definition of the tilted Bose-Hubbard Hamiltonian in Sec. 2.4, can
take the values x ∈ [−L/2,L/2−1] for even L, and x ∈ [−(L−1)/2,(L−1)/2] for odd L.
On the other hand, we study the mean velocity

v(t) =
1
n

d
dq
〈ψ(t)|Ĥ|ψ(t)〉 , (6.5)

which lies within the interval [−J,J]. Here |ψ(t)〉 is the many-body wave function and, due
to its many-body character as opposed to the single-particle case of Eq. (6.2), we have to
normalize with the particle number n. Instead of (6.5) we can also write

v(t) =
1
n
〈ψ(t)|V̂ |ψ(t)〉 , (6.6)

where the velocity operator6 is given by

V̂ =
d
dq

Ĥ . (6.7)

In the case of the linear lattice with Dirichlet boundary conditions, i.e., when considering
the Hamiltonian Ĥ, Eq. (2.26), this leads to

V̂ =
J
2i

L−1

∑
l=1

(â†
l+1âl−h.c.) , (6.8)

while in the case of periodic boundary conditions, i.e., when considering the Hamiltonian
ˆ̃Hp(t), Eq. (2.34), one obtains

V̂ = V̂ (t) =
J
2i

L

∑
l=1

(â†
l+1âl eiFt−h.c.) . (6.9)

Note that in complete analogy to the definitions of the Hamiltonians Ĥ and ˆ̃Hp(t), expres-
sion (6.8) contains one less term than expression (6.9) since the sum only runs up to L−1
instead of L (see also discussion on p. 15).

6Expression (6.7) for the velocity operator can straight forwardly be evaluated when considering the
Hamiltonian in momentum representation. The latter is obtained with the help of the transformations
â†

l = 1/
√

L ∑
L
j=1 e−iκ j l â†

κ j , where κ j = 2π · ( j−1)/L (compare Sec. 2.4.1.1), see, e.g., [150].
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As in the experiment [83], we consider as initial states the ground state of the untilted
Bose-Hubbard Hamiltonian (F = 0), for various values of the onsite interaction U and,
without loss of generality, for fixed tunneling coupling J = 1. We then monitor the dynamics
that arise after the lattice is suddenly tilted to a constant field strength F .

In the present section, we will give an overview on the plethora of dynamical behaviors
that arise in the different parameter regimes, and also discuss once again the role of periodic
or Dirichlet boundary conditions. We start with the non-interacting case U = 0, before we
turn to interacting bosons, that define the scope of the subsequent analysis. If not stated
otherwise, the data are obtained for a system composed of n = 7 bosons on L = 7 lattice
sites.

6.2.1 Noninteracting bosons
In the noninteracting case U = 0, we effectively have to deal with a single-particle situation
which makes this regime especially suited to work out the influence of the applied boundary
conditions on the dynamical quantities. In Fig. 6.4 we plot the velocity v(t) (upper row)
and the center of mass x(t) (lower row), where time is given in units of the Bloch period
TB = 2π/F , for periodic (blue dashed lines) and Dirichlet boundary conditions (solid black
lines), and different values of the static field strength F = 0.1,1, and 10.

For periodic boundary conditions, we observe perfect Bloch oscillations of the velocity
v(t), in excellent agreement with experimental findings, see for example [65, 83]. As ex-
pected from Eqs. (6.1) and (6.2), we find that the tilt F only changes the velocity with which
the the Brillouin zone is traversed. Hence, upon rescaling time with the Bloch period, the
dynamics is independent of the static field strength, since the oscillations are now identical
in all three cases. It may come as a surprise that the corresponding center of mass x(t) equals
zero for all times. This behavior is a result of the initial state we consider here: The ground
state of the untilted Hamiltonian has vanishing quasimomentum7 κ = 0 and is completely
delocalized over the lattice. As a consequence, its center of mass vanishes, x(t = 0) = 0.
A localization in real space, which is the prerequisite for oscillations of the center of mass,
requires a superposition of states with different values of quasimomentum. As discussed in
Sec. 2.4.1.1, the tilted Hamiltonian ˆ̃Hp(t), Eq. (2.34), does not couple blocks of different
quasimomenta and hence no oscillations in real space can occur. This argument holds irre-
spective of the interaction strength U , and thus there will be no oscillations of the center of
mass x(t), also when U 6= 0. Nevertheless, the temporal behavior of the velocity v(t) can
be studied, and we will not further comment on x(t).

While, for periodic boundary conditions, the lattice is effectively infinite and boundary

7As discussed in Sec. 2.4.1.1, we again refer to the discrete quasimomentum that appears in a finite lattice
as κ instead of q.
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Figure 6.4: Mean velocity v(t), Eq. (6.6), (upper row), and center of mass of the bosons on the
lattice x(t), Eq. (6.4), (lower row) as a function of time, in units of the Bloch period t/TB, for n = 7
bosons on L = 7 lattice sites, with tunneling coupling J = 1. Here, the dynamics of noninteracting
bosons, U = 0, is shown for different values of the static field strength, F = 0.1 (left column), 1
(middle column), 10 (right column), both for Dirichlet boundary conditions (black solid lines) and
periodic boundary conditions (blue dashed lines).

effects do not occur, in the case of Dirichlet boundary conditions the finiteness of the lattice
can play an important role during time evolution. As a consequence, the behavior of the
mean velocity v(t) and of the center of mass x(t) strongly depends on the static field strength
F . In order to understand this, recall that the amplitude of the oscillations in real space
is proportional to 1/F . For a large tilt, F = 10 (Fig. 6.4 (c) and (f)), the extent of the
oscillations ∆xF=10 ≈ 0.185 is sufficiently small compared to the length of the lattice, that
stretches from x =−3 to 3 for the lattice with L = 7 lattice sites we consider here, and the
boundaries are not probed during the dynamics. Consequently, perfect oscillations both in
real and momentum space8 occur. For F = 1 ((b) and (e)), we would expect ∆xF=1≈ 1.85 in

8The reduction of the amplitude of the velocity’s oscillations, as compared to the case of periodic boundary
conditions, stems from the definition of the velocity operator V̂ , Eq. (6.8), that contains one term less than
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F

Figure 6.5: Schematic diagram of an initial configuration that avoids finite size effects. At t = 0 the
ground state of a sublattice with m < L sites is prepared. During the dynamics (t > 0), the bosons
are then let to evolve within the original (larger) lattice.

an infinite lattice, and therefore the dynamics is considerably modified by boundary effects.
For an even smaller tilt, F = 0.1 ((a) and (d)), we would expect ∆xF=0.1 ≈ 18.5 and thus,
in the small system we consider here, the oscillations are strongly distorted (note also the
different frequency components in the dynamics).

To summarize, we find that, when starting from the ground state of the untilted lattice,
perfect Bloch oscillations in the velocity v(t) are obtained for periodic boundary condi-
tions, irrespective9 of the static field strength F , as expected from theory [16, 203] and
experimental results [65, 83]. This behavior directly reflects the regularity of the system’s
spectral structure for U = 0, as discussed in Secs. 3.2 and 3.3. For Dirichlet boundary
conditions, perfect Bloch oscillations are only observed for large tilts. Since we will later
need to study Bloch oscillations in lattices with Dirichlet boundary conditions for smaller
values of the static field F , we have to adjust the number of lattice sites and the shape of the
initial state such that the boundaries are not probed during the dynamics. One possibility
is to consider as initial state the ground state of a smaller, untilted sublattice with m < L
lattice sites, which is then placed into the original lattice before applying the tilt, as depicted
schematically in Fig. 6.5. Specifically, we always choose the initial configuration such that
the m sites that are occupied at t = 0 are shifted upward on the larger, tilted lattice instead
of being placed in the middle. This choice guarantees that the atoms, which fulfill Bloch
oscillations in downward direction (see Fig. 6.4, lower row), do not reach the boundaries
of the lattice during the dynamical evolution. When we want to relate the dynamics to the
spectral statistics of the system, we then have to evaluate the effective spectrum, i.e., that
part of the spectrum that actually contributes to the dynamics. If F is large enough such that

the corresponding operator for periodic boundary conditions (6.9).
9The maximal magnitude of the static field F we can consider is, however, limited by the single-band

approximation, see Sec. 2.4.
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the atoms do not spread over the lattice as time evolves, this means that m instead of L is the
physically relevant quantity (compare discussion on p. 58 in Sec. 4.2.2). The approach of
Fig. 6.5 also closely resembles the typical experimental setup, where the atoms are initially
held in a dipole trap which determines the initial extent of the atomic cloud, and which is
turned off at the beginning of the experimental procedure, see, e.g., reference [83].

6.2.2 Interacting bosons
In the case of nonvanishing interactions between the bosons, the situation changes dra-
matically. Depending on the interaction strength U , there exist different regimes of Bloch
oscillations, as we briefly elaborate on in the following. Our primary interest resides in the
case of intermediate interaction strengths, where the underlying energy level statistics is
chaotic. This regime will be thoroughly discussed in the remainder of this chapter.

6.2.2.1 Weak interactions

For weak interactions, we choose U = 0.1, the system is still regular in terms of its level
statistics (see Sec. 3.3). However, the Bloch oscillations are already strongly modified as
evident from Fig. 6.6. Quite generally, we observe a decay of the oscillations, where the
exact behavior depends on the strength of the static field: the larger F , the weaker the decay.

For small and intermediate tilts, F = 0.1,1, the interactions induce a dephasing which,
however, does not completely destroy the periodicity of the system’s dynamics. For strong
tilts, F � J, a second, interaction-induced time-period TU appears [112]. It can be derived
explicitly by treating the atom-atom interaction as a perturbation, and is given by

TU =
F
U
·TB . (6.10)

Consequently, for F = 10, v(t) and x(t) (Fig. 6.6 (c) and (f)) are expected to exhibit a
beating signal, with periodicity TU = 100 ·TB. Since here we only depict the dynamics up
to t = 20 ·TB, this additional oscillation is not resolved. Note however, that the observed
decay of the oscillations stems exactly from the appearance of the new period TU , as we
have verified by running simulations for longer times.

Analogously to the case of noninteracting bosons, for Dirichlet boundary conditions and
F = 0.1,1, the dynamics are again significantly affected by the finiteness of the lattice.

6.2.2.2 Intermediate interactions

For intermediate interactions, we choose U = 1, the system is chaotic as long as the tilt is
not too strong, i.e., F < 1.3 (see Sec. 3.3), and in this regime the dynamical behavior shown
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Figure 6.6: Same as Fig. 6.4 for weakly interacting bosons, U = 0.1. In the case of periodic
boundary conditions we do not show x(t) since it vanishes for all times, see the discussion on p. 84.

in Fig. 6.7 is strikingly different. For small and intermediate static fields (left and middle
column), the Bloch oscillations show a fast and irreversible decay. For F = 1, we can ob-
serve this behavior in the velocity v(t) for both periodic and Dirichlet boundary conditions
(Fig. 6.7 (b)), with no qualitative and only little quantitative difference. Inspection of the
associated center of mass dynamics (Fig. 6.7 (e)) reveals the reason for this behavior: The
oscillations in real space decay before the atoms can finish even one single Bloch cycle, i.e.,
they do not have time to probe the finite size of the lattice before reaching the equilibrium
state. For F = 0.1, periodic boundary conditions lead to qualitatively the same behavior as
found already for F = 1 (Fig. 6.7 (a)). However, in the case of Dirichlet boundary condi-
tions, we again observe a strong influence of the edges of the system (Fig. 6.7 (a), (d)). The
origin of this fast and irreversible decay of the Bloch oscillations in the chaotic regime of
the Bose-Hubbard Hamiltonian will be discussed in detail in Secs. 6.3 and 6.4.

For strong tilts F = 10, the system becomes regular again and the interaction-induced
period TU , Eq. (6.10), leads to a beating signal with periodicity TU = 10 ·TB (Fig. 6.7 (c)
and (f)).
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Figure 6.7: Same as Fig. 6.4, for intermediate interaction strength U = 1.

6.2.2.3 Strong interactions

In the case of strong interactions U = 10, the system is regular, independently of the tilt,
and its eigenstates are well approximated by Wannier-Fock states. As a consequence, the
mobility of the bosons is strongly suppressed, as can be observed for F = 0.1 and 1 (Fig. 6.8
(a), (d) and (b), (e)), where both velocity and center of mass are essentially constant as time
elapses.

In contrast, for F = 10, we observe oscillations of v(t) and x(t) (Fig. 6.8 (c), (f)) with
a periodicity that is approximately five times the Bloch period. It thus differs from the
interaction-induced period TU = F/U ·TB, Eq. (6.10), that equals the Bloch period for the
parameters considered here and that was observed for U = 1 and F = 10 in Fig. 6.7 (c), (f).
The presently observed oscillations occur deep in the Mott insulating regime, and are related
to a resonance between the onsite energy U and the static field F , as depicted schematically
in Fig. 6.9. In Ref. [113] a resonant approximation that takes into account a limited number
of Wannier-Fock basis states is used to explain the observed dynamics. Furthermore, the
authors analyze the quasienergy spectrum of the system that can be obtained from an effec-
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Figure 6.8: Same as Fig. 6.4, for strongly interacting bosons, U = 10.

tive Hamiltonian as given in Ref. [158]. However, the main features of the dynamics are
already captured by a simple two-level approximation, as we will discuss in the following.

For strong interactions, the ground state of the untilted lattice, which constitutes the ini-
tial state in the dynamics shown here, is quite well approximated by a Fock state with
exactly one particle on each lattice site. Moreover, for F = U , any Fock state of the form
| . . . ,1,1, . . .〉 is energetically degenerate with the state | . . . ,2,0, . . .〉, where the two states
differ solely on the two given sites. We then make a two-level approximation, only con-
sidering the two Fock states |1,1〉 and |2,0〉 that describe two neighboring lattice sites (see
Fig. 6.9). After a simple calculation, we find that an avoided crossing with energy gap

∆E =
√

(U−F)2 +2J2 (6.11)

emerges (compare Eq. (5.10)). We thus expect oscillations between the two states, with
periodicity Tres = 2π/∆E which, in units of the Bloch period, is given by

Tres =
F

∆E
·TB . (6.12)
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U F

Figure 6.9: Schematic diagram of two ultracold bosons in
two neighboring sites of a tilted optical lattice, described
by the tilted Bose-Hubbard Hamiltonian Ĥ, Eq. (2.26).
For F = U , the state where both particles are located in
the lower lattice site (light grey) and the state with one
particle per site (dark grey) are energetically degenerate.

For fixed tunneling coupling, the frequency depends on the detuning U−F and on the static
field strength F . Exemplary values of the theoretically expected period Tres are given, for
U = 10 and J = 1, in Table 6.1.

To compare our theoretical expectations with numerical data, the dynamics of the center
of mass x(t) is shown for n = 2 bosons in a lattice with L = 11 sites in Fig. 6.10 (a), for
U = 10, J = 1, and F = 8,10,12. Such as to guarantee that boundary effects are negligible
during the dynamics, we initially prepare the n bosons in the ground state of a lattice with
m = n sites, placed into the larger lattice, with Dirichlet boundary conditions, before apply-
ing the tilt (compare Fig. 6.5). The location of the smaller lattice within the large lattice is
chosen such that at t = 0 the two uppermost sites of the tilted lattice are empty (see also dis-
cussion on p. 86). The numerical values T n=2

num are given in Table 6.1, and we find excellent
agreement with the theoretical data obtained from the simple two-level approximation.

One might wonder whether this also holds for larger particle numbers. In order to an-
swer this question, we plot x(t) for n = 5 bosons, for the same parameters as used above, in
Fig. 6.10 (b). Here, the initial state is again the ground state of the bosons in a lattice with
m = n sites. We find that, in this case, the numerics (given in Table 6.1) deviate from the
theoretical expectations, an that the difference is largest at resonance, i.e., for equal values

F Tres[TB] T n=2
num [TB] T n=5

num [TB]

8 3.27 3.21 2.63
10 7.07 7.05 5.17
12 4.90 4.91 4.38

Table 6.1: Resonance induced period for different strengths of the static field F with U = 10 and
J = 1. Shown are theoretical vales Tres, Eq. (6.12), obtained from a simple two-level approximation,
and numerical values T n=2

num , for n = 2, and T n=5
num , for n = 5 particles. The initial states are the ground

states of n bosons in a lattice with m = n sites, which is then placed into a tilted lattice of total length
L = 11, such that at t = 0 the two uppermost sites of the tilted lattice are empty (see also discussion
on p. 86). All periods are given in units of the Bloch period TB.



92 6 Irreversible decay of Bloch oscillations

0 2 4 6 8 10
t/T

B

-0.5

-0.4

-0.3

-0.2

-0.1

0

x(
t)

0 2 4 6 8 10
t/T

B

-0.5

-0.4

-0.3

-0.2

-0.1

0

F=8
F=10
F=12

(a) (b)

Figure 6.10: Center of mass x(t), Eq. (6.4), of n bosons on a lattice of length L = 11 under a variable
static tilt F as a function of time, in units of the Bloch period t/TB, for (a) n = 2 and (b) n = 5, with
J = 1 and U = 10. The initial state is in both cases the ground state of the bosons in m = n sites of
an untilted lattice, placed into the larger lattice with L sites, and Dirichlet boundary conditions (see
also Fig. 6.5 and discussion on page 86).

of the tilt and of the interaction strength, F = U . Furthermore, the amplitude of the oscil-
lations decays in time. That is, for particle numbers n > 2, more resonant states have to be
considered in order to reproduce the exact dynamics of the system. Moreover, the decay of
the oscillations can then be related to the quasienergy spectrum of the system, as done in
Ref. [113]. Note, however, that the periodicity for n = 7 bosons in L = 7 lattice sites with
periodic boundary conditions and F = 10 (Fig. 6.8 (c) and (f)) is basically identical to the
periodicity observed for n = 5 bosons with F = 10. We therefore expect the corrections to
saturate quickly with growing particle number.

In summary, we have seen that ultracold bosons in tilted optical lattices, described by the
tilted Bose-Hubbard Hamiltonian, feature rich dynamics that depend on the relative strength
of the control parameters J, U , and F .10 Those range from perfect Bloch oscillations for
vanishing interactions [65, 83], to an irreversible and fast decay when onsite interaction and
tunneling coupling are comparable and the underlying spectral structure is chaotic [114,
115]. In the case of dominant static fields and weak interactions, an additional interaction-
induced period TU , Eq. (6.10), appears [112]. For strong static fields and strong interactions,
another frequency Tres can be observed [113] that results from resonant oscillations between

10Note that here we did not investigate the role of the filling factor n/L. It, however, also strongly influences
the dynamics and analogous behavior between systems with different filling factors can only be expected
for fixed scaled interaction strength U ·n/L, see also Sec. 3.3.
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different Wannier-Fock states.

While we focus on Bloch oscillations that emerge when the system is initially prepared
in the untilted Hamiltonian’s ground state, recently Bloch oscillations for initially local-
ized states of interacting bosons were investigated in Refs. [54, 105]. Here, the authors
consider initial states where all n particles are located on one single lattice site which, for
large interaction strengths, yields an oscillation period T = TB/n. The origin of this period
can be understood by considering the case of two particles [105]: For U > J, the many-
particle spectrum decomposes into two distinct parts that do not overlap. Those correspond
to the noninteracting part, which excludes double occupancy of the lattice sites, and the
interacting part, which is characterized by double occupancy. While the former features the
equidistant spacing F , the latter has the equidistant spacing 2F , which is the cost of mov-
ing two particles from a given site to a neighboring site. When both particles are initially
located on the same site, the initial state strongly overlaps with the interacting part of the
spectrum what leads to the period T = 2π/(2F) = TB/2.

In the following, we concentrate on the chaotic regime of the Hamiltonian, and relate
the rapid and irreversible decay of the oscillations directly to the spectral properties of the
many-body system. We discuss two different approaches in order to explain this behavior:
The first approach relies on the adiabatic spectrum (see Sec. 3.2.3), whereas the second
approach is based on the tilted Bose-Hubbard Hamiltonian and considers the distribution
of the velocity operator’s matrix elements Vn,m, weighted with the matrix elements of the
initial density matrix ρ0.

6.3 Approach 1: Adiabatic spectrum

In a first attempt to explain the decay of Bloch oscillations in the chaotic regime, we study
the adiabatic spectrum of the tilted Bose-Hubbard Hamiltonian, i.e., the time-dependent
spectrum that arises when the Hamiltonian is transformed to the interaction representation
with respect to the static field, see Sec. 3.2.3. Specifically, we investigate how the popu-
lation of the initially prepared ground state diffuses in the spectrum via repeated Landau-
Zener transitions [121, 203], what leads to a dephasing of the characteristic Bloch oscilla-
tions. This concept of energy diffusion was originally applied [135, 198] to the quantum
mechanical description of dissipation in finite-size, chaotic systems, as we will discuss in
the following. Thereafter, we will apply the general formalism to our specific case, the adi-
abatic spectrum of the Bose-Hubbard Hamiltonian, and discuss the validity of the approach
in this context.
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Figure 6.11: Billiard region with a variably shaped
boundary, described by the parameter X , taken from
[198]. The system can be considered as a driven sys-
tem, where Ẋ is associated with the “velocity” of the
driving. The cavity is assumed to be chaotic such as
to assure that the dynamics is irregular, even in ab-
sence of the driving of the wall.

6.3.1 Adiabatic theory of driven quantum systems

Consider a chaotic, classical dynamical system, with a total Hamiltonian H (Q,P;X) which
not only depends on a set of canonical variables Q and P, but furthermore on an additional
parameter X which might, in principle, be time dependent, i.e., X = X(t). This situation
is found in a broad variety of real physical systems, ranging from nuclear to atomic and
mesoscopic physics [198, 199]. As an example, consider the model depicted in Fig. 6.11
where a particle is trapped inside an enclosure. In mesoscopic physics, such systems are
often called billiards and can be realized with quantum dots [129]. Here, X(t) is associated
with the deformation of the left wall which has a mass that is huge compared to the particle’s
mass. Consequently, the backaction of the system dynamics on X(t) is weak. The model
can be thought of as a driven system, with Ẋ(t) the “velocity” of the driving. We assume
the cavity to be chaotic, such as to assure that the motion is irregular, even in absence of the
driving of the wall. In the context of (periodic) driving one can then ask, for instance, how
energy is pumped into the system.

Quantum mechanically, this scenario translates to a finite-size system with energy eigen-
values controlled by the external parameter X , also referred to as macroscopic variable.
Again, we assume the system to be chaotic (in the spectral sense, see Sec. 3.1), irrespective
of the exact value of the parameter. Consequently, when X is varied, the energy levels un-
dergo various avoided crossings, as depicted schematically in Fig. 6.12 (a) and discussed in
detail in Sec. 3.1.1. In the following, we consider the exemplary billiard system depicted
in Fig. 6.11, thereby following Wilkinson’s scheme [198]. The energy levels of the system
are assumed to be occupied by a large number of noninteracting fermions up to the Fermi
energy EF , i.e., the system is initially in its ground state.

When the gap ∆E between two adjacent energy levels is sufficiently small, there is a
finite probability P for a particle to make a transition to a formerly unoccupied state, see
Fig. 6.12 (b). In the limit where the rate of change Ẋ of the external parameter is very small,
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(a)

(b)

Figure 6.12: (a) Schematic diagram of the parametric level evolution of the energy spectrum of a
quantum-chaotic system under changes of some external parameter X , and (b) magnification around
one of the avoided crossings, taken from Ref. [135]. Transitions between neighboring levels are
indicated by arrows and the corresponding probability is given by P, Eq. (6.13).

this mechanism can be described by Landau-Zener theory [121, 203].11 The transition
probability is then given by

P = exp
(
−π

2
∆E2

A |Ẋ |
)

, (6.13)

where A is the relative slope of the two levels under consideration and we have set h̄ = 1.
Since the system is initially in its ground state, such transitions lead to an increase of the
system’s energy. This, in turn, induces a damping of the driving motion since the energy of
the whole system (that consists of the quantum system and the degree of freedom associated
with the macroscopic dynamical variable X(t)) is assumed to be conserved. In other words,
the diffusion in the microscopic quantum system’s energies (Fig. 6.12) is interpreted as
the quantum-mechanical origin of a “frictional force” on the macroscopic dynamical vari-
able X(t) [135, 198]. The mechanism of dissipation by Landau-Zener transitions was first
suggested by Hill and Wheeler in 1953, in the context of a collective model for nuclei [89].

This description of the damping process is only valid when the gap size ∆E of those
avoided crossings at which there is a significant probability to make a transition is much
smaller than the mean level spacing ∆, i.e.,

∆E� ∆ . (6.14)

11Landau-Zener theory was also applied in Sec. 2.4, to determine the validity of the single-band approxima-
tion, within the framework of the tilted Bose-Hubbard Hamiltonian.
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In order to obtain a condition on the maximal driving rate |Ẋ |, we assume that the typical
transition probability at an avoided crossing is given by P = e−1. From Eq. (6.13) this
amounts to

π

2
∆E2

A |Ẋ | = 1 , (6.15)

where ∆E and A correspond to the average over the gap sizes ∆E and relative slopes A,
taken over all avoided crossings in the spectrum. Together with Eq. (6.14), this yields

A |Ẋ | � ∆
2 . (6.16)

If the latter condition is not satisfied, transitions between levels that are not nearest neigh-
bors can occur.

When passing slowly through many avoided crossings, the rate of excitation R , i.e.,
the probability per unit time that a particle makes a transition to a neighboring state, is
determined by the distribution N(A,∆E) of relative slopes A and gap sizes ∆E via

R = Ẋ
∞Z

0

dA
∞Z

0

d∆E N(A,∆E)exp
(
−π

2
∆E2

A |Ẋ |
)

. (6.17)

Here N(A,∆E)dAd∆E is the number of avoided crossings encountered per unit length, with
relative slopes in the interval [A,A+dA], and gap sizes in the interval [∆E,∆E +d∆E].

If random matrix theory (see Chapter 3) is applicable, the distribution N(A,∆E) should be
a universal function [198] that fulfills N(A,∆E) ∝ P(∆E) ·P′(A). The distribution P(∆E) is
then determined by the nearest-neighbor level-spacing distribution P(s) that was introduced
in Sec. 3.1, while P′(A) is related to the matrix elements of the operator (∂Ĥ/∂X) which
also satisfy the statistical hypothesis of random matrix theory. Based on the above, one can
then show [198] that, for Ẋ = const., the transition rate is given by

R ∝ |Ẋ |(ν+2)/2 , (6.18)

with ν = 1 for GOE and ν = 2 for GUE statistics, and thus it depends on the universality
class of the underlying Hamiltonian.

6.3.2 Diffusion in the adiabatic spectrum
How could the adiabatic theory of driven quantum systems be of help to explain the decay of
Bloch oscillations? In order to understand this, remember the transformed, time-dependent
Hamiltonian ˆ̃Hp(t), Eq. (2.34). It contains a time-dependent phase factor of the form eiFt

and, consequently, can be considered as the Hamiltonian of a periodically driven system
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Figure 6.13: (a) Energy E(t), Eq. (6.19), and (b) velocity v(t), Eq. (6.6), for n = 6 bosons on L = 7
sites with periodic boundary conditions, plotted versus time, in units of the Bloch period t/TB. The
parameters are U = J = 1 and F = 0.1 (red), 1 (blue), and 10 (green), and the initial state is the
untilted Hamiltonian’s ground state. The data for noninteracting particles, U = 0, are also shown,
for comparison (black).

where the constant tilt F defines the driving rate. This should not be confused with our
analysis in Chapter 5, where we considered the parametric evolution of the tilted Bose-
Hubbard Hamiltonian Ĥ, Eq. (2.26), as a function of the tilt F and a driving of the system
in the form of a linearly time-dependent tilt, i.e., F(t) = Fi +Rt (see Eq. (5.4)).

Let us illustrate how the decay of the Bloch oscillations is reflected in the temporal be-
havior of the energy

E(t) = 〈ψ(t)| ˆ̃Hp(t)|ψ(t)〉 . (6.19)

In Fig. 6.13, we plot E(t) and v(t) versus time, in units of the Bloch period t/TB, for periodic
boundary conditions, J = U = 1, and various field strengths F . For comparison, we also
show data for noninteracting particles. We find that velocity and energy behave essentially
analogous: For U = 0, they feature perfect Bloch oscillations which get distorted for U 6= 0.
In the latter case, the dynamical behavior depends on the strength of the driving F , as
already discussed in Sec. 6.2. The main difference between v(t) and E(t) is given by the
phase shift of π/2 between them. This is rooted in the definition of the velocity which is
given by the derivative of the energy, compare Eq. (6.5). That is, while the initial value of
the energy E(t = 0) corresponds to its minimum value, i.e., the ground state energy of the
system, the velocity starts at v(t = 0) = 0 and oscillates around zero. Apart from that, v(t)
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Figure 6.14: Adiabatic spectrum of the time-dependent Hamiltonian ˆ̃Hp(t), Eq. (2.34), with quasi-
momentum κ = 0, for n = 6 on L = 7 sites, for (a) U = 0, J = 1, and (b) U = J = 1. The energy
E(t), Eq. (6.19), of the system, initially prepared in the ground state, is plotted in color on top of the
spectrum. While for U = 0 the driving rate F is irrelevant for the dynamics, the behavior strongly
depends on F in the case of interacting bosons as indicated for F = 0.1 (red line), 1 (blue line), and
10 (green line), compare Fig. 6.13 (a).

and E(t) behave qualitatively similarly.
How is the observed behavior of the Bloch oscillations related to the adiabatic spectrum?

The answer is given in Fig. 6.14, where we plot the energy E(t) of the system, initially
prepared in its ground state (compare Fig. 6.13 (a)), on top of the adiabatic spectrum with
quasimomentum κ = 0.12 For (a) noninteracting particles, the spectrum consists of perfectly
crossing straight lines and, hence, individual energy levels are not coupled. As a result, no
transitions between any two levels occur, and the system’s temporal behavior is dictated by
the evolution of the initially populated energy level, irrespective of the driving rate F . Thus,
in the case of the ground state considered here, we can observe perfect Bloch oscillations.

For (b) interacting particles, the situation changes: The energy levels undergo numerous
avoided crossings, and, consequently, transitions between neighboring levels are possible.
Also the driving rate F is now of crucial importance. In the case of weak driving F = 0.1,
only few transitions occur, and the energy stays close to the ground state energy during the
dynamics. In this regime, Bloch oscillations cannot be observed (compare Fig. 6.13) since
only states in the lower part of the spectrum get occupied during the dynamics. Increasing

12Due to the translational invariance of the system with periodic boundary conditions, the Hamiltonian de-
composes into blocks with distinct quasimomenta κ, and dimensions Nκ. Since the ground state lies
within the κ = 0 block, we solely consider the corresponding part of the spectrum here. For further de-
tails, and a plot of the adiabatic spectrum of a smaller system where the individual energy levels can be
resolved, see Secs. 2.4.1.1 and 3.2.3, respectively.
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the driving rate leads to more and more transitions, and for F = 1 the system features
(decaying) Bloch oscillations. For strong driving, F = 10, the diabatic regime is reached,
where the system is forced across the avoided crossings and almost perfect oscillations
occur, that are solely modified by an additional beating which we already discussed in
Sec. 6.2.

We thus see how populations of individual eigenstates of the adiabatic spectrum of ˆ̃Hp(t)
can be redistributed over neighboring levels. Depending on the driving and on the coupling
between the levels, i.e., on the size and width of the avoided crossings, an initially localized
state will therefore spread and get distributed amongst the levels as time evolves. This
spreading is then reflected in the energy E(t), Eq. (6.19), as we observed in Fig. 6.14. In
this context, the rate of excitation R , Eq. (6.17), tuns into

R =
F
2π

∞Z
0

dA
∞Z

0

d∆E N(A,∆E)exp
(
−π

2 ∆E2

AF

)
, (6.20)

where we have identified X = Ft/(2π) = t/TB and, consequently, Ẋ = F/(2π). As dis-
cussed in Sec. 3.2.3, the distribution N(A,∆E) of the avoided crossings’ widths and corre-
sponding relative slopes depends on the strength of the Hamiltonian’s parameters J and U ,
and has to be extracted numerically from the adiabatic spectrum.

Given the scenarios shown in Fig. 6.14 (b), the question arises for which driving rates F
the approach of Wilkinson might be applicable, i.e., whether one of the above cases fulfills
the slowness condition (6.16). We thus estimate the largest rate F for which (6.16) still
holds. In the simplest approximation, the mean level spacing is given by

∆ =
Emax−Emin

Nκ0

≈ 0.12 , (6.21)

where Nκ0 = 132 is the dimension of the κ = 0 subspace (see Sec. 2.4.1.1), and Emax

and Emin are the largest and smallest energy eigenvalues that appear in the spectrum.13

Furthermore, we find that the average gap size, taken over all avoided crossings, is given
by ∆E ≈ 0.055, and the average over the relative slopes yields A ≈ 4.65. Consequently,
condition (6.14) is reasonably satisfied, and condition (6.16) results in F � 0.02. That is,
Wilkinson’s approach of adiabatic driving can only be applied to tilting strengths that fulfill
F � 0.02. However, for such small tilts, decaying Bloch oscillations are not observed in
the chaotic regime.

The above discussion is corroborated by Fig. 6.15, which is a zoom of Fig. 6.14 (b)
around the first avoided crossing encountered by the many-particle ground state, at t/TB =

13We actually do not take into account the uppermost level which lies well separated above the rest of the
spectrum and thus does not couple to states from the bulk, as obvious from Fig. 6.14 (b).
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Figure 6.15: Zoom into the adiabatic
spectrum of Fig. 6.14 (b), and the energy
E(t) in the vicinity of the first avoided
crossing between the many-particle ground
state and the first excited state, at t/TB ≈
0.1.

0.1. We find that even for weak driving F = 0.1, where the system does not feature Bloch
oscillations yet, almost the entire population makes a transition to the second level. That is,
we are still far from being in the adiabatic regime where Landau-Zener theory is applicable.
For F = 1 and 10, the situation is even worse: The energy of the system after passing the
first avoided crossing lies already above the second energy level. It is thus immediately
evident that a local two-level approximation is not applicable here and couplings between
non-neighboring levels have to be taken into account.

We conclude that the adiabatic theory of driven quantum systems does not apply in the
current context. Instead, one could use time-dependent perturbation theory, i.e., linear re-
sponse theory à la Kubo and Greenwood [38, 76, 119, 198], to calculate the spreading in
the energy spectrum. In this formalism, the fine structure of the spectrum, i.e., the distri-
bution of gaps ∆E and slopes A is no longer the relevant quantity. Rather, what matters is
the shape of the perturbation operator that usually is a banded matrix [66]. Its bandwidth14

then determines the maximal distance in energy at which levels are coupled in first order
processes. Since the bandwidth is typically much larger than the mean level spacing ∆,
distant levels are coupled for fast driving. Here, we do not further pursue this approach
since we are interested in how the statistical properties of the Hamiltonian are reflected in
the decay of the Bloch oscillations.

14The bandwidth of the perturbation operator is inversely proportional to the correlation time of the underly-
ing classical (mean-field) dynamics, see for example Refs. [38, 93, 198].
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6.4 Approach 2: Statistical analysis of the velocity
operator

In this section we develop a method that will allow us to relate the decay rate of the Bloch
oscillations to the statistical properties of the tilted Bose-Hubbard Hamiltonian. It is based
on the distribution of the velocity operator’s matrix elements Vn,m, weighted with the initial
density matrix ρ0. This distribution closely resembles the local density of states (LDoS).

In the following, we first introduce the LDoS and its relation to the survival probability
and to the Bloch oscillations. Then, we define and investigate the joint frequency distri-
bution of the velocity operator and of the initial density matrix, which we finally connect
to the decay rate of the Bloch oscillations and the spectral statistics of the Bose-Hubbard
Hamiltonian. Although our main interest resides in the chaotic spectral regime, we will
perform a parametric analysis with respect to the interaction strength.

6.4.1 Local density of states

Consider again a Hamiltonian that depends on a set of control parameters {X}. As opposed
to the discussion in Sec. 6.3.1, we assume the parameters to be time independent and now
focus on the eigenstates of the system, and not only on its eigenenergies. As the parameters
{X}, and thus the Hamiltonian, change, also the corresponding instantaneous eigenstates
evolve and undergo structural changes. This is reflected in the LDoS which is defined as

Dm(E) =
N

∑
n=1

P(m|n) δ(E−En) , (6.22)

with the kernel
P(m|n) = |〈m({X})|n({X ′})〉|2 . (6.23)

Here, |m({X})〉 represents an unperturbed eigenstate of the Hamiltonian Ĥ0 that corre-
sponds to the parameter set {X}, i.e.,

Ĥ0|m({X})〉= E0,m|m({X})〉 , (6.24)

|n({X ′})〉 is an eigenstate of the perturbed Hamiltonian Ĥ characterized by {X ′},

Ĥ|n({X ′})〉= En|n({X ′})〉 , (6.25)

and N is the Hilbert-space dimension. When interpreted as a function of n for fixed m,
the kernel P(m|n) is the projection of a single state |m〉 on the basis {|n〉}, as illustrated
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{|m〉} P (m|n){|n〉}

E Figure 6.16: Schematic representation of the ker-
nel P(m|n), Eq. (6.23), that appears in the local
density of states Dm(E), Eq. (6.22). It describes
the projection of an unperturbed eigenstate |m〉
(blue level) on the eigenbasis {|n〉} of the per-
turbed Hamiltonian.

in Fig. 6.16. That is, the LDoS describes the representation of an eigenstate of the un-
perturbed Hamiltonian Ĥ0 in the eigenbasis of the perturbed Hamiltonian Ĥ,15 and thus it
characterizes that part of the spectrum which is relevant for the state under consideration.
This property makes the LDoS useful in many contexts, since, in general, the details of the
entire spectrum are not important. This will be illustrated in the next section, where we
consider the time evolution of the so-called survival probability.

In the case of the tilted Bose-Hubbard Hamiltonian Ĥ, Eq. (2.26), the set of parameters
{X} is given by J,U , and F . For example, in Sec. 3.2.2 we saw that, for fixed U = 0, the
eigenstates change from Bloch to Wannier-Fock states as F is increased from zero. Since
we here consider the time evolution of the untilted Hamiltonian’s ground state under the
action of the tilted Hamiltonian, it is natural to identify the unperturbed Hamiltonian with
Ĥ0 = ĤJ + ĤU , and the perturbed Hamiltonian with Ĥ = Ĥ0 + ĤF .

To avoid the problem of a time-dependent eigenbasis, we stick to the time-independent
Hamiltonian (2.26). Consequently, we apply Dirichlet boundary conditions in the dynamics
which, depending on the strength of the static field F , can induce boundary effects, as we
have seen in Sec. 6.2. However, as discussed on p. 86, this intricacy can be overcome by
choosing as initial state |ψ0〉 the ground state of a smaller, untilted sublattice with m < L
sites (see Fig. 6.5). In the following, the location of the smaller lattice within the large
lattice is always chosen such that at t = 0 the two uppermost sites of the tilted lattice are
empty. We have checked that this choice guarantees that boundary effects can be neglected
for all the parameter sets discussed in the remainder of this chapter.

Since this initial state |ψ0〉 is not an eigenstate of the untilted, large lattice, in the follow-
ing we refer to the LDoS in a more general way. That is, we consider the representation of

15If interpreted as a function of m, P(m|n) yields the shape of a perturbed eigenstate |n〉 in the unperturbed
basis {|m〉}. For chaotic systems, both cases have been thoroughly studied [31, 38, 39, 41, 72, 91, 196],
even for a (three-site) Bose-Hubbard system [90, 92, 93].
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|ψ0〉 in the eigenbasis of the tilted Hamiltonian Ĥ, i.e.,

D(E) =
N

∑
n=1
|〈ψ0|n〉|2 δ(E−En) . (6.26)

This can also be written as

D(E) =
N

∑
n=1

ρ0n,n δ(E−En) , (6.27)

where

ρ0 = |ψ0〉〈ψ0| , (6.28)

is the initial density matrix. That is, the coefficients of the LDoS are given by the diagonal
elements of the initial density matrix in the representation of the Hamiltonian Ĥ = Ĥ0 + ĤF

that generates the dynamics.
In the upper row of Fig. 6.17, we illustrate the evolution of the LDoS D(E) for fixed

J = F = 1, and various interaction strengths U . We find that U strongly affects the structure
of the LDoS: For vanishing interactions U = 0, it features equidistant peaks, which get
broadened as U increases to U = 0.1. For even stronger interactions, U = 1 and U = 3,
the regular structure is washed out completely, and the LDoS features numerous peaks of
different heights and spacings.

6.4.1.1 Relation to the survival probability and the mean velocity

How do these structural changes manifest in the system dynamics? In order to answer this,
it is useful to recall that the LDoS is tightly connected to an important dynamical quantity,
the survival probability

P(t) = |〈ψ0|ψ(t)〉|2 , (6.29)

which quantifies the overlap of the time-evolved state

|ψ(t)〉= Û(t)|ψ0〉 (6.30)

with the initial state |ψ0〉. When expressing the time-evolution operator Û(t) in the eigen-
basis of the Hamiltonian Ĥ that generates the dynamics as

Û(t) =
N

∑
n=1

e−iEnt |n〉〈n| , (6.31)
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we easily see that P(t) can also be written as

P(t) =

∣∣∣∣∣ N

∑
n=1

e−iEnt〈ψ0|n〉〈n|ψ0〉
∣∣∣∣∣
2

=

∣∣∣∣∣ N

∑
n=1

e−iEnt |〈ψ0|n〉|2
∣∣∣∣∣
2

=

∣∣∣∣∣ N

∑
n=1

e−iEnt
ρ0n,n

∣∣∣∣∣
2

=

∣∣∣∣∣∣
∞Z
−∞

dE e−iEt D(E)

∣∣∣∣∣∣
2

,

(6.32)

where in the last line we used the definition (6.26) of the LDoS. Thus, the survival proba-
bility is the modulus squared of the Fourier transform of the LDoS, or, in other words, the
Fourier transform of the LDoS provides us with the so-called survival probability ampli-
tude. It is therefore evident that the different structures of D(E) as observed in Fig. 6.17
(top row) imply fundamentally distinct temporal behavior of P(t), Fig. 6.17 (middle row).
Specifically, we find that the equidistant comb structure for U = 0 leads to perfectly peri-
odic dynamics, corresponding to undisturbed Bloch oscillations of the bosons as discussed
in Sec. 6.2.1. That is, the particles oscillate on the lattice, and return to their initial config-
uration at integer multiples l of the Bloch period TB. Consequently, the survival probability
has its maxima at t = l · TB, i.e., P(l · TB) = 1. For nonvanishing interactions U 6= 0, the
periodicity is distorted and the resulting dynamics ranges from a decay of the oscillations
within a few Bloch periods for U = 0.1, to their immediate destruction for U = 1, and a
complete suppression for U = 3.

Our ultimate goal is not to describe P(t), but to understand the decay of the Bloch os-
cillations that is encoded in the velocity v(t) (or likewise in the center of mass x(t)) from
the statistical properties of the Hamiltonian. The question thus is whether or not the LDoS
alone carries sufficient information to do so. The answer is given already in the bottom row
of Fig. 6.17, where we depict the velocity, investigated in Sec. 6.2, for the very same system
as above. For U = 0, v(t) and P(t) behave completely analogously, that is they are peri-
odic with TB. For nonvanishing interactions, however, the behavior differs, although both
quantities feature a decay of the oscillations. For example, for U = 0.1, the decay observed
in v(t) is less rapid and we can still observe oscillations after an evolution time t = 4 ·TB,
where P(t) has fully decayed. That is, in general, survival probability and velocity do not
behave analogously and, consequently, the LDoS does not provide us with the complete
information that is needed to understand the Bloch oscillations’ decay.

In the following, we investigate the equations describing the velocity in more detail, in
order to understand how the behavior of v(t) is reflected in the statistical properties of the
Hamiltonian.
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Figure 6.17: Top: local density of states D(E), Eq. (6.26), middle: survival probability P(t),
Eq. (6.29), and bottom: mean velocity v(t), Eq. (6.6), for different interaction strengths U = 0,
0.1, 1, and 3 (from left to right). The initial state |ψ0〉 is the ground state of n = 5 particles in m = 5
lattice sites, and the tunneling coupling is J = 1. The strength of the static field is given by F = 1 and
the tilted system on which we propagate |ψ0〉 has L = 11 sites. The LDoS is depicted as a function
of the energy E, and survival probability and mean velocity are plotted versus time, in units of the
Bloch period t/TB.
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6.4.2 Reformulation of the mean velocity

We use expressions (6.30) and (6.31) for the time-evolved state |ψ(t)〉, to rewrite the mean
velocity v(t), Eq. (6.6), of the bosons on the lattice as

v(t) = 〈ψ(t)|V̂ |ψ(t)〉

=
N

∑
n,n′=1

e−i(En′−En)t〈n′|ψ0〉〈ψ0|n〉〈n|V̂ |n′〉

=
N

∑
n,n′=1

e−i(En′−En)t〈n′|ρ0|n〉〈n|V̂ |n′〉

=
N

∑
n,n′=1

e−i(En′−En)tρ0n′,nVn,n′

=
N

∑
n,n′=1

e−i∆En′,n·t (ρ0 ◦V T)
n′,n .

(6.33)

Here, ρ0 and V are the matrix representations of the initial density matrix and of the velocity
operator in the eigenbasis of the tilted Hamiltonian that generates the dynamics. V T is the
transpose of the matrix V , and ρ0 ◦V T denotes the (entrywise) Hadamard product of ρ0

and V T . We thus see that the time dependence of the mean velocity is determined by the
differences between all contributing eigenenergies of the system,

∆En′,n = En′−En , (6.34)

i.e., the distances between all the peaks of the LDoS. The corresponding coefficients are
given by the matrix elements of the initial density matrix ρ0, weighted with the elements of
the velocity operator’s transpose V T . That is, as opposed to the survival probability (6.32),
where the dynamical behavior is solely determined by the LDoS, here, we also have to
consider the matrix elements of the velocity operator.

To develop some intuition of how ρ0 and V evolve under changes of the interaction
strength and to better understand the importance of the weighting, we depict ρ0 (top row),
V (middle) and ρ0 ◦V T (bottom) for different values of U , in Fig. 6.18. Shown are the
absolute values of the matrix elements for n = 3 bosons in a lattice of length L = 6. We
choose this relatively small system with Hilbert-space dimension N = 56, Eq. (2.39), in
order to be able to resolve the individual elements of the matrices. Here, the initial state is
the ground state of the n = 3 bosons in m = 3 lattice sites. The axes are chosen such that in
each panel the upper left corner corresponds to the smallest, and the lower right corner to
the largest eigenenergy of the system.
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Figure 6.18: Top: initial density matrix ρ0, Eq. (6.28), middle: velocity operator V , Eq. (6.6), and
bottom: Hadamard product ρ0 ◦V T , in the eigenbasis of the tilted Bose-Hubbard Hamiltonian Ĥ,
Eq. (2.26). Shown are the absolute values of the matrix elements for n = 3 bosons in a lattice of
length L = 6, with Hilbert-space dimension N = 56, Eq. (2.39). The initial state is the ground state
of the n = 3 bosons in m = 3 lattice sites. The tunneling coupling and the static field strength are
J = F = 1, and the onsite interaction takes the values U = 0, 0.1, and 1 (from left to right). The axes
are chosen such that in each panel the upper left corner corresponds to the smallest and the lower
right corner to the largest eigenenergy of the system.

We observe that ρ0 is only weakly affected by the interaction strength. This is due to our
choice of the initial state, which is the ground state of the smaller, untilted system where the
interaction strength is the same as in the larger, tilted system. As a consequence, changes
in the eigenbasis are only induced by the tilt F . For the parameters considered here, those
changes are relatively small and thus the representation of ρ0 in the tilted Hamiltonian’s
eigenbasis only slightly depends on U . The situation is different for very strong interactions
U � 1, since in this regime the (Fock) initial state is almost an eigenstate of the tilted
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Hamiltonian, and ρ0 reduces to a matrix which is essentially zero apart from one spot.
On the contrary, V is significantly modified under variations of U since the operator itself

is independent of the interaction strength and does not commute with ĤU . For U = 0 and
small F , the tilted Hamiltonian’s eigenbasis is closest to the Bloch basis, and the repre-
sentation of the velocity operator V̂ in this basis has only relatively few nonzero elements
that form two off-diagonal bands. This regular structure gets washed out with increasing
inter-particle interaction and we find that V is smeared out in the Hamiltonian’s eigenbasis
for U = 1. This can be understood from the evolution of the eigenbasis with increasing U
(compare Sec. 2.3.2): the larger the onsite interaction, the more the eigenstates approach
Wannier-Fock states, and, consequently, the broader V . We also note that the diagonal el-
ements Vn,n vanish independently of U . This results from the definition of the operator V̂ ,
Eq. (6.8), which implies that all its matrix elements are purely imaginary, together with the
requirement of selfadjointness, which every physical observable has to satisfy.

Combination of both matrices ρ0 and V leads to the joint distribution of matrix elements
ρ0 ◦V T . We observe that the weighting plays an important role: While the structure of the
matrix, i.e., whether or not it is smeared out in the Hamiltonian’s eigenbasis, is determined
by the velocity operator, the initial density matrix restricts the number of coefficients that
need to be taken into account. It is thus evident that the weighting of ρ0 with V T in v(t)
will significantly influence the dynamical behavior of the mean velocity. Moreover, since
V is given in the eigenbasis of the Hamiltonian that generates the dynamics, it contains all
the spectral information on the system.

In order to obtain a deeper understanding of the velocity’s temporal behavior, we further
simplify expression (6.33). In a first step, we use the fact that all diagonal elements are
zero, i.e., Vn,n = 0 ∀ n, and split the sum into two contributions with either only positive
(first term) or only negative frequencies ∆En′,n (second term)

v(t) =
N

∑
n′=1

N

∑
n=n′+1

e−i∆En′,n·t (ρ0 ◦V T)
n′,n +

N

∑
n=1

N

∑
n′=n+1

e−i∆En′,n·t (ρ0 ◦V T)
n′,n . (6.35)

This can be rewritten as

v(t) =
N

∑
n′=1

N

∑
n=n′+1

e−i∆En′,n·t (ρ0 ◦V T)
n′,n +

N

∑
n′=1

N

∑
n=n′+1

e−i∆En,n′ ·t (ρ0 ◦V T)
n,n′ , (6.36)

where, in the second term, we have exchanged the summation indices n and n′. From the
definition of ∆En′,n, Eq. (6.34), we have ∆En′,n =−∆En,n′ . Moreover, since ρ0 is real while
V is purely imaginary, we also know that(

ρ0 ◦V T)
n′,n = iℑ

[(
ρ0 ◦V T)

n′,n

]
, (6.37)
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where ℑ denotes the imaginary part. Since ρ0 is orthogonal and V is selfadjoint, this implies

− (ρ0 ◦V )n′,n =
(
ρ0 ◦V T)

n′,n =
(
ρ0 ◦V T)∗

n,n′ =−(ρ0 ◦V )∗n,n′ . (6.38)

Consequently, we can write

v(t) =−
N

∑
n′=1

N

∑
n=n′+1

e−i∆En′,n·t (ρ0 ◦V )n′,n−
N

∑
n′=1

N

∑
n=n′+1

ei∆En′,n·t (ρ0 ◦V )∗n′,n , (6.39)

where now both sums only include positive frequencies, i.e., we have ∆En′,n > 0 for all
considered combinations of n and n′. Expression (6.39) is equivalent to

v(t) =−2ℜ

[
N

∑
n′=1

N

∑
n=n′+1

e−i∆En′,n·t (ρ0 ◦V )n′,n

]
, (6.40)

where ℜ denotes the real part. A change of the summation indices such that only one index
remains leads to

v(t) =−2ℜ

[
N

∑
k=1

e−i∆Ek·t (ρ0 ◦V )k

]
, (6.41)

where the sum now runs up to N = (N 2−N )/2. Substituting Eqs. (6.37) and (6.38) results
in

v(t) =−2
N

∑
k=1

sin(∆Ek · t) ℑ [(ρ0 ◦V )k] . (6.42)

Consequently, the mean velocity can also be written as

v(t) =−2ℑ

 ∞Z
0

d∆E e−i∆EtGρ0V (∆E)

 , (6.43)

where, in close analogy to the LDoS D(E), Eq. (6.26), we define the distribution of fre-
quencies as

Gρ0V (∆E) =
N

∑
k=1

ℑ [(ρ0 ◦V )k]δ(∆E−∆Ek) . (6.44)

That is, v(t) is uniquely defined by the Fourier transform16 of the frequency distribution
Gρ0V (∆E), which will be investigated in detail in Sec. 6.4.3.

16Note that as opposed to Eq. (6.32), where the integral stretches from −∞ to ∞, here we only consider an
integration from 0 to ∞ since all frequencies ∆E appearing in the frequency distribution Gρ0V (∆E) are
strictly positive, ∆E > 0.
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6.4.2.1 Relation to the survival probability

An analogous expression can be found for the survival probability P(t), if we first rewrite
Eq. (6.32) as

P(t) =

∣∣∣∣∣ N

∑
n=1

e−iEnt〈ψ0|n〉〈n|ψ0〉
∣∣∣∣∣
2

=
N

∑
n,n′=1

e−i(En′−En)t〈n′|ψ0〉〈ψ0|n〉〈n|ψ0〉〈ψ0|n′〉

=
N

∑
n,n′=1

e−i∆En′,nt
ρ0n′,nρ0n,n′ .

(6.45)

This closely resembles expression (6.33) and, in complete analogy to the procedure above,
it can be recast in the form

P(t) =
N

∑
n=1

ρ
2
0n,n +2ℜ

 ∞Z
0

d∆Ee−i∆EtGρ0(∆E)

 , (6.46)

where we define

Gρ0(∆E) =
N

∑
k=1

(ρ0 ◦ρ0)k δ(∆E−∆Ek) . (6.47)

Comparing expression (6.43) for the velocity to Eq. (6.46), we find that v(t) and P(t)
can be expressed such that they have the same functional structure. While the former is
given by the imaginary part of the Fourier transform of the corresponding frequency distri-
bution Gρ0V (∆E), the latter is given by the real part of the Fourier transform of Gρ0(∆E).
In addition, the survival probability contains a time-indendent term, which stems from the
diagonal contributions of the initial density matrix and is nothing else but the inverse par-
ticipation ratio (IPR) defined in Eq. (5.2). In the case of the velocity, this term also appears,
as (ρ0 ◦V )n,n, but vanishes exactly since V has a vanishing diagonal.

In analogy to Gρ0V (∆E) and Gρ0(∆E), we define the distribution

GV (∆E) =
N

∑
k=1

ℑ [Vk]δ(∆E−∆Ek) , (6.48)

which does not correspond to any dynamical quantity. However, since Gρ0V (∆E) is ob-
tained from Gρ0(∆E) by simply replacing one of the ρ0 in expression (6.47) by V , it pro-
vides valuable insight whether ρ0 or V dominates the frequency distribution of interest,
Gρ0V (∆E).
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6.4.3 Frequency distributions

In Fig. 6.18, we have already witnessed the importance of weighting ρ0 with V T which en-
ters the expression for the velocity v(t). In the following, we will analyze the corresponding
frequencies by investigating the distributions Gρ0(∆E), Eq. (6.47), Gρ0V (∆E), Eq. (6.44),
and GV (∆E), Eq. (6.48), where the former two dictate the time evolution of the survival
probability and the velocity, respectively.

Fig. 6.19 shows all three distributions as a function of ∆E, for the interaction strengths
U = 0,0.1,1 and 3. Before we discuss details of the distributions, we note that in the case
of Gρ0(∆E) (top row), all coefficients are strictly positive, since (ρ0 ◦ρ0)k = ρ2

0k. On the
contrary, Gρ0V (∆E) (middle) and GV (∆E) (bottom), can turn negative, since the matrix
elements of ρ0 and V enter only linearly. In order to understand the implications thereof
on the Bloch oscillations, consider the following: As obvious from expression (6.42), the
contributions of two coefficients with amplitudes ak =−a j and identical frequencies ∆Ek =
∆E j cancel exactly. In contrast, if only positive (or, likewise, only negative) coefficients are
involved, a vanishing velocity requires a dephasing of the individual contributions which
can only result from (incommensurate) frequencies.

Note that, in the distribution Gρ0V (∆E), that determines the temporal behavior of the
velocity v(t), positive coefficients always dominate the distribution. Negative coefficients
are only relevant for strong interactions U , what corresponds to a regime where Bloch
oscillations are completely suppressed, even for very short times, see Fig. 6.17 (l). We also
note again that the distribution GV (∆E), which has as many negative as positive coefficients,
does not have any immediate meaning for the dynamics of the system. Since eventually we
want to study the integrated frequency distributions (see Sec. 6.4.3.1), in the following, we
consider the absolute values of the distributions that are depicted in Fig. 6.20, and do not
discuss Fig. 6.19 in more detail.

For noninteracting particles, U = 0, we observe a sharp, peaked structure of all three fre-
quency distributions, what implies that only a limited number of well-defined frequencies
contribute to the dynamics. Specifically, all frequencies in |Gρ0(∆E)| fulfill the condition
∆E = l, where l ∈ N and, consequently, the fundamental period T = 2π/∆E = 2π is iden-
tical to the Bloch period TB.17 As a consequence, the survival probability P(t) is expected
to be periodic with TB, with a strong suppression of the amplitude at times t 6= l ·TB, due
to the admixture of higher harmonics. In the case of |Gρ0V (∆E)|, only one peak with fre-
quency ∆E = 1 appears, and from Eq. (6.42) we thus expect the velocity to feature perfect,

17Note that here we choose F = 1 for the static field strength. However, completely analogous behavior is
also found for F 6= 1, if the distributions are plotted as a function of ∆E/F , what corresponds to measuring
time in units of the Bloch period, i.e., t/TB. We then have ∆E/F = l, with l ∈ N, and the fundamental
period again corresponds to the Bloch period TB = 2π/F .
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Figure 6.19: Top: frequency distribution Gρ0(∆E), Eq. (6.47), middle: Gρ0V (∆E), Eq. (6.44), and
bottom: GV (∆E), Eq. (6.48), for the same system parameters as in Fig. 6.17, and again U = 0, 0.1,
1, and 3, as a function of ∆E. The distributions are normalized, such that the highest peak for each
interaction strength equals 1.

sinusoidal Bloch oscillations. These findings are in perfect agreement with our dynamical
observations of Fig. 6.17 (e) and (i). The distribution |GV (∆E)| is dominated by two peaks
at positions ∆E = 1 and ∆E ≈ 1.2. However, as discussed above, |Gρ0(∆E)| only has con-
tributions at integer multiples of ∆E = 1, and, consequently, only the former peak can also
be found in |Gρ0V (∆E)|. Vice versa, all frequencies ∆E 6= 1 that appear in |Gρ0(∆E)|, are
suppressed in |Gρ0V (∆E)|, since |GV (∆E)| singles out the contribution at ∆E = 1.

For nonvanishing but weak interactions, U = 0.1, the formerly perfect peaks in the distri-
butions are broadened. Although |GV (∆E)| again singles out the contribution of |Gρ0(∆E)|
around ∆E = 1 (i.e., |Gρ0V (∆E)| is still dominated by the velocity operator) now also fre-
quencies that slightly deviate from the inverse Bloch period 2π/TB contribute to the dynam-
ics. This causes a dephasing of the oscillations over time, as we observed in Fig. 6.17 (f)
and (j).
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Figure 6.20: Absolute values of the frequency distributions Gρ0(∆E), Eq. (6.47), Gρ0V (∆E),
Eq. (6.44), and GV (∆E), Eq. (6.48), for the same system parameters as used in Figs. 6.17 and 6.19.

In the case of stronger interactions, U = 1, all three frequency distributions are broadly
distributed, over a large frequency range, and single peaks can hardly be resolved. Note that
the shape of |Gρ0V (∆E)| is no longer dominated by |GV (∆E)|, and the three distributions
strongly resemble each other. Only the suppression of |Gρ0V (∆E)| at small values of ∆E
results from the vanishing diagonal of the velocity operator. In this regime, many frequen-
cies contribute to the dynamics equally, leading to a rapid and irreversible dephasing of the
Bloch oscillations (compare Fig. 6.17 (g) and (k)).18

For even stronger interactions, U = 3, the situation is similar. Moreover, now |Gρ0V (∆E)|
rather resembles |Gρ0(∆E)|, since |GV (∆E)| is completely smeared out. Note that now also
the negative contributions to Gρ0V (∆E) start to get relevant, see Fig. 6.19 (h), leading to a

18In a strict sense, for a finite number of coefficients in Gρ0V (∆E), irreversible dephasing of the Bloch oscil-
lations can only be expected for incommensurate frequencies. While we did not analyze the incommen-
surability, we note that the revival time can, in any case, be expected to be arbitrarily large if sufficiently
many distinct frequencies contribute to the dynamics.
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Figure 6.21: Integrated frequency distributions Iρ0(∆E) (black), Iρ0V (∆E) (blue) and IV (∆E) (ma-
genta), corresponding to the distributions shown in Fig. 6.20. The Iα(∆E) are defined in Eq. (6.49).

complete suppression of oscillations in P(t) and v(t) (see Fig. 6.17 (h) and (l)).

6.4.3.1 Integrated distributions

As mentioned above, we now consider the integrated distributions

Iα(∆E) =
1
NI

∆EZ
0

dE ′ |Gα(∆E ′)| , (6.49)

where α stands for either ρ0, ρ0V , or V , and the normalization NI is chosen such that
Iα(∆E → ∞) = 1. The Iα(∆E) have the advantage that they resolve data points that are
degenerate in frequency, and allow to directly extract certain properties of the distributions
such as their widths and the median, both of which will be important in the following
discussion. All three integrated distributions Iρ0(∆E), Iρ0V (∆E), and IV (∆E) are shown in
Fig. 6.21, for the same physical situation as assumed in Fig. 6.20, and we briefly discuss
their relation to the distributions |Gα(∆E)|, before turning to a quantitative analysis.

For (a) noninteracting particles, U = 0, we observe a sharp step structure that reflects the
peaks of Fig. 6.20 (first column). Note that, as observed above, in this regime Iρ0V (∆E) is
well approximated by IV (∆E). For (b) U = 0.1, the steps in the distributions are rounded off,
reflecting the broadening of the peaks in the second column of Fig. 6.20. Again, Iρ0V (∆E)
is dominated by the integrated distribution IV (∆E). For (c) stronger interactions, U = 1,
the step structure is completely lost, and many different frequencies contribute. This cor-
responds to the broad distributions we observed in Fig. 6.20 (third column), where single
peaks are essentially not resolved any more. Note that now, all three integrated distribu-
tions are almost identical and, in particular, Iρ0V (∆E) is no longer dominated by IV (∆E).
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Figure 6.22: Definition of the width σ
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integrated frequency distribution Iα(∆E) via the
quantiles Q0.5+x/2 and Q0.5−x/2. Here, x ∈ [0,1]
quantifies the fraction of the distribution that is
considered.

The situation is similar in the case (d) of even stronger interactions, U = 3, where, how-
ever, IV (∆E) and Iρ0(∆E) have exchanged their character, i.e., the former is now much
broader that the latter. Furthermore, for such strong interactions, Iρ0V (∆E) rather resembles
Iρ0(∆E).

6.4.3.2 Width of the integrated distributions

In order to quantify our above statements, we also consider the widths of the distributions

σ
[x]
α = Q0.5+x/2−Q0.5−x/2 , (6.50)

which we define via the quantiles Q0.5+x/2 and Q0.5−x/2, where x ∈ [0,1], as depicted

schematically in Fig. 6.22. With this definition, σ
[x]
α is the frequency width in ∆E that

accounts for the central 100 · x% of the distribution Iα(∆E). In the following, we refer to
the width σ

[x]
ρ0V of the distribution Iρ0V (∆E) as Γ, since it constitutes an important dynamical

quantity.
We show σ

[x]
α for all three integrated distributions with x = 0.6, as a function of U ·n/m,

on a double-logarithmic scale in Fig. 6.23 (a). Since we fix x = 0.6, we can skip the label
[x], i.e., instead of σ

[0.6]
α we simply write σα in the following.19 The system is again defined

as in Fig. 6.17, however, we also vary the particle number, i.e., consider the ground states of
n = 4, n = 5, and n = 6 particles in a lattice with m = 5 sites as initial states. The scaling of
the x-axis is chosen as suggested by the analysis in Sec. 3.3, where we had found universal
spectral behavior of the Bose-Hubbard system for fixed effective onsite interaction U ·n/L.
We find that this scaling is also applicable here, since for different particle numbers n, the
widths σα of the three distributions behave completely analogously. As discussed on p. 87,

19Although we restrict our discussion to x = 0.6, we have verified that our findings also hold for other choices,
as long as x is mall enough to resolve the structure of the integrated distribution. This threshold is approx-
imately given by x . 0.7.
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we here use the number of initially occupied sites m rather than the total number of lattice
sites L, which is chosen large such as to avoid numerical artifacts. This choice is justified
since, for F = 1, the particles hardly spread over the lattice and, consequently, m is the
physically relevant quantity.

The fact that, depending on the interaction strength, Iρ0V (∆E) can either be approximated
by Iρ0(∆E) or by IV (∆E) is also reflected in the widths σα of the distributions. Specifically,
we find that for U ·n/m≤ 0.4, Γ is basically identical to σV . In this regime,20 Γ grows with
increasing interaction strength. For 0.4≤U ·n/m≤ 2, the situation changes and the widths
σα of all three distributions are comparable. For even stronger interactions U ·n/m≥ 2, we
find that σV keeps increasing, while Γ has saturated and is now limited by σρ0 . This can be
understood from the behavior of V and ρ0 under changes of the interaction strength that we
discussed in Sec. 6.4.2 (see, in particular, Fig. 6.18). There we had found that ρ0 is almost
unaffected by changes of U , while V gets smeared out with increasing interaction strength
and, consequently, its width σV increases.

Naturally, the question to ask is what distinguishes the different regimes we identi-
fied above? To answer this, we plot in Fig. 6.23 (b) the deviation ∆2, Eq. (3.19), of the
tilted Bose-Hubbard Hamiltonian’s nearest-neighbor level-spacing distribution from uni-
versal statistics21, as a function of the scaled onsite interaction strength U ·n/m, on a semi-
logarithmic scale. In analogy to the scaling with n/m instead of n/L discussed just above,
we consider for this analysis the effective spectrum (see also p. 87). In the specific example
considered here, this means that we investigate the spectral statistics of n = 4, 5, and 6
bosons on a tilted lattice with 5 sites.

We find that for U · n/m ≤ 0.4, all three considered realizations are regular, since the
deviation from Poissonian statistics is small. This exactly corresponds to the regime where
Γ is identical to the width of IV (∆E), which is determined by the velocity operator in the
eigenbasis of the tilted Hamiltonian. On the contrary, for 0.4≤U ·n/m≤ 2, we find that the
different realizations are best described by chaotic level statistics, since here the deviation
from GOE statistics is small. As pointed out above, in this parameter regime, all three inte-
grated frequency distributions Iα(∆E) closely resemble each other, and, consequently, also
the widths σα are comparable. For U · n/m ≥ 2, the level-spacing distribution once more
changes its character and the system turns regular again. In this regime, the distribution
Iρ0V (∆E), and in particular its width, is well described by Iρ0(∆E).

In summary, we have found that in the regular regime of the Hamiltonian, the distribution
Iρ0V (∆E), which dictates the temporal behavior of the velocity, is either dominated by the

20For very weak interactions, the width Γ is usually overestimated, i.e., the actual values lie below the ones
depicted in Fig. 6.23 (a). This stems from the finite binning of ∆E, what is most critical for very steep
integrated distributions Iα(∆E), that arise for small U and α = ρ0V , V .

21For a thorough discussion of universal spectral statistics see Chapter 3.
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Figure 6.23: (a) Width σα, Eq. (6.50), of the integrated frequency distribution Iρ0(∆E), Eq. (6.47),
(black symbols), Iρ0V (∆E), Eq. (6.44), (blue symbols), and IV (∆E), Eq. (6.48), (magenta symbols),
as a function of the scaled interaction U · n/m, on a double-logarithmic scale. (b) Deviation ∆2,
Eq. (3.19), of the effective spectrum’s nearest neighbor level spacing distribution from universal
GOE, i.e., chaotic, statistics (red symbols) and from universal Poissonian, i.e., regular, statistics
(black symbols), also as a function of U · n/m, on a semi-logarithmic scale. The parameters are
chosen as in Fig. 6.17. In addition to the case of n = 5 particles (squares), also data for n = 4
(circles) and n = 6 (diamonds) particles are shown, with red and black symbols again referring
to the deviation from GOE and Poissonian statistics. Vertical dotted lines indicate the transitions
between regular and chaotic level statistics.
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Figure 6.24: Mean velocity v(t), Eq. (6.6), as a function of time, in units of the Bloch period TB,
for n = m = 5, L = 11, and various interaction strengths U (see legend). The tunneling coupling and
the static field strength are J = F = 1.

initial density matrix ρ0 (for very small interactions), or by the velocity operator V̂ (for
sufficiently large interactions). In contrast, in the chaotic regime both operators contribute
equally, and thus knowledge of both quantities is needed in order to determine the exact
shape of the distribution.

Since the mean velocity v(t) is uniquely determined by the Fourier transform of Gρ0V (∆E),
see Eq. (6.43), we expect the statistical features discussed above to directly relate to the dy-
namical behavior of the Bloch oscillations. In the following, we thus quantify the Bloch
oscillations’ decay and investigate how it reflects the spectral properties of the Hamiltonian.
More precisely, we will show that a large width Γ of the frequency distribution Iρ0V (∆E)
implies a rapid decay of the oscillations, expressed by a large decay constant.

6.4.4 Quantifying the decay of the Bloch oscillations
We now return to the dynamical behavior of the Bloch oscillations discussed in Sec. 6.2.2.
In Fig. 6.24, we plot the mean velocity v(t), Eq. (6.6), as a function of time, in units of
the Bloch period TB, for various interaction strengths U , fixed J = F = 1, n = m = 5, and
L = 11. In general, we find that the larger U , the faster the decay. More precisely, whereas
for weak interactions, U < 0.4, the dynamics appears damped periodic, for U > 0.4 already
the second extremum is considerably distorted. Furthermore, for the strongest interactions
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depicted here (U = 1.6), the oscillatory behavior is almost completely suppressed and only
the first excursion of v(t) is significantly larger than the residual fluctuations22. We also
observe a shift of the extrema of v(t) to shorter times with increasing interaction strength,
what will be investigated in Secs. 6.4.4.1 and 6.4.5.1.

To quantify the decay of the Bloch oscillations, we first seek a qualitative characterization
of the dynamical behavior. As suggested by Ref. [28], we assume an exponentially decaying
envelope

v(t) = vU=0(t)e−γ·t , (6.51)

where vU=0(t) is the velocity that results for vanishing interaction strength (black line in
Fig. 6.2423), and γ > 0 is the decay constant. We then define γk by fitting to the velocity’s
k-th extremum v(tk), at time tk (see also the schematic diagram in Fig. 6.25), as

γk =− ln
(

v(tk)
vU=0(tk)

)
· 1
tk

. (6.52)

If the γk obtained from different extrema v(tk) of the numerical data are identical, the Bloch
oscillations decay exponentially as a function of time.

Fig. 6.26 (a) shows γ1 (red symbols), γ2 (green symbols), and γ3 (black symbols) for
the same system parameters as in Fig. 6.23, again as a function of the scaled interaction

22The magnitude of the asymptotic fluctuations depends inversely on the Hilbert-space dimension, and is thus
smaller for larger systems.

23Note that in Fig. 6.24 the amplitude of the velocity’s oscillations for U = 0 is smaller than one. As we
already pointed out above, this results from the definition of the velocity operator V̂ for Dirichlet boundary
conditions, Eq. (6.8). For periodic boundary conditions (6.9) the amplitude equals one. For other aspects
of the temporal behavior of vU=0(t) see Appendix B.
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Figure 6.26: (a) Decay constant γ and (b) times tk of the oscillations’ extrema as a function of the
scaled interaction strength U ·n/m, on a logarithmic scale. The system parameters are chosen as in
Fig. 6.23. Here, γ1 and t1 (red symbols), γ2 and t2 (green symbols), and γ3 and t3 (black symbols)
correspond to the first, the second, and the third extremum of v(t), see Fig. 6.25 and definition (6.52).
In panel (a), the dotted and dashed lines correspond to y ∼ x and y ∼ x2, respectively. The latter is
obtained from a fit to γ2 in the interval 0.04≤U ·n/m≤ 0.4, see Eq. (6.53). In panel (b), the dashed
lines correspond to the times t f it,y∼x2 obtained by inserting the quadratic fit (6.53) in Eq. (6.54), and
the solid green line t f it represents a fit of the functional form (6.54) to the numerical data t2, see
Eq. (6.55).
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strength24 U ·n/m, on a double-logarithmic scale. As expected from the data in Fig. 6.24,
we find that all three values increase with U · n/m, i.e., the stronger the interactions, the
faster the oscillations are destroyed. We also reconfirm that the appropriate scaling of the
interaction strength is provided by n/m. For U ·n/m > 1.2, the data scatter erratically and
also Bloch oscillations can hardly be observed at all (see Figs. 6.17 (l) and 6.24). Conse-
quently, for such strong interactions, the definition of a decay constant is not meaningful.

Interestingly, while γ2 and γ3 show the same functional behavior for U · n/m ≤ 0.4, γ1

deviates significantly. That is, we observe some transient behavior before the velocity’s
dynamics can properly be described (from the second extremum onwards) by expression
(6.51). Hence, the Bloch oscillations do not feature a simple exponential decay. In the fol-
lowing, we will not investigate the short-time behavior, expressed by γ1, in more detail. We
rather focus on the different regimes that can be distinguished in the functional dependence
of γ2 and γ3 on U ·n/m, which imply qualitatively distinct dynamics.

We observe that the two decay rates γ2 and γ3 feature a transition from linear to quadratic
increase at U ·n/m≈ 5 ·10−3, as highlighted by the dotted and dashed lines in Fig. 6.26 (a).
While the former is simply drawn to guide the eye,25 the latter represents a polynomial fit
to the numerical data γ2 in the interval 0.04≤U ·n/m≤ 0.4 and corresponds to

γ2 = 7.84 · (U ·n/m)2 . (6.53)

The observed increase suggests that for U · n/m < 5 · 10−3, first-order perturbation theory
in U · n/m can be used to explain the oscillations’ decay, whereas for U · n/m > 5 · 10−3,
second-order contributions are dominant. For U ·n/m≥ 0.4, the quadratic increase breaks
down and, furthermore, γ2 and γ3 start to deviate from each other. This behavior again re-
flects that already the second and, even more so, the third extremum of v(t), is considerably
distorted in this parameter regime (see Fig. 6.24), what we will discuss in more detail in
Sec. 6.4.5.

6.4.4.1 Temporal shift of the velocity’s extrema

As pointed out above, the decay of the oscillations is also reflected in a temporal shift
of the velocity’s extrema that we further quantify in the following. In order to obtain an
expression for this shift as a function of the decay constant, we assume perfect sinusoidal
oscillations in the case of vanishing interactions, i.e., vU=0(t) =−v0 sin(t/TB), what yields

24Note that, in contrast to Fig. 6.23, here also data for very weak interactions, i.e., down to U ·n/m = 10−4, are
shown, in order to develop an intuition of the Bloch oscillations’ dependence on the interaction strength.

25Since we are mainly interested in the chaotic regime of the Hamiltonian that corresponds to larger values
of the interaction strength, we do not investigate the regime of very weak interactions U ·n/m < 5 ·10−3

in great detail. We thus do not have enough data points for a reliable fit.
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a good approximation to the dynamics in the current context (see also Appendix B). A
simple calculation starting from Eq. (6.51) then leads to

tk = (arctan(1/γ)+(k−1) ·0.5) ·TB . (6.54)

For noninteracting particles with γ = 0, we thus have t1 = 0.25 · TB, t2 = 0.75 · TB, and
t3 = 1.25 ·TB.

The numerical values of t1, t2, and t3 are shown in units of the Bloch period TB, as a
function of U · n/m in Fig. 6.26 (b). We find that, as discussed above, for U · n/m > 0.1
the extrema are shifted to shorter times as U increases, while for smaller scaled interac-
tion strengths no shift occurs. Here, the dashed lines t f it,y∼x2 are obtained by inserting the
quadratic fit (6.53) in expression (6.54). As expected already from the data for the decay
constants depicted in Fig. 6.26 (a), t1 deviates significantly from the theoretical curve for
U ·n/m > 0.1, i.e., as soon as a shift can be observed. In contrast, t2 behaves qualitatively
consistently with the theoretical expectation, and even features the same functional depen-
dence. It does, however, not follow the curve t f it,y∼x2 , but is best described by the fit t f it

obtained by choosing
γ = 2.89 · (U ·n/m)2 (6.55)

in Eq. (6.54) (solid green line). That is, the second extremum is shifted less than expected.
The time corresponding to the third extremum t3 again differs strongly from the fit t f it,y∼x2

(for U ·n/m > 0.1) and also does not exhibit the functional behavior (6.54). This once more
reflects the strong deviations from periodic behavior as found in Fig. 6.24, and the conse-
quent deviations between γ2 and γ3 for U ·n/m≥ 0.4.

To summarize, we have found that the Bloch oscillation feature a more complicated
temporal behavior than the simple exponential decay of expression (6.51). However, for
U · n/m < 1.2, γ2 provides a suitable quantity to characterize the velocity’s dynamics as it
captures the main features, i.e., the decay of the oscillations and the temporal shift of the
extrema. We will thus use it in the following, in order to relate the Bloch oscillations’ decay
to the spectral structure of the Hamiltonian and, eventually, establish a connection between
the decay constant and the statistics of the velocity operator, expressed by the width Γ.

6.4.5 Decay of Bloch oscillations and statistics of the velocity
operator

In Fig. 6.27 (a) we plot the decay constant γ2 and the width Γ, extracted from the integrated
distribution Iρ0V (∆E), as a function of the scaled interaction strength U ·n/m, on a double-
logarithmic scale, for the same system parameters as in Fig. 6.23. Taking into account the
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Figure 6.27: Relation between the decay of the Bloch oscillations and the statistics of velocity
operator. Panel (a) depicts the decay constant γ2, (green symbols) and the width Γ of the distribution
Iρ0V (∆E) (blue symbols), compare Fig. 6.23 (a), as a function of the scaled interaction strength
U ·n/m, on a double-logarithmic scale. Dashed and dashed-dotted lines correspond to y∼ x2 and y∼
x1/2, and represent fits to γ2 in the intervals 0.04≤U ·n/m≤ 0.4, Eq. (6.53), and 0.4≤U ·n/m≤ 1.2,
Eq. (6.56), respectively. Panel (b) shows the time t2 of the second extremum (green symbols), again
as a function of the scaled interaction strength U · n/m, on a semi-logarithmic scale. In addition,
the time tΓ (blue symbols), Eq. (6.58), extracted from the median of the distribution Iρ0V (∆E), and
the time t2(γ2) (black stars), obtained from inserting the numerical values of γ2 into Eq. (6.54),
are shown. The fitted times t2, f it (green solid line), t2, f it,y∼x2 (green dashed line), and t2, f it,y∼x1/2

(green dashed-dotted line) again represent fits to the numerical data (compare Fig. 6.26). The system
parameters are chosen as in Fig. 6.23, and vertical dotted lines indicate the transitions between
regular and chaotic level statistics of the underlying tilted Bose-Hubbard Hamiltonian.
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overestimation of Γ for small values of U ·n/m, that we discussed in Sec. 6.4.3.2, we find
that γ2 and Γ are proportional to each other as long as U · n/m < 1.2. For larger interac-
tion strengths, the proportionality γ2 ∼ Γ breaks down, and both data sets scatter strongly.
We note again that, in this regime, Bloch oscillations are almost completely suppressed
(see Fig. 6.17 (l) and Fig. 6.24) and, accordingly, negative coefficients are relevant in the
frequency distribution Gρ0V (∆E) (see discussion in Sec. 6.4.3). Consequently, both the
concept of a decay constant γ and the definition of the width Γ are problematic, and a linear
relation cannot be expected.

In detail, depending on the scaled interaction strength, two different regimes can be dis-
tinguished: For U · n/m ≤ 0.4, we find that both quantities increase quadratically with
U · n/m. This is highlighted by the dashed line with slope two that is obtained from a fit
to γ2, Eq. (6.53). As indicated by the vertical dotted lines, in this regime the underlying
spectral structure is regular. When increasing the interaction strength to U · n/m ≥ 0.4,
the quadratic behavior breaks down and, simultaneously, the system turns chaotic. In this
regime, a power-law fit to γ2 (dashed-dotted line) yields

γ2 = 1.82 · (U ·n/m)1/2 . (6.56)

While the origin of this power law remains open, we can exclude second-order perturbation
theory to capture the features of the dynamics.

The linear relation γ2 ∼ Γ is exactly what we expect, since, according to (6.43), the
velocity v(t) can be obtained from the frequency distribution Gρ0V (∆E) with the help of a
Fourier transformation. Consequently, the width Γ provides a measure for the decay of the
Bloch oscillations expressed by γ2 and vice versa.

6.4.5.1 Temporal shift of the extrema and median of the frequency distribution

One might wonder whether also the shift of the oscillations’ extrema to smaller times with
increasing interaction strength is reflected in the frequency distribution Iρ0V (∆E)? In order
to answer this, we define

TΓ =
2π

∆Em
, (6.57)

where ∆Em is the median of the distribution Gρ0V (∆E), i.e., Iρ0V (∆Em) = 0.5. Such as to
compare it to the numerically obtained time of the second extremum t2, which in the case
of a perfect sinusoidal oscillation would be reached at 0.75 ·TB, we also introduce

tΓ = 0.75 ·TΓ . (6.58)

In Fig. 6.27 (b) we plot the time t2 of the second extremum, in units of the Bloch period
TB, as a function of the scaled interaction strength U ·n/m, for the same system parameters
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as in Fig. 6.23. We find that for U ·n/m < 1.2, t2 (green symbols) is well approximated by
tΓ (blue symbols), where the agreement is best in the regular regime U · n/m < 0.4. That
is, the frequency distribution Gρ0V (∆E) also provides a tool to describe the shift of the
oscillations’ extrema to shorter times with increasing interaction strength, and vice versa.

As in Fig. 6.26, we also show the fitted times t2, f it (solid line), and t2, f it,y∼x2 (dashed
line), and, furthermore, the time t2, f it,y∼x1/2 (dashed-dotted line), obtained by inserting the
fit (6.56) in Eq. (6.54). Moreover, we plot the time t2(γ2) (black stars), obtained from
inserting the numerical values of γ2 into Eq. (6.54). The latter again affirms that the two fits
in Fig. 6.27 (a) yield good approximations to the numerical data γ2. However, as already
seen in Fig. 6.26 (b), t2(γ2) overestimates the temporal shift as compared to what we observe
in the dynamics.

6.5 Conclusion

In the present chapter, we investigated Bloch oscillations of ultracold bosons in tilted optical
lattices and found that they sensibly depend on the strength of the interatomic interactions.
We defined a measure both for the distribution of relevant frequencies and for the oscilla-
tions’ decay rate and found that the two quantities are proportional to each other over a wide
range of the interaction strength. Most importantly, they exhibit a characteristic transition
from quadratic to square root behavior at the same point that denotes the border between
the regular and the chaotic regime of the Bose-Hubbard Hamiltonian.

Specifically, for fixed and comparable tunneling coupling and static field strength, we
found that for weak interactions, where the system is regular, the frequency distribution is
dominated by the velocity operator, and the decay of the oscillations can be well described
by an exponential envelope. In this regime, the decay constant increases quadratically with
the interaction strength. This scaling breaks down and is replaced by a distinct behavior
with increasing interactions when entering the chaotic regime, although the decay of the
oscillations is still exponential. In this regime, also the frequency distribution changes its
character: It is no longer dominated by the velocity operator, but also the initial density
matrix has to be considered. The situation changes once more for even larger interactions,
where the system turns regular again. Here, Bloch oscillations do not occur since the ampli-
tude is basically completely suppressed and the two measures for the distribution of relevant
frequencies and for the oscillations’ decay rate cannot be properly defined. For even larger
interactions, different, resonance-induced oscillations occur.

The decay of the oscillations is also reflected in a shift of the extrema of v(t) to shorter
times, with increasing interaction strength, and we also identified traces of this behavior in
the distribution of the relevant frequencies.
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For the values of the interaction strength investigated here, the so-called dynamical in-
stability may play an important role in the experiment and lead to a rapid destruction of the
condensate, see for example [29, 45, 62, 201] and references therein. It is well described
by mean-field theory and is not accounted for in the Bose-Hubbard model.26 However, if
the tunneling coupling is kept sufficiently small, the effect of the dynamical instability can
be strongly suppressed. This renders an experimental realization of the discussed scenario
feasible, since the parameters that define the dynamics can be essentially controlled at will
[77, 125, 134].

In conclusion, we have found that the statistics of the underlying Hamiltonian directly
relate to the behavior of the Bloch oscillations of ultracold bosons in optical lattices. That
is, when the spectral regime is known, we can infer how the Bloch oscillations will behave.
More importantly, also the reverse holds: the Bloch oscillations provide a tool to probe
distinct spectral regimes of the system. More precisely, when observing an exponential
decay where the decay constant grows quadratically with the scaled interaction strength,
the system is regular. If the decay is exponential but the corresponding decay constant
is proportional to the square root of the interactions, we know that we are in the chaotic
regime. This provides us with a sensitive tool to probe the system’s spectral structure, a
venture that is hard to realize in many-body quantum systems.27

26Recently it was shown that dynamical instability can be related to Bogoliubov’s depletion of the condensate
in the framework of the Bose-Hubbard Hamiltonian [117].

27Spectroscopy of ultracold bosons has been applied to measure excitation spectra in the superfluid and the
Mott insulating regime where distinct characteristic features could be detected [108, 170]. However,
single energy levels could not be resolved, what is the prerequisite to directly detect universal spectral
statistics. Recently, a matter-wave scattering approach was proposed to detect the spectral structure of the
Bose-Hubbard system in Ref. [95].
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In this thesis, we studied interacting ultracold bosons in tilted optical lattices. Since we
focussed on genuine quantum effects, we investigated systems that consist of relatively few
sites with filling factors of the order of one. For the mathematical description, we thus
applied the tilted Bose-Hubbard Hamiltonian, the simplest nontrivial quantum many-body
model that accounts for the competing interplay of interaction and kinetic energy. This
competition induces complexity in the system which, on the spectral level, is reflected in
chaotic level dynamics, i.e., spectral chaos. Our key focus lied on the implications of the
latter, which we discussed from three different perspectives: We investigated how the nu-
merical simulability of the system is affected by the underlying spectral structure, identified
robust states that survive within the chaotic regime of the Hamiltonian, and determined the
spectral origin of the Bloch oscillations’ decay.

The basis for these investigations was the precise knowledge of the system’s spectral
properties. In a first step, we thus identified spectrally chaotic and regular regimes in the
tilted Bose-Hubbard Hamiltonian, employing methods from random matrix theory. Based
on an energy argument, we performed a scaling analysis of the different contributions in the
Bose-Hubbard Hamiltonian and found that the system is chaotic for comparable strengths
of the tunneling coupling J and the scaled onsite interaction U · n/L, as long as the static
field does not dominate the system. We thus verified that different realizations of the sys-
tem, concerning the number of bosons and of lattice sites, are equivalent in terms of their
spectral structure if the Hamiltonian’s parameters are chosen according to the found scal-
ing. We numerically verified our predictions for various system sizes, spanning a large
range of the Hilbert-space dimension, and determined the critical field strength that marks
the transition point between chaotic and regular spectral statistics as the static field strength
F increases.

Based on numerical simulations employing the time-dependent density matrix renormal-
ization group algorithm, we showed that, at the transition from regular to chaotic spectral
statistics, the possibility to efficiently simulate the system breaks down. This manifests
in a broad distribution of dynamically generated Schmidt coefficients, what precludes the
possibility of an effective basis truncation and leads to a highly unfavorable scaling of the
numerical resources with the Hilbert-space dimension. Since chaoticity implies universal-
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ity, expressed for example in universal spectral statistics, we stress that our results obtained
via the tilted Bose-Hubbard system can be directly carried over to generic many-body quan-
tum systems. Moreover, as universal level statistics, in turn, imply universal properties of
the associated eigenstates, our findings can be expected to hold for renormalization algo-
rithms in general.

Deep in the chaotic regime of the Bose-Hubbard Hamiltonian, we identified robust struc-
tures, reflected in straight lines in the spectrum, that are dynamically stable against pertur-
bations. We confirmed this robustness by ramping up the tilt of the lattice, linearly in time,
and found that the solitonic eigenstates associated with the above, stable spectral structures
are strongly localized on the lattice. We showed that both Stark localization and energetic
isolation can be ruled out as generating mechanism. The stability of these states is rather in-
duced by a subtle interplay of interaction and tunneling dynamics, and relies on their weak
coupling to the chaotic background.

In the last chapter, we turned to the dynamics of ultracold bosons in optical lattices and
investigated the impact of the inter-particle interaction on the Bloch oscillations induced by
the static tilt. Here, we focussed on the fast and irreversible decay of the oscillations in the
chaotic regime of the Bose-Hubbard Hamiltonian. In order to establish a relation between
the oscillations’ dynamical decay and spectral quantities of the system, we followed two
different approaches: The first one relied on the adiabatic theory of driven quantum sys-
tems, which we applied to the spectrum of the transformed, time-dependent Bose-Hubbard
Hamiltonian. We showed that a fundamental prerequisite of this approach, namely the adi-
abaticity of the driving, is not fulfilled in the system at hand, what renders it inapplicable to
describe the decay of the Bloch oscillations. The second approach which we developed in
this work, is based on the statistics of the velocity operator. We defined a measure for both,
the distribution of relevant frequencies, and for the oscillations’ decay rate, and found that
they are proportional to each other over a wide range of interaction strengths. Most impor-
tantly, these two quantities exhibit a characteristic crossover in their functional dependence
on the interaction strength, at exactly the same point where the transition between the reg-
ular and the chaotic regime of the Bose-Hubbard Hamiltonian occurs.

In summary, we elucidated how the dynamics of ultracold bosons in optical lattices is
determined by the underlying spectral structure of the Bose-Hubbard Hamiltonian. On the
one hand, we showed how the onset of spectral chaos substantially hinders an efficient nu-
merical treatment of the system, what makes it hard to reliably predict its behavior. On
the other hand, we identified two distinct signatures of the Hamiltonian’s spectral structure
that are appealing for an experimental realization with state-of-the-art techniques: The soli-
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tonic states are excellent candidates for coherent control since they are dynamically stable
against external perturbations. The decay of the Bloch oscillations, in turn, provides us
with a sensitive tool to probe the system’s spectral structure by measuring readily acces-
sible dynamical quantities, such as the velocity or the center of mass of the bosons on the
lattice.

In this thesis, we focussed on genuine quantum effects that are observed in the limit
of few particles on the lattice. In the literature, also systems with large particle numbers
and filling factors have been intensely studied via the mean-field Gross-Pitaevskii equa-
tion, which represents the classical limit of ultracold bosons in optical lattices. These
two well-established limits, together with the ever increasing experimental precision in the
preparation and in the measurement, render the system an ideal candidate for a quantitative
understanding of the quantum-to-classical transition, one of the fundamental questions in
physics.
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A Unfolding spectra

In general, the distribution of spacings Si = Ei+1−Ei between neighboring energy levels
Ei, where the Ei are ordered such that Ei+1−Ei ≥ 0, depends on the specific form of the
underlying Hamiltonian. In fact, the Si averaged over i, in a band of width ε around some
central energy E, are given by the inverse of the smoothed density of states

d(E) =
1

2ε

E+εZ
E−ε

d(E)dE. (A.1)

Here, the density of states
d(E) = ∑

i
δ(E−Ei), (A.2)

is a string of delta peaks at positions Ei, corresponding to the eigenenergies of the sys-
tem. The spacings Si then fluctuate around the mean level spacing ∆(E) = 1/d(E), and the
corresponding cumulative density

N(E) =
EZ
−∞

d(E ′)dE ′ (A.3)

counts the (smoothed) number of states with an energy less than E.
In order to obtain a level-spacing distribution that is independent of the specific form of

the underlying Hamiltonian, the spectrum needs to be unfolded, i.e., the system-specific
density of states has to be normalized out. To this end the energy levels Ei are replaced by
a new set of numbers

ei = N(Ei), (A.4)

which, by definition, have an average spacing of one. We can thus think of them as a set of
normalized energies with smoothed density d(E) = 1. Defining

si = ei+1− ei, (A.5)

the probability that s≤ si≤ s+ds for any i, is then given by the distribution P(s) via P(s)ds,
and has been found to be universal for a broad class of systems [74].

Also different unfolding procedures have been established, which are however equiva-
lent to the method presented here [85]. In particular, the definition (A.5) is equivalent to
the expression for the normalized level spacing si = (Ei+1−Ei)/∆(E), Eq. (3.1), that we
discussed in Sec. 3.1.
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B Dynamics of initially localized states

In Chapter 6 of this thesis we focus on Bloch oscillations that emerge when the system
is initially prepared in the untilted Hamiltonian’s ground state. However, when applying
Dirichlet boundary conditions, finite size effects can significantly influence the dynamics
as we discuss in Sec. 6.2. In order to avoid those effects, we also consider as initial states the
ground states of smaller, untilted sublattices with m < L lattice sites, which are then placed
within the original lattice before applying the tilt. This procedure is depicted schematically
in Fig. 6.5. In the following, we investigate how the Bloch oscillations are influenced by
this choice and, more precisely, we discuss its impact on the oscillations’ amplitude.

In Fig. B.1 (a) we depict the velocity v(t), Eq. (6.6), as a function of time in units of
the Bloch period TB, for n = 5 noninteracting particles in L = 11 lattice sites. We set the
tunneling coupling and the static field strength to J = F = 1, and vary the number of initially
populated sites m. The initial configuration is always chosen to be the ground state of the
n = 5 bosons in m lattice sites, which is placed into the tilted lattice with L sites at t = 0,
such that the two uppermost sites are empty (see also discussion on page 86). We find that
at t = 0, the velocity vanishes for all the initial states |ψ0〉 considered here, i.e.,

v(t = 0) = 〈ψ0|V̂ |ψ0〉= 0 . (B.1)

This results from the symmetry of the initial states with respect to the central populated
lattice site, which stems from the translational invariance of the untilted lattice. The subse-
quent behavior for t > 0 then depends on the choice of initially populated sites.

For m = 1 (black line), |ψ0〉 is given by a Wannier-Fock state |n〉, Eq. (2.22), where all
particles are located on one and the same lattice site. This state constitutes an eigenstate
of the Hamiltonian for J = 0 and U 6= 0 and, thus, it is orthogonal to the eigenstates of
the system we consider here. For such states, not only the velocity but also its derivative
initially equals zero, i.e., v(t = 0) = v̇(t = 0) = 0. As time elapses, the atoms spread on the
lattice and Bloch oscillations emerge. After a (short) transient time, the oscillations feature
the expected periodicity1 described by TB while the amplitude still increases. For m > 1,
the system immediately features Bloch oscillations. However, as particularly evident from
the red line that corresponds to m = 2, the oscillations’ amplitude increases as a function

1Note that, here, we consider localized states of noninteracting bosons. In the case of strong interactions, it
was shown that the period of the oscillations scales as the inverse number of particles [54, 105].
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Figure B.1: Mean velocity v(t), Eq. (6.6), as a function of time in units of the Bloch period TB,
for n = 5 particles in L = 11 lattice sites. The tunneling coupling and the static field strength are
set to J = F = 1 and the onsite interaction is given by (a) U = 0 and (b) U = 0.1. The initial
states correspond to the ground states of the particles within a smaller sublattice with m lattice sites
(compare Fig. 6.5) and the different colors correspond to different choices of m as indicated by the
legend. The initial configuration is always chosen such that at t = 0 the two uppermost sites of the
tilted lattice are empty (see also discussion on page 86).



135

of time. This behavior again stems from the spreading of the initially localized particles.
In general, we find that the larger m, the larger the initial amplitude of the oscillations and,
consequently, the smaller the amplitude’s increase as a function of time. Moreover, the
amplitude saturates quickly as the number of initially populated sites is increased. Note
that the saturation value is smaller than one, what results from the definition of the velocity
operator V̂ for Dirichlet boundary conditions, Eq. (6.8). In the case of periodic boundary
conditions (6.9) the amplitude equals one.

Strictly speaking, the oscillations thus do not simply feature a sinusoidal behavior but
rather resemble2

vU=0(t) =−v0 eα·t sin(t/TB) , (B.2)

where 0 < α� 1. However, as m increases, α quickly tends to zero and the assumption of
perfect sinusoidal oscillations is justified.

Introducing interactions between the particles leads to a decay of the oscillations as time
evolves. This can be observed in Fig. B.1 (b) for weak interactions U = 0.1. The behavior
is, however, counteracted by the initial spreading discussed above and, consequently, for
very small U � 1, it is possible that the amplitude still increases as a function of time. In
order to quantify the interaction induced decay (see Sec. 6.4.4), we thus have to relate the
behavior of v(t) for U 6= 0 to vU=0(t) as done in Eq. (6.52).

2Note that for m = 1, we also have to introduce a phase shift ϕ0.
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