Bildgebung aktiverer Thrombozyten auf symptomatischen humanen Karotisplaques unter statischen und dynamischen Bedingungen

INAUGURALDISSERTATION
zur
Erlangung des Medizinischen Doktorgrades
der Medizinischen Fakultät der
Albert-Ludwigs-Universität Freiburg im Breisgau

Vorgelegt 2012 von
Fabian Meixner
geboren in Pforzheim
Dekan: Prof. Dr. Dr. h.c. mult. Hubert E. Blum
Erstgutachter: PD Dr. Constantin von zur Mühlen
Zweitgutachter: PD Dr. Hans-Joachim Kabitz
Jahr der Promotion: 2012
Meiner Familie
1 Inhaltsverzeichnis

2 Grundlagen
 2.1 Einleitung
 2.2 Thrombozyten
 2.2.1 Hämostase
 2.3 GP IIb/IIIa-Rezeptor
 2.4 Atherosklerose
 2.4.1 Stadien der Atherosklerose
 2.4.2 Der vulnerable Plaque und thrombotische Komplikationen
 2.4.3 Thrombozyten und Atherosklerose
 2.4.4 Folgen der Atherosklerose
 2.5 Thrombendarterektomie der A. carotis
 2.5.1 Karotisstenose
 2.5.2 Thrombendarteriektomie
 2.6 MRT
 2.6.1 Aufnahmesequenzen
 2.7 Molekulare Bildgebung
 2.7.1 Molekulare Bildgebung in der Kardiologie
 2.8 LIBS-MPIO
 2.8.1 Single-chain-Antikörper
 2.8.2 scFV Anti-LIBS
 2.8.3 Kontroll-Antikörper MB9
 2.8.4 MPIO
 2.9 Ziele

3 Material und Methoden
 3.1 scFV Anti-LIBS
 3.1.1 Produktion des scFV Anti-LIBS
 3.1.2 BCA Assay zur Proteinquantifizierung
 3.1.3 SDS PAGE
3.1.4 Western-Blot .. 42
3.1.5 FACS ... 44
3.2 Micro particles of iron oxide (MPIOs) 48
3.3 Kopplung des scFV_{Anti-LIBS} mit den MPIOs 49
3.3.1 Herstellung des talon binding and washing buffer 50
3.4 Humane Karotiden ... 51
3.5 Kontrastmittelapplikation ... 51
3.5.1 Statische Versuchsreihe ... 52
3.5.2 Dynamische Versuchsreihe ... 52
3.6 MRT .. 55
3.6.1 MRT-Messungen ... 55
3.6.2 MRT Datenauswertung .. 56
3.7 Histologie .. 57
3.7.1 Gewebe-Fixierung .. 57
3.7.2 Kryostat .. 57
3.7.3 Immunhistochemie ... 58
3.7.4 Histologische Auswertung ... 61
3.8 Klinischer Score .. 61
4 Ergebnisse .. 63
4.1 Produktion des des scFV_{Anti-LIBS} 63
4.1.1 BCA Assay zur Proteinquantifizierung 63
4.1.2 SDS PAGE und Western-Blot 63
4.1.3 FACS-Analyse .. 64
4.2 Patientenkollektiv .. 67
4.3 MRT-Datenauswertung .. 68
4.4 Datenauswertung der Histologie 73
4.5 Korrelation der MRT-Signalintensitätsabnahme mit der histologischen Auswertung .. 76
4.6 Korrelation mit den klinischen Beschwerden der Patienten 77
5 Diskussion ... 79
5.1 Kontrastmittel LIBS-MPIO ... 80
5.1.1 scFV .. 81
5.1.2 MPIOs ... 81
<table>
<thead>
<tr>
<th>Kapitel/Unterkapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 Versuchsaufbau</td>
<td>82</td>
</tr>
<tr>
<td>5.2.1 Statischer Versuchsaufbau</td>
<td>82</td>
</tr>
<tr>
<td>5.2.2 Dynamischer Versuchsaufbau</td>
<td>83</td>
</tr>
<tr>
<td>5.3 MRT- und Histologie-Datenquantifizierung</td>
<td>84</td>
</tr>
<tr>
<td>5.4 Korrelationsanalysen</td>
<td>85</td>
</tr>
<tr>
<td>5.5 Limitationen</td>
<td>86</td>
</tr>
<tr>
<td>5.6 Einordnung der Ergebnisse</td>
<td>88</td>
</tr>
<tr>
<td>5.7 Ausblick</td>
<td>91</td>
</tr>
<tr>
<td>6 Zusammenfassung</td>
<td>93</td>
</tr>
<tr>
<td>7 Abkürzungsverzeichnis</td>
<td>94</td>
</tr>
<tr>
<td>8 Quellenangaben</td>
<td>96</td>
</tr>
<tr>
<td>9 Publikationsliste</td>
<td>109</td>
</tr>
<tr>
<td>10 Curriculum vitae</td>
<td>110</td>
</tr>
<tr>
<td>11 Danksagung</td>
<td>112</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abb. 2.1:</th>
<th>Die 3 Stadien der primären Hämostase</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb. 2.2:</td>
<td>GPIIb/IIa-Rezeptor</td>
<td>13</td>
</tr>
<tr>
<td>Abb. 2.3:</td>
<td>Stadien der Plaqueentwicklung nach der AHA</td>
<td>16</td>
</tr>
<tr>
<td>Abb. 2.4:</td>
<td>Die Plaqueruptur</td>
<td>17</td>
</tr>
<tr>
<td>Abb. 2.5:</td>
<td>Messung des Stenosegrad von Karotisplaques</td>
<td>20</td>
</tr>
<tr>
<td>Abb. 2.6:</td>
<td>Anatomie der A. carotis interna</td>
<td>21</td>
</tr>
<tr>
<td>Abb. 2.7:</td>
<td>Eversions Karotis TEA</td>
<td>23</td>
</tr>
<tr>
<td>Abb. 2.8:</td>
<td>Ziel-Epitope der molekularen Bildgebung atherosklerotischer Läsionen</td>
<td>28</td>
</tr>
<tr>
<td>Abb. 2.9:</td>
<td>IgG- und scFv-Antikörper</td>
<td>30</td>
</tr>
<tr>
<td>Abb. 3.1:</td>
<td>Prinzipien der Produktion des scFV<sub>ANTI-LIBS</sub></td>
<td>34</td>
</tr>
<tr>
<td>Abb. 3.2:</td>
<td>BCA Reaktion</td>
<td>38</td>
</tr>
<tr>
<td>Abb. 3.3:</td>
<td>Prinzip der Gelektrophorese</td>
<td>40</td>
</tr>
<tr>
<td>Abb. 3.4:</td>
<td>Prinzip von SDS-PAGE und Western-Blot</td>
<td>42</td>
</tr>
<tr>
<td>Abb. 3.5:</td>
<td>Prinzip der FACS-Analyse</td>
<td>46</td>
</tr>
<tr>
<td>Abb. 3.6:</td>
<td>Dynabeads® Talon (MPIOs)</td>
<td>49</td>
</tr>
<tr>
<td>Abb. 3.7:</td>
<td>Prinzip der Kopplung des scFV<sub>ANTI-LIBS</sub> an die MPIOs</td>
<td>50</td>
</tr>
<tr>
<td>Abb. 3.8:</td>
<td>Aufbau der Gewebe-Flusskammer</td>
<td>54</td>
</tr>
<tr>
<td>Abb. 3.9:</td>
<td>Beispiel der MRT Datenauswertung</td>
<td>56</td>
</tr>
<tr>
<td>Abb. 3.10:</td>
<td>Gewebe-Fixierung</td>
<td>57</td>
</tr>
<tr>
<td>Abb. 3.11:</td>
<td>Histologische Auswertung (63x Vergrößerung)</td>
<td>61</td>
</tr>
<tr>
<td>Abb. 4.1:</td>
<td>Western Blot</td>
<td>63</td>
</tr>
<tr>
<td>Abb. 4.2:</td>
<td>FACS-Analyse Dot-Plot Diagramm</td>
<td>65</td>
</tr>
<tr>
<td>Abb. 4.3:</td>
<td>Fluoreszenz-Messung</td>
<td>66</td>
</tr>
<tr>
<td>Abb. 4.4:</td>
<td>MRT-Aufnahmen bei Inkubation mit LIBS-MPIO</td>
<td>69</td>
</tr>
<tr>
<td>Abb. 4.5:</td>
<td>MRT-Aufnahmen bei Inkubation mit Control-MPIO</td>
<td>69</td>
</tr>
<tr>
<td>Abb. 4.6:</td>
<td>Inkubation mit LIBS-MPIO im Zeitverlauf</td>
<td>70</td>
</tr>
<tr>
<td>Abb. 4.7:</td>
<td>Quantifizierung der Signalauslöschung</td>
<td>70</td>
</tr>
<tr>
<td>Abb. 4.8:</td>
<td>Signalverlust im Histogramm</td>
<td>71</td>
</tr>
<tr>
<td>Abb. 4.10:</td>
<td>Beispiel MRT Aufnahmen der dynamischen Versuchsreihe bei Inkubation mit LIBS-MPIO</td>
<td>72</td>
</tr>
<tr>
<td>Abb. 4.11:</td>
<td>MRT Ergebnisse der dynamischen Versuchsreihe</td>
<td>73</td>
</tr>
<tr>
<td>Abb. 4.12:</td>
<td>Histologie Beispiel LIBS-MPIO (63x)</td>
<td>73</td>
</tr>
<tr>
<td>Abb. 4.13:</td>
<td>Histologie Beispiel LIBS-MPIO (63x)</td>
<td>74</td>
</tr>
</tbody>
</table>
Abb. 4.14: Histologie-Ergebnisse der statischen Versuchsreihe 74
Abb. 4.15: Histologie-Ergebnisse dynamische Versuchsreihe 75
Abb. 4.16: Histologie-Ergebnisse dynamische Versuchsreihe 76
Abb. 4.17: Korrelation der MRT Ergebnisse mit den zuvor stattgehabten klinischen Ereignissen der Patienten 77

Für die Verwendung der Abbildungen liegen entweder die Genehmigungen der Rechteinhaber vor oder sie wurden selbst erstellt. Alle Abbildungen im Ergebnisteil sind eigene Abbildungen.

Tabellenverzeichnis

Tab. 2.1: Stadieneinteilung der Karotisstenosen 21
Tab. 2.2: Indikationen für Thrombendarterektomien der A. Carotis 22
Tab. 3.1: Verwendete Puffer und Medien für scFVANTI-LIBS-Produktion 38
Tab. 3.2: SDS-PAGE 41
Tab. 3.3: Towbin- und Transfer-Puffer für den Western-Blot 43
Tab. 3.4: Tyrode Lösung für die FACS-Analyse 47
Tab. 4.1: Die verwendeten scFVANTI-LIBS-Chargen 63
Tab. 4.2: FACS-Proben 66
Tab. 4.3: Patientenkollektive der statischen und dynamischen Versuchsreihe 68

Alle Tabellen wurden vom Autor erstellt.
2 Grundlagen

2.1 Einleitung

Herz-Kreislauf-Erkrankungen sind die häufigste Todesursache in Deutschland. 2010 wurden 41,1% der Sterbefälle durch die Folgen von Erkrankungen des Herz-Kreislauf-Systems verursacht [124]. Die Hauptursache dafür sind die Folgen der Atherosklerose, eine Erkrankung der Arterien.

2.2 Thrombozyten

Thrombozyten sind die kleinsten im Blut zirkulierenden Zellen [31]. Sie sind einer der wichtigsten Faktoren der Blutgerinnung und bedingen sowohl den physiologischen Wundverschluss, als auch die pathologische Thromboseentstehung. Zusätzlich erfüllen sie immunologische Aufgaben [40] und spielen eine Rolle bei der hämatogenen Tumormetastasierung [16]. In den letzten Jahren wurde deutlich, dass Thrombozyten nicht nur eine Rolle bei den späten Stadien und den Komplikationen der Atherosklerose spielen, sondern auch schon in frühen Stadien die Entwicklung einer atherosklerotischen Gefäßveränderung bedingen (s. Kap. 2.4.3).

Thrombozyten entstehen im Knochenmark aus Megakaryozyten und enthalten keinen Zellkern mehr. Aufgrund enthaltener mRNA sind sie in der Lage, in geringem Umfang Proteine zu synthetisieren. [106]

Als Zellkompartimente enthalten sie Mitochondrien für die Energiegewinnung. Das raue endoplasmatische Retikulum, dient als Kalziumionenspeicher und dient der Steuerung der Aktivierung der Thrombozyten. Zusätzlich enthalten Thrombozyten noch δ-Granula, die v.a. aus Serotonin, ADP und Calcium bestehen und bei der Degranulation, ein Teilschritt der Thrombozytenaktivierung, aggregationsfördernd wirken. Die α-Granula enthalten eine Vielzahl an verschiedenen Substanzen, wie z.B. Wachstumsfaktoren (PDGF, TGF-b, VEGF, VPF etc.), Protease-Inhibitoren (PAI 1, TFPI etc.), Gerinnungsfaktoren, Faktoren der Fibrinolyse und Adhäsionsfaktoren (Fibrinogen, von-Willebrand-Faktor, Thrombospondin etc.). [96]

Zudem sind sie ein Speicherort der thrombozytären Integrine [30]. Thrombozyten exprimieren auf ihrer Oberfläche verschiedene Integrine (αIIbβ3, Synonym: GP IIb/IIIa-Rezeptor; αVβ3; α2β1; α5β1; α6β1), die einen wichtigen Beitrag zu ihrer Funktion liefern (s. Kap. 2.3).

2.2.1 Hämostase

Bei der Verletzung eines Blutgefässes kommt es zu einem komplexen Zusammenspiel verschiedener Faktoren, um einen Blutverlust zu vermeiden und die körperliche Integrität wiederherzustellen. Diesen Prozess bezeichnet man als Hämostase. Diese wird unterteilt in die primäre und sekundäre Hämostase. Bei der
primären Hämostase kommt es zu einer Vasokonstruktion und zur Bildung eines Thrombozytenpflpofes. Während der primären Hämostase durchlaufen die Thrombozyten drei Stadien: Adhäsion, Aktivierung und Aggregation [100] (siehe Abb. 2.1). Die Adhäsion wird über aktivierungsunabhängige Membranrezeptoren vermittelt, die ein leichtes Anhaftchen der Thrombozyten an das verletzte Endothel bewirken. Dieser Schritt wird hauptsächlich über die Interaktion des thrombozytären Integrins GPIb/IX mit dem von-Willebrand-Faktor (vWF) vermittelt. Durch die Adhäsion der Thrombozyten werden verschiedene Faktoren freigesetzt, die zu einer Aktivierung der Thrombozyten führen und in den letzten Schritt der primären Hämostase münden, die Vernetzung der Thrombozyten durch den GP IIb/IIIa-Rezeptor mit Fibrinogen. [100]

Die sekundäre Hämostase bezeichnet den komplexen Ablauf der sogenannten plasmatischen Blutgerinnung. Diese resultiert in der Bildung eines durch Fibrin stabilisierten Thrombus [92].

2.3 GP IIb/IIIα-Rezeptor

Der GP IIb/IIIα-Rezeptor ist ein Integrin. Integrine sind eine Rezeptorfamilie mit Hilfe derer Zellen an die Extrazellulärmatrix andocken können und die zusätzlich vielfältige Funktionen der Zellkommunikation erfüllen [3]. Sie nehmen eine wichtige Rolle in der physiologischen Funktion des Organismus ein. Integrine sind Glykoproteine, die aus einer α- und einer β-Untereinheit bestehen (nicht-kovalente Heterodimere, s. Abb. 2.2). Beim Menschen wurden 18 α- und 8 β-Untereinheiten identifiziert, die zusammen 24 Integrine bilden können [6]. Jede Untereinheit besteht aus einer kleinen intrazellulären, einer transmembranösen und einer großen extrazellulären Domäne. Dieser Aufbau erlaubt eine bidirektionale Kommunikation, sowohl ein outside-in-signaling als auch ein inside-out-signaling ist möglich. [6]. Beim outside-in-signaling bindet ein Ligand an die extrazelluläre Domäne und bewirkt in der Zelle vielfältige Funktionen wie z.B. Migration, Differenzierung, Adhäsion oder Wachstum [93]. Beim inside-out-signaling wird mit Hilfe der intrazellulären Domäne eine Konformationsänderung des extrazellulären Teils des Rezeptors bewirkt. Thrombozyten exprimieren 5 Integrintypen (αIIbβ3; αVβ3; α2β1; α5β1; α6β1) [93]. Der GP IIb/IIIα-Rezeptor (αIIbβ3) ist der wichtigste Adhäsionsrezeptor auf Thrombozyten und vermittelt die Bindung an das Plasmaprotein Fibrinogen, den von-Willebrand-Faktor, Fibronectin, Vitronectin und Prothrombin [9, 71, 62]. Eine Fehlfunktion des Rezeptors resultiert in der Glanzmann-Thrombasthenie und hat eine schwere Blutungsneigung zur Folge [90]. Im Ruhezustand finden sich schätzungsweise 80.000 Rezeptoren auf einem Thrombozyten [133]. Bei der Aktivierung der Thrombozyten werden abhängig vom Stimulus weitere Kopien des Rezeptors externalisier [88].
Der Rezeptor spielt eine wichtige zentrale Rolle bei der Thrombozytenaggregation [9]. Die Vernetzung der Thrombozyten, die durch die Bindung von Fibrinogen an den GP IIb/IIIa-Rezeptor vermittelt wird, stellt den letzten Schritt der primären Hämostase (s. Kap. 2.2.1) dar, die Thrombozytenaggregation.

2.4 Atherosklerose

Der Fortschritt in der molekularen Medizin der letzten Jahrzehnte zeigte jedoch, dass es sich bei der Atherosklerose um einen sehr komplexen Vorgang mit vielen modulierenden Faktoren handelt. Vor allem die Erkenntnis, dass Entzündungsprozesse eine große und zentrale Rolle bei allen Stadien der Atherosklerose spielen, rückte in den Fokus der Forschung [72].

Im fortgeschrittenen Stadium zeichnet sich ein atherosklerotischer Plaque durch einen komplexen Aufbau aus. Im Zentrum des Plaques befinden sich Schaumzellen und extrazelluläre Lipide. Über dieser Kernregion befindet sich eine Schicht von glatten Muskelzellen und eine kollagen-reiche Matrix, die als fibröse Kappe bezeichnet wird. Sie bildet die Grenze zum Lumen der Arterie. Zudem finden sich andere entzündungstypische Zelltypen wie Mastzellen, B-Zellen und Natürliche Killerzellen. [49]

Die Schulterregion des Plaques kennzeichnet den Ort des Plaquewachstums, hier finden sich viele Makrophagen und Schaumzellen [2]. Die Schulterregion ist sehr
häufig die Lokalisation der Plaqueruptur [2]. Im weiteren Verlauf der Plaqueprogression wird die fibröse Kappe immer dünner und die Gefahr steigt, dass prothrombotisches Material mit dem Blut in Kontakt kommt. [49]

2.4.1 Stadien der Atherosklerose

Stary et al. definierte [121, 123, 122] verschiedene histologische Stadien (Typ I-VI) zur Einteilung der atherosklerotischen Plaques (s. Abb. 2.3).

2.4.2 Der vulnerable Plaque und thrombotische Komplikationen

Die morphologischen Kriterien eines vulnerablen Plaques unterscheiden sich je nach Lokalisation der atherosklerotischen Läsion. Plaques der Herzkranzarterien, die zur Ruptur neigen, sind oft lipidreich und haben eine dünne fibröse Kappe [37]. Sie bedingen in den meisten Fällen keine ausgeprägte Stenose und führen erst durch die
Ruptur zu klinischen Symptomen. So konnte gezeigt werden, dass die Mehrzahl der Myokardinfarkte von Herzkranzgefäßen ausgeht, die nicht hochgradige Stenosen aufweisen (s. Abb. 2.4) [4, 74]. Eine fatale koronare Thrombose entsteht in 2/3 bis 3/4 der Fälle durch die Ruptur der dünnen Kappe eines Fibroatheroms und der Bildung eines Thrombus [73]. Bei lediglich ca. 1/5 der fatalen koronaren Thrombosen kommt es zur Thrombusbildung an einem Plaque mit einer dicken fibrösen Kappe. Hier kommt es durch eine oberflächliche Erosion zur Plättchenanlagerung mit resultierender Thrombusbildung [73].

von Thrombozyten mit der konsekutiven Bildung eines Thrombus gemeinsam [73, 37].

2.4.3 Thrombozyten und Atherosklerose

Im letzten Jahrzehnt wurde durch viele Forschungsgruppen bestätigt, dass Thrombozyten auch eine wichtige Rolle bei der Initiierung und der Progression der Atherosklerose spielen. Im Folgenden werden einige Beispiele genannt, welche die Bedeutung der Thrombozyten in frühen Stadien der Atherosklerose verdeutlichen.

Verschiedene Studien konnten zeigen, dass im Blut von Patienten mit den typischen Risikofaktoren für Atherosklerose vermehrt aktivierte Thrombozyten zirkulieren [61]. Im Tiermodell fand man heraus, dass Thrombozyten schon vor sichtbaren atherosklerotischen Veränderungen am Endothel adhärieren [76]. Thrombozyten exprimieren verschiedene Oberflächenproteine, sezernieren Mediatoren und Zytokine, welche eine Entzündung auslösen und unterhalten können [60].

Oberflächenproteine auf Thrombozyten stellen eine Verbindung zum Immunsystem dar. Ein bekanntes Beispiel hierfür ist das Glykoprotein P-Selektin, welches von Endothelzellen und Thrombozyten exprimiert wird [125, 15]. Aktivierte Endothelzellen exprimieren P-Selektine, die die Verbindung mit Leukozyten vermitteln. Aber auch aktivierte Thrombozyten, welche an Endothelien gebunden sind, exprimieren P-Selektine und vermitteln so die Adhäsion. Sie können durch die Bildung von Thrombozyten/Leukozyten-Komplexen zu einer Aggravation der atherosklerotischen Entzündung führen [60].

Frenette et al. [38] zeigten, dass auf Thrombozyten exprimierte P-Selektine das Rollen von Thrombozyten auf der Endotheloberfläche bei akuten inflammatorischen Prozessen bewirken. Durch Glykoproteine in der Thrombozytenmembran wird eine stabile Bindung der Thrombozyten mit dem Gefäßendothel vermittelt. GP Ia/IIa und
GP VI interagieren mit Kollagenen [100]. Durch die Aktivierung von GP IIb/IIIa wird die Bindung von Fibrinogen vermittelt [40]. Durch die Adhäsion an die Endotheloberfläche werden die Thrombozyten aktiviert und setzen verschiedene proatherogene Faktoren frei [40]. Diese Faktoren wirken chemotaktisch, adhärierend und migrierend auf Monozyten und verstärken den Entzündungsprozess. All diese Erkenntnisse verdeutlichen, dass Thrombozyten nicht nur eine wichtige Rolle in der physiologischen Hämostase und der pathologischen Atherothrombose spielen, sondern auch an vielfältigen Mechanismen der frühen Stadien der Atherosklerose beteiligt sind [40].

2.4.4 Folgen der Atherosklerose

Die Atherosklerose ist eine Erkrankung, die schon früh beginnen kann [123] und erst in späten Stadien durch die Komplikationen klinisch auffällig wird [122]. Komplikationen der Atherosklerose entstehen entweder durch einen sich am Plaque befindenden, ortsständigen Verschluss oder durch eine Thrombusbildung am Plaque mit anschließender Embolie des Thrombus in ein distal gelegenes Gefäß [116, 82]. In beiden Fällen sind die klinischen Folgen durch die resultierende Ischämie bedingt. Entscheidend ist die Lokalisation der Atherosklerose. Eine Atherosklerose der Herzkrankgefäße kann zum akuten Herzinfarkt oder Angina Pectoris führen. Atherosklerotische Veränderungen im Bereich der Arteria carotis interna können Schlaganfälle oder transitorisch ischämische Attacken (TIA) zur Folge haben. Durch Plaquebildung im Bereich der Beinengefäße kommt es zur peripheren arteriellen Verschlußkrankheit (pAVK) und eine atherosklerotische Veränderung der Nierenarterien kann zu einer Niereninsuffizienz führen. [116, 82, 139, 55]
2.5 Thrombendarterektomie der A. carotis

2.5.1 Karotisstenose

Abb. 2.5 Messung des Stenosegrad von Karotisplaques nach ECST (A) und NASCET (B) (Abb. aus [19] mit Genehmigung des Rechteinhabers)
In Tabelle 2.1 sind die hierzulande gebräuchlichen Stadien nach Vollmer dargestellt [34]. Es werden asymptomatische (Stadium I) von symptomatischen (Stadium II-IV) Karotisstenosen unterschieden.

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Stadieneinteilung der Karotisstenosen (Mod. nach Vollmar 1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stadium I</td>
<td>Asymptomatische Stenose</td>
</tr>
<tr>
<td>Stadium II</td>
<td>Reversible zerebrale Ischämie <6 Monate</td>
</tr>
<tr>
<td>Stadium III</td>
<td>Indikationen zur Notfall-Karotis-TEA (Crescendo-TIA</td>
</tr>
<tr>
<td></td>
<td>Akuter/progredienter Schlaganfall)</td>
</tr>
<tr>
<td>Stadium IV</td>
<td>Ipsilateraler Schlaganfall <6 Monate</td>
</tr>
</tbody>
</table>

Tab. 2.1 Stadieneinteilung der Karotisstenosen (aus [34])

2.5.1.1 Anatomie der A. carotis interna

caroticum, ein Chemorezeptor, der bei verminderten Sauerstoffgehalt des Blutes das Atemzentrum stimuliert. [105]

2.5.2 Thrombendarteriektomie

<table>
<thead>
<tr>
<th>Karotis-TEA Indikationen höhergradiger Stenosen</th>
<th>Akzeptables OP-Risiko</th>
<th>Evidenzgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatische Stenosen (TIA oder Schlaganfall in den letzten 6 Monaten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-99%ige Stenosen</td>
<td><6%</td>
<td>1a/A</td>
</tr>
<tr>
<td>50-69%ige Stenosen</td>
<td><6%</td>
<td>1a/A</td>
</tr>
<tr>
<td>Asymptomatische Stenosen (keine TIA oder Schlaganfall in den letzten 6 Monaten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-99%ige Stenosen</td>
<td><3%</td>
<td>1b/A</td>
</tr>
<tr>
<td>60-99%ige Stenosen + >75%ige Stenose oder Verschluss kontralateral</td>
<td><5%</td>
<td>4/C</td>
</tr>
</tbody>
</table>

Tab. 2.2 Indikationen für Thrombendarteriektomien der A. Carotis (Tabelle modifiziert aus [34].)
Es gibt zwei Operationsmethoden, die in fast allen Fällen zum Einsatz kommen. Die konventionelle Karotis-TEA und die Eversions-Karotis-TEA. In der Everest-Studie [76] wurden keine signifikanten Unterschiede der beiden Methoden festgestellt.

Konventionelle Karotis-TEA: Bei dieser Operationsmethode wird die Karotis in Längsrichtung eröffnet, der Plaque herausgeschält und entweder direkt vernäht oder das Gefäß mit Hilfe eines Venen- oder Kunststoffpatches rekonstruiert [34].

Eversions-Karotis-TEA: Bei dieser Methode wird die A. carotis interna am Abgang der A. carotis communis abgetrennt und der äußere Gefäßteil über den atherosklerotischen Plaque umgestülpt (s. Abb. 2.7). Nach Entnahme des Plaques wird die A. carotis interna wieder an die A. carotis communis angesetzt und vernäht [34]. Der Vorteil dieser Methode ist, dass die Plaqueintegrität nicht verletzt wird. In dieser Arbeit wurden nur Plaques verwendet, die mittels Eversions Karotis TEA gewonnen wurden.

Abb. 2.7 Eversions Karotis TEA: Atherosklerotische Veränderungen finden sich vor allem an der Karotisbifurkation (A.1) [65]. Bei der Eversions Karotis TEA wird die A. carotis interna abgetrennt, der äußere Gefäßteil über den atherosklerotischen Plaque umgestülpt und der Plaque entnommen (A.2). Anschließend wird die A. carotis interna wieder an die A. carotis communis angenäht (A.3) [34]. (B) Diese Abbildung zeigt einen durch eine Eversions TEA entnommenen Karotis-Plaque. (Abb. A entnommen aus [34], mit Genehmigung des Rechteinhabers)
2.6 MRT

2.6.1 Aufnahmesequenzen

2.6.1.1 FLASH-Sequenz

Jens Frahm und Axel Haase aus Göttingen entwickelten 1985 die FLASH-Sequenz (Fast Low-Angle Shot), die eine Gradienten-Echo-Sequenz ist und sich durch sehr geringe Flipwinkel und kurze Repetitions- und Echozeiten (TR und TE) auszeichnet. Hierdurch wurde die Dauer der MRT-Aufnahmen erheblich verkürzt und ermöglichte die MRT-Darstellung in Echtzeit ohne einen signifikanten Qualitätsverlust [46].
Aufgrund der kurzen Messzeiten der Flash-Sequenzen sowie der hohen Sensitivität für Suszeptibilitätsartefakte, wie sie z.B. durch Eisenpartikel entstehen, wurden für diese Arbeit Flash-Sequenzen verwendet. Eisen führt zu einer Auslöschnung des magnetischen Signals und stellt sich in den Flash-Sequenzen als schwarzes, hypointenses Signal dar [98].

2.7 Molekulare Bildgebung

Weissleder et al. [136] beschrieben vier Charakteristika bildgebender Moleküle für eine erfolgreiche in-vivo Darstellung von molekularen Zielen. (a) Man benötigt einen Liganden, der mit einer hohen Affinität an das Zielmolekül bindet. (b) Dieser Ligand muss die Fähigkeit besitzen biologische Barrieren zu überwinden, um zu seinem Zielort gelangen zu können. (c) Das Signal des signalgebenden Moleküls muss mit geeigneten Methoden verstärkt werden, um eine ausreichende Darstellung der gebundenen Moleküle zu gewährleisten. (d) Man benötigt sensitive, schnelle und hochauflösende Bildgebungstechniken.

Ein vielversprechender Ansatz ist die molekulare Bildgebung mit MRT-Kontrastmitteln.
2.7.1 Molekulare Bildgebung in der Kardiologie

spezifische Neo-Epitope aufzeigen, die bei der Oxidation von LDL-Partikeln in atherosklerotischen Lässionen entstehen [130].

Mögliche Ziel-Epitope für die molekulare Bildgebung der verschiedenen Stadien der Atherosklerose sind in Abbildung 2.8 dargestellt.

2.8 LIBS-MPIO

Das in dieser Arbeit verwendete MR-Kontrastmittel LIBS-MPIO besteht aus einem single-chain-Antikörper (LIBS, ligand induced binding sites) mit einem daran gekoppelten Eisenmikropartikel (MPIO, micro-particle of iron oxide).

Mit diesem Kontrastmittel wurde bereits in einigen Arbeiten die Bildgebung von Thrombozyten bei Tiermodellen und bei in-vitro Modellen gezeigt.

[143]

In einer weiteren Arbeit konnte sowohl die Thrombosebildung als auch die Thrombolysie in einem Karotis-Mausmodell mit Hilfe des Kontrastmittels LIBS-MPIO im MRT dargestellt werden [141].

In einem anderen Mausmodell wurde die Ruptur einer Plaques in der A. femoralis simuliert. Es gelang ebenfalls die erfolgreiche Darstellung des Thrombus mit Hilfe von LIBS-MPIO [142].

2.8.1 Single-chain-Antikörper

Single-chain-Antikörper (scFv, engl. single chain variable fragment) haben in den letzten Jahren zunehmend an Bedeutung gewonnen. Dies liegt zum einen an neuen Eigenschaften und zum anderen an der kostengünstigeren Herstellung der scFv im Vergleich zu größeren Antikörpern [56].

Single-chain-Antikörper bestehen aus zwei Aminosäuresequenzen, einer variablen leichten Kette (VL) und einer variablen schweren Kette (VH). Diese beiden Moleküle sind durch ein Peptid am Carboxy-Terminus der VL-Sequenz und am Amino-Terminus der VH-Sequenz miteinander verbunden. Sie bilden den kleinsten funktionsfähigen Antikörper (s. Abb. 2.9) [12]. Aufgrund ihrer geringen Größe bringen
scFv einige Vorteile mit sich. Einerseits erlaubt die Möglichkeit der Herstellung in Bakterien eine kostengünstige und effektive Produktion der Antikörper, andererseits sind scFv weniger immunogen als herkömmliche Antikörper. Außerdem können scFv durch die geringe Größe leichter biologische Barrieren passieren und werden zügig aus dem Blutkreislauf eliminiert. [47]

Die Technik des Phagen-Display bietet die Möglichkeit der effizienten Herstellung von scFv.

![Diagramm IgG- und scFv-Antikörper](image_url)

2.8.2 scFV Anti-LIBS

Der scFV_{Anti-LIBS} wurde durch biopanning von Bakteriophagen aus einer Phagenbibliothek hergestellt. Hierzu wurden CHO-Zellen, die aktivierte GP IIb/IIIa-Rezeptoren exprimierten, mit den Bakteriophagen inkubiert und der spezifisch bindende scFV_{Anti-LIBS} selektioniert [107].

Die Aktivierung von Thrombozyten bewirkt vielfältige intra- und extrazelluläre Änderungen (s. Kap. 2.2). Unter anderem wird die Konformation des GP IIb/IIIa-

2.8.3 Kontroll-Antikörper MB9

2.8.4 MPIO

Um die gebundenen Antikörper im MRT-Bild nachweisen zu können, wird an den Antikörper ein Eisenmikropartikel gekoppelt. Die MPIOs der Firma Invitrogen sind superparamagnetische Polystyren-Beads, die einen Durchmesser von 0,76-1,63 µm
haben. Ursprünglich wurden sie zur Auftrennung von His6-Tag gekoppelten Proteinen entwickelt. In verschiedenen Arbeiten wurde die effiziente Möglichkeit der molekularen MRT-Bildgebung mit Hilfe von MPIOs demonstriert [33, 140, 80, 112, 111].

MPIOs haben gegenüber anderen paramagnetischen Kontrastmitteln einige Vorteile bei der molekularen Bildgebung: MPIOs bewirken eine Signalauflösung, die ca. 50-fach größer ist als ihr Durchmesser [112, 78]. Dies liegt im Vergleich zu kleineren Eisenpartikeln, wie z.B. den USPIOs (*ultrasmall particles of iron oxide*) an der in MPIOs enthaltenen wesentlich größeren Eisenmenge. Der größere Durchmesser führt auch zu einer geringeren extravasalen Anreicherung und zu einer geringeren unspezifischen Anlagerung [18]. Es konnte gezeigt werden, dass schon einzelne angelagerte MPIOs im MRT nachweisbar sind [110, 78]. Durch eine relativ kurze Halbwertszeit im Blut verursachen sie im Gegensatz zu den USPIOs weniger unspezifisches Hintergrundsignal [78].

Die Kopplung von MPIOs an Liganden, wie z.B. den scFV_{Anti-LIBS} ist über die in der Hülle enthaltenen reaktiven Gruppen möglich. Es sind MPIOs mit unterschiedlichen reaktiven Gruppen erhältlich, die die Bindung verschiedener Liganden erlauben [63].

2.9 Ziele

Die bessere und frühzeitigere Diagnose von vulnerablen Plaques ist eine große Herausforderung der aktuellen Forschung [82]. Durch eine frühzeitige Diagnose könnte man Therapien intensivieren und Folgeschäden wie z.B. Myokardinfarkt und ischämische Schlaganfälle, vermeiden [82].

Durch die bisherigen vielversprechenden Arbeiten mit dem Kontrastmittel LIBS-MPIO [143, 141, 142] sollte in dieser Arbeit ein weiterer Schritt in Richtung der humanen Anwendung gegangen werden.

Das Ziel dieser Arbeit ist die Darstellung aktiverer Thrombozyten auf humanen atherosklerotischen Karotis-Plaques mit einem 9,4 Tesla MRT. Hierzu wurde das LIBS-MPIO Kontrastmittel verwendet, das an die aktivierte Form des GPIIb/IIIa-Rezeptors bindet. Die humanen Karotis-Plaques wurden mittels Karotis-Thrombendarteriektomie gewonnen und stammten von Patienten, die zuvor ein

In der vorliegenden Arbeit sollen folgende Fragen beantwortet werden:

- Ist die MRT-basierte Darstellung von aktivierten Thrombozyten mit dem LIBS-MPIO Kontrastmittel auch auf humanen Karotis-Plaques möglich?
- Wenn ja, lassen sich die Ergebnisse auch unter Flussbedingungen erzielen?
- Resultiert die im MRT dargestellte Signalauslöschung auf spezifisch gebundenen MPIOs?
- Gibt es eine Korrelation zwischen der Stärke der Signalauslöschung und den in der Histologie gefundenen spezifisch gebundenen MPIOs?
- Erlaubt die Stärke der Signalauslöschung einen Rückschluss auf den Schweregrad der atherosklerotischen Gefäßveränderung?
- Gibt es Korrelationen zwischen den histologischen Parametern und dem Schweregrad der atherosklerotischen Gefäßveränderungen?
3 Material und Methoden

3.1 scFV_{Anti-LIBS}

Die Herstellung des scFV_{Anti-LIBS} beginnt mit der Transformation von kompetenten \textit{E. coli} Bakterien. Transformation bedeutet, eine Plasmid-DNA, die das gewünschte Protein kodiert, in Bakterienzellen einzubringen. Die genaue Herstellung der Bakterien, welche die Plasmid-DNA enthalten, die für den scFV_{Anti-LIBS} kodiert, wurde von Schwarz et al. beschrieben [107]. Die transformierten \textit{E. coli} Bakterien werden kultiviert und dann die Produktion des Proteins induziert. Das gewünschte Protein wird durch Lyse der Bakterienzellmembran freigesetzt und anschließend aufgereinigt, um das Protein in einer hohen Konzentration zu erhalten.

\textbf{Abb. 3.1 Prinzipien der Produktion des scFV}_{\text{Anti-LIBS}}: Zu Beginn wird ein Plasmid, welches für den scFV_{Anti-LIBS} kodiert, in die DNA von \textit{E. coli} Bakterien transformiert. Anschließend wird die Proteinproduktion induziert. Es folgt die Aufreinigung der scFV_{Anti-LIBS} Antikörper. Im letzten Schritt werden die produzierten Antikörper mit Hilfe eines Western-Blots analysiert. (Abb. eigene Darstellung)
3.1.1 Produktion des scFV_{Anti-LIBS}

3.1.1.1 Kultivierung der <i>E. coli</i> Bakterien

Am nächsten Tag werden die in der Vorkultur gewachsenen Bakterien auf einen Liter LB-GA-Medium überführt und wieder bei 31-37°C im Schüttelinkubator bei 200 rpm inkubiert. Die Inkubation erfolgt bis zu einer optischen Dichte bei 600 nm von ≥0,8.

3.1.1.2 Induktion der Proteinexpression

3.1.1.3 Proteinisolation

Die Bakterienkulturen werden dann zur Isolation der exprimierten Proteine bei 5.000 rpm für 10 Minuten zentrifugiert. Dem gewonnenen Pellet wird danach Benzonase und Bug Buster in Lysin-Puffer hinzugegeben und die Flüssigkeit für 15 Minuten bei
Raumtemperatur auf einem Taumler inkubiert. Die Menge an Benzonase und Bug Buster wurde nach den Herstellerangaben berechnet. Bei diesem Schritt wird die Bakterienmembran lysiert, um die intrazellulär vorliegenden Proteine zu gewinnen. Die Flüssigkeit, die die freigesetzten Proteine und die lysierten Zellteile enthält, wird zur Separation anschließend für 20 Minuten bei 4° C und 15.000 rpm zentrifugiert.

3.1.1.4 Proteinkonzentration

Material

- Ampicillin: Ampicillin Sodium Salt, Gerbu Biotechnik GmbH, Gaiberg, Deutschland
- Luria Broth Base: InvitrogenTM, Paisley/UK
- Glukose: alpha-D(+)-Glucose Monohydrat, Roth, Karlsruhe, Deutschland
- Bakterienstock: LIBS pHOG, TG1 vom 28.06.2006, gelagert bei -80°C
- Inkubator: Inkubator 3033, GFL, Burgwedel, Deutschland
Zentrifuge: Zentrifuge Multifuge 3s, Heraeus Instruments GmbH, Hanau, Deutschland
Photometer: SpectraMax® plus, Molecular Devices, Sunnyvale, USA
Saccharose: Gerbu Biotechnik GmbH, Gaiberg, Deutschland
Bug Buster: Bug Buster ® 10x Protein Extraction Reagent, Novagen, Darmstadt, Deutschland
Benzonase: Benzonase ® Nuclease, >90% purity, Novagen, Darmstadt, Deutschland
Taumel-Inkubator: Inkubator Polymax 1040, Heidolph Instruments GmbH, Schwabach, Deutschland
Nickel-Agarose: Ni-NTA-Agarose, Qiagen, Hilden, Deutschland
Protease-Inhibitor: Protease Inhibitor Cocktail Tablets, Roche Diagnostics GmbH, Penzberg, Deutschland
PBS ohne Ca²⁺/Mg²⁺: PBS without Ca²⁺/Mg²⁺ Dulbecco’s Phosphate Buffered Saline Lonza (10 x), Verviers, Belgien
Dialyse-Kassette: Slide-A-Lyzer Dialysis Cassettes, 10 kDa, 0,5-3ml, Rockford, USA
NaH₂PO₄·H₂O: Natriumdihydrogenphosphat-monohydrat, Merck, Darmstadt, Deutschland
NaCl: Natriumchlorid, Fluka Chemika, Neu Ulm, Deutschland
Imidazol: Imidazol Sigma, Steinheim, Deutschland
Material und Methoden

<table>
<thead>
<tr>
<th>Medium</th>
<th>Substanz</th>
<th>Molekulare Masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-Medium</td>
<td>25 g Luria Broth Base</td>
<td></td>
</tr>
<tr>
<td>LB-S-Medium</td>
<td>25 g Luria Broth Base</td>
<td>Saccharose 400 mM</td>
</tr>
<tr>
<td>Lysis-Puffer (pH 8,0)</td>
<td>NaH₂PO₄ 50 mM</td>
<td>NaCl 300 mM</td>
</tr>
<tr>
<td>Waschpuffer (pH 8,0)</td>
<td>NaH₂PO₄ 50 mM</td>
<td>NaCl 300 mM</td>
</tr>
<tr>
<td>Elutionspuffer (pH 8,0)</td>
<td>NaH₂PO₄ 50 mM</td>
<td>NaCl 300 mM</td>
</tr>
</tbody>
</table>

Tab. 3.4 Verwendete Puffer und Medien für scFv_{ANTI-LIBS}-Produktion

3.1.2 BCA Assay zur Proteinquantifizierung

Es wird ein Verdünnungsreihe mit BSA (bovine serum albumine) mit bekannten Proteinkonzentrationen als Standard nach Herstellerangaben erstellt. Je 25 µl der Standardproben, eine Leerprobe mit PBS (ohne Ca²⁺ und Mg²⁺) und die Probe mit

![Abb. 3.2 BCA Reaktion: Die produzierten Proteine bewirken eine Reaktion von Cu²⁺ zu Cu⁺. Anschließend bildet Cu⁺ einen Chelatkomplex mit Bicinchoninic-Säure. Durch eine Absorptionsmessung lässt sich die Proteinkonzentration bestimmen. (Abb. eigene Darstellung)](image_url)

Material

- **BCA Protein Assay**: Kit Pierce, Rockford, USA
- **PBS ohne Ca²⁺/Mg²⁺**: Dulbecco´s Phosphate Buffered Saline Lonza (10 x), Verviers, Belgien
- **96er well Platten**: 96 Well Immuno Platten C96 MaxiSorp, Fisher Scientific GmbH, Ulm, Deutschland
- **Inkubationsschrank**: Function Line, Heraeus, Carl Roth, Karlsruhe, Deutschland
- **Photometer**: SpectraMax® plus, Molecular Devices, Sunnyvale, USA
- **Software**: SoftMax® Pro, Molecular Devices, Sunnyvale, USA

3.1.3 SDS PAGE

Material und Methoden

unterscheiden. Der trennende Faktor bei der SDS-PAGE ist die Molekül-Größe. Die entfalteten Proteine sind negativ geladen und wandern zur Kathode. Je kleiner die molekulare Masse der Proteine, desto schneller wandern sie im elektrischen Feld durch das Polyacrylamid-Gel. Um am Ende die Molekül-Masse der jeweiligen Banden bestimmen zu können, wird in eine Geltasche ein Molekülgewichtsmarker hinzugegeben.

3.1.3.1 Prozedur der SDS-PAGE

Die Proben werden im Verhältnis von 1:5 bis 1:3 mit dem Probenpuffer verdünnt und in die Taschen pipettiert. Der Molekulargewichtsmarker wird ebenfalls in eine Tasche pipettiert. Die Gelelektrophorese läuft bei 200 V und 20-30 mA für ca. 30-45 Minuten.
Material

<table>
<thead>
<tr>
<th>Trenngel 12 %</th>
<th>Sammelgel 4 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua dest.</td>
<td>Aqua dest.</td>
</tr>
<tr>
<td>Tris HCl 1,5 M, pH 8,8</td>
<td>Tris HCl 0,5 M, pH 6,8</td>
</tr>
<tr>
<td>SDS 10%</td>
<td>SDS 10%</td>
</tr>
<tr>
<td>Acrylamid 30%</td>
<td>Acrylamid 30%</td>
</tr>
<tr>
<td>1,675 ml</td>
<td>1,525 ml</td>
</tr>
<tr>
<td>1,25 ml</td>
<td>0,625 ml</td>
</tr>
<tr>
<td>50 µl</td>
<td>25 µl</td>
</tr>
<tr>
<td>2,0 ml</td>
<td>325 µl</td>
</tr>
</tbody>
</table>

Zum Starten:

<table>
<thead>
<tr>
<th>APS (100mg/ml H₂O)</th>
<th>APS (100mg/ml H₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 µl</td>
<td>50 µl</td>
</tr>
<tr>
<td>5 µl</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

Tab. 3.5 SDS-PAGE: Verwendete Materialien für die Herstellung des Trenn- und Sammelgels.

- **Elektrophoreseeinheit**: Mini-PROTEAN® Vertical Electrophoresis, BioRad, München, Deutschland
- **Tris Trizma Base**: Tris-hydroxymethyl-aminomethane, Sigma, Steinheim, Deutschland
- **SDS**: Sodium Dodecylsulfate, Gerbu, Gaiberg, Deutschland
- **Acrylamid**: Acrylamid 4K-Lösung (30%), Mix 37,5:1, AppliChem, Darmstadt, Deutschland
- **APS**: Ammonium Persulfate, Sigma, Steinheim, Deutschland
- **TEMED**: AppliChem, Darmstadt, Deutschland
- **Ethanol**: J.T.Baker, Deventer, Holland
- **Glycin**: Aminoacetic Acid, Gerbu, Gaiberg, Deutschland
- **Glycerol**: Sigma, Steinheim, Deutschland
- **DTT**: 1,4-Dithiothreithol, Roth, Karlsruhe, Deutschland
- **Bromphenolblau**: Tetrabromophenolsulfonephthalein, Sodium Salt, Sigma, Steinheim, Deutschland
- **Gewichtsmarker**: Molekulargewichtsmarker Precision Plus Protein Standards, Bio-Rad, Hercules, USA
3.1.4 Western-Blot

Abb. 3.4 Prinzip von SDS-PAGE und Western-Blot: Für die Untersuchung der Reinheit der produzierten scFV_{ANTI-LIBS}-Antikörper werden die Proben zuerst mit der SDS-PAGE Gelelektrophorese nach ihrer Molekülgröße aufgetrennt. Es folgt ein Blotting der Proteine auf eine Trägermembran. Mithilfe eines mit Peroxidase gekoppeltem His6-Antikörper, der an den His-Tag des scFV_{ANTI-LIBS} bindet, wird die Bande der produzierten Antikörper sichtbar gemacht. (Abb. eigene Darstellung)
3.1.4.1 Prozedur des Western-Blot

Material

<table>
<thead>
<tr>
<th>Towbin-Puffer 10x (pro Liter)</th>
<th>Transfer-Puffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 mM Tris</td>
<td>30 g Methanol p.a.</td>
</tr>
<tr>
<td>960 mM Glycin</td>
<td>144 g H₂O</td>
</tr>
<tr>
<td>10 % SDS/H₂O</td>
<td>2 ml Towbin-Puffer 10x</td>
</tr>
<tr>
<td>c_{END}= 0,01 %</td>
<td>800 ml</td>
</tr>
<tr>
<td></td>
<td>100 ml</td>
</tr>
</tbody>
</table>

Tab. 3.6 Towbin- und Transfer-Puffer für den Western-Blot.

<table>
<thead>
<tr>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>His Protein Ladder</td>
</tr>
<tr>
<td>6x His Protein Ladder, Qiagen, Hilden, Deutschland</td>
</tr>
<tr>
<td>Tris Trizma Base</td>
</tr>
<tr>
<td>Tris-hydroxymethyl-aminomethane, Sigma, Steinheim, Deutschland</td>
</tr>
<tr>
<td>SDS</td>
</tr>
<tr>
<td>Sodium Dodecylsulfate, Gerbu, Gaiberg, Deutschland</td>
</tr>
</tbody>
</table>
Glycin Aminoacetic Acid, Gerbu, Gaiberg, Deutschland
Methanol J.T.Baker, Deventer, Holland
Membran Immobilon-P Transfer Membrane (PVDF) Millipore
Transfersystem Mini Trans-Blot® Transfer Unit, BioRad, München, Deutschland
BSA Albumin bovine Fraction V, Serva, Heidelberg, Deutschland
PBS ohne Ca2+ und Mg2+ Dulbecco’s Phosphate Buffered Saline without Ca2+ and Mg2+ (10x), Lonza, Verviers, Belgien
Tween 20 Tween® 20, Sigma-Aldrich, St. Louis, USA
Kolloid-Gold-Lösung Colloidal Gold Total Protein Stain, Bio-Rad Laboratories, Hercules, USA
Anti-His-Peroxidase-AK clone BMG-His-1, Roche, Mannheim, Deutschland
Super Signal SuperSignal® West Pico Chemiluminescent Substrate, Pierce, Rockford, USA
Versadoc Versadoc Imaging System, Modell 1000, Bio-Rad Laboratories, Hercules, USA

3.1.5 FACS

Hilfe eines Fluoreszenz-markierten Antikörpers die Effizienz der Antikörper-Bindung an die Thrombozyten quantifizieren. Die Zellen, die einen Fluoreszenz-markierten Antikörper gebunden haben, emittieren nach Anregung durch den Laser ebenfalls Licht, welches sich proportional zur Menge der gebundenen Fluoreszenz-Antikörper verhält. [86]

Mit Hilfe der FACS-Analyse wird die Funktionalität der produzierten scFV_{Anti-LIBS} an aktivierte Thrombozyten überprüft. Hierzu werden humane Blutproben mit nicht-aktivierten Thrombozyten mit Blutproben mit ADP-aktivierten Thrombozyten verglichen. Den Proben wird dann der scFV_{Anti-LIBS} und der FluoreszenzfARBstoff Penta His Alexa Fluor 488-Antikörper hinzugegeben. Penta His Alexa Fluor 488 bindet an den His-Tag des scFV_{Anti-LIBS}. Die Blutproben werden gemessen und durch die Gegenüberstellung der Vorwärts- und Seitwärtsstreuung wird ein Dot-Plot erstellt, der Thrombozyten, Leukozyten und Erythrozyten darstellt. Durch ein gating auf die Thrombozytenpopulation werden im Folgenden nur die Thrombozyten bei der Fluoreszenzauswertung berücksichtigt. Bei der Erstellung eines Fluoreszenz Dot-Plot wird an der Abszisse die Fluoreszenzstärke und an der Ordinate die Thrombozytenanzahl aufgetragen. Bei funktionsfähigen scFV_{Anti-LIBS} sollte bei der Fluoreszenzauswertung im Vergleich der nicht-aktivierten zu den aktivierten Thrombozyten ein Shift nach rechts resultieren.
Material und Methoden

3.1.5.1 Prozedur der FACS-Analyse

die Zugabe von je 1 µl Penta His Alexa Fluor 488-Antikörper und eine Inkubation für 15 Minuten in Dunkelheit. Zur Fixierung der Lösung wird danach je 500 µl Cellfix hinzugegeben.

Im Anschluss der Probenaufbereitung erfolgt die Messung mit dem FACS-Gerät und die Auswertung mit der Cell Quest Software. Zu Beginn wird in einem Dot-Plot-Diagramm die Vorwärts- und Seitwärtsstreuung des Lichtes aufgetragen. Aus den gemessenen Zellpopulationen lassen sich die Thrombozyten identifizieren und werden als Gate (R1) definiert. Das gating ermöglicht in der folgenden Fluoreszenzauswertung die alleinige Darstellung der Thrombozyten. Die Fluoreszenzauswertung wird als Histogramm-Plot dargestellt. Hierbei wird auf der Abszisse die Stärke der Fluoreszenz logarithmisch aufgetragen und auf der Ordinate die Häufigkeit. Bei funktionsfähigen scFV\textsubscript{Anti-LIBS} sollte bei den FACS-Proben mit den aktivierten Thrombozyten ein deutlicher Shift nach rechts resultieren.

Material

<table>
<thead>
<tr>
<th>Tyrode Lösung (pH 7,4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
</tr>
<tr>
<td>KCl</td>
</tr>
<tr>
<td>CaCl\textsubscript{2}</td>
</tr>
<tr>
<td>MgCl\textsubscript{2}</td>
</tr>
<tr>
<td>NaHCO\textsubscript{3}</td>
</tr>
<tr>
<td>Glukose</td>
</tr>
<tr>
<td>BSA</td>
</tr>
<tr>
<td>Aqua dest.</td>
</tr>
</tbody>
</table>

Tab. 3.4 Tyrode Lösung für die FACS-Analyse

Citratröhrchen: S-Monovette, 10ml/9NC Coagulation, Sarstedt, Deutschland

Adapter: Multi-Adapter lang, Sarstedt, Nümbrecht, Deutschland

Butterfly: Wing-FloTM, 21G x 3/4” (0,8 x 20mm), Intermedica, Klein-Winternheim/Mainz, Deutschland
Material und Methoden

FACS Gerät
FACS Calibur, Becton-Dickinson, Heidelberg, Deutschland
Facs Clean
Becton-Dickinson, Heidelberg, Deutschland
Facs Rinse
Becton-Dickinson, Heidelberg, Deutschland
Facs Flow
Becton-Dickinson, Heidelberg, Deutschland
Facs Röhrchen
BD Falcon™ 5ml Polystyrene Round-Bottom Tube, BD, Heidelberg, Deutschland
ADP
möLab, Langenfeld, Deutschland
scFV anti-LIBS
aufgereinigt aus E.coli vom Stamm TG1
Penta His Alexa Fluor
Penta His Alexa Fluor 488, Qiagen, Hilden, Deutschland
Cellfix BD
CellFIX, Becton-Dickinson, Heidelberg, Deutschland

3.2 Micro particles of iron oxide (MPIOs)

3.3 Kopplung des scFV_{Anti-LIBS} mit den MPIOs

Zu den MPIOs werden nun 10 µg des scFV_{Anti-LIBS} (für die Herstellung des Kontroll-Kontrastmittel werden 10 µg des Kontroll-Antikörpers verwendet), 50 µl TBWB und PBS (mit Calcium und Magnesium) resuspendiert. Laut Herstellerangaben sollten Antikörper, TBWB und PBS zusammen 100 µl ergeben. Anschließend wird die Lösung für 10 Minuten mit einem Rotator bei Raumtemperatur inkubiert. Nach vier
Material und Methoden

Waschschritten am Magneten mit je 700 µl TBWB werden die gekoppelten LIBS-MPIO oder Control-MPIO in 100 µl PBS resuspendiert.

Abb. 3.7 Prinzip der Kopplung des scFv\textsubscript{ANTI-LIBS} an die MPIOs: Die MPIOs werden resuspendiert und die Antikörper hinzugegeben. Mit Hilfe des Magneten werden die MPIOs an der Wand des Eppendorf-Gefäßes fixiert und der Überstand mit nicht gebundenen Antikörpern verworfen. Nach mehreren Waschschritten erhält man eine Lösung, die nur die gekoppelten LIBS-MPIO Moleküle enthält. (Abb. eigene Darstellung)

3.3.1 Herstellung des talon binding and washing buffer

Für die Herstellung des TBWB (talon binding and washing buffer) werden in 80 ml destilliertem Wasser 50mM NaH\textsubscript{2}PO\textsubscript{4} (0,69 g) gelöst. Die Lösung wird mit 1 N NaOH auf pH 8,0 eingestellt. Nun werden 300 mM NaCl (1,75 g pro 100 ml) hinzugegeben und mit destilliertem Wasser auf 100 ml Gesamtmenge aufgefüllt. Abschließend werden 10 µl Tween 20 (\(\equiv 0,01 \% \, \text{c}_{\text{END}}\)) hinzugefügt.

Material

<table>
<thead>
<tr>
<th>Material</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPIO</td>
<td>Talon HIS-Beads Dynabeads\textregistered Talon\textregistered, 40mg beads/ml, Invitrogen Dynal AS, Oslo, Norwegen</td>
</tr>
<tr>
<td>Trennmagnet</td>
<td>Dynal\textregistered MPC-S, Dynal Biotech ASA, Oslo, Norwegen</td>
</tr>
<tr>
<td>Eppendorf Röhrchen</td>
<td>Eppendorf Flex-Tubes\textregistered, Eppendorf AG, Hamburg, Deutschland</td>
</tr>
</tbody>
</table>
Material und Methoden

PBS mit Ca²⁺/Mg²⁺ Dulbecco´s PBS w/ Ca++ and Mg++, Cell Concepts, Umkirch, Deutschland
Kontroll-IgG MB9 (mut2) vom 19.09.2005, C= 7800 µg/ml, gelagert bei -80°C,
Rotator Roller Rotator,SB3, Stuart, Staffordshire, UK
NaH₂PO₄ x H₂O Natriumhydrogenphosphat-monohydrat p.a., Merck, Darmstadt, Deutschland
NaOH Natronlauge, 1N, Merck, Darmstadt, Deutschland,
NaCl Natriumchlorid, Fluka Chemie AG, Buchs, Schweiz
Tween 20 Tween® 20, Sigma-Aldrich, St. Louis, USA,

3.4 Humane Karotiden

Die in unseren Projekt verwendeten humanen Karotiden werden von symptomatischen Patienten, die kurz zuvor ein klinisches Ereignis wie z.B. eine TIA oder ein Schlaganfall hatten, mittels Karotis Thrombendarterektomie gewonnen (s. Kap. 2.5.2). Die Plaques werden im Zentral-OP der Universitätsklinik Freiburg abgeholt und gleich im Anschluss gemessen. Die Plaques werden direkt nach der Entnahme aus der Karotis kurz mit NaCl abgespült. Hierdurch soll Blut ausgewaschen werden, welches womöglich durch operativ beschädigte Gefäße intraluminal am Plaque hängenbleibt.
Wenn die Plaques durch die Operation zu sehr beschädigt werden und ihr durchgängiges Lumen verlieren, werden sie verworfen.

3.5 Kontrastmittelapplikation

Nachdem das MR-Kontrastmittel LIBS-MPIO schon erfolgreich an Mäusen getestet wurde [141], ist es das Ziel dieser Arbeit, einen weiteren Schritt in Richtung humaner Anwendung zu gehen.
In dieser Arbeit simulieren wir die Inkubation des MR-Kontrastmittel LIBS-MPIO mit humanen Karotisplaque. Die Arbeit besteht aus zwei Versuchsreihen, in denen die
Kontrastmittelapplikation sowohl unter statischen als auch dynamischen Bedingungen untersucht wird.

3.5.1 Statische Versuchsreihe

Material

Plastikröhrchen: Falcon, 15 ml Volumen, BD Biosciences, Franklin Lakes, New Jersey, USA
DPBS: Dulbecco’s phosphate buffered saline, Cell Concepts, Umkirch, Germany
LIBS-MPIO: 1 mg Talon MPIOs + 10 µg scFV_{Anti-LIBS} (Herstellung s. Kap 3.3) in 10 ml DPBS

3.5.2 Dynamische Versuchsreihe

Bei der dynamischen Versuchsreihe wird der Plaque ebenfalls in DPBS zuerst ca. 10 Sekunden gewaschen und im Anschluss auf einem Plastikadapter mit einem Faden

Material

Plastikröhrchen
Falcon, 15 ml Volumen, BD Biosciences, Franklin Lakes, NJ, USA

DPBS
Dulbecco’s phosphate buffered saline, Cell Concepts, Umkirch, Germany

Gummipfropfen
Bruno Kummer GmbH, Freiburg, Deutschland

Plastikadapter
J. Lindemann GmbH, Helmstedt, Deutschland

Glasröhrchen
Bruno Kummer GmbH, Freiburg, Deutschland
Material und Methoden

<table>
<thead>
<tr>
<th>Material</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastikschlauch</td>
<td>Silikon, J. Lindemann GmbH, Helmstedt, Deutschland</td>
</tr>
<tr>
<td>Rollerpumpe</td>
<td>BVP-Z, Ismatec, IDEX Health & Science GmbH, Wertheim-Mondfeld, Deutschland</td>
</tr>
<tr>
<td>Parafilm</td>
<td>Parafilm, Pechiney Plastic Packaging, Chicago, USA</td>
</tr>
<tr>
<td>LIBS-MPIO</td>
<td>1 mg Talon MPIOs + 10 µg scFVAnti-LIBS (Herstellung s. Kap. 3.3) in 10 ml DPBS</td>
</tr>
</tbody>
</table>

3.6 MRT

3.6.1 MRT-Messungen

Die MRT Messungen werden mit einem 9,4 T MRT-Gerät der Firma Bruker absolviert. Es wird eine 1H-Sende/Empfangsspule mit einem Durchmesser von 70 mm verwendet. T2- und T2*-gewichtete Aufnahmen werden je vor und nach Kontrastmittelapplikation gemessen (s. Kap. 3.5).
Die T2-gewichteten Aufnahmen werden als RARE-Sequenzen gemessen, mit folgenden Einstellungen:
TR: 4000 ms, TE: 30 ms, RARE-Faktor: 8, Totale Aktivierungszeit: 1 Minute 4 Sekunden, Auflösung: 105 µm.
Die T2*-gewichteten Aufnahmen werden als FLASH-Sequenzen (s. Kap 2.6.1.1) gemessen, mit folgenden Einstellungen:
TR: 500 ms, TE: 7 ms, Flipwinkel α: 45°, Anzahl der Mittelungen: 4, Totale Aktivierungszeit: 4 Minuten 16 Sekunden, Auflösung: 105 µm.
Je nach Länge der Plaques werden 20- 40 Schnitte mit einer Schichtdicke von 1 mm akquiriert.

Material

MRT | 9,4 T, BioSpec 94/20, Bruker BioSpin, Bruker Corporation, Billerica, USA |
Spule | 1H Sende-/Empfangsspule mit einem Innendurchmesser von 70 mm |
3.6.2 MRT Datenauswertung

Die Datenauswertung wird mit der MIPAV-Software 4.0.2 durchgeführt. Obwohl darauf geachtet wird, die Plaques vor und nach Kontrastmittelapplikation in derselben Ausrichtung im MRT-Gerät zu positionieren, entsteht stets eine gering veränderte Plaqueposition. Um die Signalauslöschung durch die Kontrastmittelanlagerung messen und vergleichen zu können, werden die Messungen vor und nach Kontrastmittelapplikation manuell gedreht, um die möglichst gleiche Plaqueposition der Aufnahmen zu erreichen. Es werden nun die regions of interest (ROI) auf den Nach-Kontrastmittelgabe-Messungen eingezeichnet, die eine offensichtliche Signalauslöschung im Plaquelumen zeigen (s. Abb. 3.9). Die mean signal intensity wird in diesem ROI (<Ppost>) bestimmt. Durch die mean signal intensity einer weiteren ROI, die in das PBS Lumen gelegt wurde (<PBSpost>) wird das Signal normalisiert (<Ppost>/ <PBSpost>). Dieselben ROIs werden nun in die Vor-Kontrastmittelgabe-Messungen kopiert und mit Hilfe der Plaquemorphologie möglichst genau an derselben Stelle plaziert. Es wird nun für beide ROIs die mean signal intensity bestimmt. Die Differenz der normalisierten Signalintensität der Vorher- und Nachheraufnahmen wird berechnet. Sie stellt die Stärke der Signalauslöschung durch die Kontrastmittelanlagerung dar.

3.7 Histologie

3.7.1 Gewebe-Fixierung

Direkt im Anschluss an die Messungen im MRT werden die Plaques vermessen, fotografiert und je nach Größe, in 3-5 Teile geschnitten (Abb.3.10). Die Teile werden dann einzeln in Plastikbehälter in OCT Eindeckmittel eingefroren und bei -20°C gelagert.

![Abb. 3.10 Gewebe-Fixierung: Die Plaques werden je nach Größe mit dem Skalpell in 3-5 Stücke geteilt und bei -20°C kryokonserviert. (Abb. eigene Darstellung)](image)

Material

<table>
<thead>
<tr>
<th>OCT Tissue-Tek®</th>
<th>O.C.T. TM Compound, Sakura Finetek, Zoeterwoude, Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastikbehälter</td>
<td>Disposable Base Molds (15x15x5mm), Simport, Beloeil, Canada</td>
</tr>
</tbody>
</table>

3.7.2 Kryostat

Material

Kryostat: Leica CM 15105 Kryostat, Leica Microsystems, Nussloch, Deutschland

Klingen: LEICA 819, Low Profile Microtome Blades, Leica Microsystems, Nussloch, Deutschland

Objekträger: SuperFrost® Plus Objekträger, R. Langenbrinck, Emmendingen, Deutschland

Aceton: Aceton, J.T.Baker, Deventer, Holland

3.7.3 Immunhistochemie

3.7.3.1 Grundlagen

Bei den direkten Nachweismethoden sind die Antikörper mit einem Markermolekül (Enzym, fluoreszierender Stoff, kolloidales Gold) gekoppelt und können so direkt im Gewebe nachgewiesen werden. Ein Markermolekül kann z.B. ein fluoreszierender Farbstoff sein, der Licht mit einer bestimmten Wellenlänge emittiert und dadurch die Antikörper-Bindung quantifizierbar macht.
Bei den indirekten Nachweismethoden werden die gebundenen Antikörper mit der Hilfe von sekundären Antikörpern nachgewiesen. Die sekundären Antikörper tragen das Markermolekül und gelangen so zur Darstellung. [13]

3.7.3.2 Färbeprotokoll

3.7.3.3 Thrombenpositivkontrolle

Als Positivkontrolle der immunhistochemischen CD-61 Färbung werden humane Thromben eingesetzt. Hierzu wird Citratblut für 10 Minuten bei 1.000 rpm zentrifugiert.

1 ml Thrombozyten-reiches Plasma wird abgenommen und 100 µl ADP, 88 µl Actin und 50 µl 0,5 M CaCl₂ hinzugegeben. Die Probe wird leicht geschüttelt und für 15-18 Minuten im Brutschrank bei 37° inkubiert. Die entstandenen Thromben werden wie in Kap. 3.7.1 beschrieben kryokonserviert, mit dem Kryostat geschnitten und auf Objektträger gebracht.

Material

<table>
<thead>
<tr>
<th>Wasserblock-Stift</th>
<th>Liquid Blocker Super Pap-Pen, SCI Science Services, München, Deutschland</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>Dulbecco’s Phosphate Buffered Saline without Ca and Mg (10x), Lonza, Verviers, Belgien</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Tween® 20, Sigma-Aldrich, St. Louis, USA</td>
</tr>
<tr>
<td>Vector Kit</td>
<td>Vectastain® ABC Kit, Alkaline Phosphatase, Vector Laboratories, Burlingame, CA, USA</td>
</tr>
<tr>
<td>Primärandantikörper</td>
<td>Mouse anti human CD 61, Biotrend, Chemikalien GmbH, Köln, Deutschland</td>
</tr>
<tr>
<td>Sekundärandantikörper</td>
<td>biotinylated goat anti mouse, Vector Laboratories, Burlingame, CA, USA</td>
</tr>
</tbody>
</table>
Material und Methoden

Normal Goat Serum Normal Goat Serum, Vector Laboratories, Burlingame, CA, USA
Vector Red Vector® Red Alkaline Phosphatase Substrate Kit I, Vector Laboratories, Burlingame, CA, USA
Eindeckmittel Kaiser’s Glyceringelatine, Merck, Darmstadt, Deutschland
Deckgläser 24x46mm, Glasdicke 0,13-0,16mm, Langenbrinck, Emmendingen, Deutschland

3.7.4 Histologische Auswertung

Abb. 3.11 Histologische Auswertung (63x Vergrößerung): Abb. A zeigt MPIOs, die an den rot gefärbten Thrombozytenarealen spezifisch gebunden haben. Die MPIOs lassen sich gut erkennen und quantifizieren. Abb. B zeigt in Rot die Auswertung der Fläche der Thrombozytenareale (gemessen in µm²). (Abb. eigene Darstellung)

3.8 Klinischer Score

4 Ergebnisse

4.1 Produktion des des scFV\textsubscript{Anti-LIBS}

4.1.1 BCA Assay zur Proteinquantifizierung

Um das Molekulargewicht und die Reinheit der produzierten Proteine zu überprüfen, wurde eine SDS-PAGE durchgeführt. Mit Hilfe des BCA Assay wurden die Proteinkonzentrationen der Produzierten scFV\textsubscript{ANTI-LIBS} überprüft. Dies diente zur Verwendung vergleichbarer Antikörpermengen bei den Versuchen. Sowohl für die statischen als auch für die dynamischen Versuche wurde ein Aliquot scFV\textsubscript{ANTI-LIBS} von 10 µg verwendet. Die Kontrastmittel wurden jedoch mit unterschiedlichen Verdünnungen verwendet. Bei der statischen Versuchsreihe wurde das produzierte Kontrastmittel mit 10 ml PBS verdünnt, dies entsprach einer scFV\textsubscript{ANTI-LIBS} Konzentration von 1 µg/ml. Bei der dynamischen Versuchsreihe wurde mit 50 ml PBS verdünnt, dies entsprach einer Konzentration von 0,2 µg/ml.

<table>
<thead>
<tr>
<th>scFV\textsubscript{ANTI-LIBS} Chargen</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML 8</td>
<td>100 µg/ml</td>
</tr>
<tr>
<td>ML 9</td>
<td>350 µg/ml</td>
</tr>
</tbody>
</table>

\textit{Tab. 4.2 Die verwendeten scFV\textsubscript{ANTI-LIBS} Chargen.}

4.1.2 SDS PAGE und Western-Blot

Um das Molekulargewicht und die Reinheit der produzierten Proteine zu überprüfen, wurde eine SDS-PAGE durchgeführt. Der anschließende Western-Blot diente der Zuordnung der Banden zu dem produzierten scFV\textsubscript{ANTI-LIBS}. Abbildung 4.1 zeigt die Banden am Ende des Western-Blot. Mit Hilfe eines Molekulargewichtsmarker konnte man das Molekulargewicht der Proben abschätzen. Es wurden 2 verschiedene Chargen des scFV\textsubscript{ANTI-LIBS} verwendet. Die verwendeten Chargen sind in Tab. 4.1 mit
Ergebnisse

der enthaltenen Antikörper-Konzentration aufgeführt. Das Molekulargewicht des \(\text{scFV}_{\text{ANTI-LIBS}} \) beträgt 32 kDa. Die ML9-Charge zeigte eine deutliche Bande bei ca. 30 kDa.

![Western Blot Image](image)

Abb. 4.1 Western Blot: In Geltasche 1 wird ein Molekulargewichtsmarker hinzugegeben. Geltasche 2 und 3 enthalten die \(\text{scFV}_{\text{ANTI-LIBS}} \)-Chargen ML 8 und 9. Alle Chargen zeigen eine Bande bei ca. 30 kDa. Die Bande der ML9-Charge ist deutlich ausgeprägt.

4.1.3 FACS-Analyse

Vollblut ließen sich im Diagramm drei Zellpopulationen voneinander unterscheiden: Thrombozyten, Leukozyten und Erythrozyten.

Abb. 4.2 FACS-Analyse Dot-Plot Diagramm: Die Thrombozytenpopulation ist mit dem Gate R1 ausgewählt und wird ausschließlich bei der Fluoreszenzauswertung berücksichtigt.

Durch ein Gating auf die Thrombozytenpopulation wurde bei der folgenden Fluoreszenzauswertung auch nur diese berücksichtigt. Bei der Fluoreszenzauswertung wurden je scFV\textsubscript{ANTI-LIBS}-Charge 4 Proben gemessen. In Abbildung 4.2 sind die Zugaben zu den Thrombozyten dargestellt. Die Proben 2 und 4 wurden mit ADP aktiviert. Die Proben 1 und 3 dienten als Kontrolle. Bei den Proben 1 und 2 werden jeweils 10 µg scFV\textsubscript{ANTI-LIBS} und bei den Proben 3 und 4 werden jeweils 5 µg scFV\textsubscript{ANTI-LIBS} hinzugegeben. Bei funktionsfähigen scFV\textsubscript{Anti-LIBS} sollte bei der Fluoreszenzauswertung im Vergleich der nicht-aktivierten zu den ADP-aktivierten Thrombozyten ein Shift nach rechts resultieren.
Ergebnisse

<table>
<thead>
<tr>
<th>Proben</th>
<th>Zugabe zu den Thrombozyten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 µg scFv\text{Anti-LIBS}</td>
</tr>
<tr>
<td>2</td>
<td>10 µg scFv\text{Anti-LIBS} + ADP</td>
</tr>
<tr>
<td>3</td>
<td>5 µg scFv\text{Anti-LIBS}</td>
</tr>
<tr>
<td>4</td>
<td>5 µg scFv\text{Anti-LIBS} + ADP</td>
</tr>
</tbody>
</table>

Tab. 4.2 FACS-Proben: Je scFv\text{Anti-LIBS}^-Charge wurden 4 Proben gemessen.

Die scFV\textsubscript{Anti-LIBS} -Chargen ML8 und ML9 zeigten einen deutlichen Shift nach rechts (s. Abb. 4.3). Der Shift ist jeweils ausgeprägter bei der Inkubation mit 10 µg scFV\textsubscript{ANTI-LIBS} + ADP (Probe 2) im Vergleich zu 5 µg scFV\textsubscript{ANTI-LIBS} + ADP (Probe 4). Da die ML9 scFV\textsubscript{Anti-LIBS} auch im Western-Blot eine deutliche Band bei ca. 30 kDa zeigte, wurden wir in dieser Arbeit nur scFV\textsubscript{Anti-LIBS} aus der ML9-Charge.

4.2 Patientenkollektiv

Das Patientenkollektiv der statischen Versuchsreihe umfasste 18 gemessene Karotis-Plaques. 13 davon wurden mit LIBS-MPIO Kontrastmittel gemessen und 5 mit Control-MPIO Kontrastmittel (s. Tab. 4.3).

Das Patientenkollektiv der dynamischen Versuchsreihe umfasste ebenfalls 18 gemessene Karotis-Plaques. 9 davon wurden mit LIBS-MPIO Kontrastmittel gemessen und 9 mit Control-MPIO Kontrastmittel (s. Tab. 4.3).

Bei beiden Versuchsreihen gab es keine signifikanten Unterschiede zwischen der Verum- und der Kontrollgruppe bezüglich des Alters und des luminalen Stenosegrades. Auch bezüglich des klinischen Ereignisses für die Indikationsstellung zur Karotis-TEA zeigten sich keine signifikanten Unterschiede.

Die Unterschiede in der Geschlechterverteilung spiegeln das erhöhte Risiko arteriosklerotischer Erkrankungen bei Männern wieder.

Alle Patienten überlebten die Operation und hatten keine schwerwiegenden perioperativen Komplikationen.
4.3 MRT-Datenauswertung

Es wurden alle Plaques wie in Kapitel 3.5.1 und 3.6 beschrieben, gemessen und ausgewertet. Abbildung 4.4 zeigt die charakteristische Signalauslöschung auf der Endotheloberfläche durch die Anlagerung von MPIOs. Der Abfall der Signalintensität zeigt sich als dünne schwarze Schicht, die sich an die Endotheloberfläche anlegt. Um Verwechslungen mit innerhalb des Plaques gelegenen Blutungen zu vermeiden, die sich im MRT ebenfalls hypointens darstellen, werden nur Bereiche ausgewertet, die am Endothel gelegen sind. Durch die möglichst genaue Ausrichtung der Bilder vor und nach Kontrastmittelgabe lassen sich die Bereiche der Signalauslöschung gut erkennen und auswerten.

<table>
<thead>
<tr>
<th>Patientenkollektiv der Statischen Versuchsreihe</th>
<th>Patientenkollektiv der Dynamischen Versuchsreihe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIBS-MPIO</td>
<td>Control-MPIO</td>
</tr>
<tr>
<td>Patientenanzahl</td>
<td>13</td>
</tr>
<tr>
<td>Alter</td>
<td>68 ± 9</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>12 m : 1 w</td>
</tr>
<tr>
<td>Klinisches Ereignis für die OP Indikationsstellung</td>
<td>8 Schlaganfall</td>
</tr>
<tr>
<td></td>
<td>5 TIA</td>
</tr>
<tr>
<td>Grad der Stenose</td>
<td>82 ± 8</td>
</tr>
<tr>
<td>Risiko Faktoren</td>
<td></td>
</tr>
<tr>
<td>Rauchen</td>
<td>31%</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>39%</td>
</tr>
<tr>
<td>Hyperlipidämie</td>
<td>13%</td>
</tr>
<tr>
<td>Familiäre Belastung</td>
<td>31%</td>
</tr>
<tr>
<td>Art. Hypertonie</td>
<td>85%</td>
</tr>
<tr>
<td>Stattgehaltene vaskuläre Komplikationen</td>
<td>46%</td>
</tr>
</tbody>
</table>

Tab. 4.3 Patientenkollektive der statischen und dynamischen Versuchsreihe.
Abb. 4.4 MRT-Aufnahmen bei Inkubation mit LIBS-MPIO: Beispiele der Signalauflösung durch Anlagerung von LIBS-MPIO. (A) Vor-KM und (B) Nach-KM Bilder. (C) Vor-KM und (D) Nach-KM Bilder. Bei den Nach-KM Bildern fällt ein schwarzes Signal im Endothel-Bereich auf, das sich nicht bei den Vor-KM Bildern zeigt.

Bei der Inkubation mit Control-MPIO zeigte sich nur eine geringe Signalauflösung durch unspezifisch gebundene MPIOs (s. Abb. 4.5).

Abb. 4.5 MRT-Aufnahmen bei Inkubation mit Control-MPIO: Bei Inkubation mit Control-MPIOs zeigten sich Bereiche der Signalauflösung nur in wenigen Fällen. (A) Vor-KM und (B) Nach-KM Bilder. (C) Vor-KM und (D) Nach-KM Bilder.

Um die Signalauflösung durch die MPIO-Anlagerung im Zeitverlauf zu beobachten, wurde eine dynamische Versuchsreihe zu verschiedenen Zeitpunkten gemessen. Die Messungen erfolgten jeweils vor Kontrastmittelgabe und 1 Minute nach Kontrastmittelgabe. Es folgte eine Spüfung des Plaques mit PBS, eine weitere Messung nach 5 Minuten Spüfung und eine letzte Messung nach 10 weiteren Minuten. Es zeigten sich auch hier Bereiche im Endothel, die eine Signalauflösung aufwiesen. Im Zeitverlauf nimmt der schwarze Bereich im Endothel nur geringfügig ab. Die MPIO-Bindung erweist sich auch 15 Minuten nach Ausspülen mit PBS als stabil. In Abb. 4.6 ist der Zeitverlauf der Signalauflösung exemplarisch dargestellt.
Ergebnisse

Abb. 4.6 Inkubation mit LIBS-MPIO im Zeitverlauf: (A) Vor-KM (B) Nach-KM nach 15 Minuten Inkubation mit LIBS-MPIO und 1 Minute nach Ausspülen mit PBS. (C) Aufnahme 5 Minuten nach Ausspülen mit PBS. (D) Aufnahme 10 weitere Minuten nach Ausspülen mit PBS. Im Zeitverlauf nimmt der schwarze Bereich im Endothel nur geringfügig ab. Die MPIO-Bindung erweist sich auch 15 Minuten nach Ausspülen mit PBS als stabil.

Abbildung 4.7 zeigt ein Beispiel der MRT-Datenauswertung mit Hilfe von ROIs. Diese wurden, wie in Kapitel 3.6.2 beschrieben, über die Bereiche der Signalauflösung, sowie einen Bereich im PBS gefüllten Lumen gelegt, um die Werte zu normalisieren.

Abb. 4.7 Quantifizierung der Signalauflösung: (A) Vor-KM (B) Nach-KM (C) Um die schwarzen Bereiche der Signalauflösungen im Endothel-Bereich werden ROIs gelegt und die Stärke der Signalauflösung bestimmt. Mit einem ROI im PBS Bereich wird das Signal normalisiert.

Die Abbildung 4.8 zeigt beispielsweise den Signalverlust im Histogramm, im Vergleich der Vor-KM und Nach-KM Messungen bei Inkubation mit LIBS-MPIO unter statischen Bedingungen.
Bei den statischen Versuchen zeigte sich bei der LIBS-MPIO Gruppe bei allen gemessenen Plaques ein Abfall der Signalintensität. Bei der Control-MPIO Gruppe zeigte sich bei keinem gemessenen Plaque ein Signalabfall. Der Durchschnitt der Signalauslöschung des normalisierten Signals war für die LIBS-MPIO Gruppe 0,230 ± 0,096 und für die Control-MPIO Gruppe 0,010 ± 0,016 mit einem signifikanten p-Wert von <0,05 (s. Abb. 4.9).
Auch bei der dynamischen Versuchsreihe zeigte sich die charakteristische Signalauslöschung im Lumen der Karotiden durch die MPIO Anlagerung (s. Abb. 4.10).

Abb. 4.10 Beispiel MRT Aufnahmen der dynamischen Versuchsreihe bei Inkubation mit LIBS-MPIO: Signalauslöschung durch Anlagerung von LIBS-MPIO. (A) Vor-KM und (B) Nach-KM Aufnahme. (C) Vor-KM und (D) Nach-KM Aufnahme. Bei den Nach-KM Aufnahmen fällt ein schwarzes Signal im Endothel-Bereich auf, das sich nicht bei den Vor-KM Aufnahmen zeigt.

Bei der dynamischen Versuchsreihe mit LIBS-MPIO zeigte sich bei allen gemessenen Plaques ein Abfall der Signalintensität. Bei der Control-MPIO Gruppe zeigte sich bei 7 der gemessenen 9 Plaques ein geringer Signalabfall. Durch die Histologie konnten wir verifizieren, dass die Signalauslöschung vor allem durch unspezifisch angelagerte MPIOs verursacht wurde. Der durchschnittliche Abfall der Signalauslöschung des normalisierten Signals für die LIBS-MPIO Gruppe betrug 0,522 ± 0,327 im Vergleich zu 0,126 ± 0,297 bei der Control-MPIO Gruppe. Die Ergebnisse waren signifikant mit einem p-Wert von <0,01 (s. Abb. 4.11).
4.4 Datenauswertung der Histologie

Nach den MRT-Messungen wurden die Karotis-Plaques wie in Kapitel 3.7 beschrieben histologisch prozessiert und ausgewertet. Die MPIOs waren in der verwendeten 63-fachen Vergrößerung sehr gut unter dem Mikroskop erkennbar und quantifizierbar. In Abb. 4.12 sind spezifisch gebundene MPIOs und die Markierung eines Thrombozytenareals exemplarisch abgebildet.

Bei der statischen Versuchsreihe zeigte sich eine signifikant höhere MPIO Anlagerung in thrombozytären Arealen bei der LIBS-MPIO Gruppe im Vergleich zur Kontroll-Gruppe. Die Anzahl der gebundenen MPIOs pro Thrombozytenareal in mm² x 10000 war für die LIBS-MPIO Gruppe 146 ± 49 MPIOs im Vergleich zu 15 ± 6 MPIOs bei der Control-MPIO Gruppe. Die Signifikanz lag bei p < 0,001 (s. Abb. 4.14).

Abb. 4.13 Histologie Beispiel LIBS-MPIO (63x): Abb. A und B zeigen spezifisch gebundene MPIOs.

Abb. 4.14 Histologie-Ergebnisse der statischen Versuchsreihe: Die Anzahl der spezifisch gebundenen MPIOs pro Thrombozytenareal in mm² x 10000 betrug 146 ± 49 MPIOs bei der LIBS-MPIO Gruppe im Vergleich zu 15 ± 6 MPIOs bei der Control-MPIO Gruppe mit einer hohen Signifikanz von p < 0,001.
Auch bei der dynamischen Versuchsreihe zeigte sich eine signifikant höhere MPIO-Anlagerung in thrombozytären Arealen bei der LIBS-MPIO Gruppe im Vergleich zur Control-MPIO Gruppe.
Hier war die Anzahl der spezifisch gebundenen MPIOs für die LIBS-MPIO Gruppe 2475 ± 1724 MPIOs bei der LIBS-MPIO Gruppe im Vergleich zu 250 ± 192 MPIOs bei der Control-MPIO Gruppe mit einer hohen Signifikanz von p < 0,002. (s. Abb. 4.15).

![Graph](image)

Abb. 4.15 Histologie-Ergebnisse dynamische Versuchsreihe. Die Anzahl der spezifischen gebundenen MPIOs pro Plaque betrug 2475 ± 1724 MPIOs bei der LIBS-MPIO Gruppe im Vergleich zu 250 ± 192 MPIOs bei der Control-MPIO Gruppe mit einer hohen Signifikanz von p < 0,002.

Die Anzahl der spezifisch gebundenen MPIOs pro Schnitt betrug für die LIBS-MPIO Gruppe 268 ± 163 MPIOs bei der LIBS-MPIO Gruppe im Vergleich zu 12 ± 7 MPIOs bei der Control-MPIO Gruppe mit einer hohen Signifikanz von p < 0,003 (s. Abb. 4.16).
4.5 Korrelation der MRT-Signalintensitätsabnahme mit der histologischen Auswertung

Um zu evaluieren, ob die Stärke der Signalauslöschung im MRT mit den in der Histologie gefundenen spezifisch gebundenen MPIOs korreliert, wurden die MRT-Ergebnisse mit den Histologie-Daten verglichen.

Bei der statischen Versuchsreihe zeigte sich eine Korrelation zwischen der Stärke der Signalauslöschung im MRT und den spezifisch gebundenen MPIOs in der Histologie von $R^2=0,44$, die mit einem p-Wert von 0,11 jedoch statistisch nicht signifikant war.

Auch bei den dynamisch gemessenen Plaques wurden die MRT-Daten mit den Histologie-Daten korreliert. Hier zeigte sich eine gute Korrelation von $R^2=0,62$ mit einem p-Wert von <0,02 zwischen der Stärke der Signalauslöschung im MRT und den spezifisch gebundenen MPIOs in der Histologie.

Desweiteren wurden die spezifisch gebundenen MPIOs mit der Thrombusgröße korreliert. Bei den statischen Versuchen zeigte sich eine Korrelation von $R^2=0,46$, die mit einem p-Wert von 0,11 jedoch statistisch nicht signifikant war.
Bei der dynamischen Versuchsreihe zeigte sich eine Korrelation von $R^2 = 0,61$, die ebenfalls mit einem p-Wert von 0,078 statistisch nicht signifikant war.

4.6 Korrelation mit den klinischen Beschwerden der Patienten

Um die Frage zu beantworten, ob es einen Zusammenhang zwischen der Stärke der Signalauslöschung im MRT und dem Schweregrad der atherosklerotischen Gefäßveränderung gibt, wurden die MRT-Ergebnisse mit den zuvor stattgebahnten klinischen Ereignissen der Patienten korreliert. Hierzu wurde von allen Patienten, deren Plaques dynamisch gemessen worden waren, ein klinischer Score (s. Kap. 3.8) bestimmt und mit den MRT-Daten korreliert. Es zeigte sich eine Korrelation von $R^2 = 0,73$ mit einem p-Wert von <0,05 (s. Abb. 4.17).

Abb. 4.17 Korrelation der MRT Ergebnisse mit den zuvor stattgebahnten klinischen Ereignissen der Patienten: Es zeigte sich eine Korrelation von $R^2 = 0,73$ mit einem p-Wert von <0,05.

Patienten zeigte eine Korrelation von \(R^2 = 0,52 \) die jedoch mit einem p-Wert von 0,15 statistisch nicht signifikant war.

5 Diskussion

Bei beiden Versuchsreihen zeigte sich eine signifikante Signalauslöschung in den MRT Aufnahmen nach Gabe von LIBS-MPIO im Vergleich zu Control-MPIO. Bei der histologischen Auswertung wurde die spezifische Bindung des Kontrastmittels LIBS-MPIO an aktivierte Thrombozyten bei beiden Versuchsreihen bestätigt.

Bei den Korrelationsanalysen zeigte sich bei der dynamischen Versuchsreihe eine statistisch signifikante gute Korrelation zwischen der Stärke der Signalauslöschung im MRT, mit der histologisch verifizierten spezifischen LIBS-MPIO Bindung. Bei der statischen Versuchsreihe zeigte sich ebenfalls eine Korrelation, die jedoch statistisch nicht signifikant war.

Korrelationen zwischen den spezifisch gebundenen MPIOs und der Thrombusgröße konnten sowohl bei der statischen als auch bei der dynamischen Versuchsreihe beobachtet werden. Diese waren jedoch statistisch nicht signifikant.

5.1 Kontrastmittel LIBS-MPIO

Der GP IIb/IIIa-Rezeptor ist der wichtigste Integrinrezeptor der Thrombozyten. Auf einem Thrombozyten finden sich ca. 80 000 Kopien [133] des GP IIb/IIIa-Rezeptors. Aus diesem Grund ist dieses Integrin ein geeignetes Zielmolekül zur Darstellung aktivierter Thrombozyten. Bei der Aktivierung von Thrombozyten, als zentralen Schritt der primären Hämostase, ändert sich die Konformation des Receptors vom inaktiven in den aktiven Zustand. Der scFV\textsubscript{Anti-LIBS} bindet nur an GP IIb/IIla-Rezeptoren, die einen Liganden gebunden haben [107]. Zirkulierende aktivierte Thrombozyten ohne gebundenen Liganden werden nicht gebunden. Die effektive Kopplung des scFV\textsubscript{Anti-LIBS} an die signalgebenden MPIOs mit einer erhaltenen Funktionsfähigkeit des Antikörpers wurde bereits gezeigt [35]. Das in dieser Arbeit verwendete Kontrastmittel LIBS-MPIO erlaubt die konformationsspezifische Darstellung von aktivierten Thrombozyten. In den Gefäßen in großer Anzahl vorkommende nicht-aktivierte Thrombozyten gelangen nicht zur Darstellung und verursachen somit kein störendes Hintergrundsignal. LIBS-MPIO ermöglicht so die Darstellung von sehr wenigen aktivierten Thrombozyten.

Das Kontrastmittel bindet an ligandeninduzierte Bindungsstellen. Klinisch verwendete GP IIb/IIla-Antagonisten wie z.B. Abciximab binden an die Fibrinogenbindungsstelle des GP IIb/IIla-Rezeptors. Somit ist eine Interferenz beider Substanzen nicht zu erwarten.
MRT-Kontrastmittel spielen bereits im klinischen Alltag eine wichtige Rolle. MRT-Kontrastmitteln bieten den Vorteil, dass sie ein nichtinvasives Bildgebung ermöglichen, keine gesundheitsschädliche ionisierende Strahlung emittieren und Aufnahmen mit einer sehr hohen Auflösung ermöglichen [24]. Nachteile der Methode sind die relativ hohen Kosten und die begrenzte Verfügbarkeit.

5.1.1 scFV

5.1.2 MPIOs

Die in dieser Arbeit verwendeten Talon-MPIOs wurden schon in einigen Arbeiten erfolgreich zur Bildgebung molekularer Strukturen eingesetzt [141, 142, 111].

Talon-MPIOs enthalten im Kern Eisenoxid und sind von einer Polystyren-Hülle umgeben. Ursprünglich wurden sie zur magnetischen Auftrennung von His$_6$-Tag markierten Proteinen entwickelt. Sie haben einen Durchmesser von ca. 1 µm und bewirken durch die im Vergleich zu USPIOs höhere Eisenmenge im MRT eine Signalauslöschung, die das ca. 50-fache ihrer Größe beträgt [112]. So ermöglichen auch schon einzelne gebundene MPIOs eine messbare Signalauslöschung im MRT [110]. Zudem neigen MPIOs aufgrund ihrer Größe weniger zur Emigration über das Gefäßendothel in das Bindegewebe. Ein Nachteil der MPIOs ist die potentiell toxische Polystyren-Hülle und die damit fehlende humane Anwendungsmöglichkeit. Denkbar ist es jedoch, die MPIOs als signalgebende Komponente durch humankompatible Komponenten zu ersetzen. Die Möglichkeit der Herstellung von nicht-toxischen Mikropartikel-Hüllen wurde schon beschrieben [23].

Andere MPIOs wie z.B. MyOne™ MPIOs haben aufgrund der kovalenten Bindung ihrer Liganden eine längere Haltbarkeit. Nachteilig ist jedoch die aufwendigere Herstellung der MyOne™ MPIO Kontrastmittel und der mögliche Funktionsverlust der Liganden durch eine kovalente Bindung im Bereich der funktionalen Gruppen. Es wurde zudem eine vermehrte Aggregatbildung von MyOneTM MPIOs im Vergleich zu den Talon MPIOs beobachtet [35].

5.2 Versuchsaufbau

5.2.1 Statischer Versuchsaufbau

Beim statischen Versuchsaufbau wurden die Karotis-Plaques für 15 Minuten unter stetigem Schwenken mit dem Kontrastmittel inkubiert und für weitere 15 Minuten mit PBS gewaschen. Anschließend erfolgte die Messung nach Kontrastmittelgabe (s. Kap. 3.5.1). Durch den 15-minütigen Waschprozess mit PBS sollen die in der Flüssigkeit befindlichen endoluminalen MPIOs entfernt und auf dem Endothel
unspezifisch gebundene MPIOs abgespült werden. Dieser Versuchsaufbau diente als proof-of-concept Versuchsreihe.

Ein Nachteil dieser Versuchsreihe ist die geringe Standardisierung der Kontrastmittel-Inkubation durch das manuelle Schwenken. Zudem entspricht der geringe Fluss, der durch das Schwenken erzeugt wird, nicht dem physiologischen arteriellen Fluss.

5.2.2 Dynamischer Versuchsaufbau

Bei den dynamischen Versuchen sollte das Verhalten des Kontrastmittels unter Bedingungen untersucht werden, die den physiologischen Verhältnissen näher sind. Hierzu wurde eine Gewebe-Flusskammer entwickelt, in die die Karotis-Plaques eingesetzt und unter Fluss mit dem Kontrastmittel inkubiert wurden. Die im Rahmen der Arbeit entwickelte Gewebe-Flusskammer ist nach unserem Wissen die erste beschriebene Methode, die eine klinisch bedeutende Krankheit an humanem Gewebe unter Flussbedingungen ex-vivo mit einem MRT-basierten Kontrastmittel bildgebend darstellt.

Bei den dynamischen Versuchen zeigte sich eine unspezifische Anlagerung von MPIOs im Außenbereich der Karotis-Plaques für die LIBS- als auch Control-MPIO Gruppe. Der Aufbau der Gewebe-Flusskammer bedingt im äußeren Plaquebereich nur einen sehr geringen Fluss. Hierdurch können sich v.a. bedingt durch die Schwerkraft MPIOs viel leichter unspezifisch anlagern und haften bleiben. Die äußeren Bereiche wurden jedoch bei der Auswertung nicht berücksichtigt.
5.3 MRT- und Histologie-Datenquantifizierung

Im Vergleich zu den statischen Versuchen zeigte sich bei der dynamischen Versuchsreihe eine stärkere Signalauflösung, sowohl für die LIBS-MPIO Gruppe als auch die Control-MPIO Gruppe. Es ist denkbar, dass durch den höheren Druck bei Kontrastmittel-Fluss die MPIOs verstärkt in defektem Gewebe hängen bleiben. Auch die histologische Auswertung zeigte eine höhere Anzahl sowohl von spezifisch als auch von unspezifisch gebundenen MPIOs bei den dynamischen Versuchen. Eine weitere Erklärung für die unspezifische Anlagerung ist die mögliche Ablösung der MPIOs von dem Liganden scFV_{Anti-LIBS} und die nachfolgende Adhäsion an defektes Gewebe.

In der Histologie wurden die MRT-Ergebnisse bestätigt. Es fanden sich bei beiden Versuchsreihen signifikant mehr spezifisch gebundene MPIOs bei Inkubation mit LIBS-MPIO im Vergleich zur Inkubation mit Control-MPIO. Die MPIOs wurden lediglich an der Endotheloberfläche beobachtet und penetrierten nicht in das Gewebe hinein.
5.4 Korrelationsanalysen

Bei der dynamischen Versuchsreihe zeigte sich eine gute Korrelation der MRT-Signalauslöschung mit den histologisch verifizierten spezifisch gebundenen MPIOs. Dies bestätigt die Ergebnisse von anderen Arbeiten, die MPIOs zur Signalgebung nutzten [141–143]. Die tatsächliche MPIO Bindung scheint also sehr gut mit den MRT-Bildern zu korrelieren.

Bei den dynamischen Versuchen war eine mittlere Korrelation der spezifisch gebundenen MPIOs mit der Thrombusgröße mit einem p-Wert von 0,078 statistisch nicht signifikant. Auch bei den statischen Ergebnissen zeigte sich hier eine Korrelation, die statistisch ebenfalls nicht signifikant war. So konnten wir in dieser Arbeit nicht zeigen, ob die Anzahl der gebundenen MPIOs eine Aussage über die Thrombusgröße zulässt. Womöglich bedarf es hier eine größere Anzahl an Plaques für ein signifikantes Ergebnis. Von zur Muhlen et al. konnten bereits mit LIBS-MPIO in einem Mausmodell eine signifikante Korrelation zwischen dem MR-Signal und der Thrombusgröße nachweisen [141].

5.5 Limitationen

Zudem werden bei den dynamischen Versuchen die Plaques nicht mit pulsatilen, sondern kontinuierlichen Fluss mit dem Kontrastmittel inkubiert. Somit sind die Ergebnisse nur bedingt auf die in-vivo Verhältnisse in einer humanen atherosklerotischen Karotis anwendbar. In Folgeprojekten könnte man die Gewebe-Flusskammer modifizieren, um einen pulsatilen Fluss des Kontrastmittels zu simulieren.

Die Karotis-Plaques wurden histologisch nicht im Hinblick auf die AHA-Klassifikation untersucht. Da Thrombozytenanlagerung im Endothelbereich in der AHA-Klassifikation jedoch zum Stadium V und VI gehören, hätte eine histologische Zuordnung zu diesen Stadien keinen weiteren nützlichen Informationsgewinn ergeben.

Wie bereits in Kap. 5.1.2 erwähnt, ist ein weiterer limitierender Faktor der Studie die potentiell toxische Polystyren-Hülle der MPIOs. Hier gibt es jedoch vielversprechende Ansätze, eine humankompatible Eisenoxid-Hülle für den klinischen Gebrauch zu entwickeln [126, 23].

Die Lage der Karotis-Plaques bei den Vor- und Nach-Kontrastmittel Messungen ist nicht zu 100% kongruent. Inkongruente Bereiche wurden jedoch mittels der Auswertungssoftware angepasst.

In dieser Arbeit wurde ein 9,4 Tesla MRT-Gerät verwendet. Im aktuellen klinischen Gebrauch sind 3 Tesla MRT-Geräte üblich. Im Hinblick auf die klinische Anwendung des Kontrastmittels müsste gezeigt werden, dass ähnliche Ergebnisse auch mit einer geringeren Feldstärke zu erzielen sind. Erste Versuche hierzu wurden bereits gemacht. So gelang die Detektion von aktivierten Thrombozyten mit LIBS-MPIO in einem 3 Tesla MRT-Gerät [140].

Das Kontrastmittel muss vor jeder Anwendung neu hergestellt werden und ist somit ein limitierender Kosten-Faktor in der klinischen Anwendung. Die Bindung des scFV\textsubscript{Anti-LIBS} an die MPIOs über den His\textsubscript{6}-Tag wird nach ca. 4 Stunden instabil [143]. In einem aktuellen Folgeprojekt wird ein VCAM-Kontrastmittel verwendet werden, welches eine wesentlich höhere Haltbarkeit aufweist. Eine längere Haltbarkeit ist womöglich auch für das LIBS-MPIO Kontrastmittel technisch umsetzbar. Es gab bereits andere Arbeiten, die den scFV\textsubscript{ANTI-LIBS} mit MYONE-MPIOs koppelten [35]. Der Vorteil der MYONE-MPIOs ist eine mehrwöchige Haltbarkeit der Kontrastmittel. Ein Nachteil ist allerdings eine vermehrt beobachtete Aggregatbildung [35].

5.6 Einordnung der Ergebnisse

Neben MRT-basierten Kontrastmitteln bieten auch andere Bildgebungstechniken interessante Ansätze zur Darstellung vulnerabler Karotisplaques. Bislang wurde nur in wenigen Arbeiten die molekulare Bildgebung an humanem Gewebe untersucht. Spuentrup et al. konnten beispielsweise in einem Schweinemodell humane pulmonale und koronare Thromben mit Hilfe eines MRT-basierten Fibrin-Kontrastmittel erfolgreich nachweisen [119, 118]. In einer klinischen Phase-II-Studie gelang derselben Arbeitsgruppe die in-vivo Darstellung humaner
Thromben im Herz, der Aorta und der Karotis [117]. Nach unserem Wissen ist der Versuchsauflauf mit der Gewebe-Flusskammer die erste beschriebene molekulare Bildgebungsmethode, die eine wichtige Erkrankung an einem humanen Präparat unter künstlichen Flussbedingungen ex-vivo untersucht.

Im Hinblick auf atherosklerotische Veränderungen der Karotiden gelten vor allem Plaques mit einem großen lipidreichen Kern und einer dünnen fibrösen Kappe als vulnerabel [21]. Die Identifikation dieser Plaquekomponenten bietet somit interessante Möglichkeiten zur Risikostratifizierung.

Das Kontrastmittel LIBS-MPIO bietet für experimentelle wie klinische Anwendungen interessante Möglichkeiten.

5.7 Ausblick

In dieser Arbeit konnten aktivierte Thrombozyten auf humanen Karotisplaques ex-vivo detektiert werden.

Die für die dynamischen Versuche entwickelte Gewebe-Flusskammer bietet die Möglichkeit, die Eigenschaften verschiedener Kontrastmittel an humanen Karotisplaques unter Flussbedingungen zu untersuchen. In einem bereits begonnenen Folgeprojekt wird mit Hilfe der Gewebe-Flusskammer die Bildgebung von weiteren Oberflächenproteinen untersucht, die bei der Pathogenese der Artherosklerose eine Rolle spielen. Hierzu werden ebenfalls humane Karotis-Plaques unter Flussbedingungen mit Kontrastmitteln inkubiert. Die Liganden bestehen aus einem
Antikörper gegen VCAM und GPVI. VCAM spielt vor allem eine Rolle bei frühen Stadien atherosklerotischer Läsionen. Das Integrin GPVI spielt unter anderem eine wichtige Rolle bei der Aktivierung von Thrombozyten [25]. Als signalgebendes Molekül werden bei beiden Kontrastmitteln MPIOs verwendet werden.

6 Zusammenfassung

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC-AP:</td>
<td>avidin-biotinylated-enzyme-complex-alkaline-phosphatase</td>
</tr>
<tr>
<td>ADP:</td>
<td>Adenosindiphosphat</td>
</tr>
<tr>
<td>AHA:</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ARR:</td>
<td>Absolute Risikoreduktion</td>
</tr>
<tr>
<td>ATP:</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BCA:</td>
<td>bicinchoninacid assay</td>
</tr>
<tr>
<td>BSA:</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CC-Methode:</td>
<td>common carotid method</td>
</tr>
<tr>
<td>CDUS:</td>
<td>Periphere Carotis Duplexultraschall</td>
</tr>
<tr>
<td>CTA:</td>
<td>Computertomographieangiographie</td>
</tr>
<tr>
<td>DSA:</td>
<td>Zerebrale Subtraktionsangiographie</td>
</tr>
<tr>
<td>E. coli:</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>ECST:</td>
<td>European carotid surgery trial</td>
</tr>
<tr>
<td>EGF:</td>
<td>endothelial growth factor</td>
</tr>
<tr>
<td>ESC:</td>
<td>European Society of Cardiology</td>
</tr>
<tr>
<td>Fab:</td>
<td>fragment antigen binding</td>
</tr>
<tr>
<td>FACS:</td>
<td>fluorescence activated cell sorting</td>
</tr>
<tr>
<td>Fc:</td>
<td>fragment constant</td>
</tr>
<tr>
<td>FDG:</td>
<td>Fluordesoxyglucose</td>
</tr>
<tr>
<td>fg:</td>
<td>femtogramm</td>
</tr>
<tr>
<td>FLASH:</td>
<td>fast low angle shot</td>
</tr>
<tr>
<td>FSC:</td>
<td>forward scatter</td>
</tr>
<tr>
<td>GP:</td>
<td>Glykoprotein</td>
</tr>
<tr>
<td>HDL:</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>HF-Puls:</td>
<td>Hochfrequenzpuls</td>
</tr>
<tr>
<td>Ig:</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IPTG:</td>
<td>Isopropyl-beta-D-thiogalactopyranosid</td>
</tr>
<tr>
<td>IVUS:</td>
<td>Intravaskulärer Ultraschall</td>
</tr>
<tr>
<td>KHK:</td>
<td>Koronare Herzerkrankung</td>
</tr>
<tr>
<td>Control-MPIO:</td>
<td>Kontrastmittel mit an MPIO gekoppeltem IgG-Kontrollantikörper</td>
</tr>
<tr>
<td>LDL:</td>
<td>low density lipoprotein</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

LIBS: Liganden-induzierte Bindungsstelle
LIBS-MPIO: Kontrastmittel mit an MPIO gekoppeltem Anti-LIBS-Antikörper
MPIO: microparticles of iron oxide
MRT: Magnetresonanztomographie
NASCET: North American symptomatic carotid endarterectomy trial
NNR: number need to treat
OD: optische Dichte
PAGE: Polyacrylamid-Gelelektrophorese
PAI 1: 1-protease inhibitor
PAVK: Periphere arterielle Verschlusskrankheit
PBS: phosphat buffered saline
PDGF: platelet derived growth factor
PET: Positronen-Emissions-Tomographie
pg: Pikogramm
PTCA: perkutane transluminale Koronarangiographie
ROI: region of interest
RT: Raumtemperatur
scFV: single chain variable fragment
SDS: Sodium Dodecyl Sulfat
SPECT: single-photon-emission-computed-tomography
SSC: sideward scatter
TBWB: talon binding and washing buffer
TE: time of echo
TFPI: tissue factor pathway inhibitor
TGF-b: transforming growth factor
TR: time of repeat
USPIO: ultra small particle of iron oxide
VCAM: vascular cell adhesion molecule
VEGF: vascular endothelial growth factor
VSMC: vascular smooth muscle cell
vWF: von-Willebrand-Faktor
8 Quellenangaben

9 Publikationsliste

Teile dieser Arbeit wurden bereits in folgender Originalarbeit veröffentlicht:

Teile dieser Arbeit wurden bereits auf folgenden Kongressen vorgestellt:

Die molekulare MRT ermöglicht die Detektion aktivierter Thrombozyten auf der Oberfläche symptomaticer Carotis-Endarterektomiepräparate beim Menschen
F. Meixner, D. von Elverfeldt, M. Meißner, D. Paul, K. Peter, C. Bode, C. von zur Muhlen

ESC Congress, Barcelona, 29.08.- 02.09.2009
Targeted specific magnetic resonance imaging allows detection of activated platelets in symptomatic human carotid artery endarterectomy specimens ex vivo

Ein selektives Kontrastmittel gegen aktivierte Thrombozyten erkennt nichtinvasiv die symptomatische Plaqueruptur beim Menschen in der ex vivo Magnetresonanztomographie
10 Curriculum vitae

Die Seiten 110 - 112 enthalten persönliche Daten. Sie sind deshalb nicht Bestandteil der Online-Veröffentlichung.
11 Danksagung