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Erste Referentin:
Prof. Dr. Katrin Wendland

Zweiter Referent:
Prof. Dr. Wolfgang Soergel

Datum der Promotion:
21.7.2014



Vorveröffentlichungen

Teilergebnisse dieser Arbeit wurden von mir am 21. September 2012 unter
dem Titel

"Bridgeland stability conditions on twisted Kummer surfaces"

in den Communications in Mathematical Physics und am 8. Mai 2013
unter dem Titel

"Tilting and Refined Donaldson-Thomas Invariants"

im Journal of Algebra zur Vorveröffentlichung eingereicht. Kapitel 8
ist eine überarbeitete und erweiterte Darstellung der Ergebnisse der Veröf-
fentlichung [1]. Diese Vorveröffentlichungen wurden vom Fachvorsitzen-
den des Promotionsausschusses am 18. September 2012 und am 3. Mai
2013 genehmigt.

3



Acknowledgements

First of all I am grateful to my adviser Katrin Wendland for her manifold
support of my PhD project. Her research group in mathematical physics
at the University of Augsburg and then Freiburg was an excellent environ-
ment to further my studies. I benefited from the innumerable discussions
with my colleagues: For this I thank Manfred Herbst, Emanuel Scheideg-
ger und Dmytro Shklyarov. The comments of Wolfgang Soergel helped a
lot to improve the first version of this thesis. Further I thank Marc Nieper-
Wißkirchen for his interest in my work. I would like to express my sincere
gratitude to Daniel Huybrechts, Heinrich Hartmann, Bernhard Keller and
Emanuel Macrì for helpful discussions or correspondences. Special thanks
go to Annette Huber-Klawitter.

My PhD studies were partially supported by the DFG-Graduiertenkolleg
GRK 1821 "Cohomological Methods in Geometry" and the ERC Starting
Independent Researcher Grant StG No. 204757-TQFT (Katrin Wendland,
PI) at the University of Freiburg. I thank the Hausdorff Institute for Mathe-
matics in Bonn and the Simons Center for Geometry and Physics in Stony
Brook for hospitality.

4



Für Theodor Matthias Engenhorst (1935-2012)

5



Contents

1 Introduction 7

2 Lattices 12

3 K3 Surfaces 16

4 Representations of Quivers 19
4.1 Quivers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Stable representations . . . . . . . . . . . . . . . . . . . . 23

5 Triangulated Categories 25
5.1 Derived categories and localisation . . . . . . . . . . . . . 25
5.2 Triangulated categories . . . . . . . . . . . . . . . . . . . 29
5.3 t-Structures and tilting . . . . . . . . . . . . . . . . . . . 32
5.4 Derived categories of dg algebras . . . . . . . . . . . . . . 36

6 Bridgeland Stability Conditions on Triangulated Categories 38

7 Stability Conditions on Kummer Surfaces 45
7.1 Moduli spaces of superconformal field theories . . . . . . 45
7.2 Orbifold conformal field theories on K3 . . . . . . . . . . 46
7.3 Generalized Calabi-Yau Structures . . . . . . . . . . . . . 49
7.4 Stability conditions on K3 surfaces . . . . . . . . . . . . . 51
7.5 Inducing stability conditions . . . . . . . . . . . . . . . . 58

8 Quivers with Potential 61
8.1 Mutation method . . . . . . . . . . . . . . . . . . . . . . 61
8.2 Quivers with (super)potential . . . . . . . . . . . . . . . . 65
8.3 Maximal green sequences . . . . . . . . . . . . . . . . . . 74
8.4 Refined Donaldson-Thomas invariants . . . . . . . . . . . 76

9 Conclusions and Outlook 80

6



Chapter 1

Introduction

The last two decades have seen extremely fruitful exchange of ideas be-
tween mathematics and theoretical physics (mirror symmetry, Gromov-
Witten theory, dimer models, matrix factorizations, wall crossing,...). The
subject of this work are Bridgeland stability conditions on triangulated cat-
egories and applications. In our geometrical example we study the stability
manifold in an example, in the second project we use the structure of the
space of stability conditions to study refined Donaldson-Thomas invariants.
Physically we deal in the first case with the covering of the moduli space of
superconformal field theories on a Kummer surface. In the second case we
study BPS states for quiver gauge theories. Bridgeland stability conditions
prove to be an effective tool here.

The derived category of coherent sheaves on a projective variety is a
central object in algebraic geometry and string theory. Let us consider di-
mension one: a Bridgeland stability condition is defined by stable vector
bundles on a complex projective curve. The so called stability function
(or central charge) associates to every vector bundle a complex number in
the upper half-plane, and in particular a phase in (0,1]. A vector bundle
with some phase is (semi)stable if every subbundle has smaller (or equal)
phase. We have a (Harder-Narasimhan) filtration of every coherent sheaf by
semistable factors. In general, a Bridgeland stability condition on a trian-
gulated category is now a stability function on an Abelian subcategory (the
heart of a bounded t-structure) of a triangulated category that comes with a
Harder-Narasimhan filtration.

It is possible to construct explicitly examples of stability conditions for
any projective surface (but the Abelian subcategory will never be the cate-
gory of coherent sheaves). K3 surfaces are compact complex surfaces X
with trivial canonical bundle and H1(X ,OX) = 0. They are Calabi-Yau
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manifolds what makes them interesting physically. Bridgeland described
in [30] a connected component of the stability manifold for a projective K3
surface X that he denoted Stab†(X).

An important conjecture in the case of K3 surfaces is the following

Conjecture (Bridgeland) The group of auto-equivalences of the de-
rived category of coherent sheaves of a K3 surface preserves the connected
component Stab†(X). Moreover, Stab†(X) is simply connected.

If true, this conjecture would give us a description of the group of coho-
mological trivial auto-equivalences as the fundamental group of some open
subset of the complexified Mukai lattice N ⊗C of the projective K3 sur-
face X . This conjecture was recently proven in the case of K3 surfaces with
Picard rank one by Bayer and Bridgeland [31].

The first important case of a K3 surface to look at is that of a Kummer
surface X = Km A associated to an Abelian surface A. We know that the
stability manifold of an Abelian surface is indeed simply connected. One
of the motivations to study Kummer surfaces is the hope to understand the
topology of Stab†(X) by its Abelian surface. In this direction we prove in
section 7.5 the following

Theorem 1 Let Stab†(A) be the (unique) maximal connected com-
ponent of the space of stability conditions of an Abelian surface A and
Stab†(X) the distinguished connected component of Stab(X) of the Kum-
mer surface X = Km A. Then there is an embedding Stab†(A) ↪→ Stab†(X).

This theorem is based on our Proposition 7.4.1. Further we show that
the group of deck transformations of Stab†(A) (generated by the double
shift) is isomorphic to a subgroup of the group of deck transformations of
Stab†(X) (Proposition 7.5.1). Bridgeland proved his results on the stability
manifold of a K3 surface X studying the boundary of a distinguished sub-
set U(X)⊂ Stab†(X). [30] We give examples of stability conditions on the
boundary of U(X) associated with orbifold ample classes of the Kummer
surface X . These are the classes in the boundary of the ample cone of X
whose intersection product with the 16 exceptional divisors of the Kummer
surface vanishes.

Huybrechts, Macrì and Stellari have generalized Bridgeland’s work to
the case of twisted K3 surfaces and twisted sheaves that include a B-field in
their data [32]. An embedding of Stab†(A) into Stab(X) using a functorial
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approach was given in [39]. The advantage of this method is that in prin-
ciple you can explicitly derive the induced stability conditions. In contrast
the relation to conformal field theory is explicit in our approach. Further
our methods go through in the twisted case as well. We are the first to give
an embedding in the twisted case (Theorem 7.5.5).

You can view Theorem 1 as the lift of the results on the embedding of the
moduli space of SCFTs on complex tori into the moduli space of SCFTs on
the associated Kummer surfaces given in [3, 5] to the space of stability con-
ditions on K3 surfaces. Crucial for this work is the observation confirmed in
[3, 5] that there are no ill-defined SCFTs coming from the complex torus.
Rephrased in mathematical terms this is corollary 7.2.2. Bridgeland con-
siders in [30] the open subset of the complexified Mukai lattice N ⊗C
consisting of vectors whose real and imaginary part span positive definite
two-plans in N ⊗R cut out by all hyperplanes orthogonal to (−2)-classes.
This cut out is a necessary assumption to prove the covering map property
in Theorem 7.4.3. So in a sense Bridgeland rederives the important role
of ill-defined CFTs. This and Theorem 1 suggest that Bridgeland stability
conditions are the right categorical framework for (orbifold) conformal field
theories.

In principle, we could use similar arguments as in chapter 7 in the case
of Borcea-Voisin threefolds. Unfortunately, in the case of Calabi-Yau three-
folds it is not known if the space of stability conditions is empty or not. At
least, there is a concrete conjecture depending on a generalization of the
Bogomolov inequality [40].

For a class of supersymmetric quantum field theories the BPS states are
encoded as stable representations of a quiver with potential. The pioneering
work in this direction was [41]. An algorithm to derive the stable repre-
sentations without going into linear algebra directly was developed in [46].
Unfortunately, it uses physics arguments. This mutation method is based
on the idea that the BPS spectrum of a theory is also encoded in the Seiberg
dual theory. The mathematically counter part of Seiberg duality [42] is mu-
tation of quivers with potentials (Q,W ) [43, 44]. An idea of Bridgeland is
that mutation is modeled by tilting of hearts of t-structures of triangulated
categories. Inspired from the mutation method in physics we study tilting
for the heart of the canonical t-structure of the finite-dimensional derived
category D f d(Γ) of the Ginzburg algebra Γ [50] of (Q,W ). To prove our
main theorems we develop a new method in chapter 8 that we call the (cat-
egorical) mutation method. Unlike the algorithm of Cecotti et al. in [46]
our method is based on the category associated to quiver with potential.
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As application we have triangulated categories associated with quivers with
potential in mind but our method works for a general category with similar
properties.

One advantage of the mutation method is that it allows to read of the
refined Donaldson-Thomas invariant. Classically Donaldson-Thomas (DT)
invariants were introduced as counting invariants for the moduli space of
stable sheaves on a Calabi-Yau threefold. [55] Kontsevich and Soibel-
man develop a theory for generalized Donaldson-Thomas invariants for 3-
Calabi-Yau categories in [60]. Given a quiver with potential (Q,W ) we have
a associated Calabi-Yau category: the derived category of the Ginzburg al-
gebra of (Q,W ). A quiver with underlying graph a Dynkin diagram has
a trivial potential, i.e. W = 0. Reineke introduced for this case a refined
Donaldson-Thomas invariant in [58]. It is defined as a product of quantum
dilogarithms in (the completion of) quantum affine space ordered by the de-
creasing phase of stable objects in the category of quiver representations.
The refined DT invariant for a quiver with potential is defined in a similar
way following [57]. Instead of the "(much) better definition [of the refined
Donaldson-Thomas invariant]"1 of Kontsevich and Soibelman we choose to
follow this approach since the work of [60] seems to bear on conjectures,
see [57].

For a generic potential we can indefinitely mutate (Q,W ). Inspired by
the mutation algorithm in [46] we study mutations/tilting via the space of
stability conditions. In sections 8.1 and 8.2 we prove the following

Theorem 2 Let (Q,W ) be a 2-acyclic quiver Q with generic potential W
such that we have a discrete central charge on the heart A of the canonical
t-structure of D f d(Γ) with finitely many stable objects. Then the sequence
of stable objects of A in the order of decreasing phase defines a sequence
of simple tilts from A to A [−1]. Moreover, (Q,W ) is Jacobi-finite.

This result together with Theorem 3 is a natural complement of the work
[57]. It explains the relationship between stable objects and sequences of
simple tilts and bridges the gap between the physics and the mathematics
literature. Since Gaiotto, Moore and Neitzke are using a version of the
mutation method implicitly in their work on triangulations of Riemann sur-
faces by trajectories of quadratic differentials [56] Theorem 2 should have
applications to the work of Bridgeland and Smith [45] deeply inspired by

1B. Keller: On cluster theory and quantum dilogarithm identities, Representation Theory of Al-
gebras and Related Topics (Tokyo) (A. Skowronski, K. Yamagata eds.), European Mathematical
Society, 2011, 85-116, p.95.
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[56].

Note that in Theorem 2 we use a weaker definition of a discrete cen-
tral charge than the one given in [57], see section 8.1 of this work. Let
HQ := mod− kQ be the category of finite-dimensional representations of
an acyclic quiver Q inside the bounded derived category of HQ. In this case
we show that the stable objects of HQ induce a sequence of simple tilts from
A to A [−1] in D f d(Γ) (Corollary 8.2.9). In section 8.3 we study the rela-
tionship to maximal green sequences. These were introduced by Keller in
[57] as a combinatorial counter part to a sequence of simple tilts as above:
Mutating strictly at green (frozen) vertices in the principal extension of a
quiver corresponds to tilting at objects in A and tilting at red vertices cor-
responds to tilting at objects in A [−1]. A sequence of mutations at green
vertices is maximal if all frozen vertices are red in the final quiver. As an
application we reproduce some well known results on maximal green se-
quences for Dynkin and more general acyclic quivers.

As an important consequence of Theorem 2 a result of B. Keller [51, 57]
implies the following

Theorem 3 Let (Q,W ) be a quiver with generic potential as in Theo-
rem 2. Then the refined Donaldson-Thomas invariant associated to (Q,W )
does not depend on the chosen discrete central charge Z : K(A )→ C with
finitely many stable objects.

This is an important new case since we do not assume that the poten-
tial is polynomial. It is a non-trivial test of the general case that remains
unproven. Conjecture 3.2 in [57] claims that the refined DT invariant is
independent of a chosen discrete central charge (with possibly infinitely
many stable objects) for a polynomial potential. Beside general potentials
one requires a general result for not necessary discrete central charges with
possibly infinitely many stable objects. To prove such a statement one needs
methods different to the approach in this thesis. The methods of Kontsevich
and Soibelman [60] suggest that the refined DT invariant should be inde-
pendent in general.
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Chapter 2

Lattices

In this section we review lattice theory as presented in the monograph [68]
or in [14]. We closely follow the outline in [65]. The integer cohomology of
a complex torus or a K3 surface is a lattice. The main result in this section
is Theorem 2.0.2 which will be crucial in chapter 7 for the embedding of
the cohomology lattice of a complex torus into the cohomology lattice of
the associated Kummer surface given in [3, 5].

A lattice M is a free Z-module of finite rank together with a non-
degenerate symmetric bilinear pairing 〈 , 〉M : M×M → Z. A lattice M
is even if 〈x,x〉M ∈ 2Z for all x ∈M (and odd otherwise). We call this the
parity of the lattice. A lattice M is called positive-definite if 〈x,x〉M > 0 for
all x ∈M \{0} and negative-definite if 〈x,x〉M < 0 for all x ∈M \{0}. It is
indefinite, if it is neither positive-definite nor negative-definite.

A homomorphism of lattices is a homomorphism of Z-modules that pre-
serves the bilinear pairing. An embedding is an injective homomorphism.
The dual Z-module of a lattice (M,〈 , 〉M) is

M∗ = Hom(M,Z)
∼= {x ∈M⊗Q| 〈x,y〉M ∈ Z,∀y ∈M}

with its natural Q-valued pairing. We have a canonical injective homomor-
phism M ↪→M∗ given by the map x 7→ 〈x, 〉M. A lattice M is unimodular if
this injective homomorphism is an isometry.

Here are two examples of lattices important for the study of K3 surfaces:
The hyperbolic lattice U is Z⊕Z as a Z-module. If e1,e2 is the standard
basis of Z⊕Z then the matrix (

〈
ei,e j

〉
) is(

0 1
1 0

)
.
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U is even and unimodular. Another important example is the even and
unimodular E8-lattice of rank 8 with matrix (

〈
ei,e j

〉
) given by the Cartan

matrix of the root system E8

2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


.

Changing all signs defines the lattice −E8.

Any quadratic form can be diagonalised over the real numbers. The
number s+ of positive and the number s− of negative entries in every diag-
onalisation are the same. We call s+− s− the index of the quadratic form.

Theorem 2.0.1. Any indefinite unimodular lattice is determined by its rank,
index and its parity (up to isometry).

The following results lead to Theorem 2.0.2. Given a lattice M the finite
quotient AM =M∗/M is the discriminant group of M. The Q-valued pairing
on M∗ induces a nondegenerate symmetric Q/Z-valued bilinear pairing

bM : AM×AM −→Q/Z.

If M is even this yields a Q/2Z-valued quadratic form, the discriminant
form,

qM : AM −→Q/2Z.
Let M be an even lattice. A subgroup G ⊂ AM is isotropic if qM|G = 0.

An even lattice L together with an embedding M ↪→ L such that the quotient
L/M is finite is called an overlattice.

Proposition 2.0.1. [14] Let M be an even lattice. There is a bijection be-
tween isotropic subgroups GL of AM and overlattices L of M.

Proof. We follow the proof in [14]. Given an isotropic subgroup G, de-
fine the lattice L as the Z-module L := {x ∈M∗|[x] ∈ G} together with the
nondegenerate symmetric bilinear pairing induced by bM. This defines an
embedding M ↪→ L and the quotient L/M is the group G itself. Conversely,
given an overlattice L the natural embedding M ↪→M∗ factors through the
embeddings

M ↪→ L ↪→ L∗ ↪→M∗ (2.0.1)

and thus the group GL = L/M ⊂M∗/M is isotropic.
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By the three embeddings 2.0.1 we have the inclusions GL⊂ L∗/M⊂AM.
L∗/M is the orthogonal complement of GL in AM with respect to the pairing
bM. Thus we have G⊥L /GL = AL and we can write the discriminant form qL
in terms of the form qM as

qL = (qM|G⊥L )/GL. (2.0.2)

An embedding M ↪→ L is primitive if the quotient L/M is a free Z-
module and we call M a primitive sublattice of L in this case. The orthogo-
nal complement M⊥= {x ∈ L| 〈x,m〉= 0,∀m ∈M} of a sublattice M of L is
a primitive sublattice. A sublattice M is primitive if and only if M = M⊥⊥.

We consider a primitive embedding M ↪→ L of even lattices M and L.
Let the lattice K be isomorphic to the orthogonal complement of M in L.
Then L is an overlattice of M⊕K: M⊕K ↪→ L. By Proposition 2.0.1 this
overlattice is uniquely determined by the isotropic group GL = L/M⊕K ⊂
AM⊕K = AM⊕AK . We have the following composition of homomorphisms

GL = L/(M⊕K) ↪→ L∗/(M⊕K)→ (M⊕K)∗/(M⊕K). (2.0.3)

The homomorphism given by the homomorphism 2.0.3 together with
the projection AM⊕AK → AM gives a homomorphism φM : GL→ AM. φM
is injective. This can be seen for example by an argument given in [66]:
Consider the following commutative diagram

0 // M⊕K //

��

L //

��

L/(M⊕K) //

φM
��

0

0 // M // M∗ // AM // 0

.

The kernel of the map L→ M∗ given by l 7→ 〈l, 〉M is K⊥⊥. By the
snake lemma this yields the short exact sequence of the kernels

0−→ K −→ K⊥⊥ −→ ker(φM)−→ 0.

Since K is a primitive sublattice we have K = K⊥⊥.

Similary, we obtain an injective homomorphism φK : GL→ AK . If L is
unimodular L ∼= L∗ the maps φM,φK are isomorphisms. The isomorphism
h := φK ◦φ

−1
M : AM→ AK satisfies qK ◦h =−qM.
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Theorem 2.0.2. [14, 13] Let L be an even unimodular lattice and M ↪→ L
a primitive sublattice. Let K be a sublattice isomorphic to the orthogonal
complement of M in L. Then the embedding M ↪→ L is uniquely determined
by an isomorphism h : M∗/M → K∗/K where the discriminant forms are
related by qK ◦h =−qM. Moreover,

L∼= {(m,k) ∈M∗⊕K∗|h([m]) = [k]} .
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Chapter 3

K3 Surfaces

We want to study stability conditions on the derived category of coherent
sheaves on projective Kummer surfaces. One of the fascinating aspects of
this is the close interaction of homological algebra and classical algebraic
geometry. In this section we review the theory of K3 surfaces [15, 69, 12].

Definition 3.0.1. A K3 surface is a compact complex surface X with trivial
canonical bundle and H1(X ,OX) = 0.

Here are two examples:

1. The Fermat surface is the smooth quartic hypersurface X ⊂P3 defined
by x4

0 + x4
1 + x4

2 + x4
3.

2. Let T be a complex torus and i : T → T the involution t 7→ −t induced
from C2. The minimal resolution X → T/i of the quotient surface
T/i is a K3 surface, called the Kummer surface of T . The induced
rational map π : T → X of degree 2 defined outside the fixed points
of i : T → T induces a map on cohomology. The nowhere-vanishing
2-form on T is i-invariant so this map preserves the Hodge structures.
Let NS(T ) = H1,1(T )∩H2(T,Z) be the Néron-Severi lattice of the
complex Kähler manifold T . If NS(T ) contains an element of positive
square-length this induces an element of positive square-length in the
Néron-Severi lattice NS(X) of the Kummer surface X . Conversely,
any such element in NS(X) implies the existence of an element of
positive square-length in NS(T ). By a famous theorem of Kodaira
[70] the complex torus is thus an Abelian surface if and only if the
associated Kummer surface is projective.

The intersection product

( , ) : H2(X ,Z)×H2(X ,Z)−→ Z

16



makes the cohomology group H2(X ,Z) into an even, unimodular lattice of
rank 22. By Theorem 2.0.1 we can identify with the lattices introduced in
chapter 2

H2(X ,Z)∼= 2(−E8)⊕3U. (3.0.1)

The choice of an isomorphism in 3.0.1 is called a marking.

We have the following deep result:

Theorem 3.0.3. [16] All K3 surfaces are Kähler manifolds.

There is a weight-two Hodge structure on H2(X ,Z) given by

H2(X ,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

By the Hodge signature theorem the signature of the intersection product
on H1,1(X ,R) = H2(X ,R) ∩H1,1(X) is (1,h1,1 − 1). Therefore the set{

x ∈ H1,1(X ,R)|(x,x)> 0
}

has two connected components. The positive
cone is the component containing the Kähler cone, i.e. the set of all classes
in H1,1(X ,R) that can be represented by a closed positive (1,1)-form. For a
K3 surface we have the following description of its Kähler classes:

Theorem 3.0.4. [72] The Kähler cone of a K3 surface consists if all ele-
ments x∈H1,1(X ,R) of the positive cone such that (x,C)> 0 for all smooth
rational curves C ⊂ X. A class x ∈ H1,1(X ,R) is contained in the closure
of the Kähler cone if and only if x is contained in the closure of the positive
cone and (x,C)≥ 0 for all smooth rational curves C ⊂ X.

Any ample line bundle L on X defines a class c1(L) ∈ NS(X) =
H1,1(X) ∩ H2(X ,Z) in the Kähler cone. Therefore the ample cone in
NS(X)⊗R spanned by all ample classes is contained in the Kähler cone
and is described analogously to the above theorem.

The closure of the ample or Kähler cone becomes important when we
consider resolutions of quotient surfaces. A compact complex surface X is
called an orbifold K3 surface if X has at most simple singular points and
its minimal resolution Y → X is a K3 surface. An example is the Kummer
surface.

Definition 3.0.2. [17] Let Y be the minimal resolution of a orbifold K3
surface X . An orbifold Kähler (ample) class x is a class in the closure of the
Kähler (ample) cone of Y such that (x,C) = 0 for a smooth rational curve
C ⊂ Y precisely if C is a (-2)-curve contracted by the minimal resolution
Y → X .
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Theorem 3.0.5. [71] All K3 surfaces are diffeomorphic as differentiable
manifolds.

The idea is now instead of viewing K3 surfaces as different complex sur-
faces to view them as different complex structures on a specific K3 surface
as a real differentiable manifold. Let us consider a K3 surface viewed as a
real differentiable manifold with a complex structure. Since the canonical
bundle of a K3 surface X is trivial there is a nowhere-vanishing holomorphic
2-form Ω on X . This 2-form satisfies:

i) dΩ = 0, ii) Ω∧Ω = 0 and iii) Ω∧Ω > 0.

Decomposing Ω = Ω1+ iΩ2 into its real and imaginary part this conditions
define a positive definite, oriented 2-plane in H2(X ,R) with orthogonal ba-
sis given by Ω1,Ω2 ∈ H2(X ,R):

〈Ω1,Ω2〉= 0, 〈Ω1,Ω1〉= 〈Ω2,Ω2〉> 0.

The choice of a complex structure defines a positive definite, oriented 2-
plane with respect to the lattice of integral cohomolgy H2(X ,Z). The con-
verse statement is true due to the global Torelli theorem in the following
form

Theorem 3.0.6. [8, 9, 73, 17] The complex structures of a K3 surface (in-
cluding orbifolds) are in bijection to positive definite, oriented two-planes
in H2(X ,Z)⊗R.

A similar statement holds for complex structures on complex tori.
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Chapter 4

Representations of Quivers

In this chapter we review the theory of representations of (finite) quivers
following [63, 64]. If not stated otherwise proofs are taken from [64]. For
example the category of representations of an acyclic quiver with n vertices
is an Abelian category such that every object is of finite length and there are
exactly n simple objects in this category associated to the simple representa-
tions for the n vertices. The definition of Bridgeland stability conditions on
associated triangulated categories is therefore straightforward and we will
apply these in chapter 8 as a tool to study the category itself.

4.1 Quivers

Definition 4.1.1. A quiver Q is a directed graph given by a set of vertices
Q0, a set of arrows Q1 between them and head and tail maps

h, t : Q1 −→ Q0.

Here are some examples:

• //

��

•

��
•

• // • •oo

•

OO

A vertex of a quiver is called a sink, if there are only arrows in the quiver
directing to this vertex and no arrow starting at this vertex. A vertex is called
a source if there are only arrows starting at this vertex and no ingoing ar-
rows. In each of the two examples we can identify a source and a sink.

Let k be a field. A finite-dimensional representation of a (finite) quiver
Q assigns to every vertex i∈Q0 a (finite-dimensional) k-vector space Vi and
to every arrow a ∈ Q1 a linear map

φa : Vt(a) −→Vh(a).
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A morphism φ of representations V and W of Q is a collection of linear
maps fi : Vi→Wi such that the diagrams

Vt(a)
φa //

ft(a)
��

Vh(a)

fh(a)
��

Wt(a)
φ
′
a //Wh(a)

commute for all a ∈ Q1. A morphism of two representations of a quiver
is injective (surjective) if all these linear maps are injective (surjective). If
φ : V →W is a morphism such that the maps φi for all i ∈ Q0 are inclusion
maps, we call V a subrepresentation of W . We define the direct sum V ⊕W
of two representations of Q by taking direct sums of the vector spaces Vi
and Wi together with direct sums of the associated maps. The category HQ
of finite-dimensional representations of Q is an Abelian category. This can
be checked directly or follows from Proposition 4.1.1.

A representation of Q is called indecomposable if we can not decom-
pose it in a (non-trivial) direct sum of representations of Q.

Let us consider the A2 quiver

1 // 2 .

Its indecomposable representations (up to isomorphism) are

0 // k, k id // k, k // 0 .

The first and the last representation are called simple representations. They
are simple objects of HQ. This means they do not have proper subobjects
in HQ or equivalently, they are not the middle part of any non-trivial short
exact sequence in HQ. In general, given a quiver there are simple represen-
tations Si given by assigning a one-dimensional vector space to the vertex i
and the zero-space to all vertices j 6= i.

Note that we have a short exact sequence

0−→ (0→ k)−→ (k→ k)−→ (k→ 0)−→ 0. (4.1.1)

Here is an indecomposable representation for our example of the D4
quiver :

0⊕ k // k⊕ k k⊕0oo

∆

OO .
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Here ∆ = {(x,x)|x ∈ k} is the diagonal in k⊕ k and all maps are the obvi-
ous inclusion maps. A theorem of Gabriel says that a quiver Q has finitely
many isomorphism classes of indecomposable representations if and only
if its underlying graph is of ADE-type [67].

A non-trivial path in a quiver Q is a sequence of arrows an · · ·a0 with
h(ai−1) = t(ai) for i = 1, . . . ,n:

• a0−→ • a1−→ • −→ ·· · an−1−→ • an−→ •.

We denote by ei the trivial path at vertex i ∈ Q0.

Definition 4.1.2. The path algebra kQ of a quiver Q is the k−vector space
with basis given by all paths in Q with product given by composition of
paths: The product of two paths p and q is the composition pq if t(p) = h(q)
and zero else.

For example the path algebra of the quiver with one loop

• yy

is isomorphic to the ring k[x] of polynomials in one variable and the path
algebra of quiver

•→ •
is isomorphic to the algebra of 2×2 lower triangular matrices{(

a 0
b c

)
|a,b,c ∈ k

}
.

Proposition 4.1.1. The category HQ of finite-dimensional representations
of a quiver Q is equivalent to the category of finitely generated left kQ-
modules.

Proof. Given a finite-dimensional representation V of Q we define a left
kQ-module as a vector space as

V =
⊕
i∈Q0

Vi.

For every arrow a ∈ Q1 we have an associated linear map φa : Vi → Vj.
For the trivial path this is just the identity. We define an action of the path
algebra kQ on the vector space V by linear extension of

eiv =

{
v v ∈Vi

0 v ∈Vj, j 6= i
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for i ∈ Q0 and

av =

{
φa(v) v ∈Vt(a),

0 v ∈Vj, j 6= t(a)

for a ∈ Q1. A morphism between two representations V and W in HQ in-
duces a morphism between

⊕
i∈Q0

Vi and
⊕

i∈Q0
Wi that gives a kQ-linear

map. Conversely, given a finitely-generated left kQ-module V take the vec-
tor space Vi = eiV for all i ∈ Q0 and introduce a linear map

φa : Vt(a) −→Vh(a)

v 7−→ a(v).

A morphism
φ : V −→W

of kQ-modules V and W sends eiV to eiW since φ(eiv) = ei · φ(v) ∈ eiW .
Given a map of kQ-modules this observation allows to define a morphism
between the associated representations of Q. The two constructions de-
scribed above are inverse to the each other.

In chapter 8 we study Abelian categories of finite length, i.e. every
object in the category has finite length, and finitely many simple objects. A
first basic observation is the following:

Proposition 4.1.2. The category HQ of finite-dimensional representations
of a quiver Q is of finite length.

Proof. This follows from the fact that proper subspaces of finite-
dimensional vector spaces have strictly smaller dimension: By definition
a representation E of a quiver is simple or we have a non-trivial short exact
sequence

0−→ A−→ E −→ B−→ 0.

If B is not simple we can go on in the same way. This process has to termi-
nate since we are dealing with finite-dimensional vector spaces and we get
a simple representation S and a surjective map f : E→ S. Taking the kernel
E1 of f the quotient E/E1 is isomorphic to S. If we repeat this process we
get a finite filtration

· · · ⊂ E3 ⊂ E2 ⊂ E1 ⊂ E

with each quotient E i−1/E i a simple object. By the same argument as
above after finitely many, say n steps we get En = 0. Renumbering
En := E,En−1 := E1, . . . we get a Jordan-Hölder filtration for E.
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We call a quiver Q acyclic if it does not contain oriented cycles. In this
case the category of representations of Q is of finite length with finitely
many simple objects given by the simple representations Si with a one-
dimensional vector space at the vertex i ∈ Q0 and the zero space at every
vertex different to vertex i. The category of finite-dimensional representa-
tions of an acyclic quiver is equivalent to the category of finite-dimensional
modules over the finite-dimensional path algebra. Indeed, the path algebra
of an acyclic quiver is finite-dimensional and the finitely-generated modules
over a finite-dimensional algebra are exactly the finite-dimensional modules
over this algebra.

Let us consider the quiver with a cycle of length two:

•� •.

Representations of dimension vector (1,1) where both maps are isomor-
phisms are simple and parametrized by C∗.

4.2 Stable representations

We are interested in the category HQ of representations of an acyclic quiver
Q. We denote its n simple representations associated to the n vertices of Q
by Si for i ∈Q0. Let K(HQ) be the Grothendieck group of HQ, i.e. the free
Abelian group generated by objects in HQ modulo the subgroup generated
by all elements of the form B−A−C for all short exact sequences

0−→ A−→ B−→C −→ 0.

The following notions will be generalized in chapters 6 and 8:

Definition 4.2.1. A central charge (or stability function) is a group homo-
morphism

Z : K(HQ)−→ C

such that Z(E) ∈H :=H∪R<0 for every object E ∈HQ.

By Proposition 4.1.2 we can write the class of an object of HQ as
positive linear combination of the classes of the simple objects S1, . . . ,Sn.
Therefore a central charge is given by the numbers Z(S1), . . . ,Z(Sn) ∈ H.
A central charge of an object E comes with a phase φ ∈ (0,1]: Z(E) =
rexp(iπφ),r ∈ R>0.

Definition 4.2.2. An object E ∈HQ is (semi)stable if for every proper sub-
object F ⊂ E the phase of F is strictly smaller than the phase of E (the
phase of F is smaller than or equal to the phase of E).
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Here is an example: Let us consider the quiver

1 // 2 .

The stable representations are indecomposable. [74] We want the simple
objects S1,S2 to have different phases. Then we have two choices: 1.
φ(S1) > φ(S2) and 2. φ(S2) > φ(S1). Let us denote the representation
k→ k by P2. The short exact sequence 4.1.1 tells us Z(P2) = Z(S1)+Z(S2).
Therefore in the first case the stable objects are S1,S2,P2 and in the second
case S1,S2.

Z(S2)Z(S1)

Z(P2)

For a second example consider the Kronecker quiver

1 //
// 2 .

If the phase of S1 is strictly greater than the phase of S2, the simple
representations are the only stable objects. If the phase of S2 is strictly
greater than the phase of S1 the stable objects of dimension vector (1,1) are
precisely the representations in the P1-family with dimension vector (1,1).
In this case infinitely many stable objects lie on a ray in the upper half plane.
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Chapter 5

Triangulated Categories

We review derived categories and t-structures on triangulated categories
[75, 77, 80]. We collect results and useful facts that will be used fre-
quently in the following chapters. If not stated otherwise all proofs through
the proof of Lemma 5.3.1 are taken from [75]. t-structures are a tool to
see Abelian subcategories in a triangulated category. More precisely, the
heart of a t-structure of a triangulated category is an Abelian subcategory.
This construction is crucial for the definition of stability conditions. In
fact, to give a Bridgeland stability condition is equivalent to give a heart
of a bounded t-structure together with a central charge on its heart fulfilling
some condition. The standard example of a t-structure on a derived category
of an Abelian category is the one given by the Abelian category embedded
in the derived category.

We fix some notations: For a full subcategory F ⊂ D of an additive
category D we write F⊥ for the full subcategory

{E ∈D |Hom(F,E) = 0,∀F ∈F} .

Given full subcategories A ,B of a triangulated category D (see section
5.2) then 〈A ,B〉 is the extension-closed subcategory generated by objects
in A and B.

5.1 Derived categories and localisation

The category Kom(A ) of complexes of an Abelian category A has as ob-
jects complexes M in A

· · · −→Mi−1 di−1
−→Mi di

−→Mi+1 −→ ·· ·

with di ◦ di−1 = 0 for all i and as morphisms a sequence of morphisms
f i : Mi → Ni such that f i+1di

M = di
N f i for all i. Given a complex M, the
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i− th cohomology object is the quotient

H i(M) = ker(di)/im(di−1).

A morphism of complexes f : M→N is a quasi-isomorphism if the induced
morphisms H i( f ) : H i(M)→ H i(N) are isomorphisms for all i.

Given Kom(A ) we can formally invert the quasi-isomorphism to get
the derived category of A : We localize Kom(A ) at the class of quasi-
isomorphisms.

Proposition 5.1.1. Given Kom(A ) for an Abelian category A , there is a
category D(A ) together with a functor

Q : Kom(A )−→D(A )

such that:

1. if s : a→ b is a quasi-isomorphism in Kom(A ) Q(s) : Q(a)→ Q(b)
is an isomorphism in D(A ),

2. Q is universal: if Q′ : Kom(A ) −→ D ′ is another functor which in-
verts quasi-isomorphisms, i.e. a functor Q′ which fulfills the 1. point,
then there is a functor F : D(A )→D ′ such that Q′ ∼= F ◦Q.

Proof. Given Kom(A ), we define the graph Γ with vertices the objects of
Kom(A ) and directed edges defined by the morphisms in Kom(A ). For
every quasi-isomorphism s : a→ b we insert a new edge s−1 : b→ a. We
denote the new graph by Γ∗ with paths of the form f1 · f2 · · · · fr with fi is a
morphism in Kom(A ) or of the form s−1 for a quasi-isomorphism s. Next
we introduce an equivalence relation ∼ on the set of finite paths in Γ∗:

1. For each quasi-isomorphism s : a→ b we set s ·s−1 ∼ idb and s−1 ·s∼
ida,

2. g · f ∼ g◦ f for composable morphisms f : a→ b and g : b→ c.

D(A ) is the category with objects the vertices in Γ∗ and morphisms the
equivalence classes of finite paths.

The derived category can be constructed as the localisation of the ho-
motopy category at the quasi-isomorphisms. Let

f ,g : M −→ N

be morphisms in Kom(A ). f and g are homotopic if there are morphisms

hi : Mi −→ Ni−1
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such that
gi− f i = di−1

N ◦hi +hi+1 ◦di
M

for all i. The homotopy category K(A ) is the category with the same ob-
jects as Kom(A ) and morphisms given by homotopy equivalence classes of
morphisms of complexes.

Lemma 5.1.1. Let Q : Kom(A ) −→ D(A ) be the functor in Proposition
5.1.1. If f ,g : M−→N are homotopic morphisms in Kom(A ), then Q( f ) =
Q(g).

Therefore the functor Q factors via the homotopy category. The key
observation of Verdier [78] was to prove that the set of quasi-isomorphisms
satisfy the Ore conditions in K(A ):

Proposition 5.1.2. [78] Let A be an Abelian category and K(A ) the ho-
motopy category of A .

1. If f : M → N and s : N′ → N are morphisms in K(A ) where s is a
quasi-morphism, then there is a complex M′ and morphisms of com-
plexes g : M′→ N′ and t : M′→ M where t is a quasi-isomorphism,
such that the diagram

M′
g //

t
��

N′

s
��

M
f // N

commutes.

2. If f : M → N is a morphism in K(A ), then there is a quasi-
isomorphism s : M′ → M with f ◦ s = 0 in K(A ) precisely if there
is a quasi-isomorphism t : N→ N′ with t ◦ f = 0 in K(A ).

Here is an analogy from ring theory: Clearly, you can localize the inte-
gers at the subset of all non-zero elements of Z and define a new ring Q.
More generally you can localize a commutative ring at its subset of all non-
zero elements. You can still localize a noncommutative ring at some subset
if the subset fulfills some conditions, the Ore conditions. [79]

The consequence is that the localisation functor factors via the homo-
topy category K(A ) and the induced functor Q̃ : K(A )→ D(A ) can be
described as follows: A morphism f : M→ N in D(A ) can be represented
by a roof in K(A )

M′
s

~~

f

  
M N
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with s : M′→M a quasi-isomorphism. Two roofs with i = 1,2

Mi
si

~~

fi

  
M N

represent the same morphism in D(A ) if there is a commutative diagram
in K(A ) of the form

M1
s1

~~

f1

  
M P

t1

OO

t2
��

N

M2

s2

``

f2

>>

with quasi-isomorphisms t1, t2.

The derived category D(A ) of an Abelian category A is additive. The
role of short exact sequences is played by distinguished triangles. To define
these we first introduce shifts of complexes. For this fix an integer n. For a
complex M in Kom(A ) define a new complex M[n] by setting M[n]i =Mi+n

and di
M[n] := (−1)ndi+n

M and for a morphism f : M→N of complexes define
a morphism f [n] : M[n]→ N[n] by f [n]i := f i+n. The mapping cone of
f : M→ N is the complex C( f ) with

C( f )i = Mi+1⊕Ni

and with differential

di
C( f )(m,n) = (−di+1

M (m), f i+1(m)+di
N(n)).

We can find morphisms of complexes fitting into the sequence

M
f−→ N −→C( f )−→M[1].

The shift functor [n] descends to a functor in the derived category
D(A ). A distinguished triangle in D(A ) is a triple of objects (A,B,C)
and morphisms

A−→ B−→C −→ A[1]

which is isomorphic to a triple given by a mapping cone. We write some-
times for a distinguished triangle

A−→ B−→C −→

without the object A[1] on the right.
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5.2 Triangulated categories

Triangulated categories axiomatize the properties of the shift functor and
distinguished triangles in derived categories of Abelian categories.

Let D be an additive category with an auto-equivalence [1] : D →D . A
triangle in D is a sequence of morphisms of the form

A→ B→C→ A[1].

Definition 5.2.1. A morphism of triangles is a commutative diagram of the
form

A
f //

α

��

B
g //

β

��

C h //

γ

��

A[1]

α[1]
��

A′
f ′ // B′

g′ //C′ h′ // A′[1]

.

Definition 5.2.2. A triangulated category D is an additive category with
an auto-equivalence [1] : D → D and a set of distinguished triangles (d.t.)
satisfying the following axioms:

1. A triangle isomorphic to a d.t. is a d.t.

2. The triangle A id // A // 0 // A[1] is a d.t.

3. For all morphisms
f : A→ B

there exists a d.t.

A
f // B //C // A[1]

.

4. A triangle is

A
f // B

g //C h // A[1]

is a d.t. if and only if

B
−g //C −h // A[1]

− f [1] // B[1]

is a d.t.
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5. Given two d.t.’s

A
f // B

g //C h // A[1]

and

A′
f ′ // B′

g′ //C′ h′ // A′[1]

and morphisms α : A→ A′ and β : B→ B′ with f ′ ◦α = β ◦ f , there
exists a morphism γ : C→C′ giving rise to a morphism of d.t.’s:

A
f //

α

��

B
g //

β

��

C h //

γ

��

A[1]

α[1]
��

A′
f ′ // B′

g′ //C′ h′ // A′[1]

.

6. Given three d.t.’s

A
f // B h //C′ // A[1] ,

B
g //C k // A′ // B[1] ,

A
g◦ f //C l // B′ // A[1] ,

there exists a d.t. C′ u // B′ v // A′ w //C′[1] making the follow-
ing diagram (the octahedron diagram) commute:

A
f //

id
��

B h //

g
��

C′ //

u
��

A[1]

id
��

A
g◦ f //

f
��

C l //

id
��

B′ //

v
��

A[1]

f [1]
��

B
g //

h
��

C k //

l
��

A′ //

id
��

B[1]

h[1]
��

C′ u // B′ v // A′ w //C′[1]

.

Proposition 5.2.1. The derived category of an Abelian category is a trian-
gulated category with auto-equivalence [1] given by the shift functor and
with set of distinguished triangles given by the distinguished triangles de-
fined in section 5.1.

Here are some observations:
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Lemma 5.2.1. Let D be a triangulated category and

A
f // B

g //C h // A[1]

a distinguished triangle. Then we have g◦ f = 0.

Proof. By axiom 1 and 4 of Definition 5.2.2 we have the following mor-
phism of distinguished triangles:

A id //

id
��

A //

f
��

0 //

��

A[1]

id[1]
��

A
f // B

g //C h // A[1]

.

In particular, g◦ f = 0.

We prove the following important Proposition since we will frequently
use it.

Proposition 5.2.2. Let D be a triangulated category and

A
f // B

g //C h // A[1]

a distinguished triangle. Then for any W ∈D the sequence

Hom(W,A)
f◦ // Hom(W,B)

g◦ // Hom(W,C)

is exact.

Proof. Let ϕ : W → B be a morphism with g◦ϕ = 0. We consider the d.t.

A id // A // 0 // A[1] . By axioms 4 and 5 of Definition 5.2.2 there
is a morphism ψ : W → A giving rise to a morphism of d.t.’s:

W //

ϕ

��

0 //

��

W [1]
−id[1] //

ψ[1]
��

W [1]

ϕ[1]
��

B
−g //C −h // A[1]

− f [1] // B[1]

.

Thus there is a morphism ψ : W → A such that ϕ = f ◦ψ . Using Lemma
5.2.1 we see that the image of f◦ lies in the kernel of the morphism g◦ .
This finishes the proof.
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5.3 t-Structures and tilting

An Abelian category A is embedded in its derived category D(A ) as the
subcategory of complexes whose cohomology is concentrated in degree
zero. t-structures allow to see different Abelian subcategories inside a tri-
angulated category.

Definition 5.3.1. [29] A t-structure on a triangulated category D is a full
subcategory F ⊂D such that

1. F [1]⊂F

2. for every object E ∈D there is a distinguished triangle in D

F −→ E −→ G−→

with F ∈F and G ∈F⊥

with
F⊥ = {E ∈D |Hom(F,E) = 0,∀F ∈F} .

The heart of a t-structure F ⊂D is the full subcategory A = F ∩F⊥[1].

Proposition 5.3.1. [29] The heart of a t-structure of a triangulated category
is an Abelian category.

The short exact sequences in the heart of a t-structure of a triangulated
category are precisely the exact triangles in the triangulated category all of
whose vertices are objects of the heart. We will use this fact frequently.

A t-structure F ⊂D is bounded if

D =
⋃

i, j∈Z
F [i]∩F⊥[ j].

Given the heart A of a bounded t-structure F ⊂D the t-structure is the
extension-closed subcategory

F = 〈A ,A [1],A [2], . . .〉 .

If A1,A2 ⊂D are hearts of bounded t-structures on the triangulated cat-
egory D such that A1 ⊂A2 then A1 = A2.

Let us fix some notation: For two hearts A1,A2 with associated bounded
t-structures F1,F2 ⊂D we write A1 ≤A2 if and only if F2 ⊂F1.

The following useful fact is well-known. A proof can be found in [76].

32



Proposition 5.3.2. Let A be the heart of a bounded t-structure of the tri-
angulated category D . Then Ext1

A (X ,Y ) with X ,Y ∈ A can be identified
with the Abelian group HomD(X ,Y [1]).

Lemma 5.3.1. The Abelian category A of the derived category D(A ) is
the heart of the t-structure of D(A ) given by

F =
{

E ∈D(A )|H i(E) = 0,∀i > 0
}
,

This is the standard (or canonical) t-structure of a derived category.

Proof. First we note that F [1] ⊂ F . Next we want to show that F⊥ =
D≥0[−1] with

D≥0 =
{

E ∈D(A )|H i(E) = 0,∀i < 0
}
.

We represent a morphism f : M → N in D(A ) with M ∈ F and N ∈
D≥0[−1] by a roof

K
s

~~

f

��
M N

in K(A ) with quasi-isomorphism s. Since N ∈ D≥0[−1] the complex
N/τ≤0N is quasi-isomorphic to N. Here the truncation functor τ≤0 is de-
fined by

τ≤0N :=


Ni i < 0,
ker(d0) i = 0
0 i > 0

Thus we can assume that Ni = 0 for i < 0 and that d0
N : N0→ N1 is injec-

tive. The objects M and K are quasi-isomorphic and thus we have K ∈F
since M ∈F . Therefore the canonical morphism r : τ≤0K→ K is a quasi-
isomorphism and we can represent the morphism f : M→ N by the roof

τ≤0K
sr

||

f r

""
M N

Next we want to prove that f r = 0. Since Ni = 0 for i < 0 for i 6= 0, we
have that Ni = 0 or (τ≤0K)i = 0, i.e. ( f r)i = 0 for i 6= 0. For i = 0 we
have d0

N( f r)0 = ( f r)1d0
τ≤0K = 0. Since d0

N is injective ( f r)0 = 0 and so we
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conclude f r = 0.

The 2. assumption in Def. 5.3.1 follows from the short exact sequence
of complexes

0−→ τ≤0M −→M −→M/τ≤0M −→ 0

that induce a distinguished triangle

τ≤0M −→M −→M/τ≤0M −→

in D(A ).

Lemma 5.3.2. [26] A bounded t-structure is determined by its heart. More-
over, if A ⊂D is a full additive subcategory of a triangulated category D ,
then A is the heart of a bounded t-structure on D if and only if the following
conditions hold:

1. if A and B are objects of A , then HomD(A,B[k]) = 0 for k < 0,

2. for every non-zero object E ∈ D there are integers m < n and a col-
lection of triangles

0= Em // Em+1

~~

// Em+2

~~
Am+1

^^

Am+2

``
→···→ En−1 // En

��
An

]]
=E

with Ai[i] ∈A for all i.

The objects Ai[i] ∈A are called cohomology objects of E with respect
to the given t-structure in analogy to the standard t-structure of the derived
category of an Abelian category and are denoted H i(E).

Definition 5.3.2. [27] A torsion pair in an Abelian category A is a pair of
full subcategories (T ,F ) satisfying

1. HomA (T,F) = 0 for all T ∈T and F ∈F ;

2. every object E ∈A fits into a short exact sequence

0−→ T −→ E −→ F −→ 0 (5.3.1)

for some pair of objects T ∈T and F ∈F .

The objects of T are called torsion and the objects of F are called
torsion-free, T is called torsion class and F torsion-free class.
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Lemma 5.3.3. [27] Let (T ,F ) be a torsion pair in an Abelian category
A . The subcategories T and F are closed under extensions. Moreover,
T is closed under quotients and F is closed under subobjects.

Proof. First note that F = T ⊥. Indeed, for E ∈ A with Hom(T,E) =
for all T ∈ T the morphism from the torsion object to the object E in the
short exact sequence 5.3.1 is zero. Thus E ∈F . In the same way follows
T =⊥F . Now take an extension E of two torsion objects T1,T2 ∈T

0−→ T1 −→ E −→ T2 −→ 0.

Applying the functor Hom( ,F) for torsion-free objects F ∈F we see that
objects in T are closed under extensions. In the same way we see that
torsion objects are closed under quotients. Similarly, the second statement
follows.

In fact, a full subcategory T of an Abelian category A is a torsion class
if and only if it is closed under quotients, direct sums and extensions and
a full subcategory F is a torsion free class if and only if it is closed under
subobjects, direct products and extensions. [27]

Proposition 5.3.3. [34] Let A be the heart of a bounded t-structure on a
triangulated category D . Denote by H i(E)∈A the i-th cohomology object
of E with respect to this t-structure. Let (T ,F ) be a torsion pair in A .
Then the full subcategory

A ∗ =
{

E ∈D |H i(E) = 0 for i /∈ {−1,0},H−1(E) ∈F ,H0(E) ∈T
}

is the heart of a bounded t-structure on D .

We say A ∗ is obtained from A by tilting with respect to the torsion pair
(T ,F ). The pair (F [1],T ) is a torsion pair in A ∗.

Suppose A ⊂ D is the heart of a bounded t-structure on D such that
every object of A is of finite length. Given a simple object S ∈ A we
denote by 〈S〉 the full subcategory of objects E ∈ A whose simple factors
in the Jordan-Hölder filtration are isomorphic to S. By the remark after
Lemma 5.3.3 we can either view 〈S〉 as the torsion class of a torsion pair on
A with torsion-free class

F = {E ∈A |HomA (S,E) = 0}

or as the torsion-free class with torsion class

T = {E ∈A |HomA (E,S) = 0} .
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Applying the functors Hom(S, ) and Hom( ,S) we see that there is no non-
trivial morphism between these torsion and torsion free classes. E.g., by its
very definition the subcategory F = {E ∈A |HomA (S,E) = 0} is closed
under extensions and subobjects.

The new hearts after tilting are

LS(A ) =
{

E ∈D |H i(E) = 0 for i /∈ {0,1},H0(E) ∈F ,H1(E) ∈ 〈S〉
}
,

RS(A ) =
{

E ∈D |H i(E) = 0 for i /∈ {−1,0},H−1(E) ∈ 〈S〉 ,H0(E) ∈T
}
.

LS(A ) (respectively RS(A )) is called the left (respectively the right) tilt of
A at the simple S. S[−1] is a simple object in LS(A ) and if this heart is
again of finite length we have RS[−1]LS(A ) = A . Similarly, if RS(A ) has
finite length, we have LS[1]RS(A ) = A .

We conclude this subsection with two useful observations that will be-
come important in chapter 8. The following lemma of Bridgeland gives a
composition of left-tilts.

Lemma 5.3.4. [62] Let (T ,F ) be a torsion pair in A and (T ′,F ′) a
torsion pair in A ∗ = 〈F ,T [−1]〉 If T ′ ⊂ F , then the left-tilt A ∗∗ =
〈F ′,T ′[−1]〉 of A ∗ equals a left-tilt of A .

The following observation is immediate but important for chapter 8:

Lemma 5.3.5. If A ∗ = 〈F ,T [−1]〉 is the left-tilt of A with respect to a
torsion pair (T ,F ), then the simple objects of A ∗ lie in A or in A [−1].

Proof. We have a short exact sequence in A ∗ for every object S ∈A ∗

0−→ E −→ S−→ F −→ 0

with E ∈F ⊂A and F ∈ T [−1]⊂A [−1]. If S is simple we have S ∼= E
or S∼= F .

5.4 Derived categories of dg algebras

Let A be a differential graded algebra. A (right) differential graded (dg)
module M over A is a graded A-module equipped with a differential d such
that

d(ma) = d(m)a+(−1)|m|md(a)

where m ∈M is homogeneous of degree |m| and a ∈ A. A morphism of dg
A-modules is a quasi-isomorphism if it induces a quasi-isomorphism in the
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underlying complexes. The derived category D(A) of A is now the local-
ization of the category of dg A-modules at the class of quasi-isomorphisms.

Let A be a dg algebra with H i(A) = 0 for i > 0. Let D≤0 be the full
subcategory of D(A) consisting of dg modules M such that the homology
H i(M) = 0 for i > 0. Then the subcategory D≤0 defines a t-structure on
D(A). The functor M 7→ H0(M) induces an equivalence of the heart of this
canonical t-structure and the category of all (right) H0(A)-modules. [53]
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Chapter 6

Bridgeland Stability Conditions
on Triangulated Categories

We review stability conditions on a triangulated category D introduced by
Bridgeland in [26]. We denote by K(D) the corresponding Grothendieck
group of D , i.e. the free Abelian group generated by objects in D modulo
the subgroup generated by all elements of the form B−A−C for all exact
triangles

A−→ B−→C −→ .

An well-known fact is that the Grothendieck group of the heart of a bounded
t-structure on a triangulated category and the Grothendieck group of the
triangulated category can be identified. For a proof see [76].

Definition 6.0.1. [26] A (Bridgeland) stability condition on a triangulated
category D consists of a group homomorphism Z : K(D)→ C called the
central charge and of full additive subcategories P(φ)⊂D for each φ ∈R,
satisfying the following axioms:

1. if 0 6= E ∈P(φ), then Z(E) = m(E)exp(iπφ) for some m(E) ∈R>0;

2. ∀φ ∈ R,P(φ +1) = P(φ) [1];

3. if φ1 > φ2 and A j ∈P(φ j), then HomD(A1,A2) = 0;

4. for 0 6= E ∈D , there is a finite sequence of real numbers φ1 > · · ·> φn
and a collection of triangles

0= E0 // E1

��

// E2

��
A1

^^

A2

^^ →···→ En−1 // En

��
An

``
=E
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with A j ∈P(φ j) for all j.

We will construct examples of stability conditions at the end of this
chapter and in Proposition 7.4.3.

The filtration given in axiom 4 is unique up to isomorphism due to ax-
iom 3. We recall some results of [26]. The subcategory P(φ) is Abelian
and its non-zero objects are said to be semistable of phase φ for a stability
condition σ = (Z,P). We call its simple objects stable. The objects Ai in
Definition 6.0.1 are called semistable factors of E with respect to σ . We
write for an non-zero object φ+

σ := φ1 and φ−σ := φn. An object E fulfills
φ+

σ = φ−σ precisely if E ∈P for some φ ∈ R. The mass of E is defined to
be mσ (E) = ∑i |Z(Ai)| ∈R. For an interval I ⊂R we define P(I) to be the
extension-closed subcategory of D generated by the subcategories P(φ)
for all φ ∈ I.

Here are some useful facts:

1. All morphisms Ei→ E and the morphism E → An in the filtration in
axiom 4 of Definition 6.0.1 are non-trivial.

2. If E1 ∈P(φ), E2 ∈P(I) and φ > t for all t ∈ I, then Hom(E1,E2) =
0.

The second observation follows from the fact that the object E2 is gen-
erated by semistable objects with phases in the interval I.

Let P(> φ) be the extension-closed subcategory generated by the sub-
categories P(ψ) for all ψ > φ . The subcategory F = P(> φ) is closed
under shifts and there is no non-trivial morphism from F to F⊥ = P(≤
φ). Indeed, P(> φ) is a t-structure on the triangulated category D with
heart

A = P(> φ)∩P(≤ φ)[1] = P((φ ,φ +1]).

A stability condition is locally-finite if there exists some ε > 0 such that
for all φ ∈R each quasi-Abelian subcategory1 P((φ−ε,φ +ε)) is of finite
length. In this case P(φ) is of finite length and every semistable object has
a finite Jordan-Hölder filtration into stable objects of the same phase. We
denote by Stab(D) the set of locally finite stability conditions on a triangu-
lated category D .

1For quasi-Abelian subcategories see chapter 4 in [26].
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Stab(D) has a topology induced by the generalised metric2:

d(σ ,τ) = sup06=E∈D

{∣∣φ−τ (E)−φ
−
σ (E)

∣∣ , ∣∣φ+
τ (E)−φ

+
σ (E)

∣∣ , ∣∣∣∣log
mτ(E)
mσ (E)

∣∣∣∣} .

with σ = (Z,P) and τ = (Z′,Q). If d(σ ,τ) = 0 this implies for an
object E 6= 0 of P(φ): φ+

σ (E) = φ−σ (E) = φ+
τ (E) = φ−τ (E) and therefore

E is also an element of Q(φ), i.e. P = Q. If E is semistable with respect
to σ , then mσ (E) = |Z(E)|. Therefore the central charges of σ and τ agree
on the semistable objects. Since every object in D has a filtration like the
one in Definition 6.0.1 the central charges agree on all objects of D . Thus
d(σ ,τ) = 0 implies σ = τ and d is indeed a metric.

There is an action of the group of auto-equivalences Aut(D) of the de-
rived category D on Stab(D). For σ = (Z,P) ∈ Stab(D) and Φ ∈ Aut(D)
define the new stability condition Φ(σ) = (Z ◦Φ−1

∗ ,P ′) with P ′(φ) =
Φ(P(φ)). Here Φ∗ is the induced automorphism of K(D) of Φ. Note that
auto-equivalences preserve the generalised metric.

The universal covering ˜GL+(2,R) of GL+(2,R) acts on the metric space
Stab(D) on the right in the following way: We think of an element of
˜GL+(2,R) as a pair (G, f ) with G ∈ GL+(2,R) and an increasing function

f : R→ R with f (φ + 1) = f (φ)+ 1 such that Gexp(iπφ)/ |exp(iπφ)| =
exp(2iπ f (φ)) for all φ ∈ R. Here we identify C = R2. A pair (G, f ) ∈
˜GL+(2,R) maps σ = (Z,P) ∈ Stab(D) to (Z′,P′) = (G−1 ◦Z,P ◦ f ).

Example: The subgroup C ↪→ ˜GL+(2,R) acts freely on Stab(D) for
a triangulated category D by sending a complex number λ and a sta-
bility condition (Z,P) to a stability condition (Z′,P ′) where Z′(E) =
exp(−iπλ )Z(E) and P ′(φ) = P(φ +Re(λ )). Note that this is for λ =
n ∈ Z just the action of the shift functor [n].

Definition 6.0.2. Let A be an Abelian category with Grothendieck group
K(A ). A central charge (or stability function) on A is a group homomor-
phism Z : K(A )→ C such that for any non-zero E ∈ A , Z(E) lies in the
upper half plane

H := {rexp(iπφ)|r > 0,0 < φ ≤ 1)} ⊂ C. (6.0.1)

We saw an example of a central charge on the Abelian category of finite-
dimensional representations of an acyclic quiver in section 4.2.

2This generalised metric has the usual properties of a metric but can take the value ∞.
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We say a non-zero object E ∈A is semistable (resp. stable) with respect
to the central charge Z if every proper subobject 0 6= A⊂ E satisfies φ(A)≤
φ(E) (φ(A) < φ(E)). The central charge Z has the Harder-Narasimhan
(HN) property if every non-zero object E ∈A has a finite filtration

0 = E0 ⊂ E1 ⊂ . . .⊂ En−1 ⊂ En = E

where the semistable factors Fj = E j/E j−1 fulfill

φ(F1)> φ(F2)> .. . > φ(Fn).

The following useful proposition implies the existence of a HN filtration for
a central charge on an Abelian category of finite length:

Proposition 6.0.1. [26] Given an Abelian category A with central charge
such that

1. there are no infinite sequences of subobjects in A

· · · ⊂ Ei+1 ⊂ Ei ⊂ ·· · ⊂ E2 ⊂ E1

with φ(Ei+1)> φ(Ei) for all i,

2. there are no infinite sequences of quotients in A

E1 � E2 � · · ·� Ei � Ei+1 � · · ·

with φ(Ei)> φ(Ei+1). Then A has the HN property.

A Harder-Narasimhan filtration is unique. The basic reason is the fol-
lowing standard

Lemma 6.0.1. Let be given a central charge on an Abelian category A . If
E1 is semistable of phase φ1 and E2 is semistable of phase φ2 with respect
to this central charge, then HomA (E1,E2) = 0, if φ1 > φ2.

Proof. For every non-zero map f : E1→E2 we have the following two short
exact sequences in A :

0−→ ker f −→ E1 −→ im f −→ 0,
0−→ im f −→ E2 −→ coker f −→ 0.

Note that a non-zero object E fulfills φ(A)≤ φ(E) for every non-zero sub-
object A if and only if every non-zero quotient E � Q fulfills φ(E)≤ φ(Q),
since the central charge is additive on short exact sequences. Thus the first
sequence implies φ(E1) ≤ φ(im f ) and the second φ(im f ) ≤ φ(E2). This
is a contradiction.
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The following proposition is useful for the construction of stability con-
ditions. We give a full proof since this construction is crucial for the fol-
lowing results and especially for Proposition 6.0.4 underlying the mutation
method of chapter 8.

Proposition 6.0.2. [26] To give a stability condition on a triangulated
category D is equivalent to giving a bounded t-structure on D and a central
charge on its heart which has the Harder-Narasimhan property.

Proof. We follow the proof in [26] and demonstrate a statement in detail
that was not proven there. Given a heart A of a bounded t-structure on D
and a central charge with HN property we define the subcategories P(φ)
to be the full additive categories given by semistable objects of A of phase
φ ∈ (0,1] together with the zero objects of D . We continue by the rule
P(φ +1) = P(φ)[1]. Property 3 of Definition 6.0.1 follows from Lemma
5.3.2 and Lemma 6.0.1. The filtration of any non-zero object of D as in
axiom 4 of Definition 6.0.1 can be obtained by combining the filtration
of Lemma 5.3.2 and the HN filtration in A . Conversely, given a stability
condition σ = (Z,P) on a triangulated category D the full subcategory
A = P((0,1]) is the heart of a bounded t-structure on D . Identifying the
Grothendieck groups K(A ) and K(D) the central charge Z : K(D)→ C
defines a central charge on A .

The semistable objects of the categories P(φ) are the semistable ob-
jects of A with respect to this central charge on A : Note first that the
semistable factors of an object 0 6= E ∈ A = P((0,1]) have to lie in
P((0,1]): Let us assume φ(A1) > 1 for the phase of the semistable factor
A1 of an object E ∈P((0,1]) in the filtration of Definition 6.0.1. But this
gives a contradiction since this would imply Hom(A1,E) = 0. E is gener-
ated by objects in P(φ) with φ ∈ (0,1]. If φ(An)≤ 0 then Hom(E,An) = 0
but E→ An is non-trivial.

Take an object 0 6= E ∈P(φ) with φ ∈ (0,1] and assume there is a
subobject F ⊂ E in A = P((0,1]) with φ(F) > φ(E) where φ(E) and
φ(F) are the phases with respect to the central charge on A . Since all
semistable factors of F with respect to σ are objects in P(φ) for some
φ ∈ (0,1] we have for the semistable factor A1 of F that φ(A1) ≥ φ(F) in
A by the additivity of the central charge on short exact sequences. But
then φ(A1) ≥ φ(F) > φ(E) in A . Since E and A1 are semistable in σ

Hom(A1,E) = 0 but we have a non-trivial morphism A1 → F → E. This
implies that the HN filtration in axiom 4 of Definition 6.0.1of an object in
A is a HN filtration in A . Let now 0 6= E ∈A be semistable with respect
to the central charge on A . If E would have a non-trivial filtration like in
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axiom 4 of Definition 6.0.1 then this filtration would be a non-trivial HN
filtration in A . By uniqueness of HN filtrations E must be semistable with
respect to the stability condition σ . This finishes the proof.

The following theorem allows to deform stability conditions by deform-
ing the associated central charge:

Theorem 6.0.2. [26] Let D be a triangulated category. For each
connected component Σ ⊂ Stab(D) there is a linear subspace V (Σ) ⊂
HomZ(K(D),C) with a well-defined linear topology and a local homeo-
morphism Σ→V (Σ) which maps a stability condition (Z,P) to its central
charge Z.

Therefore each component of Stab(D) is a complex manifold locally
homeomorphic to the complex vector space V (Σ).

In the following we follow a setup in [33]. We will study examples in
chapter 8.

Proposition 6.0.3. [33] Let A ⊂ D be the heart of a bounded t-structure
on a triangulated category D . Let A be of finite length with finitely many
simple objects S1, . . . ,Sn. Then the subset U(A ) of Stab(D) consisting of
locally-finite stability conditions with heart A = P((0,1]) is isomorphic
to Hn

.

Proof. This is Lemma 5.2 stated in [33] without proof. The classes of the
simple objects S1, . . . ,Sn build a basis of the Grothendieck groups of A and
D . We define a central charge on K(A ) by assigning a number in H to the
class of every simple object Si. A central charge on A has automatically
the HN property by Proposition 6.0.1 since A is of finite length. By Propo-
sition 6.0.2 this defines a stability condition σ = (Z,P) on D . By Lemma
4.3 in [26] the strict short exact sequences in the quasi-Abelian category
P((0,1)) are precisely the triangles in D all of whose vertices are objects
of P((0,1)). Since A = P((0,1]) is of finite length there are no infinite
chains

· · · ⊂ E3 ⊂ E2 ⊂ E1

of strict monomorphisms in P((0,1)). Analogously, every chain of strict
epimorphisms in P((0,1)) has to stabilize. Therefore P((0,1)) is of fi-
nite length and this implies the stability condition defined in this proof is
locally-finite.

Conversely, every locally-finite stability condition with heart A defines
a unique central charge on A .
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We can deform the central charge by rotating it counter-clockwise by a
small angle. A natural question is what happens if exactly one simple object
S of A rotates out of the upper half-plane H on the left? Since the space
of stability conditions is a complex manifold there is a stability condition
with this deformed central charge, but it has a heart different to A . The
following Proposition gives an answer to the question:

Proposition 6.0.4. ([33], Lemma 5.5) Let A ⊂D be the heart of a bounded
t-structure on D and suppose A has finite length with finitely many simple
objects. Then the codimension one subset of U(A ) where the simple S
has phase 1 and all other simples have phases in (0,1) is the intersection
U(A )∩U(B) precisely if B = LS(A ) where LS(A ) is the left-tilt of A at
the simple object S.

To clarify Proposition 6.0.4 let us consider a stability condition σ in
U(A ) such that the simple object S lies on the negative real axis and all
other simple objects lie above the real axis in H. In a small neighborhood
U of σ the simple objects of A will remain stable (see e.g. chapter 7 of
[45]). Note that d(σ ,τ) ≤ ε for two stability conditions σ = (Z,P) and
τ = (W,Q) implies for any 0 6= E ∈Q(φ) that φ+

σ ≤ φ +ε and φ−σ ≥ φ −ε

and thus Q(φ)⊂P([φ−ε,φ +ε]). Thus by shrinking the neighborhood U
we can assume that Re Z(S)< 0 and all other simple objects still lie above
the real axis in H. Now we split U into two pieces: U1 with Im Z(S)≥ 0 and
U2 with Im Z(S) < 0. The simple objects of A lie in the heart P((0,1])
for every stability condition in U1 and thus we have A = P((0,1]) for ev-
ery stability condition in U1. The object S is stable in U2 with phase in the
interval (1,3/2) und thus S[−1] is contained in the heart P((0,1]) of any
stability condition in U2. Shrinking U , one can further show that all simple
objects obtained by tilting the heart A at the simple S are likewise in the
heart P((0,1]).

The tilted subcategories LS(A ) and RS(A ) need not to have finite length
again. The next idea is to consider hearts of finite length with finitely many
simple objects such that the tilted heart is again of finite length such that
we can tilt again at a simple object of the tilted heart and so on. Proposi-
tion 6.0.4 tells us that in this case we can glue together regions in Stab(D)

each isomorphic to Hn along boundaries corresponding to hearts related by
simple tilts. We will take up this idea in chapter 8.
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Chapter 7

Stability Conditions on Kummer
Surfaces

7.1 Moduli spaces of superconformal field theories

In this section we discuss the moduli space of N=(4,4) SCFTs with central
charge c = 6. We follow in this section the version of [3, 5]. For a pedagog-
ical introduction see [7]. Let X be a two-dimensional Calabi-Yau manifold,
i.e. a complex tori or a K3 surface. We have a pairing induced by the inter-
section product on the even cohomology Heven(X ,R)∼=R4,4+δ . We choose
a marking, that is an isometry Heven(X ,Z) ∼= L where L is the unique even
unimodular lattice Z4,4+δ with δ = 0 for a complex torus and δ = 16 for
a K3 surface as explained in chapter 3. In the latter case this is of course
just the K3 lattice 4U ⊕2(−E8). The moduli space of SCFTs associated to
complex tori or K3 surfaces are given by the following

Theorem 7.1.1. [10] Every connected component of the moduli space of
SCFTs associated to Calabi-Yau 2-folds is either of the form Mtori = M 0

or MK3 = M 16 where:

M δ ∼= O+(4,4+δ ;Z)\O+(4,4+δ ;R)/SO(4)×O(4+δ ).

Points x ∈ M̃ δ in the Grassmannian

M̃ δ = O+(4,4+δ ;R)/SO(4)×O(4+δ )

correspond to positive definite oriented four-planes in R4,4+δ whose posi-
tion is given by its relative position to the reference lattice L.

Let us choose a marking H2(X ,Z)∼= Z3,3+δ . The Torelli theorem 3.0.6
tells us that complex structures on two-dimensional complex tori or K3 sur-
faces X are in 1:1 correspondence with positive definite oriented two-planes
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Ω ⊂ H2(X ,Z)⊗ R ∼= R3,3+δ that are specified by its relative position to
Z3,3+δ .

Definition 7.1.1. Let x ⊂ Heven(X ,Z)⊗ R be a positive oriented four-
plane specifying a SCFT on X. A geometric interpretation of this SCFT
is a choice of null vectors υ0,υ ∈ Heven(X ,Z) along with a decomposi-
tion of x into two perpendicular oriented two-planes x = Ω⊥0 such that〈
υ0,υ0〉= 〈υ ,υ〉= 0,

〈
υ0,υ

〉
= 1, and Ω⊥υ0,υ .

Lemma 7.1.2. [10] Let x⊂ Heven(X ,Z)⊗R be a positive definite oriented
four-plane with geometric interpretation υ0,υ ∈ Heven(X ,Z), where υ0,υ
are interpreted as generators of H0(X ,Z) and H4(X ,Z), respectively, and
a decomposition x = Ω⊥0. Then one finds ω ∈ Heven(X ,Z)⊗R and B ∈
Heven(X ,Z)⊗R with

0= R
〈

ω−〈B,ω〉υ ,ξ4 = υ
0 +B+

(
V − 1

2
〈B,B〉

)
υ

〉
(7.1.1)

with ω,B ∈ H2(X ,R) := Heven(X ,R)∩υ⊥∩ (υ0)⊥ ,V ∈ R+ and ω2 ∈
R+. B and V are determined uniquely and ω is unique (up to scaling).

The picture is that a SCFT associated to a Calabi-Yau 2-fold can be
realized by a non-linear σ model. It is important to note that the mentioned
moduli space of SCFTs associated to K3 surfaces also contains ill-defined
conformal field theories. Namely, a positive definite oriented four-plane
x ∈ M̃ 16 corresponds to such a theory if and only if there is a class δ ∈
Heven(X ,Z) with δ⊥x and 〈δ ,δ 〉=−2. String theory tells us that the field
theory gets extra massless particles at these points in the moduli space and
breaks down. For physical details see [11]. For complex tori there are no
such ill-defined SCFTs.

7.2 Orbifold conformal field theories on K3

We are interested in SCFTs with geometric interpretations on Kummer sur-
faces coming from orbifolding of SCFTs on complex tori since later we
want to induce stability conditions on projective Kummer surfaces from the
associated Abelian surfaces.

We consider a complex torus T = C2/Λ where Λ is a lattice of rank
4 identified with H1(T,Z). Let µ1, . . . ,µ4 denote generators of H1(T,Z).
Recall from chapter 3 that we have a G = Z2 action on T . We have a
minimal resolution of its sixteen singularities:

X := T̃/G−→ T/G
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where X is the Kummer surface associated to T . This resolution in-
troduces 16 rational two-cycles which we label by elements of F4

2
∼=

1
2Λ/Λ and we denote their Poincaré duals by Ei with i ∈ F4

2. The Kum-
mer lattice Π is the smallest primitive sublattice of the Picard lattice
Pic(X)=NS(X) containing

{
Ei|i ∈ F4

2
}

. It is spanned by
{

Ei|i ∈ F4
2
}

and{
1/2∑i∈H Ei|H ⊂ F4

2 a hyperplane
}

[24]. (For a review see e.g. [12]). We
want to find an injective map from the moduli space of SCFTs on a two-
dimensional complex torus T to the moduli space of SCFTs on the corre-
sponding Kummer surface X. This was done by Nahm and Wendland [3, 5]
generalizing results of Nikulin [24]:

Let π : T → X be the induced rational map of degree 2 defined outside
the fixed points of the Z2 action. The induced map on the cohomology gives
a primitive embedding π∗ : H2(T,Z)(2) ↪→ H2(X ,Z) [24, 23].1 We define
K := π∗H2(T,Z). The lattice K obeys K⊕Π⊂H2(X ,Z)⊂ K∗⊕Π∗ where
K⊕Π⊂H2(X ,Z) is a primitive sublattice with the same rank as H2(X ,Z).
H2(X ,Z) is even and unimodular. This embedding defines the isomorphism

γ : K∗/K −→Π
∗/Π (7.2.1)

1
2

π∗(µ j∧µk) 7−→
1
2 ∑

i∈Pjk

Ei

where Pjk =
{

a = (a1,a2,a3,a4) ∈ F4
2|al = 0,∀l 6= j,k

}
with

j,k ∈ {1,2,3,4}. Conversely, with this isomorphism we can describe the
lattice H2(X ,Z) using Theorem 2.0.2. We find in our case

H2(X ,Z)∼= {(κ,π) ∈ K∗⊕Π
∗|γ(κ̄) = π̄} .

Hence H2(X ,Z) is generated by

1. π∗H2(T,Z)∼= H2(T,Z)(2),

2. the elements of the Kummer lattice Π,

3. and forms of the form 1
2π∗(µ j∧µk)+

1
2 ∑i∈Pjk

Ei.

Let υ0 respectively υ be generators of H0(T,Z) respectively H4(T,Z).
We introduce:

υ̂ := π∗υ , (7.2.2)

υ̂
0 :=

1
2

π∗υ
0− 1

4 ∑
i∈F4

2

Ei +π∗υ

1Here and in the following L(2) means a lattice L with quadratic form scaled by 2.
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We define Êi :=−1
2 υ̂ +Ei. Then we have the following

Proposition 7.2.1. [3, 5] The lattice generated by υ̂ , υ̂0 and{
1
2

π∗(µ j∧µk)+
1
2 ∑

i∈Pjk

Êi+l; l ∈ F4
2

}
and

{
Êi, i ∈ F4

2
}

(7.2.3)

is isomorphic to Z4,20.

In [3, 5, 6] it is argued that this gives the unique embedding which is
compatible with all symmetries of the respective SCFTs. Using the gener-
ators given in Proposition 7.2.1 we can regard a positive definite, oriented
four-plane x⊂ Heven(T,Z)⊗R as a four-plane in Heven(X ,Z)⊗R.

Theorem 7.2.1. [3, 5] For a geometric interpretation of a SCFT xT =Ω⊥0
on a complex torus T with ω,VT ,BT as in Lemma 7.1.2 the corresponding
orbifold conformal field theory x = π∗Ω⊥π∗0 has a geometric interpreta-
tion υ̂ , υ̂0 with π∗ω,V = VT

2 ,B where

B =
1
2

π∗BT +
1
2

BZ, (7.2.4)

BZ =
1
2 ∑

i∈F4
2

Êi.

Proof. Using the embedding Heven(T,Z)⊗R ↪→ Heven(X ,Z)⊗R given in
Proposition 7.2.1 we calculate [3, 5]

π∗ (ω−〈BT ,ω〉υ) = π∗ω−〈π∗B,ω〉 υ̂ ,
1
2

π∗

(
υ

0 +BT +

(
VT −

1
2
‖BT‖2

)
υ

)
= υ̂

0 +
1
2

π∗BT +
1
2

BZ

+

(
VT

2
− 1

2

∥∥∥∥1
2

π∗BT +
1
2

BZ

∥∥∥∥2
)

υ̂ .

This proves the theorem.

For Proposition 7.4.1 the following observation is crucial:

Corollary 7.2.2. [3, 5] Let x = π∗Ω⊥π∗0 ⊂ Heven(X ,Z)⊗R be the four-
plane induced from a positive-definite, oriented four-plane xT = Ω⊥0 ⊂
Heven(T,Z)⊗R as in Theorem 7.2.1. Then x⊥∩Heven(X ,Z) does not con-
tain (-2) classes.

Proof. Let Ω be the positive-definite, oriented two-plane defined by the
complex structure for the torus T. We choose a basis of the orthogonal com-
plement x⊥ ⊂ Heven(X ,Z)⊗R. For example:
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1. Êi +
1
2 υ̂ , i ∈ F4

2,

2. π∗ηi−〈π∗ηi,B〉 υ̂ , i = 1, . . . ,3,

3. υ̂0 +B−
(

V + 1
2 ‖B‖

2
)

υ̂ .

The ηi, i = 1, . . . ,3 are an orthogonal basis of the orthogonal complement
of spanR〈ω,Ω〉 in H2(T,Z)⊗R. Then the π∗ηi, i = 1, . . . ,3 build together
with the sixteen Ei, i∈F4

2 an orthogonal basis of the orthogonal complement
of spanR〈π∗ω,π∗Ω〉 in H2(X ,Z)⊗R with ω as in Lemma 7.1.2. B is as in
Theorem 7.2.1. Note that 〈Ei,Ei〉 = −2 but Ei is not an element of our
lattice. If we then try to build a (-2) class in x⊥ from our ansatz we run into
contradictions.

7.3 Generalized Calabi-Yau Structures

In this section we introduce generalized Calabi-Yau structures of Hitchin
[18] following [19, 36]. This is also relevant for stability conditions on
twisted surfaces as we will see in section 6.

The Mukai pairing on the even integral cohomology Heven(X ,Z) =
H0(X ,Z)⊕H2(X ,Z)⊕H4(X ,Z) is defined by

〈(a0,a2,a4),(b0,b2,b4)〉 :=−a0∧b4 +a2∧b2−a4∧b0.

For an Abelian or K3 surface X the Mukai lattice is Heven(X ,Z)
equipped with the Mukai pairing that differs from the intersection pairing
in signs. Note that the hyperbolic lattice U with basis υ ,υ0 is isomorphic
to −U via

υ 7−→ −υ ,

υ
0 7−→ υ

0.

We make the following choice: From now on we will work in the Mukai
lattice.

Definition 7.3.1. Let Ω be a holomorphic 2-two form on an Abelian or K3
surface X defining a complex structure. For a rational B-field B∈H2(X ,Q)
a generalized Calabi-Yau structure on X is defined by

ϕ := exp(B)Ω = Ω+B∧Ω ∈ H2(X)⊕H4(X).
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We define a Hodge structure of weight two on the Mukai lattice by

H̃2,0(X) := C [ϕ]

We write H̃(X ,B,Z) for the lattice equipped with this Hodge structure and
the Mukai pairing.

Definition 7.3.2. Let ϕ = exp(B)Ω be a generalized Calabi-Yau structure.
The generalized transcendental lattice T (X ,B) is the minimal primitive
sublattice of H2(X ,Z)⊕H4(X ,Z), such that ϕ ∈ T (X ,B)⊗C.

T (X ,0) = T (X) = NS(X)⊥ is the transcendental lattice and NS(X) =
H1,1(X)∩H2(X ,Z) is the Néron-Severi lattice.

Definition 7.3.3. Let X be a smooth complex projective variety. The (co-
homological) Brauer group is the torsion part of H2(X ,O∗X) in the analytic
topology: Br(X) = H2(X ,O∗X)tor.2

For an introduction to Brauer classes see [20] or [21]. Eventually we
introduce twisted surfaces:

Definition 7.3.4. A twisted Abelian or K3 surface (X,α) consists of an
Abelian or K3 surface X together with a class α ∈ Br(X). Two twisted
surfaces (X ,α),(Y,α ′) are isomorphic if there is an isomorphism f : X ∼=Y
with f ∗α ′ = α .

The exponential sequence

0−→ Z−→ OX −→ O∗X −→ 1

gives the long exact sequence

−→ H2(X ,Z)−→ H2(X ,OX)−→ H2(X ,O∗X)−→ H3(X ,Z)−→ .

For an Abelian or K3 surface H1(X ,Z) and therefore H3(X ,Z) is torsion
free. So an n-torsion element of H2(X ,O∗X) is always in the image of the
exponential map for a B0,2 ∈ H2(X ,OX) such that nB0,2 ∈ H2(X ,Z) for a
positive integer n. For a rational B-field B ∈ H2(X ,Q) we use the induced
homomorphism

B : T (X)−→Q

γ 7−→
∫

X
γ ∧B

(modulo Z) to introduce

T (X ,αB) := ker{B : T (X)→Q/Z} . (7.3.1)

The details can be found in [19, 22].

2Equivalently, we could define the Brauer group as the torsion part of H2
et(X ,O∗X ) in the Étale

topology.
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7.4 Stability conditions on K3 surfaces

Theorem 7.2.1 gives an embedding of the moduli space of SCFTs associ-
ated to a complex torus into the moduli space of SCFTs associated to the
corresponding Kummer surface. We are interested in the question if this
embedding has a lift to Bridgeland stability conditions. In the following we
show that this is indeed the case.

The abstract lattice Z4,20 is isometric to the even cohomology lattice
Heven(X ,Z) equipped with the Mukai (or intersection) pairing such that the
generators υ0 respectively υ of the hyperbolic lattice U are identified with
1 ∈ H0(X ,Z) respectively [pt] ∈ H4(X ,Z) (using Poincaré duality). The
lattice Z4,20 is also isometric to the lattice defined in Proposition 7.2.1. We
will identify these lattices in this section frequently.

Moduli spaces of N=(2,2) SCFTs can be seen as moduli spaces of gener-
alized Calabi-Yau structures [19]. Since we have an embedding of orbifold
conformal field theories it is natural to ask if there is a relation between
the structures we introduced in section 4 for an Abelian surface A and the
associated Kummer surface X = Km A.

Lemma 7.4.1. Let (A,αBA) be a twisted Abelian surface and (X ,αB) the
associated twisted Kummer surface with B-field lift BA ∈ H2(A,Q) as de-
scribed above and B as in Theorem 7.2.1. Then we have a Hodge isometry
T (A,BA)(2)∼= T (X ,B).

Proof. For a rational B-field B we have a Hodge isometry

T (X ,αB)∼= T (X ,B)

This was proven for K3 surfaces in [19] and also works for Abelian sur-
faces. The isomorphism in Theorem 2.0.2 defined by the map (7.2.1) sends
π∗H2(T,Z) to π∗H2(T,Z). We know that the ordinary transcendental lat-
tices of an Abelian surface A and its Kummer surface X are Hodge isometric
(up to a factor of 2) [23, 24]

T (A)(2)∼= T (X). (7.4.1)

The Hodge isometry (7.4.1) can be enhanced by (7.3.1) to a Hodge isometry
T (A,αBA)(2)∼= T (X ,αB).

So we have natural isometries of the above transcendental lattices for
B-fields associated with orbifold CFTs. An isometry between these two
transcendental lattices was also noted in [25].
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Let us first consider untwisted surfaces with B-field B∈NS(X)⊗R. We
consider a algebraic K3 surface X following [30] and use the Mukai pairing
on the integral cohomology lattice. We denote the bounded derived cate-
gories of coherent sheaves on X by Db(X) :=Db(Coh X). Let NS(X) be the
Néron-Severi lattice. The Mukai lattice is N (X) = H0(X ,Z)⊕NS(X)⊕
H4(X ,Z). Recall that the Mukai vector v(E) of an object E ∈ Db(X) is
defined by

v(E) = (r(E),c1(E),s(E)) = ch(E)
√

td(X) ∈N (X)

where ch(E) is the Chern character and s(E) = ch2(E)+ r(E). We define
an open subset

P(X)⊂N (X)⊗C

consisting of vectors whose real and imaginary part span positive definite
two-planes in N (X)⊗R. P(X) consists of two connected components
that are exchanged by complex conjugation. We have a free action of
GL+(2,R) by the identification N (X)⊗C ∼= N (X)⊗R2. A section of
this action is provided by the submanifold

Q(X) =
{
0 ∈P(X)| 〈0,0〉= 0,

〈
0, 0̄

〉
> 0,r(0) = 1

}
⊂N (X)⊗C.

r(0) projects 0 ∈N (X)⊗C into H0(X ,C). We can identify Q(X) with
the tube domain {

B+ iω ∈ NS(X)⊗C|ω2 > 0
}

by

0= exp(B+ iω) = υ
0 +B+ iω +

1
2
(B2−ω

2)υ + i〈B,ω〉υ

with υ0 = 1 ∈ H0(X ,Z) and υ = [pt] ∈ H4(X ,Z). We denote by
P+(X)⊂P(X) the connected component containing vectors of the form
exp(B+ iω) for an ample R-divisor class ω ∈ NS(X)⊗R. Let ∆(X) =
{δ ∈N (X)| 〈δ ,δ 〉=−2} be the root system. For each δ ∈ ∆(X) we have
a complex hyperplane

δ
⊥ = {0 ∈N (X)⊗C| 〈0,δ 〉= 0} ⊂N (X)⊗C.

We denote by

P+
0 (X) = P+(X)\

⋃
δ∈∆(X)

δ
⊥ ⊂N (X)⊗C.

Note that there are no spherical objects in Db(A) on an Abelian surface
A [26]. The following Proposition is underlying the main result of this
chapter Theorem 7.5.3.
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Proposition 7.4.1. Let A be an Abelian surface and X = Km A the cor-
responding Kummer surface. Then we have an embedding P+(A) ↪→
P+

0 (X).

Proof. An element of P+(A) is of the form exp(B + iω) ◦ g for g ∈
GL+(2,R), B ∈ NS(A)⊗R and ω ∈ NS(A)⊗R with ω2 > 0 [26]. Here
◦ is the free action of an element g ∈ GL+(2,R) on NS(A)⊗R. Let π∗ be
the map induced by the rational map π : A→ X . The action of GL+(2,R)
and the map π∗ commute. By Proposition 7.2.1 we have an injective map

i : Heven(A,Z)⊗R ↪→ Heven(X ,Z)⊗R. (7.4.2)

The 2-plane Ω given by the complex structure of the Abelian surface A
defines the complex structure on X by the 2-plane π∗Ω. Therefore N (A)
is mapped to N (X) and we get an induced map form P(A) to P(X). The
proof of Theorem 7.2.1 shows that vectors of the form 1/2π∗(exp(BT +
iω)) for BT ,ω ∈ NS(A)⊗R are sent to vectors

υ̂
0 +B+

1
2

(
B2−

(
1
2

π∗ω

)2
)

υ̂ + i
(

1
2

π∗ω +

〈
B,

1
2

π∗ω

〉
υ̂

)
(7.4.3)

in N (X) ⊗ C with B as in Lemma 7.4.1. The elements of N (X)
are contained in the orthogonal complement of H2,0(X) = C[π∗Ω] where
π∗Ω = π∗Ω1 + iπ∗Ω2.3 By corollary 7.2.2 we know that there are no roots
of Heven(X ,Z) in the orthogonal complement of the 4-plane spanned by
π∗Ω1,π∗Ω2 and the real and imaginary part of a vector of the form (7.4.3) in
Heven(X ,Z)⊗R. This implies that there are no roots in the orthogonal com-
plement of an induced element in P(X). Since π∗ω is an orbifold ample
class in the closure of the ample cone, P+(A) is mapped to P+(X).

The results of [30] can be generalized for twisted surfaces [32]. We
want to formulate a similar result to Proposition 7.4.1 in the twisted case as
well. From a physics point of view it is natural to consider more general
B-fields. This suggests the twisted approach.

Any class α ∈ Br(X) = H2(X ,O∗X)tor can be represented by a Čech 2-
cocycle

{
αi jk ∈ Γ(Ui∩U j∩Uk,O

∗
X)
}

on an analytic open cover {Ui} of X .

Definition 7.4.1. An (αi jk)-twisted coherent sheaf E consists of pairs
({Ei} ,

{
ϕi j
}
) such that Ei is a coherent sheaf on Ui and ϕi j : E j|Ui∩U j →

Ei|Ui∩U j are isomorphisms satisfying the following conditions:

3By abuse of notation we denote the holomorphic two-form defining the complex structure and
the 2-plane defined by it with the same symbol.
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1. ϕii = id

2. ϕ ji = ϕ
−1
i j

3. ϕi j ◦ϕ jk ◦ϕki = αi jk · id.

We denote the equivalence class of such Abelian categories of twisted
coherent sheaves by Coh(X ,α) and the bounded derived category by
Db(X ,α). For details consult [20]. For a realization of the following
notions one has to fix a B-field lift B of the Brauer class α such that
α = αB = exp(B0,2). The twisted Chern character

chB : Db(X ,αB)−→ H̃(X ,B,Z)

introduced in [36] identifies the numerical Grothendieck group with
the twisted Néron-Severi group NS(X ,αB) := H̃1,1(X ,B,Z). Here
H̃1,1(X ,B,Z) is the (1,1)-part of the Hodge structure associated to the B-
field B as defined after Definition 7.3.1. As in the untwisted case we denote
by

P(X ,αB)⊂ NS(X ,αB)⊗C

the open subset of vectors whose real and imaginary part span a positive
plane in NS(X ,αB)⊗R. Let P+(X ,αB) ⊂P(X ,αB) be the component
containing vectors of the form exp(B+ iω), where B ∈ H2(X ,Q) is a B-
field lift of αB and ω a real ample class.

Proposition 7.4.2. Let (A,αBA) be a twisted Abelian surface and (X ,αB)
the twisted Kummer surface with X the Kummer surface of A and Brauer
class αB := exp(B0,2) with B-field B as in Lemma 7.4.1. Then we have an
embedding P+(A,αBA) ↪→P+

0 (X ,αB).

Proof. Let A be an Abelian surface with Brauer class αBA with B-field lift
BA ∈ H2(A,Q). Then the induced B-field B is an element of H2(X ,Q)
and thus induces a Brauer class αB := exp(B0,2) by the remark after Def-
inition 7.3.4. NS(A,αBA) is embedded into NS(X ,αB), since we have
π∗Ω + 〈B,π∗Ω〉 υ̂ = π∗(Ω + 〈BA,Ω〉υ). Using similar arguments as for
Proposition 7.4.1 finishes the proof.

We consider the bounded derived category of coherent sheaves Db(X)
on a smooth projective variety X over the complex numbers. In this case
we say a stability condition is numerical if the central charge Z : K(X)→C
factors through the quotient group and we have the identification N (X) =
K(X)/K(X)⊥. Let us write Stab(X) for the set of all locally finite numeri-
cal stability conditions on Db(X). The Euler form χ is non-degenerate on
N (X)⊗C, so the central charge takes the form

Z(E) =−χ(p(σ),v(E))

54



for some vector p(σ) ∈ N (X)⊗ C, defining a map p : Stab(X) −→
N (X)⊗C. In this case Theorem 6.0.2 takes the following form:

Theorem 7.4.2. [26] For each connected component Stab∗(X)⊂ Stab(X),
there is a linear subspace V ⊂N (X)⊗C such that

p : Stab∗(X)−→N (X)⊗C

is a local homeomorphism onto an open subset of the subspace V. In partic-
ular, Stab∗(X) is a finite-dimensional complex manifold.

Recall from chapter 6 that auto-equivalences act continuously on the
space of locally-finite stability conditions. We have the following descrip-
tion of the stability manifold for algebraic K3 surfaces X :

Theorem 7.4.3. [30] There is a distinguished connected component
Stab†(X) ⊂ Stab(X) which is mapped by p onto the open subset P+

0 (X).
The induced map

p : Stab†(X)→P+
0 (X)

is a covering map. We denote by Aut†
0(D

b(X)) the subgroup of cohomolog-
ical trivial auto-equivalences of Db(X) which preserve the connected com-
ponent Stab†(X). Aut†

0(D
b(X)) acts freely on Stab†(X) and is the group of

deck transformations of this covering.

The main difference in the case of Abelian surfaces is the absence of
spherical objects giving rise to (−2)-classes. In fact there are no ill-behaved
SCFTs on complex tori. For an Abelian surface A the Todd class is trivial
thus the Mukai vector of an object E ∈ Db(A) is

v(E) = (r(E),c1(E),ch2(E)) ∈N (A) = H0(A,Z)⊕NS(A)⊕H4(A,Z).

We define P+(A) ⊂ N (A)⊗C to be the component of the set of vec-
tors which span positive-definite two-planes containing vectors of the form
exp(B+ iω) with B,ω ∈ NS(A)⊗R and ω ample.

Theorem 7.4.4. [30] Let A be an Abelian surface. Then there is a con-
nected component Stab†(A)⊂ Stab(A) which is mapped by p onto the open
subset P+(A)⊂N (X)⊗C, the induced map

p : Stab†(A)−→P+(A) (7.4.4)

is the universal cover, and the group of deck transformations is generated
by the double shift-functor.
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P+(A) is a GL+(2,R)-bundle over the contractable space{
B+ iω ∈ NS(X)⊗C|ω2 > 0

}
.

Thus the fundamental group π1(P
+(A)) ∼= Z is generated by the loop in-

duced by the C∗ action on P(A). This C∗ action is given explicitly by the
action of the rotation matrix(

cos t −sin t
sin t cos t

)
for t ∈ [0,2π] on P(A) via the identification N ⊗C∼= N ⊗R2.

We give an example of a stability condition on an algebraic K3 or an
Abelian surface. For this we have to introduce a little more machinery. The
standard t-structure of the derived category of coherent sheaves of a smooth
projective variety has as its heart the Abelian category of coherent sheaves.
For a K3 surface slope stability with this t-structure defines no stability
condition since the stability function for any sheaf supported in dimension
zero vanishes. The next simplest choice is the t-structure obtained by tilting
[34]. For details see [30].

Let ω ∈ NS(X)⊗R be an element of the ample cone Amp(X) of an
Abelian or an algebraic K3 surface X . We define the slope µω(E) of a
torsion-free sheaf E on X to be

µω(E) =
c1(E) ·ω

r(E)
.

Let T be the category consisting of sheaves whose torsion-free part
have µω -semistable Harder-Narasimhan factors with µω > B ·ω and F
the category consisting of torsion-free sheaves with µω -semistable Harder-
Narasimhan factors with µω ≤ B ·ω . (T ,F ) defines a torsion pair in the
Abelian category of coherent sheaves on X . Tilting with respect to this
torsion pair gives a bounded t-structure on Db(X) with heart A (B,ω) that
depends on B ·ω . As stability function on this heart we choose

Z(B,ω)(E) = (exp(B+ iω),v(E)). (7.4.5)

Note that the central charge (7.4.5) is of the form guessed by physicists by
mirror symmetry arguments. For a Calabi-Yau threefold we expect quantum
corrections for this central charge [35].

Proposition 7.4.3. [30] The pair (Z(B,ω),A (B,ω)) defines a stability con-
dition if for all spherical sheaves E on X one has Z(E) /∈R≤0. In particular,
this holds whenever ω2 > 2.
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We denote the set of all stability conditions arising in this way by V (X).
We denote by ∆+(X)⊂ ∆(X) elements δ ∈ ∆(X) with r(δ )> 0. We define
the following subset of Q(X)

L (X) =
{

Ω = exp(B+ iω) ∈Q(X)|ω ∈ Amp(X),〈Ω,δ 〉 /∈ R≤0,∀δ ∈ ∆
+(X)

}
.

The map p restricts to a homeomorphism [30]

p : V (X)−→L (X).

We use the free action of ˜GL+(2,R) on V (X) to introduce U(X) :=

V (X) · ˜GL+(2,R). The connected component Stab†(X) is the unique one
containing U(X). U(X) can be described as the stability conditions in
Stab†(X) for which all skyscraper sheaves Op are stable of the same phase
[30]. Since we have no spherical objects on an Abelian surface A in this
case we have Stab†(A) =U(A).

We say a set of objects S ⊂ Db(X) has bounded mass in a connected
component Stab∗(X)⊂ Stab(X) if sup{mσ (E)|E ∈ S}< ∞ for some point
σ ∈ Stab∗(X). This implies that the set of Mukai vectors {v(E)|E ∈ S} is
finite. We have a wall-and-chamber structure:

Proposition 7.4.4. [30] Suppose that the subset S ⊂ Db(X) has bounded
mass in Stab∗(X) and fix a compact subset B ⊂ Stab∗(X). Then there
is a finite collection

{
Wγ |γ ∈ Γ

}
of real codimension-one submanifolds of

Stab∗(X) such that any component

C ⊂ B\
⋃
γ∈Γ

Wγ

has the following property: if E ∈ S is σ−semistable for σ ∈C, then E is
σ -semistable for all σ ∈C. Moreover, if E ∈ S has primitive Mukai vector,
then E is σ -stable for all σ ∈C.

Using this result Bridgeland proved the following theorem for the
boundary ∂U(X) of the open subset U(X) that is contained in a locally
finite union of codimension-one real submanifolds of Stab(X):

Theorem 7.4.5. [30] Suppose that σ ∈ ∂U(X) is a general point of the
boundary of U(X), i.e. it lies on only one codimension-one submanifold of
Stab(X). Then exactly one of the following possibilities holds:

1. There is a rank r spherical vector bundle A such that the only σ -
stable factors of the objects

{
Op|p ∈ X

}
are A und TA(Op). Thus the

Jordan-Holder filtration of each Op is given by

0−→ A⊕r −→ Op −→ TA(Op)−→ 0.
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2. There is a rank r spherical vector bundle A such that the only σ -stable
factors of the objects

{
Op|p ∈ X

}
are A [2] and T−1

A (Op). Thus the
Jordan-Holder filtration of each Op is given by

0−→ T−1
A (Op)−→ Op −→ A⊕r [2]−→ 0.

3. There are a nonsingular rational curve C ⊂ X and an integer k such
that Op is σ -stable for p /∈C and such that the Jordan-Holder filtra-
tion of Op for p ∈C is

0−→ OC(k+1)−→ Op −→ OC(k) [1]−→ 0.

Here TA(B) is the Seidel-Thomas twist of B with respect to the spherical
object A [37].

7.5 Inducing stability conditions

Let Stab†(X) be the distinguished connected component of the space of
locally-finite stability conditions described in section 7.4. We have the fol-
lowing important observation:

Lemma 7.5.1. Let A be an Abelian surface and X = Km A the associ-
ated Kummer surface. Let i : N (A)⊗C → N (X)⊗C be the map in-
duced from the injective map 7.4.2. Then for every element z ∈ i(P+(A))
there is a stability condition σ ∈ Stab†(X) with p(σ) = z for the map
p : Stab∗(X)−→N (X)⊗C.

Proof. This is an immediate consequence of Proposition 7.4.1 and Theorem
7.4.3.

We observed in Theorem 7.2.1 that a four-plane defining a SCFT on a
two-dimensional complex torus T with B-field BT and Kähler class ω is
mapped to a four-plane defining a SCFT with B-field B = 1

2π∗BT + 1
2BZ.

π∗ω is an orbifold ample class orthogonal to the 16 classes
{

Êi
}
, i ∈ F4

2.
π∗ω is an element of the closure of the ample cone Amp(X) = Ne f (X).

Let U(X) be the subset of Stab†(X) described in section 7.4.

Lemma 7.5.2. Let exp(B+ iπ∗ω) ∈ i(P+(A)) be as in Proposition 7.4.1
with ω2 > 1. Then there is a stability condition σ ∈ ∂U(X) with π(σ) =
exp(B+ iπ∗ω). This σ is an element of the codimension-one submanifolds
associated to the 16 exceptional divisor classes.
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Proof. By the assumption ω2 > 1 we have (π∗ω)2 > 2 and thus we can
apply Proposition 7.4.3. By the covering map property there is a stability
condition σ on the boundary of ∂U(X) with p(σ) = exp(B+ iπ∗ω). Every
(-2) curve defines a boundary element of U(X) as in the third case of The-
orem 7.4.5 [38]. The π∗ω is an orbifold ample class orthogonal exactly on
the 16 (-2) curves described in section 7.2. This finishes the proof.

The covering p : Stab†(X)→P+
0 (X)) is normal [30].

Proposition 7.5.1. There is an injective map from the group of deck trans-
formations of Stab†(A) to the group of deck transformations of Stab†(X).

Proof. Recall from the remark after Theorem 7.4.4 that the fundamental
group π1(P

+(A)) ∼= Z is generated by the loop induced by the C∗ action
on P(A). We choose base points l, l′ and σ ∈ Stab†(X) with p(σ) = l′.
The induced map

π1(P
+(A), l)−→ π1(P

+
0 (X), l′)

is injective since the map π∗ and the action of GL+(2,R) commute. The
trivial element of π1(P

+(A), l) is the only normal subgroup mapped to the
normal subgroup p∗(π1(Stab†(X),σ) of π1(P

+
0 (X), l′).

From the discussion of the SCFT side of the story we expect that there is
an embedding of the connected component Stab†(A) into the distinguished
connected component Stab†(X).

Theorem 7.5.3. Let Stab†(A) be the (unique) maximal connected com-
ponent of the space of stability conditions of an Abelian surface A and
Stab†(X) the distinguished connected component of Stab(X) of the Kummer
surface X = Km A. Then every connected component of p−1(i(P+(A))) is
homeomorphic to Stab†(A).

Proof. Let i : N (A)⊗C→ N (X)⊗C be the linear map induced from
the injective map 7.4.2. We have a homeomorphism i(P+(A)) ∼= P+(A)
and thus the fundamental group π1(i(P+(A))) = Z is also a free cyclic
group generated by the loop induced from the C∗ action on P+(A). Note
that P+(A) is path connected. By Theorem 7.4.4 it is also locally path
connected since Stab†(A) is a manifold. A path component of the cov-
ering space p−1(i(P+(A))) is again a covering space. By the example
before Definition 4.2.1 the generator of π1(i(P+(A))) lifts to a path cor-
responding to the double shift functor [2] that is no closed loop. The only
closed loop in π1(i(P+(A))) lifting to a closed loop in the path compo-
nent is the trivial loop, i.e. a path connected component of the covering
space p−1(i(P+(A))) is simply connected. By uniqueness of the universal
covering it is isomorphic to Stab†(A).
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Lemma 7.5.4. Deck transformations except double shifts exchange the path
components of p−1(i(P+(A))).

Proof. By the example before Definition 4.2.1 double shifts correspond
to the lift of the continuous C∗ action to the stability manifold and thus
a double shift maps a path component to itself. Would any other deck
transformation, i.e. any cohomological trivial auto-equivalence of Db(X)
preserving the connected component Stab†(X), map a path component of
p−1(i(P+(A))) to itself this would be a deck transformation of this path
component isomorphic to Stab†(A) considered as a covering space. But
such deck transformations are given exactly by the double shifts.

Theorem 7.5.3 defines embeddings Stab†(A) ↪→ Stab†(X). In fact, we
get one embedding up to deck transformations by the uniqueness of lifts,
i.e. we can choose any of the path components of p−1(i(P+(A))) for an
embedding. Any two such embeddings are then related by a deck transfor-
mation.

We have the following generalization of Theorem 7.5.3 in the case of
twisted surfaces:

Theorem 7.5.5. Let Stab†(A,αBA) be the distinguished connected compo-
nent of the space of stability conditions on Db(A,αBA) for a twisted Abelian
surface (A,αBA) and Stab†(X,αB) the distinguished connected component
of the space of stability conditions on Db(X ,αB) for the associated twisted
Kummer surface (X,αB) with B-field lift as in Proposition 7.4.2. Then we
have an embedding Stab†(A,αBA) ↪→ Stab†(X,αB).

Proof. Using Proposition 7.4.2 this follows from exactly the same argu-
ments as in the proof of Theorem 7.5.3.
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Chapter 8

Quivers with Potential

8.1 Mutation method

Let A ⊂ D be the heart of a bounded t-structure of D . We assume A
is of finite length, i.e. every objects in A is of finite length. Further we
assume the Abelian category A has only finitely many simple objects (up
to isomorphisms). In chapter 6 we described the subset U(A ) ⊂ Stab(D)
of stability conditions with heart A = P((0,1]). We are interested in the
case where the tilt LS(A ) of the heart A at any of its simple objects S is
again of finite length. Then Proposition 6.0.4 allowed to glue the regions
U(A ) and U(LS(A )) along their boundaries.

Definition 8.1.1. Let A ⊂D be the heart of a bounded t-structure of D and
we assume A is of finite length with finitely many simple objects. We say
we can tilt A indefinitely if the left-tilt LS(A ) at any simple object of A is
again of finite length. The tilt of LS(A ) at any simple object of LS(A ) is
again of finite length and so on.

This is a strong condition on the heart of a t-structure of a triangulated
category. We will study examples in section 8.2.

Here are two remarks:

1. The Grothendieck group K(A ) of an Abelian category A of finite
length is a free Abelian group on the simple objects of A . Since we
can identify K(A ) = K(D) any heart obtained by a finite sequence of
simple tilts from a heart A that we can tilt indefinitely has the same
(finite) number of simple objects.

2. If a heart of a bounded t-structure of a triangulated category is of finite
length with finitely many simple objects and every simple object S
fulfills Ext1(S,S) = 0, then the tilt at any simple object is again a
heart of finite length. [48]
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Recall the definition of a central charge on an Abelian category in chap-
ter 6.

Definition 8.1.2. Let A be an Abelian category. We call a central charge Z :
K(A )→ C discrete if different stable objects of A have different phases.

Note that this definition is weaker than the definition given in [57]. The
full (Abelian) subcategory of A whose objects are the zero object and the
semistable objects of a fixed phase has the stable objects as its simple ob-
jects. B. Keller defines a central charge to be discrete if these full subcate-
gories are semi-simple with a unique stable object.

Let A ⊂ D be the heart of a bounded t-structure of D of finite length
with finitely many simple objects. Let us consider the n simple objects
S1, . . . ,Sn of A . For a discrete central charge Z : K(A )→ C there must be
a simple object Si that is left-most, i.e. whose phase in (0,1] is the bigger
than the phases of the other simple objects. First we assume that the central
charge of S1, . . . ,Sn lie in the upper half-plane above the real axis. Then we
rotate the central charge Z : K(A )→ C by rotating the complex numbers
Z(S1), . . . ,Z(Sn) a bit counter-clockwise. This corresponds to deforming
stability conditions in U(A ) within U(A ) until we reach a stability condi-
tion σ on the boundary of U(A ) corresponding to a central charge where
the left-most simple object Si of A lies on the negative real axis and all
other simple objects still lie in the upper half-plane. Now we are in the sit-
uation of Proposition 6.0.4 and thus there is a neighborhood of σ that lies
in U(A )∪U(LSi(A )). If we rotate a bit further the corresponding stabil-
ity conditions all lie in U(LSi(A )). Now we can repeat the same process
for the tilted heart LSi(A ) and proceed further with this procedure until (if
possible) we accomplish a rotation by π . This algorithm describes a path
through regions in Stab(D) each isomorphic to Hn. This procedure is in-
spired by the mutation method in [46].

Let A ⊂ D be the heart of a bounded t-structure of D of finite length
with finitely many simple objects. We assume we can tilt A indefinitely
and we have given a discrete central charge on A . We summarize the steps
of the (categorical) mutation method:

1. Start with a stability condition in U(A ) and deform it within U(A )
by rotating the central charge Z : K(D)→ C counter-clockwise.

2. If the left-most simple object S leaves the upper half-plane tilt at this
left-most simple S.

3. Deform within U(LS(A )) by rotating the central charge further till the
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left-most object of LS(A ) leaves the upper half-plane and tilt LS(A )
at this simple object.

4. Repeat this procedure (if possible) until we accomplish a rotation by
π .

A priori, two simple objects of a tilted heart could be both left-most.
We exclude this possibility in Lemma 8.1.3 and we can therefore continue
indefinitely with the mutation algorithm described above. First we describe
the steps in the mutation method in the proof of Theorem 8.1.1 in detail.
Bases on this proof we are then ready to prove Lemma 8.1.3. Now this is
the key result:

Theorem 8.1.1. Let A ⊂ D be the heart of a bounded t-structure of D of
finite length with finitely many simple objects S1, . . . ,Sn. We assume we can
tilt A indefinitely and we have given a discrete central charge Z : K(A )→
C. Further we assume we terminate after finitely many steps in the mutation
method, i.e. after finitely many tilts. Then the left-most simple objects of
hearts appearing in the mutation method are the stable objects of A . In the
order of decreasing phase they give a sequence of simple tilts from A to
A [−1]. In particular, we tilt at all initial simple objects S1, . . . ,Sn.

Proof. In the mutation method we always tilt at objects in A as can be seen
as follows: The first tilt is at a simple object in A . Then the simple objects
in the first tilted heart are in A or in A [−1] by Lemma 5.3.5. Since we
tilt at the left-most simple of a heart we tilt next at an object in A . This is
because all objects in A [−1] will have a smaller phase than objects in A
since we rotate counter-clockwise. It follows from Lemma 5.3.4 by induc-
tion that the simple objects of a tilted heart are in A or in A [−1]: Let us
assume that a heart A ′ appearing in the mutation method is the left-tilt of
A with respect to some torsion pair (T ,F ) in A . Then the simple objects
of A ′ lie in F ⊂A or in T [−1] ⊂A [−1]. We tilt next at an object S′ in
A . Thus S′ ∈F and 〈S′〉 ⊂F . By Lemma 5.3.4 the simple objects of the
heart obtained by tilting A ′ at S′ is the left-tilt of some torsion pair of A .

As long as a simple object of a heart appearing in the mutation method
lies in A and thus its central charge lies in H we have not accomplished a
rotation by π . The final heart A ′ obtained in the mutation method contains
only simple objects in A [−1]. We have therefore A ′ ⊂ A [−1] and this
implies A ′ = A [−1]. If all simple objects are in A [−1] we are in the final
heart.

By the proof of Lemma 8.1.3 all left-most simple objects of a heart ap-
pearing in the mutation method are stable objects in A . The phases of all
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other stable objects in A are smaller than the phase of the first left-most
simple object S since we chose a discrete central charge. By the defini-
tion of the left-tilt at a simple object before Lemma 5.3.4 all stable objects
except the left-most simple remain in the first tilt of A since there are no
homomorphisms between S and the other stable objects by Lemma 6.0.1. In
the first tilted heart the phases of the stable objects of A are equal or smaller
than the new left-most simple object. If the phase of a stable object of A
is equal to this left-most simple they are the same since we chose a discrete
central charge. Otherwise the stable object remains in the next tilted heart
and so on. Since we rotate the central charge further and further every stable
object of A has to appear as a left-most simple of a heart. Therefore we tilt
in the mutation method at all stable objects of A . For every central charge,
we tilt at all initial simple objects S1, . . . ,Sn since these are stable for any
central charge.

Corollary 8.1.2. For every heart A ′ appearing in the mutation method we
have A [−1]≤A ′ ≤A .

Proof. For two hearts A1,A2 with associated bounded t-structures
F1,F2 ⊂ D we say A1 ≤ A2 if and only if F2 ⊂ F1. Given the heart
A of a bounded t-structure F ⊂ D the t-structure is the extension-closed
subcategory

F = 〈A ,A [1],A [2], . . .〉 .

By the proof of Theorem 8.1.1 every heart A ′ appearing in the mutation
method is a left-tilt of the initial heart A at same torsion pair (T ,F ) in
A . Note that A ′ = 〈F ,T [−1]〉 thus we have F ⊂ A ′ and T ⊂ A ′[1].
Since the torsion pair (T ,F ) generates A we have A ′ ≤ A . Further F
and T [−1] lie in the t-structure

〈A [−1],A ,A [1], . . .〉

associated to the heart A [−1]. Thus we have A [−1]≤A ′.

Lemma 8.1.3. Let A ⊂D be the heart of a bounded t-structure of D with
discrete central charge Z : K(A )→ C as in Theorem 8.1.1. The phases of
any simple objects of a heart in any step of the mutation method are distinct.

Proof. The stable objects of a stability condition in U(A ) are precisely the
stable objects in A with respect to the central charge Z : K(A )→C by the
proof of Proposition 6.0.2. If we rotate this central charge as above all stable
objects will remain stable since the phases of all objects in A change by the
same phase. Rotating further we arrive at a stability condition σ ∈U(A )
at the boundary of the region U(A ). The simple objects of A will remain
stable in a neighborhood of σ (see e.g. chapter 7 of [45]). Instead of the
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upper half plane H∪R<0 we could have chosen the convention H∪R>0 in
the definition of a central charge. We saw in chapter 5 that right-tilts and
left-tilts are inverse to each other. Given any heart appearing in the mutation
method we can perform the mutation method in clockwise direction with
right-tilts instead of left-tilts. Thus the simple objects of a heart appearing
in the mutation method are stable objects in the initial stability condition
with heart P((0,1]) =A . Since we chose a discrete central charge they all
have distinct phases.

In Theorem 8.1.1 we assumed we rotate by finitely many steps. We can
reformulate this assumption by the following

Lemma 8.1.4. Let A ⊂D be the heart of a bounded t-structure of D with
discrete central charge Z : K(A )→C as in Theorem 8.1.1. In the mutation
method we rotate by finitely many steps if and only if there are only finitely
many stable objects in A .

Proof. If we rotate by finitely many steps all stable objects of A will appear
as a left-most simple object of a heart appearing in the mutation method.
Thus we have finitely many stable objects. Conversely, let us assume we
have finitely many stable objects in A . All simple objects of hearts appear-
ing in the mutation method are stable objects in A by the proof of Lemma
8.1.3. Thus there are only finitely many possibilities of such simple objects.
If we would just go ahead with the mutation algorithm we would come
back to a heart that already appeared in this process. But this is impossible
since there are no oriented cycles in the exchange graph of directed simple
tilts [48]. Therefore the mutation method must terminate after finitely many
steps.

8.2 Quivers with (super)potential

Let k be a field. In this section we consider examples of hearts of bounded
t-structures of triangulated categories that we can tilt indefinitely. The first
example is the category of finite-dimensional representations HQ := mod−
kQ of an acyclic quiver Q. HQ is the heart of the standard t-structure on the
bounded derived category Db(HQ) of HQ. By Theorem 5.7 in [48] every
heart obtained from HQ by a finite sequence of simple tilts in Db(HQ) is
of finite length with finitely many simple objects. In the case of a Dynkin
quiver Q Theorem 8.1.1 reads as follows:

Proposition 8.2.1. [47] Let Q be a Dynkin quiver. Let us assume we have
a discrete central charge on HQ. Then the stable representations of HQ in
the order of decreasing phase give a sequence of simple tilts from HQ to
HQ[−1].
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Proof. By Theorem 5.7 in [48] we can tilt indefinitely. Since there are only
finitely many indecomposable objects in HQ there can only be finitely many
stable objects. By Lemma 8.1.4 we terminate after finitely many steps in
the mutation method. We finish the proof by applying Theorem 8.1.1.

An example for a non-Dynkin quiver is the Kronecker quiver

1 //
// 2 .

Let us denote by S1 and S2 the simple representations associated with
the two vertices. If the phase of S1 is strictly greater than the phase of S2,
the simples are the only stable objects and we tilt two times to get to the
heart with simples S1[−1],S2[−1]. If the phase of S2 is strictly greater than
the phase of S1 the stable objects are precisely the representations in the
P1-family with dimension vector (1,1) together with the postprojective and
the preinjective representations. In this case infinitely many stable objects
lie on a ray in the upper half plane.

Every acyclic quiver Q has a sink and a source. Therefore we can label
the n vertices of Q in the following way: Take a sink of Q and label it by
1. Remove this vertex from the quiver. Take a sink in the remaining quiver
and label it by 2. Going on in this way we label the vertices of Q from
1 to n. Then there are no arrows in Q from the vertex i to the vertex j if
1≤ i < j ≤ n.

Lemma 8.2.1. For any acyclic quiver Q there is a discrete central charge
on HQ such that the stable objects with respect to this central charge are
precisely the simple objects of HQ.

Proof. The labeling of the vertices of Q described in front of the Lemma
implies the existence of an ordering of the simple objects S1, . . . ,Sn of HQ
such that

Ext1(Si,S j) = 0 for 1≤ i < j ≤ n.

We define a central charge on HQ by assigning complex numbers
Z(S1), . . . ,Z(Sn) in H to the simple objects S1, . . . ,Sn with decreasing phase
from Z(S1) to Z(Sn). Now we run the mutation method: Note that any
simple object Si is rigid, i.e. Ext1(Si,Si) = 0. Thus we can calculate the
new simple objects of the tilted heart with the help of Proposition 5.2
in [48] and the simple objects of any hearts appearing in the mutation
method are again rigid. First we tilt at the simple object S1. But since
Ext1(S1,Si) = 0 for 1 < i all other simple objects are simple objects in the
new heart together with S[−1]. Then we tilt the new heart at S2. Note that
Ext1(S2,S1[−1]) = Hom(S2,S1) = 0. The simple objects of the new heart
are the objects S3, . . . ,Sn together with the objects S1[−1] and S2[−1] and
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so on. Going on in this way we see that the mutation algorithm terminates
after n steps. If there would be a stable object E except the simple objects
S1, . . . ,Sn it must become left-most together with a simple object Si in some
heart H ′ appearing in the mutation method. But then the simple factors of
the Jordan-Hölder filtration of E in H ′ must be isomorphic to Si. Thus Si
is a subobject of E in HQ of the same phase. Since E is stable we have
E ∼= Si.

The mutation method in [46] uses mutations of quivers with potential.
An idea of Bridgeland was that mutation is modeled by tilting hearts [44].
This philosophy is behind Theorem 8.2.5. We now make contact with these
original ideas.

Definition 8.2.1. Let Q be a finite, 2-acyclic1 quiver and r be a vertex of Q.
The mutation of Q at the vertex r is the new quiver µr(Q) obtained from Q
by the rules:

1. for each i→ r→ j add an arrow i→ j,

2. reverse all arrows with source or target r,

3. remove a maximal set of 2-cycles.

In the following example

2

��
1

@@

3oo

2

��
1 3

^^

the quivers are linked by a mutation at the vertex 2.

The category of representations of an acyclic quiver is a special case
of the category of finite-dimensional modules over the Jacobi algebra of
a quiver with potential [49]. Let Q = (Q0,Q1) be a finite quiver with set
of vertices Q0 and set of arrows Q1. We denote by kQ its path algebra,
i.e. the algebra with basis given by all paths in Q and product given by
composition of paths as in chapter 4. Let k̂Q be the completion of kQ at
the ideal generated by the arrows of Q. We consider the quotient of k̂Q
by the subspace [k̂Q, k̂Q] of all commutators. It has a basis given by the
cyclic paths of Q (up to cyclic permutation). For each arrow a ∈ Q1 the

1We call a quiver 2−acyclic if it does not contain loops 	 and 2-cycles �.
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cyclic derivative is the linear map from the quotient to k̂Q which takes an
equivalence class of a path p to the sum

∑
p=uav

vu

taken over all decompositions p = uav. An element

W ∈ HH0(k̂Q) =
̂̂kQ

[k̂Q, k̂Q]

is called a (super)potential if it does not involve cycles of length ≤ 2.

For example the quiver

2
a

��
1

b
@@

3c
oo

(8.2.1)

may have the potential W = abc or W = abcabc.

Definition 8.2.2. [49] Let (Q,W ) be a quiver Q with potential W . The Ja-
cobi algebra P(Q,W ) is the quotient of k̂Q by the twosided ideal generated
by the cyclic derivatives ∂aW :

P(Q,W ) := k̂Q/(∂aW,a ∈ Q1).

We call a quiver with potential (Q,W ) Jacobi-finite if its Jacobi algebra
is finite-dimensional.

Here are two examples:

1. If Q is an acyclic quiver there is only one possible potential W = 0
and the Jacobi algebra is the path algebra kQ of Q.

2. Let us consider the quiver with one vertex and three loop arrows
X ,Y,Z:

• Zee

Y

��
X 99

with potential W = XY Z−XZY . (123) and (132) are not cyclic per-
mutations of each other and therefore W is non-zero. We calculate the
cyclic derivatives:
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∂X(W ) = Y Z−ZY
∂Y (W ) = ZX−XZ
∂Z(W ) = XY −Y X .

Thus the Jacobi algebra is the power series ring k[[X ,Y,Z]].

We denote by nil(P(Q,W )) the category of finite-dimensional (right)
modules over P(Q,W ). This is an Abelian category of finite length with
simple objects the modules Si, i ∈ Q1. Given a quiver with potential we
introduce next a triangulated category following [51]. This category has a
canonical t-structure with heart equivalent to nil(P(Q,W )).

Definition 8.2.3. [50] Let (Q,W ) be a quiver Q with potential W . The
Ginzburg algebra Γ(Q,W ) of (Q,W ) is the differential graded (dg) algebra
constructed as follows: Let Q̃ be the graded quiver2 with the same vertices
as Q and whose arrows are

1. the arrows of Q (they all have degree 0),

2. an arrow a∗ : j→ i of degree −1 for each arrow a : i→ j of Q,

3. a loop ti : i→ i of degree −2 for each vertex i ∈ Q0.

The underlying graded algebra of the Ginzburg algebra Γ := Γ(Q,W )
is the completion of the graded path algebra kQ̃ in the category of graded
vector spaces with respect to the ideal generated by the arrows of Q̃. The
differential of Γ(Q,W ) is the unique continuous linear endomorphism ho-
mogeneous of degree 1 which satisfies the Leibniz rule

d(uv) = (du)v+(−1)pudv, (8.2.2)

for all homogeneous u of degree p and all v defined by

1. da = 0 for each arrow a of Q,

2. d(a∗) = ∂aW for each arrow a of Q,

3. d(ti) = ei(∑a[a,a∗])ei for each vertex i of Q where ei is the lazy path
at i. The sum is over all arrows of Q.

2A graded quiver is a quiver where each arrow is equipped with an integer degree.
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We call on the quiver (8.2.1) with potential W = abc again. The graded
quiver Q̃ is the following:

2

t2

��

b∗

�� a
��

1t1 99
c∗

//
b

@@

3 t3ee

a∗
^^

coo

The differentials are as follows:

d(a∗) = bc
d(b∗) = ca
d(c∗) = ab
d(t1) = cc∗−b∗b
d(t2) = bb∗−a∗a
d(t3) = aa∗− c∗c.

Let us calculate the sum ∑u [u,∂uW ] in this case as an illustrative exam-
ple:

∑
u
[u,∂uW ] = [a,∂aW ]+ [b,∂bW ]+ [c,∂cW ]

= abc−bca+bca− cab+ cab−abc
= 0.

This implies d2(ti) = 0.

For the convenience of the reader we prove the following two Lemmas
stated in the original work [50].

Lemma 8.2.2. [50] The differential d of the Ginzburg algebra fulfills:
d2 = 0.

Proof. Using the rule 8.2.2 we only have to check d2(ti) = 0. We compute

d2(ti) = ei(∑
a
[a,da∗])ei = ei(∑

a
[a,∂aW ])ei.

Then the statement follows from the identity ∑a[a,∂aW ] = 0.

Lemma 8.2.3. [50] Let Γ be the Ginzburg algebra of a quiver with
potential (Q,W ). Then H0(Γ) =P(Q,W ).
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Proof. This follows from the Definition 8.2.3: The Ginzburg algebra is con-
centrated in cohomological degrees ≤ 0. The degree zero part corresponds
to k̂Q and the degree -1 part corresponds to products of degree zero ele-
ments with an element of the form a∗ for a ∈ Q1. Using the rule 8.2.2 we
see that the -1 part is mapped by the differential d to the twosided ideal
generated by the cyclic derivatives ∂aW for a ∈ Q1.

Let D(Γ) be the derived category of the Ginzburg algebra and D f d(Γ)
be the full subcategory of D(Γ) formed by dg modules whose homology is
of finite total dimension ,i.e.

∑
i∈Z

dim H i(M)< ∞.

The category D f d(Γ) is triangulated and 3-Calabi-Yau [52]. Let F be the
full subcategory of D(Γ) whose objects are the dg modules M such that
H p(M) = 0 for p > 0. The category F is a canonical t-structure of D(Γ)
whose truncation functors are given by the ordinary truncation functors in
the category of complexes of vector spaces [53]. The heart A of the induced
t-structure on D f d(Γ) is equivalent to nil(P(Q,W )). The simple P(Q,W )-
modules Si associated with the vertices of Q are made into Γ-modules via
the morphism Γ→ H0(Γ). In D f d(Γ) they are 3-spherical objects, i.e. we
have an isomorphism

Ext∗Γ(Si,Si)∼= H∗(S3,C).

For spherical objects in triangulated categories see [54].

Definition 8.2.4. A good extension of mutations of quivers to quivers with
potential is an extension such that we can mutate indefinitely and the muta-
tion of the underlying quivers is given by the quiver mutation rule of Defi-
nition 8.2.1.

Derksen, Weyman and Zelevinsky proved the following important result
in [49].

Theorem 8.2.4. [49] The mutation of a 2-acyclic quiver Q 7→ µr(Q) at a
vertex r admits a good extension for potentials not belonging to a countable
union of hypersurfaces C ⊂ HH0(k̂Q).

Definition 8.2.5. Let C ⊂ HH0(k̂Q) be the union of hypersurfaces as in
Theorem 8.2.4. We call the potentials not belonging to C generic.

If Q is an acyclic quiver there is only one generic potential: W = 0. For
a precise definition of the extension of mutations to quivers with potential
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see [49]. The crucial fact for this work is that you can mutate a 2-acyclic
quiver with a generic potential indefinitely. We denote the mutation of the
quiver with potential (Q,W ) in the sense of Theorem 8.2.4 at the vertex r
by µr(Q,W ).

The following Theorem of Keller and Yang realizes the idea of Bridge-
land mentioned in the introduction that mutation should be modeled by tilt-
ing. The crucial consequence for us is that we can tilt the Abelian cate-
gory associated with a quiver with generic potential indefinitely, see Lemma
8.2.6.

Theorem 8.2.5. [53] Let (Q,W ) be a 2-acyclic quiver with generic po-
tential. Let Γ be the Ginzburg algebra of (Q,W ) and Γ′ be the Ginzburg
algebra of µr(Q,W ). Then there is a canonical equivalence of derived cat-
egories

Φ : D(Γ′)−→ D(Γ)

inducing k-linear triangle equivalence of the subcategories

D f d(Γ
′)−→ D f d(Γ).

Let A ′ be the heart of the canonical t-structure on D f d(Γ
′). Then Φ(A ′) is

the heart of a new t-structure on D f d(Γ) given by the left-tilt at Sr of A in
the sense of chapter 5, where A is the heart of the canonical t-structure on
D f d(Γ).

Lemma 8.2.6. Let (Q,W ) be a 2-acyclic quiver Q with a generic potential
W. Then we can tilt the heart A of the canonical t-structure on D f d(Γ)
indefinitely.

Proof. Let Γ be the Ginzburg algebra of (Q,W ), Γ′ the Ginzburg algebra
of µr(Q,W ) and Γ′′ the Ginzburg algebra of µl(µr(Q,W )). Then we have a
triangle equivalence Φ′ : D f d(Γ

′′)−→D f d(Γ
′). The heart A ′′ of the canon-

ical t-structure of D f d(Γ
′′) is sent by Φ′ to the left-tilt of the canonical heart

A ′ of D f d(Γ
′) tilted at the simple S′l corresponding to the vertex l. Thus

every object E in LS′l
(A ′) fits into a triangle

F −→ E −→ T −→

with F ∈
〈
S′l
〉⊥

=
{

E|HomA ′(S′l,E) = 0
}

and T ∈
〈
S′l
〉
[−1]. Since Φ :

D f d(Γ
′)→ D f d(Γ) is a triangle equivalence the object Φ(E) fits into the

triangle
Φ(F)−→Φ(E)−→Φ(T )−→

with Φ(F) ∈
〈
Φ(S′l)

〉⊥
=
{

E|HomA (Φ(S′l),E) = 0
}

and Φ(T ) ∈〈
Φ(S′l)

〉
[−1]. The object Φ(S′l) is a simple object in the left-tilt
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LSr(A ) of A at the simple object Sr corresponding to the vertex r and
(
〈
Φ(S′l)

〉⊥
,
〈
Φ(S′l)

〉
[−1]) is a torsion pair in LSr(A ). Thus the heart A ′′

is mapped under the equivalence Φ ◦Φ′ to the heart LΦ(S′l)
(LSr(A )). Both

hearts are of finite length since A ′′ is of finite length. We can mutate indef-
initely and going on in this way we see that we can tilt A indefinitely.

The important point for us is the following: The simple objects of A
can be identified with the simple objects S1, . . . ,Sn of nil(P(Q,W )) for a
quiver Q with n vertices. The heart A is of finite length with simple objects
S1, . . . ,Sn.

Theorem 8.2.7. Let (Q,W ) be a 2-acyclic quiver Q with generic poten-
tial W such that we have a discrete central charge on the heart A of the
canonical t-structure of D f d(Γ) with finitely many stable objects. Then the
sequence of stable objects of A in the order of decreasing phase defines
a sequence of simple tilts from A to A [−1]. Moreover, (Q,W ) is Jacobi-
finite.

Proof. By Lemma 8.2.6 we can tilt the heart A indefinitely. We assume
we have a discrete central charge so we can apply Theorem 8.1.1 since we
terminate after finitely many steps in the mutation method by Lemma 8.1.4.
To prove the last statement note that there is no sequence of simple tilts
from A to A [−1] if (Q,W ) is not Jacobi-finite by the proof of Theorem
8.1 in [81].

In the proof of Lemma 8.2.6 we saw that a sequence of simple tilts of the
heart A of the canonical t-structure of D f d(Γ) for a quiver with potential
(Q,W ) defines a sequence of mutations of the initial quiver with potential
(Q,W ). Every tilt in a sequence of tilts of the initial heart A corresponds
to a mutation.

Lemma 8.2.8. Let Q be a 2-acyclic quiver with n vertices. The sequence
of mutations of Q defined by the sequence of simple tilts in the mutation
method linking the set (S1, . . . ,Sn) to the set (S1[−1], . . . ,Sn[−1]) as in The-
orem 8.2.7 gives back the original quiver Q (up to permutation of the ver-
tices).

Proof. Let A ′ be the canonical t-structure of D f d(Γ
′) with simple ob-

jects S′1, . . . ,S
′
n. Here Γ′ is the Ginzburg algebra of the final quiver

given by the sequence of mutations as in the statement of the lemma.
By the proof of Lemma 8.2.6 the heart A ′ is equivalent to the initial
heart shifted by [-1], A [−1] ⊂ D f d(Γ), induced by a triangle equiva-
lence Φ : D f d(Γ

′)→ D f d(Γ) where Γ is the Ginzburg algebra of the ini-
tial quiver with potential. Using Proposition 5.3.2 this gives the identifi-
cations Ext1

A ′(S
′
i,S
′
j) = HomD(Γ′)(S′i,S

′
j[1]) = HomD(Γ)(Φ(S′i),Φ(S′j)[1]) =
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Ext1
A [−1](Φ(S′i),Φ(S′j)). The objects Φ(S′i) and Φ(S′j) lie in A [−1] thus

Ext1
A [−1](Φ(S′i),Φ(S′j)) can be identified with Ext1

A (Sk,Sl) for some sim-
ple objects Sk and Sl of A . The dimensions of the Ext1-groups between the
simple objects S1, . . . ,Sn associated to the vertices of a quiver Q are given
by:

dim Ext1(Si,S j) = #(arrows j −→ i in Q).

This finishes the proof.

Corollary 8.2.9. Let HQ := mod− kQ be the category of representations
of an acyclic quiver Q. We assume we have finitely many stable objects with
respect to a discrete central charge on HQ. Then the stable objects of HQ
in the order of decreasing phase induce a sequence of simple tilts from A
to A [−1], where A is the heart of the canonical t-structure of D f d(Γ) for
the Ginzburg algebra Γ = Γ(Q,W = 0) of Q.
Vice versa, given a discrete central charge on A with finitely many stable
objects then the stable objects of A in the order of decreasing phase induce
a sequence of simple tilts from HQ to HQ[−1].

Proof. By the proof of Proposition 8.2.1 the stable objects of HQ in the
order of decreasing phase are precisely the objects at that we tilt in a se-
quence of simple tilts from HQ to HQ[−1] in Db(HQ). HQ is equivalent
to the heart A of the canonical t-structure of D f d(Γ) for the Ginzburg alge-
bra Γ = Γ(Q,W = 0) of Q by Example 1 behind Definition 8.2.2. Since we
can identify HQ and A the stable objects of HQ with respect to the given
discrete central charge on HQ can be identified with the stable objects of A
with respect to the induced central charge. Now the Corollary follows from
Theorem 8.2.7.

An isomorphism of entire exchange graphs for the two derived cate-
gories associated to a acyclic quiver is constructed in [48].

8.3 Maximal green sequences

In this section we relate stable objects to maximal green mutation sequences
as introduced by B. Keller in [57].

Let us consider a 2-acyclic quiver Q with n vertices. Associated with Q
is a skew-symmetric matrix B whose coefficients bi j are given by

#(arrows i−→ j in Q)−#(arrows j −→ i in Q) (8.3.1)
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for all 1 ≤ i, j ≤ n. The quiver Q is given by the matrix B up to an iso-
morphism of the vertices. If B is the matrix associated for the quiver Q, the
skew-symmetric matrix B′ associated with the mutation µk(Q) of Q at the
vertex k is given by

b′i j =

{
−bi j if i = k or j = k,
bi j + sgn(bi j)max(0,bikbk j) else.

Let Q̃ be the principal extension of Q, i.e. the quiver obtained from Q
by adding a new vertex i′ := i+ n and a new arrow i→ i′ for each vertex
i ∈ Q0. The new vertices i′ are called frozen and we will never mutate at
them. Here is an example:

Q : 1 // 2 , Q̃ : 1 //

��

2

��
1′ 2′

(8.3.2)

Definition 8.3.1. [57] A vertex j of a quiver in the mutation class of Q̃
is called green if there are no arrows from a frozen vertex i′ to j and red
otherwise. A green (mutation) sequence on Q̃ is a mutation sequence such
that every mutation in the sequence is at a green vertex in the corresponding
quiver. A green sequence is maximal if all vertices of the final quiver are
red. The length of a green mutation sequence is the number of mutations in
the sequence.

If in the example above we begin mutating at vertex 2 we find the max-
imal green sequence

1

�� ��

2oo

1′ 2′

OO 1 // 2

��
1′

OO

2′

__ 1 2oo

1′

??

2′

__

Starting at vertex 1 we find

1 2oo

��
1′

OO

2′

1 // 2

1′

OO

2′

OO

Let us consider a sequence of simple tilts as in Theorem 8.2.7. They
define a sequence of nearby cluster collections (see section 7) and yield as
combinatorial counterpart a sequence of green mutations [57, 51].
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Proposition 8.3.1. Let (Q,W ) be a quiver with potential. Let A be the
canonical heart of D f d(Γ) for Γ = Γ(Q,W ) with a discrete central charge
as in Theorem 8.2.7. Then the stable objects of A define a maximal green
mutation sequence with length given by the number of stable objects.

Proof. Let S1, . . . ,Sn be the simple objects of A . Consider the Ext−quiver
of S1, . . . ,Sn, i.e. the quiver with vertices labelled by the vertices of the sim-
ple objects S1, . . . ,Sn and the numbers of arrows in the Ext-quiver between
the vertices i and j is the dimension of Ext1(Si,S j). Take the principal ex-
tension of this Ext-quiver. By section 5.13 in [57] (or the proof of Theorem
7.9 in [51]) the sequence of hearts appearing in the mutation method as in
Theorem 8.2.7 define a sequence of mutations of this quiver, since they de-
fine a sequence of simple tilts. The classes in the basis [S1], . . . , [Sn] of the
simple objects of a heart A ′ appearing in the mutation method as in Theo-
rem 8.2.7 encode the number of arrows from the non-frozen vertices to the
frozen vertices. By the proof of Theorem 8.1.1 the simple objects of every
heart A ′ appearing in the mutation method lie in A or A [−1]. Since we
tilt always at objects in A and finish with the heart A [−1] the sequence of
mutations of quivers obtained in this way is a maximal green sequence.

Let Q be an acyclic quiver. By Lemma 8.2.1 we can find a discrete
central charge such that the stable objects are exactly the simple objects of
HQ. Thus the set of maximal green mutations of Q is non-empty. If Q is
a Dynkin quiver there is a discrete central charge with stable objects given
by all indecomposable objects. Therefore we can find a maximal green
sequence of length equal to the number of indecomposables.

8.4 Refined Donaldson-Thomas invariants

We can associate to a quiver with potential a refined Donaldson-Thomas
invariant [58, 60]. In this section we choose k = C and we closely follow
[57].

Let Q be a finite quiver with n vertices. The quantum affine space AQ

is the Q(q1/2)-algebra generated by the variables yα ,α ∈ Nn, subject to the
relations

yαyβ = q1/2λ (α,β )yα+β

where λ ( , ) is the antisymmetrization of the Euler form of Q. Equivalently,
AQ is generated by the variables yi := yei,1≤ i≤ n subject to the relations

yiy j = qλ (ei,e j)y jyi.
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We denote by ÂQ the completion of AQ with respect to the ideal generated
by the yi.

Let (Q,W ) be a quiver with potential and we assume we can find a
discrete central charge Z on nil(P(Q,W )). The refined Donaldson-Thomas
invariant is defined to be the product in ÂQ

EQ,W,Z := ~
∏M stableE(y

dim M) (8.4.1)

where the stable modules with respect to the discrete central charge ap-
pear in the order of decreasing phase. E(y) is the quantum dilogarithm [59],
i.e. the element in the power series algebra Q(q1/2)[[y]] defined by

E(y) = 1+
q1/2

q−1
y+ . . .+

qn2/2

(qn−1)(qn−q) · · ·(qn−qn−1)
yn + . . . .

The invariant EQ,W,Z is of course only well defined if it does not depend
on the choice of a discrete central charge Z. (This is conjecture 3.2 in [57].)
If it is well-defined we denote it by EQ,W .

The set of simple objects (S1, . . . ,Sn) of the heart A of the canonical
t-structure of D f d(Γ) is a cluster collection.

Definition 8.4.1. [60] A cluster collection S′ is a sequence of objects
S′1, . . . ,S

′
n of D f d(Γ) such that

1. the S′i are spherical,

2. Ext∗(S′i,S
′
j) vanishes or is concentrated either in degree 1 or degree 2

for i 6= j,

3. the S′i generate the triangulated category D f d(Γ).

In our case the cluster collection S1, . . . ,Sn is linked to the cluster col-
lection S1[−1], . . . ,Sn[−1] by a sequence of simple tilts and permutations.
The functor [−1] is therefore a reachable functor for D f d(Γ) in the sense of
[57, 61]. A functor F : D f d(Γ)→D f d(Γ) is reachable if there is a sequence
of mutations and permutations from the initial cluster collection (S1, . . . ,Sn)
to (F(S1), . . . ,F(Sn)).

A quiver Q has a associated braid group Braid(Q) which acts on
D f d(Γ). Keller and Nicolás prove that there is a canonical bijection be-
tween the set of Braid(Q)-orbits of reachable cluster collections and reach-
able cluster-tilting sequences in the cluster category associated to D f d(Q)
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[57, 61]. A discrete central charge with finitely many stable objects induces
reachable cluster collections. We can view the images of these cluster col-
lections as ’stable’ objects in the cluster category.

A cluster collection S′ is nearby if the associated heart A ′ is the left-
tilt of some torsion pair in A . A sequence of simple tilts at objects of A
starting at the initial cluster collection S gives a sequence of nearby cluster
collections

S = S0 −→ S1 −→ ·· · −→ SN .

For a sequence of reachable nearby cluster collections given by a sequence
of simple tilts B. Keller introduced in [57] the invariant in AQ

E(ε1β1)
ε1 · · ·E(εNβN)

εN (8.4.2)

where βi,1 ≤ i ≤ N is the class of the i-th simple object on that we tilt. If
this object is an element of A we set εi =+1, if it is an element of A [−1]
we set εi =−1.

Theorem 8.4.1. [51, 57] Let be given sequences of reachable nearby clus-
ter collections as described above with the same final nearby cluster collec-
tion. Then the invariant 8.4.2 does not depend on the choice of a sequence.

Here is the main result of this chapter:

Theorem 8.4.2. Let (Q,W ) be a 2-acyclic quiver Q with generic poten-
tial W such that we have a discrete central charge on the heart A of the
canonical t-structure of D f d(Γ) with finitely many stable objects. Then the
refined Donaldson-Thomas invariant 8.4.1 associated to (Q,W ) does not
depend on the chosen discrete central charge Z : K(A )→ C with finitely
many stable objects.

Proof. By the proof of Theorem 8.1.1 the simple objects of a heart appear-
ing in the mutation method are a nearby cluster collection. The left-most
simple objects of the hearts appearing in the mutation method all lie in
A . The refined DT invariant 8.4.1 is defined in terms of the stable objects
of A in the order of decreasing phase. But these are precisely the left-
most simple objects in the order they appear in the mutation method. Let
(S1, . . . ,Sn) be the simple objects of the initial heart A . By Theorem 8.4.1
the refined DT invariant associated to (Q,W ) in this case does not depend
on the finite sequence of mutations from the cluster collection (S1, . . . ,Sn)
to (S1[−1], . . . ,Sn[−1]). Therefore the refined DT invariant is the same for
every sequence of nearby cluster collections induced by a discrete central
charge with finitely many stable objects.
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Note that the potential does not have to be polynomial. Thus we get an
even stronger result than the conjecture 3.2 of B. Keller in [57] described
in the introduction. This is an important new special case. In the case of a
Dynkin quiver this proves the identities of Reineke [58].
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Chapter 9

Conclusions and Outlook

In this thesis we considered Bridgeland stability conditions on triangulated
categories and the closely related topic of BPS states. In our geometrical ex-
ample of projective Kummer surfaces we constructed an embedding of the
unique maximal component of the space of stability Stab†(A) conditions
of a Abelian surface into the distinguished component of the stability mani-
fold Stab†(X) of the associated Kummer surface. Therefore we have simply
connected subspaces in Stab†(X). The next goal would be to demonstrate
that Stab†(X) is simply connected. Unfortunately, it seems that other meth-
ods are needed to achieve this goal.

In the second project we did not investigate the space of stability condi-
tions itself instead we used it as a tool to study refined Donaldson-Thomas
invariants. We could confirm a conjecture of Bernhard Keller in a special
case and actually formulate a stronger result (Theorem 8.4.2) in this case.
To prove that the refined DT invariant is independent for a general central
charge needs other methods like motivic Hall algebras and for this the the-
ory of Kontsevich-Soibelman has to be further developed.

The proof of Theorem 8.2.7 is connected to (additive) categorification
of cluster algebras [51] after Nagao. Categorification associates to every
2-acyclic quiver Q a generic potential W and thus the triangulated category
D f d(Γ). For a quiver with n vertices we have a n-regular tree defined by it-
erated mutation at one of the n vertices. The statement of Theorem 8.2.7 is
that stable objects of the canonical heart A of D f d(Γ) define a special path
through this tree. The simple objects of all tilted hearts described by this
path lie in A or in A [−1], what is the crucial fact in the categorification
of cluster algebras associated with 2-acyclic quivers. Bridgeland stability
conditions on triangulated categories are defined by a central charge on the
heart of a t-structure with Harder-Narasimhan property. The space of stabil-
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ity conditions is a complex manifold and thus deforming the central charge
deforms the stability condition. Therefore stability conditions are a natural
tool to describe processes like tilting of hearts at simple objects as described
above. Our methods should be useful for the categorification of cluster alge-
bras. Here is an example: A quiver Q has a associated braid group Braid(Q)
which acts on D f d(Γ). Keller and Nicolás prove that there is a canonical
bijection between the set of Braid(Q)-orbits of reachable cluster collections
and reachable cluster-tilting sequences in the cluster category associated to
D f d(Q) [57]. A discrete central charge with finitely many stable objects in-
duces reachable cluster collections. We can view the images of these cluster
collections as ’stable’ objects in the cluster category.

A question that might be answered within the developed methods of this
thesis is the following: Is any sequence of simple tilts from A to A [−1]
induced by some central charge? In fact, Yu Qiu gave a counterexample for
the case of an Dynkin quiver [47]. But one may still consider the unordered
set of a sequence of simple tilts and ask if some permutation of such a
sequence is induced by a central charge. This was conjectured by Qiu for
Dynkin quivers in [47]. We concluded in section 8.2 that we can find a
discrete central charge for any acyclic quiver such that the stable objects are
precisely the simple objects. This statement is based on the fact that we can
order the vertices of an acyclic quiver in such a way that there is no arrow
from vertex i to vertex j if i < j. In fact, it is straightforward to prove the
existence of a discrete central charge for an acyclic quiver without using the
mutation method. For more general existence results our approach seems
promising. This is left for future research.
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